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Abstract 

Energy efficiency and prolonged network lifetime remain key challenges in wireless sensor networks. 
Clustering, cluster head selection, and routing are central to addressing these issues since they 
directly affect energy consumption, data delivery, and overall network stability. In this work, we 
introduce a novel hybrid protocol named PUMA-GRID, which uniquely integrates the recent Puma 
Optimization Algorithm with a grid-based multi-hop routing framework. Unlike traditional 
schemes, PUMA-GRID adaptively balances exploration and exploitation during cluster head 
selection while learning optimal data forwarding paths through grid-based routing. This 
combination provides improved adaptability, scalability, and load balancing, key strengths that 
distinguish it from earlier AEO, LEACH, and static PUMA variants. The fitness function for cluster 
head election incorporates intra cluster distance, distance to the base station, and residual energy, 
with adjustable weights that allow flexible adaptation to deployment scenarios. Simulation 
experiments were performed under different base station placements and weight configurations to 
assess the influence of each factor. The results show that the effect of the weights depends strongly 
on base station location, and that careful tuning is required to balance efficiency and fairness. Across 
all scenarios, PUMA-GRID demonstrated superior performance compared to LEACH, AEO based 
schemes, and other PUMA variants Overall, PUMA-GRID demonstrates an effective and scalable 
solution for sustainable and energy-aware operation of wireless sensor networks. 

Keywords: wireless sensor networks; energy efficiency; network lifetime; puma optimization 
algorithm; cluster head selection; grid-based routing; multi-hop communication; metaheuristic 
optimization; base station deployment; weighted fitness function 
 

1. Introduction 

In recent decades, computer networks, particularly wireless communications, have undergone 
remarkable expansion due to continuous technological progress. Advances in microelectronics and 
transducer design have enabled the development of compact, efficient, and low-cost devices capable 
of detecting and measuring diverse physical quantities with high accuracy. These innovations have 
paved the way for Wireless Sensor Networks (WSNs), a transformative technology widely 
recognized by researchers and industry analysts [1–4]. A WSN consists of numerous sensor nodes 
distributed across a geographical area, each capable of sensing, processing, and transmitting 
information to a central Base Station (BS) [5]. However, transmitting large volumes of data consumes 
significant energy, directly limiting network lifespan, particularly since nodes rely on small batteries 
and are often deployed in hard-to-reach areas. 

In addition to limited energy and transmission range, wireless sensor networks (WSNs) face 
several other inherent challenges. These include signal interference from co-channel or adjacent 
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wireless systems, low memory and processing capabilities of sensor nodes, narrow communication 
bandwidth, constrained transmission range, and heightened vulnerability to environmental 
disturbances and cyberattacks. For example, Kenyeres et al. [6] detail how narrow bandwidth, limited 
memory, and constrained transmission range degrade WSN reliability and increase susceptibility to 
noise and external interference. Likewise, Ahmad et al. [7] highlight how these resource constraints 
amplify security challenges and make nodes vulnerable to attacks and faults. 

To overcome this limitation, various routing strategies have been proposed, each aiming to 
balance energy consumption and extend network lifetime [8–10]. These strategies are generally 
classified into four families based on logical topology. In flat-based routing [11], all nodes share equal 
roles, but flooding often leads to redundancy and overhead. Chain-based routing [12] reduces 
transmissions by forming sequential links but increases delay. Tree-based routing [13] establishes a 
parent–child hierarchy for data aggregation, while cluster-based routing [14] organizes nodes into 
clusters managed by a Cluster Head (CH) that aggregates and forwards data to the BS, directly or via 
other CHs. The main challenge lies in selecting optimal CHs, forming balanced clusters, and 
maintaining efficient communication routes [15]. Clustering therefore remains central to improving 
energy efficiency in WSNs. 

The pioneering Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol [14] and its 
variants—LEACH-C [16], LEACH-1R [17,18], V-LEACH [19], TL-LEACH [20], and E-LEACH [21]—
introduced improvements such as centralized control, fixed clustering, backup cluster heads (CHs), 
hierarchical communication, and energy-aware CH election. Despite these enhancements, they still 
suffer from unbalanced energy consumption and limited network lifetime. Machine learning-based 
clustering methods, including k-means [22,23] and DBSCAN (Density-based spatial clustering of 
applications with noise) [24,25], have also been investigated. However, k-means requires prior 
knowledge of the optimal number of clusters, while DBSCAN is highly sensitive to parameter 
settings. These limitations highlight the need for more adaptive and robust clustering approaches. 

Since their emergence in the early 1980s, metaheuristic algorithms have advanced considerably, 
offering innovative strategies to enhance computational efficiency, solve complex large-scale 
optimization problems, and provide robust solutions. They have achieved notable success in 
addressing diverse combinatorial optimization tasks [26,27], with examples including Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee 
Colony (ABC), and Grey Wolf Optimizer (GWO). A recently proposed population-based 
metaheuristic, the Puma Optimizer Algorithm (PO) [28], is inspired by the hunting instincts and 
territorial behaviors of pumas, effectively modeling their exploration and exploitation strategies to 
solve optimization problems. 

Despite extensive research on energy-efficient clustering and routing, many existing protocols 
still face key limitations. Traditional methods often use fixed clustering structures that fail to adapt 
to node energy variations, while optimization-based algorithms frequently overlook spatial balance 
or introduce excessive control overhead. Moreover, the interaction between cluster formation and 
routing remains loosely coupled, leading to uneven energy depletion and reduced coverage over 
time. To address these challenges, this study introduces a unified clustering and routing framework 
that integrates the adaptive exploration–exploitation capability of the Puma Optimization Algorithm 
with grid-based multi-hop routing. The novelty lies in combining optimization-driven cluster head 
selection with topology-aware routing, enabling dynamic energy balancing, improved scalability, 
and extended network lifetime. 

The major contributions of this paper are summarized as follows: 
• A novel clustering protocol, PUMA-GRID, designed to optimize energy consumption and extend 

network lifetime. 
• Exploiting the adaptive balance between exploration and exploitation: exploration identifies 

diverse CH candidates, while exploitation refines them into energy-efficient selections. The 
dynamic switching between these phases prevents premature convergence, improves robustness, 
and ensures high-quality clustering solutions. 
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• CH selection is guided by a fitness function based on three parameters: residual energy of 
candidate CHs, distance to the BS, and distance from each node to its CH. 

• Several experiments were conducted by varying the weight values of the fitness function to 
evaluate their impacts under three different BS placements. 

• Performance was assessed using multiple metrics, including residual energy, number of packets 
sent to the BS, First Node Death (FND), Half Node Death (HND), Last Node Death (LND), energy 
consumption per round, and the coverage fairness index (measuring the impact of node deaths 
on coverage). 

• The proposed protocol was compared against AEO, LEACH, PUMA-SH, and grid-enhanced 
versions such as AEO-GRID. 
Compared with previous studies, this paper addresses several limitations observed in existing 

clustering and routing approaches. Traditional protocols such as LEACH and MR-LEACH provide 
simple probabilistic or static cluster-head selection but lack adaptability to energy dynamics. 
Optimization-based schemes like AEO, SHO-CH, and AVOACS incorporate heuristic search but 
often ignore spatial routing balance. The proposed PUMA-GRID protocol distinguishes itself by 
combining the adaptive exploration–exploitation behavior of the Puma Optimization Algorithm with 
grid-based multi-hop routing, achieving enhanced load balancing, energy preservation, and coverage 
fairness across varying deployment scenarios. 

The remainder of this paper is organized as follows. Section 2 reviews clustering protocols that 
employ metaheuristics for CH selection. Section 3 presents the PUMA algorithm, while Section 4 
describes the proposed PUMA-GRID protocol. Section 5 discusses the simulation setup along with 
the results and analysis. Finally, Section 6 concludes the paper. 

2. Related Work 

In AEOWSNC [29], a clustering protocol inspired by the Atomic Energy Optimization (AEO) 
algorithm [30] was introduced to extend the operational lifespan of WSNs. The protocol selects 
optimal CHs to minimize energy consumption while maintaining clustering efficiency. Each atom 
represents a candidate CH set, initialized randomly with a predefined number of CHs and assigned 
an energy level indicating its effectiveness. Through iterative operations such as energy transfer and 
dissipation, atoms evolve toward improved solutions. The objective function evaluates each solution 
based on the total distance from nodes to their CHs and from CHs to the BS, with the best solution 
yielding the lowest value. Strong solutions are preserved, while weaker ones lose energy and are 
replaced, ensuring a balance between exploration and exploitation. The protocol operates centrally, 
with CHs transmitting data directly to the BS. Simulations confirm its efficiency over other protocols. 
However, since the objective function considers only distance and not residual energy, CHs remain 
in that role until depletion, leading to unbalanced energy usage and reduced coverage. This limitation 
highlights the need for energy-aware optimization to further enhance performance. 

The SHO-CH protocol [31] was proposed as an energy-efficient, cluster-based routing scheme 
for heterogeneous WSNs. Its goal is to extend network lifetime while balancing energy consumption 
across nodes. Inspired by the cooperative hunting strategies of spotted hyenas, the protocol balances 
exploration and exploitation to select CHs that are both energy-efficient and strategically positioned. 
CH selection is guided by a fitness function incorporating residual energy, distance between nodes 
and their CHs, and distance from CHs to the BS. After aggregating data from members, CHs transmit 
either directly to the BS or via intermediate CHs located closer to it. Simulation results demonstrate 
that SHO-CH improves network lifetime and achieves more equitable energy distribution compared 
to existing approaches. 

The African Vulture Optimization Algorithm-based Energy Efficient Clustering Scheme 
(AVOACS) [32] applies the scavenging and foraging behaviors of vultures to optimize CH selection. 
Each vulture represents a candidate CH configuration, evaluated using a fitness function that 
considers residual energy, distance to the sink, intra-cluster distance, and a communication mode 
decider (CMD). After evaluation, the best two vultures guide the others, which update their positions 
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relative to these leaders. A dynamic hunger rate controls the balance between exploration and 
exploitation: initially promoting wide exploration and later encouraging intensive exploitation. Two 
exploitation strategies are applied: refining searches via siege-fighting and spiral flight or intensifying 
them by averaging around leaders or making aggressive jumps. This adaptive mechanism ensures a 
smooth transition from global search to local refinement, preventing premature convergence. Results 
show that AVOACS distributes energy more evenly, improves stability, and extends network lifetime 
compared to conventional protocols. 

The EEM-LEACH-ABC protocol [33] combines LEACH with the Artificial Bee Colony (ABC) 
algorithm for energy-efficient clustering and routing. Initially, each node computes a fitness score 
based on residual energy and distance to the BS to determine its suitability as a CH. Only high-fitness 
nodes are considered candidates. The ABC algorithm then refines CH selection, with worker, 
onlooker, and scout bees exploring and introducing new candidates to avoid local optima. To reduce 
the transmission cost of distant CHs, a multi-hop relay mechanism is applied. Selected CHs are 
ordered by weight to form a hierarchical relay tree. Each CH broadcasts advertisements, allowing 
nearby nodes to join its cluster, and generates a TDMA schedule for organized transmissions. During 
operation, CHs aggregate data and forward it either to the BS or through relay CHs. This adaptive 
clustering and routing approach significantly delays the FND and extends overall network lifetime. 

The Binary Dragonfly Algorithm (BDA)-based protocol [34] introduces a four-phase clustering 
process. First, after deployment, each node sends a hello message to the BS containing its ID, location, 
and residual energy. Second, CHs are selected using the Dragonfly Algorithm, with candidate 
solutions evaluated by a fitness function integrating residual energy, distance to the BS, and 
neighborhood degree (number of nearby nodes). Continuous solutions are mapped to binary values 
using transfer functions. Third, cluster formation is performed through a fuzzy inference system 
considering residual energy, distance to CHs, and neighborhood degree. Finally, data transmission 
is achieved through path discovery, where nodes identify shortest routes to the CH, and CHs forward 
aggregated data to the BS either directly or via other CHs in multi-hop fashion. This protocol extends 
network lifetime by balancing energy usage, though reliance on fuzzy logic and multi-hop 
forwarding through normal nodes can increase energy burden on some nodes, potentially affecting 
long-term performance. 

A hybrid protocol combining K-means and ACO [35] was also proposed. Initially, K-means 
forms clusters based on spatial proximity, after which ACO selects CHs and determines optimal 
routing paths. Decisions are guided by residual lifetime and energy efficiency (energy consumed in 
transmission). This hybridization exploits the strengths of K-means in forming compact clusters and 
ACO in optimizing routing. However, K-means alone is less effective in WSNs since it emphasizes 
Euclidean distance to centroids, overlooking irregular node distributions and resulting in imbalanced 
clusters and suboptimal energy usage. 

Another hybrid approach combining K-means, PSO, and fuzzy logic [36] was introduced. K-
means first generates initial clusters, and its result is used as one particle in PSO, while the others are 
generated randomly. After optimization, the best particle defines the final clusters. CHs are then 
elected using fuzzy logic: Primary CHs are selected based on residual energy, distance to the BS, and 
distance to the centroid; Secondary CHs are chosen considering residual energy, distance to the 
centroid, and distance to the Primary CH. While this multi-layered selection improves clustering 
efficiency, executing fuzzy logic at every node increases computational overhead and accelerates 
energy depletion. 

Zheng et al. [37] proposed a relay selection and deployment approach for non-orthogonal 
multiple-access (NOMA) enabled multi-AAV-assisted wireless sensor networks. Their study jointly 
optimizes relay placement and selection to enhance throughput and spectral efficiency under energy 
and coverage constraints, demonstrating the growing research interest in deployment-aware WSN 
optimization. 

Table 1 summarizes the reviewed protocols in terms of CH selection methods, considered 
variables (residual energy, distance to BS, intra-cluster communication), and routing strategies. 
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Overall, energy minimization in WSNs is achieved not only through metaheuristic-based CH 
selections, such as evolutionary and swarm-intelligence algorithms, but also via classical clustering, 
adaptive thresholding, and energy-aware multi-hop routing. These complementary approaches 
balance network load, prolong node lifetime, and reduce communication overhead, leading to more 
sustainable WSN deployments. 

Table 1. Comparison of clustering protocols in WSNs. 

Protocol 
CH Selection 

Method 

Parameters 

Considered 

Routing 

Type 

Main Strengths Limits 

AEOWSNC AEO 
Distance(Node, CH) 

Distance(CH, BS) 
Single-hop 

Simple implementation and 

efficient CH distance 

minimization 

Lacks energy-awareness in CH 

rotation and scalability 

SHO-CH Hyenas 

Residual energy 

Distance(Node, CH) 

Distance(CH, BS) 

Multi-hop  

Single-hop 

Balances exploration and 

exploitation for better CH 

selection 

High computational cost and limited 

scalability 

AVOACS 
African  

Vulture 

Residual energy 

Distance(Node, CH) 

Distance(CH, BS) 

Communication 

mode decider 

Single-hop 

Adaptive switching between 

exploration and exploitation 

phases 

Increased overhead and slow 

convergence in large networks 

EEM-LEACH-

ABC 
ABC 

Residual energy 

Distance(CH, BS) 

Multi-hop 

Single-hop 

Reduces control overhead and 

improves network lifetime 

Random CH initialization may cause 

imbalance 

BDA Dragonfly 

Residual energy 

Distance(CH, BS) 

Neighborhood 

degree 

Multi-hop 

Single-hop 

Maintains network connectivity 

and energy balance 

Sensitive to parameter tuning and 

dense topologies 

KPSOFL 
K-means and 

PSO 

Residual energy 

Distance(CH, BS) 

Distance to centroid 

Single-hop 
Combines clustering accuracy 

with adaptive optimization 

Dependent on initial cluster 

centroids and PSO randomness 

3. Preliminaries: Puma Optimizer 

The Puma Optimizer is inspired by the natural predatory strategies of pumas, which combine 
learning, exploration, and exploitation behaviors to maximize hunting success [26]. The algorithm 
emulates the gradual transition of pumas from inexperienced hunters to skilled predators through a 
series of interconnected phases that adaptively balance global search and local refinement. This 
design maintains population diversity in the early stages to promote exploration and gradually 
intensifies the search around promising regions as convergence progresses. If the population 
diversity decreases too rapidly, premature convergence may occur, causing the algorithm to settle 
around local optima and leading to suboptimal cluster-head selection and energy imbalance. The 
severity of this issue depends on the chosen control parameters, such as population size, learning 
rate, and movement coefficients, which influence the exploration–exploitation balance. In the 
proposed implementation, these parameters are adaptively tuned to preserve diversity and stability. 
It is also noted that exploration and exploitation durations are measured in algorithmic iterations 
rather than real-time units, as they depend on the internal convergence dynamics of the optimizer 
rather than clock time. 

3.1. Unexperienced Phase 
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At the start of the optimization, pumas are considered inexperienced hunters. This phase, 
typically lasting only a few iterations, activates both exploration and exploitation simultaneously. By 
combining wide roaming of the search space with initial local improvements, the algorithm mimics 
the trial-and-error learning of young pumas. This balance provides an initial diversity of solutions 
before specialization begins. 

3.2. Experienced Phase 

After the unexperienced stage, the algorithm assumes that pumas have gained hunting 
experience. In this phase, the decision to favor exploration or exploitation is made adaptively, based 
on their relative effectiveness in previous iterations. This adaptive behavior is governed by two 
reinforcement counters: 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୰ୣ  and 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୧୲ . If exploration has yielded better 
improvements, the algorithm emphasizes global roaming; otherwise, it prioritizes local exploitation. 
This mechanism reflects the natural ability of experienced pumas to choose the most effective hunting 
strategy. 

3.3. Exploration Phase 

Exploration represents the roaming of pumas over wide territories in search of prey. In the 
algorithm, candidate solutions are perturbed around the global best and other agents, modulated by 
trigonometric functions such as cosine. This introduces nonlinear trajectories that expand the search 
space, helping avoid stagnation and maintain diversity across the population. 

3.4. Exploitation Phase 

Exploitation simulates the stalking and chasing of prey once it has been detected. Here, agents 
are drawn toward elite and neighboring solutions using sine-based functions, narrowing the search 
to promising local regions. By reducing randomness and refining solution quality, exploitation 
accelerates convergence while ensuring the final solutions are highly optimized. 

3.5. Parameter Definitions 

The PO algorithm relies on several key parameters and functions:  
• 𝑓ଵ: Exploration Function, which governs roaming behavior: 𝑓ଵሺ𝑋௜௧ሻ = 𝑋௜௧ + 𝑟ଵ ∙ cosሺ𝑟ଶሻ ∙ ሺ𝑋஻௘௦௧ − 𝑋௜௧ሻ (1) 

where 𝑟ଵ, 𝑟ଶ ∈ [0, 1] are random numbers, and 𝑋஻௘௦௧ is the elite solution. 
• 𝑓ଶ: Exploitation Function, which models local pursuit around promising solutions: 𝑓ଶሺ𝑋௜௧ሻ = 𝑋஻௘௦௧ + 𝑟ଷ ∙ sinሺ𝑟ସሻ ∙ ൫𝑋௝௧ − 𝑋௞௧൯ (2) 

where 𝑟ଷ, 𝑟ସ ∈ [0, 1] are random numbers, and 𝑋௝௧ ,𝑋௞௧  are random solutions. 
• 𝑓ଷ (Adaptive Balancing Term): A time-varying coefficient that gradually decreases exploration 

strength while increasing exploitation with iterations. 
• 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୰ୣ  and 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୧୲ : Reinforcement counters that track the relative success of each 

phase. If exploration produces improvements, 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୰ୣ  is incremented; otherwise, 
exploitation is rewarded. Phase selection is determined by comparing the two scores. 

• 𝑁: Population size. 
• [𝐿𝐵,𝑈𝐵]: Lower and upper bounds of the search space. 
• 𝑇௠௔௫: Maximum number of iterations. 

The choice of cosine and sine functions in equations (1) and (2) is intentional and reflects the 
different objectives of the two phases. In the exploration phase, cosine provides a push–pull 
oscillatory effect with larger displacements, allowing agents to roam widely and escape local minima. 
In contrast, the exploitation phase uses sine, which generates smaller, smoother oscillations around 
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zero, enabling precise local adjustments. This asymmetric design ensures that exploration remains 
disruptive and diverse, while exploitation is fine-grained and convergent. 

The key functions in PO algorithm govern the balance between exploration and exploitation and 
directly influence convergence behavior and optimization performance. Specifically, the position 
update and hunting functions control how pumas move through the search space, while the fitness 
evaluation function determines the quality of each solution. These mechanisms together define the 
algorithm’s capacity to avoid local optima and converge toward high-quality solutions. 

3.6. PO Pseudocodes 

The operational flow of the PO can be summarized in the following pseudocodes: 

It is important to note that the global best solution 𝑋஻௘௦௧ is explicitly updated at the end of the 
exploitation phase (Algorithm 3) but not during exploration (Algorithm 2). This design reflects the 
different goals of the two phases: exploration aims to diversify the population by generating wide, 
trial solutions, while exploitation focuses on refining and improving the elite solution. Updating 𝑋஻௘௦௧ during exploration could prematurely bias the search toward unstable exploratory candidates, 
whereas updating it during exploitation ensures that only robust, locally improved solutions 
influence the global best. 

Algorithm 1: Puma Optimizer (PO) 
Input: Population size 𝑁, maximum iterations 𝑇௠௔௫, parameter settings 
Output: Best solution 𝑋஻௘௦௧ and fitness value 
1:  Initialize a population of 𝑁 pumas 𝑋௜ within [𝐿𝐵,𝑈𝐵] 
2:  Evaluate fitness of all pumas 
3:  Identify the best solution 𝑋஻௘௦௧ 
4:   
5:  // Unexperienced Phase 
6:  For 𝑡 =  1 to 3 do 
7:   Apply Exploration Phase 
8:   Apply Exploitation Phase 
9:  End For 
10:   
11:  // Experienced Phase 
12:  For 𝑡 =  4 to 𝑇௠௔௫ do 
13:   If 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୰ୣ > 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୧୲ 
14:    Apply Exploration Phase 
15:    If new solution improves 𝑋஻௘௦௧ 
16:   Update 𝑋஻௘௦௧ 
17:    End If 
18:   Else 
19:    Apply Exploitation Phase 
20:    If new solution improves 𝑋஻௘௦௧ 
21:     Update 𝑋஻௘௦௧ 
22:    End If 
23:   Update control parameters (𝑓1, 𝑓2, 𝑓3) 
24:   Recompute 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୰ୣ and 𝑆𝑐𝑜𝑟𝑒୉୶୮୪୭୧୲ 
25:  End For 
26:  Return 𝑋஻௘௦௧ 

 
Algorithm 2: Exploration Phase 

Input: Population 𝑋௜௧, best solution 𝑋஻௘௦௧ 
Output: Updated solutions 𝑋௜௧ାଵ 
1:  For each puma 𝑖 =  1 to 𝑁 do 
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2:   Generate random 𝑟ଵ, 𝑟ଶ  ∈  [0,1] 
3:   𝑋௜௡௘௪ =  𝑋௜௧ + 𝑟ଵ ∙ cos(𝑟ଶ)  ∗  (𝑋஻௘௦௧ −  𝑋௜௧)  
4:   If 𝑋௜௡௘௪ is out of bounds 
5:    Reinitialize 𝑋௜௡௘௪ within [𝐿𝐵,𝑈𝐵] 
6:   End If 
7:    
8:   Evaluate fitness of 𝑋௜௡௘௪ 
9:   If fitness(𝑋௜௡௘௪) better than fitness(𝑋௜௧) 
10:    𝑋௜௧ାଵ = 𝑋௜௡௘௪ 
11:   Else 
12:    𝑋௜௧ାଵ = 𝑋௜௧ 
13:   End If 
14:  End For 

 
Algorithm 3: Exploitation Phase 

Input: Population 𝑋௜௧, best solution 𝑋஻௘௦௧ 
Output: Updated solutions 𝑋௜௧ାଵ 
1:  For each puma 𝑖 =  1 to 𝑁 do 
2:   Select two random distinct pumas 𝑋௝ ,𝑋௞ 
3:   𝑋௜௡௘௪ =  𝑋஻௘௦௧ + 𝑟ଷ ∙ sin(𝑟ସ)  ∗  (𝑋௝ −  𝑋௞)  
4:   If 𝑋௜௡௘௪ is out of bounds 
5:    Reinitialize 𝑋௜௡௘௪ within [𝐿𝐵,𝑈𝐵] 
6:   End If 
7:    
8:   Evaluate fitness of 𝑋௜௡௘௪ 
9:   If fitness(𝑋௜௡௘௪) better than fitness(𝑋௜௧) 
10:    𝑋௜௧ାଵ = 𝑋௜௡௘௪ 
11:   Else 
12:    𝑋௜௧ାଵ = 𝑋௜௧ 
13:   End If 
14:  End For 
15:  Update 𝑋஻௘௦௧ if any 𝑋௜௧ାଵ is better 

4. The PUMA-GRID Protocol: Clustering with Grid-Based Multi-hop Routing 

The proposed protocol, PUMA-GRID, introduces an advanced clustering and routing 
framework to address the critical challenge of energy efficiency in WSNs. It leverages the Puma 
Optimizer, a metaheuristic known for its adaptive balance between exploration and exploitation, to 
dynamically optimize CH selection across the network. By navigating the complex combinatorial 
space of possible CH assignments, PUMA explores diverse clustering configurations during the early 
search stages and gradually intensifies its focus on promising regions of the solution space. This 
adaptive tuning enables efficient convergence toward high-quality, energy-aware clustering 
solutions. 

In this study, PUMA-GRID assumes a single BS located either inside or at the edge of the 
monitored area, which serves as the central data collection point. This assumption aligns with most 
benchmark WSN configurations and facilitates consistent performance comparison. Although 
deploying multiple BSs could further reduce communication distances and balance network load, 
the proposed framework was designed and evaluated under a single-BS scenario. 

To complement clustering, the approach incorporates a grid-based, machine-learning-inspired 
multi-hop routing mechanism. Grid-based routing divides the wireless sensor network into uniform 
virtual cells, facilitating energy-efficient data forwarding through structured multi-hop paths and 
localized packet transmission. As highlighted in [38], this approach enhances scalability and ensures 
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predictable communication costs, although its performance depends on appropriate grid 
configuration to prevent problems such as empty cells and uneven node distribution. 

4.1. Initialization 

In the initialization phase, the clustering process is prepared by setting up candidate solutions 
for CH selection. In the proposed protocol, the CH selection process is not predetermined within each 
grid cell but dynamically optimized through the PUMA algorithm. All sensor nodes are initially 
eligible to become CHs, and their selection depends on the fitness function that considers residual 
energy, distance to the base station, and intra-cluster communication distance. 

After random deployment of nodes in the target area, each node transmits its position 
information to the BS, which then begins executing the PUMA algorithm. A population of 𝑚 
individuals (candidate solutions) is generated, where each individual is represented as an 𝑛-length 
binary vector. In this encoding, a value of 1 denotes that the node is selected as a CH, while 0 indicates 
a regular sensor node. The desired number of CHs is specified as a user-defined percentage of the 
total nodes. This binary representation, consistent with classical metaheuristic clustering approaches, 
enables flexible exploration of CH configurations and establishes a solid foundation for the 
optimization process. 

4.2. PUMA-Based Clustering and Fitness Evaluation 

PUMA balances exploration and exploitation through adaptive control mechanisms embedded 
in its search dynamics. During the exploration phase, candidate solutions undergo wide, randomized 
position adjustments that preserve diversity and help the algorithm avoid premature convergence. 
As optimization progresses, PUMA transitions into the exploitation phase, where updates become 
more focused, favoring local improvements around the current best solution. The number of CHs is 
not strictly enforced during this process, allowing the search to flexibly explore a broader range of 
configurations. This hyper-heuristic switching mechanism, as demonstrated in recent applications of 
the Puma Optimizer, dynamically adjusts the exploration–exploitation ratio according to the 
optimization context, enabling progressive refinement of clustering results while avoiding local 
optima. 

The fitness function in PUMA-GRID integrates three key metrics: (1) the total distance between 
each regular node and its nearest CH, (2) the distance from each CH to the base station (BS), and (3) 
the residual energy of the selected CHs. These components are combined using weighted coefficients 𝑤ଵ, 𝑤ଶ, and 𝑤ଷ, all in the range [0-1]. 𝑤ଵ + 𝑤ଶ + 𝑤ଷ = 1 (3) 

Additionally, a penalty term is introduced to discourage solutions where the number of CHs 
deviates significantly from the desired count. This mechanism ensures a balance between flexibility 
in exploration and compliance with user-defined network constraints. The objective function is 
therefore formulated as follows: 

Cost = 𝑤ଵ × ෍ 𝑚𝑖𝑛௝∈஼ுDist(𝑖, 𝑗)௜∈ே∖஼ு + 𝑤ଶ × ෍ Dist(𝑗,𝐵𝑆)௝∈஼ு − 𝑤ଷ × ෍ Energy௝௝∈஼ு+ 𝛼 × |NumCH− 𝐾௢௣௧| 
(4) 

where:  
• Dist(𝑖, 𝑗) is the Euclidean distance between node 𝑖 and its associated CH 𝑗. 
• Dist(𝑗,𝐵𝑆) is the Euclidean distance between CH 𝑗 and the base station. 
• Energy௝ is the residual energy of CH 𝑗.  
• NumCH is the number of CHs in the current solution.  
• 𝐾௢௣௧ is the desired number of CHs. 

After evaluating all candidate solutions in the PUMA population using the objective function, 
the individual with the minimum cost value is chosen as the best solution. This puma represents the 
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most energy-efficient clustering configuration for the current round, achieving the optimal trade-off 
among intra-cluster communication, CH-to-BS transmission, residual energy, and the cluster count 
penalty. In this context, a round refers to a complete operational cycle consisting of cluster formation, 
data sensing, aggregation by CHs, and data transmission to the BS. Algorithm 4 illustrates how 
PUMA operates in selecting CHs. 

Algorithm 4: Binary Puma Optimization Algorithm for WSN Clustering 
1:  Input: Number of sensors 𝑁; sensor positions (𝑋௜ ,𝑌௜); residual energy; base 

station position (𝐵𝑆௫,𝐵𝑆௬); maximum iterations 𝑇௠௔௫; weighted coefficients 𝑤ଵ, 𝑤ଶ, and 𝑤ଷ  
2:  Output: Optimal binary vector of cluster heads (CHs); best fitness value 
3:  Initialize a population of pumas 𝑋௜(𝑖 = 1, 2, … ,𝑁) as binary vectors (1 for CH, 0 

for normal node) 
4:  Evaluate the fitness of each puma using a weighted combination of residual 

energy, distance to cluster center, and distance to base station (Equation 2) 
5:  Identify the best local solution as the leader 
6:  For each iteration 𝑡 =  1 to 3 do 
7:   For each puma 𝑋௜ do 
8:  Apply exploration phase: roaming and searching for locally optimal CH 

positions 
9:  Apply exploitation phase: refining CH selection using ambush/attack 

strategies 
10:  Ensure updated positions remain binary (1 or 0) 
11:   End For 
12:   Evaluate fitness of all pumas 
13:   Update the leader (best solution so far) 
14:  End For 
15:  For each iteration 𝑡 =  4 to 𝑇௠௔௫ do 
16:   For each puma 𝑋௜ do 
17:  Update positions using exploration and exploitation with adaptive 

coefficients 
18:  Ensure updated positions remain binary (1 or 0) 
19:   End For 
20:   Evaluate fitness of all pumas 
21:   Update the leader (best solution so far) 
22:  End For 
23:  Return the leader as the optimal CH selection vector and its fitness value 

4.3. Grid-Based Multi-Hop Routing via A*-Inspired Logic 

After clustering, PUMA-GRID proceeds with a grid-based routing phase that employs a 
machine-learning-style decision mechanism. The network field is divided into uniform grid cells of 
user-defined size, with each CH residing in a specific cell. When forwarding aggregated data, a CH 
selects its next-hop relay from an adjacent grid cell that lies closer to the BS. The forwarding rule 
works like this: a CH will only choose another CH as a relay if going through it makes the total path 
to the BS shorter than sending data directly. In short, if the detour is shorter, the CH forwards through 
the relay. This heuristic emulates intelligent path selection, progressively routing data through 
energy-efficient multi-hop corridors while avoiding unnecessary long-range transmissions. Figure 1 
illustrates how the next CH is elected, and the detailed mechanism is provided in Algorithm 5. 
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Figure 1. Grid-based routing. 

The grid size and number were determined empirically according to the network area and the 
average communication range of sensor nodes. The objective was to balance routing accuracy with 
computational and communication overhead. A smaller grid size allows finer routing granularity 
and shorter transmission distances but increases the number of control decisions, while larger grids 
simplify routing at the cost of suboptimal paths. In this work, the grid dimension was chosen to 
achieve a moderate balance between these factors. Future extensions will consider adaptive grid 
resizing to optimize performance dynamically under different network conditions. 

Algorithm 5: Grid-Based Cluster Head Routing 
1:  Input: Set of 𝐶𝐻𝑠, 𝐵𝑆, grid structure 
2:  Output: Optimal multi-hop routing paths for data forwarding 
3:  For each clusterhead 𝐶𝐻௜ do 
4:   If 𝐶𝐻௜ and 𝐵𝑆 are in the same grid 
5:    Send data directly to 𝐵𝑆 
6:   Else If BS is in a directly adjacent grid 
7:    Send data directly to 𝐵𝑆 
8:   Else  
9:    Search adjacent grid(s) in the direction of the 𝐵𝑆 
10:    If one or more 𝐶𝐻𝑠 exist in adjacent grids 
11:  Select 𝐶𝐻௝ = argmin஼ுೖ (𝐷𝑖𝑠𝑡(𝐶𝐻௜ ,𝐶𝐻௞) + 𝐷𝑖𝑠𝑡(𝐶𝐻௞,𝐵𝑆)), where 𝐶𝐻௞ 

belongs to adjacent grids 
12:  Forward data to 𝐶𝐻௝ 
13:    Else 
14:  Extend search to next-level adjacent grids 
15:  If 𝐵𝑆 is found 
16:  Send data directly to 𝐵𝑆 
17:  Else If one or more 𝐶𝐻𝑠 exist 
18:  Select 𝐶𝐻௝ = argmin஼ுೖ (𝐷𝑖𝑠𝑡(𝐶𝐻௞,𝐵𝑆)), where 𝐶𝐻௞ belongs to 

adjacent grids 
19:  Forward data to 𝐶𝐻௝ 
20:     End If 
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21:    End If 
22:   End If 
23:  End For 
24:  Return final routing paths for all 𝐶𝐻𝑠 

4.4. Adaptive Operation and Steady-State Execution 

Once the best individual (lowest-cost solution) is identified, PUMA-GRID organizes clusters by 
enabling CHs to broadcast advertisements. Ordinary nodes then join their nearest CH, and a time-
division schedule is established. During the steady-state phase, regular nodes sense data and transmit 
it to their CH, which aggregates the data and forwards it through the grid-based multi-hop path 
toward the BS. Re-clustering is triggered when the residual energy of CHs falls below defined 
thresholds or when load imbalance occurs, thereby maintaining sustained energy-aware operation. 

4.5. Complexity Analysis of PUMA-GRID 

The computational complexity of the proposed PUMA-GRID protocol can be analyzed by 
considering its two main components: CH selection based on PO and grid-based multi-hop routing. 
In the clustering phase, PO operates over a population of 𝑃 pumas, each representing a possible CH 
configuration among 𝑁 sensor nodes. During each iteration, the algorithm evaluates the fitness of 
all individuals using the defined weighted objective function. This process involves computing intra-
cluster distances, CH-to-base-station distances, and residual energies. The cost of evaluating one 
solution is 𝑂(𝑁), leading to an overall clustering complexity of 𝑂(𝑃 × 𝑁 × 𝐼), where 𝐼 denotes the 
number of iterations. This level of complexity is typical for metaheuristic-based clustering algorithms 
and remains acceptable for moderate network sizes due to the algorithm’s parallelizable structure 
and convergence efficiency. 

In the routing phase, the grid-based multi-hop routing mechanism partitions the monitored area 
into 𝐺 grids, where each CH searches for the next-hop relay among adjacent grids. Assuming each 
grid contains a small constant number of CHs, the selection of the next-hop node for each CH requires 
a limited search over neighboring grids, resulting in a routing complexity of approximately 𝑂(𝐺) for 
a single transmission round. 

Consequently, the total computational complexity of PUMA-GRID per clustering round is 
dominated by the POA component and can be expressed as 𝑂(𝑃 × 𝑁 × 𝐼 + 𝐺) which scales linearly 
with the number of nodes and grids. The memory complexity is 𝑂(𝑃 × 𝑁), as the algorithm stores 
the position vectors and fitness values for all candidate solutions. 

5. Simulation Setup, Results, and Discussion 

In practical deployments, sensor nodes can estimate their geographical positions through 
various localization techniques depending on the application and cost constraints. Common 
approaches include Global Positioning System (GPS) modules for outdoor environments, or signal-
based localization methods such as Received Signal Strength Indication (RSSI), Time of Arrival (ToA), 
and Time Difference of Arrival (TDoA). In cases where GPS is not feasible, anchor-based or centroid 
localization algorithms can be applied using a limited number of reference nodes with known 
coordinates. The position of the base station is typically predefined and broadcast once to all nodes 
during network initialization, enabling each node to store this information locally and use it for 
cluster formation and routing decisions. 

In the simulation study, we employed the first-order radio model for energy consumption as 
presented in [39]. In this model, a radio transmits an 𝐿-bit data packet to a receiver at distance 𝑑 
meters by dissipating an energy amount 𝐸்௑(𝐿,𝑑). Similarly, a sensor node’s radio consumes 𝐸ோ௑(𝐿) 
energy to receive an 𝐿-bit message. 
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The free-space channel (𝜀௙௦ ) is applied when 𝑑 < 𝑑଴ , while the multi-path channel (𝜀௠௣ ) is 
applied when 𝑑 ≥ 𝑑଴. Equation (3) expresses the energy required to transmit a packet of 𝐿-bit across 
a distance 𝑑. 𝐸்௑ = ቊ 𝐿 ∗ 𝐸௘௟௘௖(𝐿,𝑑) + 𝐿 ∗ 𝜀௙௦ ∗ 𝑑ଶ,𝑑 < 𝑑଴𝐿 ∗ 𝐸௘௟௘௖(𝐿,𝑑) + 𝐿 ∗ ε௠௣ ∗ 𝑑ସ,𝑑 ≥ 𝑑଴ (5) 

where: 𝐸௘௟௘௖(𝐿,𝑑)  is the energy needed to transfer a single bit over 𝑑  meters, both ways. The 
threshold distance at which the amplification factors begin to shift is known as 𝑑଴: 

𝑑଴ = ඨ 𝜀௙௦
ε௠௣ర

 (6)

For the receiver to receive a packet of 𝐿 bits, energy 𝐸ோ௑(𝐿) must be consumed as follows: 𝐸ோ௑(𝐿) =  𝐿 ∗ 𝐸௘௟௘௖ (7)

The simulations were conducted in MATLAB using a network model to evaluate sensor node 
performance. Energy consumption was analyzed both at the node level and across the entire network 
using a standard radio energy model. A set of 𝑛 sensor nodes was randomly deployed within the 
monitored area, where they continuously gathered and exchanged data before transmitting it to the 
BS after aggregation by the CHs. The CHs forwarded the data either directly to the BS or through 
other CHs using multi-hop transmission. Table 2 summarizes the simulation characteristics and the 
different BS positions. 

Table 2. Simulation parameters for optimal PUMA-GRID weight selection. 

Simulation Parameters Values/Ranges 
Network Size 100 × 100 (𝑚ଶ)  
BS Position (0, 0), (50, 50) 
Number of Nodes 100  
Node’s Initial Energy 0.1 (𝐽𝑜𝑢𝑙𝑒𝑠)  
Percentage of Clusterheads 5 %  
Packet Size 500 (𝐵𝑦𝑡𝑒𝑠)  𝐸௘௟௘௖  50 (𝑛𝐽𝑜𝑢𝑙𝑒/𝑏𝑖𝑡)  𝜀௙௦  10 (𝑝𝐽𝑜𝑢𝑙𝑒/𝑏𝑖𝑡/𝑚ଶ)  
ε௠௣  0.0013 (𝑝𝐽/𝑏𝑖𝑡/𝑚ସ)  𝑑଴  10 (𝑚)  
Grid Size 10 − 40 (𝑚)  

The simulation parameters listed in Table 2 were selected based on widely adopted 
configurations in WSN studies to ensure fair comparison and reproducibility. The network size of 100 × 100 𝑚ଶ and node count of 100 provide a moderate-density scenario suitable for evaluating 
scalability. The percentage of cluster heads was fixed at 5%, as this value is commonly used in 
protocols such as LEACH and its variants to maintain an optimal balance between energy 
consumption and communication overhead. The initial energy (0.1 J) and packet size (500 bytes) 
follow standard benchmarks used in energy-efficient routing simulations. The energy model 
parameters (𝐸௘௟௘௖ , 𝜀௙௦ , and ε௠௣ ) correspond to the first-order radio model, while the threshold 
distance 𝑑଴ =  10 𝑚 differentiates free-space and multipath propagation regions. The grid size (10–
40 m) range was tested to assess the effect of spatial partitioning on routing performance. 

Before execution, all nodes are initialized with basic network information, including the total 
number of nodes, grid dimensions, and the position of the base station, which is broadcast once 
during setup. These parameters are required to compute distances and support clustering and 
routing operations. Although this study uses static weight values for the fitness function, the same 
framework can support adaptive weight adjustment, where weights are dynamically updated in real 
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time according to network conditions such as average residual energy, node density, or 
communication cost. 

5.1. Choosing the Optimal Weights for the Fitness Function 

To improve the energy efficiency of the proposed PUMA-GRID protocol, a multi-objective 
fitness function was employed, combining three key factors with associated weights: the distance 
from sensor nodes to their respective CH (𝑤ଵ), the distance from CHs to the BS (𝑤ଶ), and the residual 
energy of the CH (𝑤ଷ) . An additional penalty term with a fixed coefficient 𝛼 = 10  is applied to 
penalize deviations from the optimal number of CHs. The fitness function is minimized, and the 
PUMA solution with the lowest cost is considered the optimal configuration for that iteration. 

To identify the most suitable weight combinations, extensive simulations were conducted under 
three BS deployment scenarios:  
1) Located at the center of the sensor field,  
2) Situated outside the network boundary.  

Although a full factorial exploration would involve 36 weight combinations, only a 
representative subset is reported here to avoid redundancy, while all possible combinations were 
simulated and analyzed. Each configuration was evaluated using the following performance 
indicators:  
1) 𝐹𝑁𝐷, 𝐻𝑁𝐷, 𝐿𝑁𝐷 — the rounds when the first, half, and last nodes die, used to estimate network 

lifetime and stability;  
2) Live Nodes per Round — tracking the network’s vitality throughout the simulation;  
3) Number of Packets Sent to the BS— reflecting data delivery capability;  
4) Coverage Fairness Index (CFI) — defined as 𝐶𝐹𝐼 =  𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝐶𝑒𝑙𝑙𝑠𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠 (8)

which measures the fraction of grid cells containing at least one live node, where 𝐶𝐹𝐼 = 1 
indicates perfect spatial fairness and values near 0 reflect poor distribution; and  
5) Residual Energy per Round — quantifying the energy dissipated by the entire network in each 

round. 

5.2. Impact of Weight Combinations on Different Metrics (BS Inside the Network) 

Figure 2 illustrates the FND, HND, and LND of the same network under different weight 
combinations when the BS is located inside the network. A higher value of 𝑤ଵ  directs the 
optimization process to prioritize assigning nodes to nearby CHs. This reduces transmission energy, 
balances load distribution, and delays the FND, thereby prolonging the initial operational phase of 
the network. In contrast, a low 𝑤ଵ neglects proximity, forcing some nodes to transmit over longer 
distances, consume more energy, and die earlier. 
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Figure 2. Effect of weight combinations on FND, HND and LND with BS inside the network. 

The influence of 𝑤ଶ on FND, HND, and LND is relatively minor when the BS is located at the 
center of the network. Since the CH-to-BS distance remains short across all configurations, variations 
in 𝑤ଶ do not significantly affect energy consumption or network lifetime. Thus, minimizing CH-to-
BS distance is less critical in this deployment scenario. 

A lower 𝑤ଷ, which reduces emphasis on CH residual energy, generally results in a longer LND. 
This is because CH selection becomes more diversified and less biased toward high-energy nodes, 
enabling more nodes to remain active over time. Conversely, a high 𝑤ଷ favors repeated selection of 
energy-rich nodes, which may initially appear beneficial but eventually accelerates their depletion 
due to overuse, thereby reducing LND. 

When 𝑤ଵ and 𝑤ଶ differ significantly, even a high 𝑤ଷ can still produce an extended LND. This 
demonstrates that the interaction among weights plays a decisive role, and certain imbalanced 
combinations can nevertheless enhance overall energy efficiency. 

Figure 3 shows the number of packets sent to the BS under different weight combinations when 
the BS is located inside the network. The analysis reveals that the choice of weights (𝑤ଵ,𝑤ଶ,𝑤ଷ) has 
a significant effect on the volume of data successfully delivered. A higher value of 𝑤ଵ substantially 
increases the number of packets, emphasizing the importance of prioritizing intra-cluster distance in 
CH selection. This improves local communication efficiency and ensures more reliable data 
forwarding. 
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Figure 3. Effect of weight combinations on data delivery with BS inside the network. 

In contrast, lower values of 𝑤ଶ  are associated with higher packet counts. This indicates that 
giving excessive weight to the distance between CHs and the BS can reduce throughput, particularly 
when the BS is located within the network where CH-to-BS distances are already short. Thus, 
minimizing the emphasis on 𝑤ଶ in such scenarios helps preserve higher packet delivery rates. 

The role of 𝑤ଷ is also evident: lower values, which reduce the influence of residual energy in 
CH selection, tend to yield more packets. This outcome suggests that excessive reliance on energy-
rich nodes can lead to their overuse, while a moderate level of randomness or fairness in CH rotation 
distributes the forwarding load more evenly and supports sustained throughput. 

Figure 4 illustrates the effect of different weight combinations on three performance metrics 
when the BS is located inside the network: (a) number of live nodes, (b) residual energy, and (c) the 
CFI. 

(a) 
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(b) 

(c) 

Figure 4. Effect of weight combinations on live nodes (a), residual energy (b), and CFI (c) with BS inside the 
network. 

A higher value of 𝑤ଵ generally extends the number of live nodes and preserves residual energy 
for longer rounds. This is because prioritizing the distance between nodes and their CHs reduces 
transmission costs, balances energy consumption across nodes, and delays early depletion. 
Consequently, higher 𝑤ଵ values also correlate with improved coverage fairness, as nodes remain 
distributed and active for longer. In contrast, a lower 𝑤ଵ  accelerates node death and energy 
dissipation due to longer communication distances, which results in uneven coverage and reduced 
fairness over time. 

The effect of 𝑤ଶ is comparatively limited in this scenario since the BS is centrally located, and 
CH-to-BS distances are already short across all configurations. As a result, increasing 𝑤ଶ does not 
significantly alter node survival, energy consumption, or fairness. Nonetheless, excessive emphasis 
on 𝑤ଶ  can slightly reduce throughput and energy efficiency by constraining CH selection 
unnecessarily. 

For 𝑤ଷ, the results show that a moderate value contributes to more balanced performance across 
all three metrics. A lower 𝑤ଷ, which reduces emphasis on CH residual energy, helps sustain node 
activity and fairness by diversifying CH selection, but it can accelerate overall energy depletion. 
Conversely, a very high 𝑤ଷ  biases the algorithm toward repeatedly selecting energy-rich nodes, 
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which may appear beneficial initially but leads to concentrated energy usage, faster depletion of those 
nodes, and lower fairness. 

5.3. Impact of Weight Combinations on Different Metrics (BS Outside the Network) 

Figure 5 presents the effect of different weight combinations on FND, HND, and LND when the 
BS is located outside the network. The results highlight that the placement of the BS substantially 
changes how the weights influence network lifetime. 

 

Figure 5. Effect of weight combinations on FND, HND and LND with BS outside the network. 

A higher value of 𝑤ଵ continues to delay FND by emphasizing proximity between nodes and 
their CHs. This reduces intra-cluster energy costs and prevents early depletion of distant nodes. 
However, the improvement in HND and LND is less pronounced compared with the BS-inside 
scenario, since a larger proportion of energy is consumed in long-range CH-to-BS transmissions, 
regardless of efficient clustering. 

The role of 𝑤ଶ becomes more significant when the BS is external. Higher 𝑤ଶ values extend both 
HND and LND, as prioritizing shorter CH-to-BS distances helps reduce the energy cost of long-range 
transmissions. In contrast, very low 𝑤ଶ  values degrade overall performance because CHs are 
sometimes selected without regard for their distance to the BS, leading to higher energy consumption 
and earlier node death. 

The influence of 𝑤ଷ remains consistent with earlier findings: moderate values provide balanced 
performance, while very high values lead to repeated use of energy-rich nodes, causing faster 
depletion and reduced LND. Conversely, very low 𝑤ଷ  improves fairness in CH rotation but may 
accelerate energy consumption across the network. 

Figure 6 presents the effect of different weight combinations on the number of packets delivered 
to the BS when the BS is located outside the network. The results show that the role of weights shifts 
compared with the BS-inside scenario, reflecting the higher energy cost of long-range CH-to-BS 
communication. 
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Figure 6. Effect of weight combinations on data delivery with BS outside the network. 

A higher value of 𝑤ଵ  significantly improves packet delivery, as prioritizing intra-cluster 
distance reduces energy consumption during local transmissions and leaves more residual energy 
available for forwarding data to the distant BS. This effect is particularly evident for combinations 
where 𝑤ଵ dominates, leading to the highest packet counts. 

The influence of 𝑤ଶ becomes more pronounced with the BS outside the network. Lower values 
of 𝑤ଶ often correspond to higher packet counts, indicating that assigning excessive weight to CH-to-
BS distance can restrict CH selection without substantially reducing long-range transmission costs. 
Conversely, when 𝑤ଶ  is kept moderate, it contributes positively by preventing inefficient CH 
placements. 

The effect of 𝑤ଷ is more nuanced. Lower to moderate values support higher packet delivery 
rates by diversifying CH selection and preventing the repeated overuse of energy-rich nodes. In 
contrast, very high 𝑤ଷ values limit CH rotation, concentrating energy demands on a few nodes and 
reducing the overall number of packets delivered. 

Figure 7 shows the effect of different weight combinations on (a) the number of live nodes, (b) 
residual energy, and (c) the CFI when the BS is located outside the network. The results emphasize 
how weight selection affects network longevity and energy balance under the more demanding 
external BS setting. 
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(a) 

(b) 

(c) 

Figure 7. Effect of weight combinations on live nodes (a), residual energy (b), and CFI (c) with BS outside the 
network. 

A higher value of 𝑤ଵ supports longer node survival by prioritizing intra-cluster proximity. As 
seen in Figure 7(a), configurations with high maintain a greater number of live nodes over time, 
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which translates into slower residual energy depletion in Figure 7(b). In contrast, lower 𝑤ଵ values 
accelerate node deaths due to increased transmission distances, leading to earlier energy exhaustion 
and a faster decline in fairness. 

The role of 𝑤ଶ is more critical when the BS is external. Configurations with moderate to high 𝑤ଶ  exhibit extended residual energy and a slower decline in live nodes, as prioritizing CH-to-BS 
distance mitigates the cost of long-range transmissions. Figure 7(c) confirms this, where higher 𝑤ଶ 
values sustain higher CFI levels for longer periods, ensuring more balanced spatial coverage. 

The influence of 𝑤ଷ  is evident in fairness outcomes. Moderate 𝑤ଷ  values help diversify CH 
selection and balance the workload, contributing to extended CFI stability. However, very high 𝑤ଷ  risks over-relying on energy-rich nodes, which may initially improve residual energy but 
ultimately accelerate fairness degradation as these nodes deplete more quickly. 

5.4. Discussion 

The analysis of weight combinations under both deployment scenarios—BS inside and BS 
outside the network—provides important insights into the role of 𝑤ଵ , 𝑤ଶ , and 𝑤ଷ  in optimizing 
network lifetime, energy efficiency, and fairness. 

When the BS is located inside the network, a higher emphasis on 𝑤ଵ  consistently improves 
performance across most metrics. Prioritizing intra-cluster distance minimizes transmission costs, 
delays FND, and sustains a larger number of live nodes, ultimately extending LND. In this scenario, 
the effect of 𝑤ଶ is minimal, as the distance between CHs and the BS is already short and does not 
significantly impact energy consumption or throughput. Meanwhile, moderate values of 𝑤ଷ prove 
beneficial by balancing the reuse of high-energy nodes with fairness in CH rotation, thereby 
supporting longer coverage and stable CFI. 

In contrast, when the BS is outside the network, the influence of 𝑤ଶ becomes critical. Long-range 
CH-to-BS transmissions dominate energy consumption and assigning higher weight to 𝑤ଶ  helps 
select CHs closer to the BS, reducing transmission costs and improving HND, LND, and residual 
energy utilization. While 𝑤ଵ  remains important for sustaining intra-cluster efficiency and 
supporting high packet delivery, its relative dominance is reduced compared with the BS-inside case. 
As before, moderate values of 𝑤ଷ  yield more balanced performance by preventing overuse of 
energy-rich nodes and maintaining fairness in coverage. 

Across both scenarios, packet delivery results confirm that the highest throughput is achieved 
when 𝑤ଵ is high, 𝑤ଶ is kept low to moderate, and 𝑤ଷ remains moderate. However, fairness metrics 
such as CFI suggest that purely maximizing throughput may compromise spatial coverage unless 
residual energy is also considered. Thus, configurations with overly low 𝑤ଷ improve packet counts 
but reduce coverage balance over time, while excessively high 𝑤ଷ  shorten LND by exhausting 
selected nodes prematurely. 

Synthesizing these findings, the best overall weight configuration emerges as a combination 
where 𝑤ଵ is high (0.5–0.7), 𝑤ଶ is low to moderate (0.1–0.3 when the BS is inside, and 0.2–0.4 when 
the BS is outside), and 𝑤ଷ  is moderate (0.2–0.3). This setup ensures efficient intra-cluster 
communication, controlled CH-to-BS distance, and fair utilization of residual energy, resulting in 
extended network lifetime, sustained packet delivery, and improved coverage fairness across both 
deployment scenarios. 

5.5. Comparison of Different Routing Protocols  

To validate the effectiveness of the proposed PUMA-GRID protocol, its performance was 
evaluated against several well-established clustering and routing schemes, including LEACH, AEO-
based variants, and different implementations of PUMA (single-hop, multi-hop, and grid-based). The 
comparison considered a range of performance metrics that collectively capture both network 
longevity and efficiency: the stability period expressed through the rounds of first, half, and last node 
deaths; the total number of packets successfully delivered to the base station; the evolution of live 
nodes over time; the residual energy trends; the overhead in terms of control packets exchanged; and 
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the coverage fairness index, which reflects the spatial distribution of active nodes. Simulations were 
conducted under two deployment scenarios, with the base station placed either inside or outside the 
sensor field, to assess protocol behavior under varying communication constraints. 

For the simulation parameters (Table 3), we extended the network to 200 × 200 𝑚ଶ , and 
increased the initial energy of each node to 0.5 joules. In addition, parameters values are set for grid 
size, 𝑤ଵ, 𝑤ଶ, and 𝑤ଷ.  

Table 3. Simulation parameters for comparing routing protocols. 

Simulation Parameters Values/Ranges 
Network Size 200 × 200 (𝑚ଶ)  
BS Position (0, 0), (100, 100) 
Number of Nodes 300  
Node’s Initial Energy 0.5 (𝐽𝑜𝑢𝑙𝑒𝑠)  
Percentage of Clusterheads 5 %  
Packet Size 500 (𝐵𝑦𝑡𝑒𝑠)  𝐸௘௟௘௖  50 (𝑛𝐽𝑜𝑢𝑙𝑒/𝑏𝑖𝑡)  𝜀௙௦  10 (𝑝𝐽𝑜𝑢𝑙𝑒/𝑏𝑖𝑡/𝑚ଶ)  
ε௠௣  0.0013 (𝑝𝐽/𝑏𝑖𝑡/𝑚ସ)  𝑑଴  10 (𝑚)  
Grid Size 40 (𝑚)  𝑤ଵ  0.7 𝑤ଶ  0.2 𝑤ଷ  0.1 

In Figure 8(a), where the base station is located inside the network, LEACH and MR-LEACH 
show the weakest results. Both suffer from extremely early FND and a rapid progression to HND, 
which indicates highly unbalanced energy consumption. Their LND values are also much shorter 
than those achieved by optimization-based methods, confirming that their probabilistic cluster-head 
selection does not provide adequate energy distribution, even under the relatively favorable 
condition of a centrally placed BS. 

The AEO-based protocols offer a noticeable improvement over LEACH and MR-LEACH, 
extending the HND and LND considerably. Between the two, AEO-GRID performs slightly better, 
benefiting from its structured multi-hop forwarding, which helps to alleviate the energy burden of 
long transmissions. Nevertheless, both variants still experience relatively early FND compared with 
PUMA-based methods, limiting their stability phase in the initial part of the network’s lifetime. 

(a) 
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(b) 

Figure 8. Comparison of FND, HND, and LND across different routing protocols with BS inside (a) and outside 
(b) the network. 

PUMA-SH and PUMA-GRID achieve the best overall performance in the BS-inside scenario. 
PUMA-SH delays FND significantly while maintaining a strong stability period, and PUMA-GRID 
further extends LND, achieving the longest lifetime among all protocols. This outcome demonstrates 
the benefit of combining PUMA’s adaptive clustering with grid-based routing, which balances traffic 
loads and prevents energy hotspots. As a result, PUMA-GRID delivers the most balanced and long-
lasting operation when the BS is positioned inside the sensor field. 

In Figure 8(b), where the base station is located outside the monitored area, the performance 
trends change noticeably. LEACH and MR-LEACH degrade further, with extremely short lifetimes 
and minimal stability. Nodes in these protocols consume excessive energy when transmitting to the 
distant BS, leading to very early network collapse. 

Interestingly, under this more challenging deployment, the AEO-based protocols outperform all 
others. AEO-SH and particularly AEO-GRID achieve the longest HND and LND, clearly showing 
their strength in distributing energy fairly when longer communication distances are involved. The 
fitness-driven clustering of AEO, combined with grid-based routing, enables the network to adapt 
effectively to the harsher conditions, sustaining activity longer than both PUMA-based and classical 
approaches. 

The PUMA protocols still maintain competitive results, especially in terms of delaying FND, but 
their lifetimes are shorter than those of the AEO-based methods in this scenario. PUMA-SH provides 
moderate stability, while PUMA-GRID achieves a balanced performance but cannot match the 
endurance of AEO-GRID. This indicates that while PUMA excels under central BS placement, AEO 
is better suited for external BS deployments, where its clustering and routing strategies better handle 
the additional communication overhead. 

In Figure 9(a), where the base station is located inside the network, LEACH and MR LEACH 
achieve the lowest packet delivery, reflecting their limitations in balancing energy and sustaining 
communication. The probabilistic cluster head election of LEACH and the multi-hop variation of MR 
LEACH result in nodes depleting their energy too early, which reduces the overall throughput. AEO-
SH and AEO-GRID perform better, with noticeable gains in packet delivery compared to LEACH, 
but their performance remains moderate and unable to match the more advanced designs. In contrast, 
the PUMA based approaches clearly dominate. Both PUMA-SH and PUMA-GRID deliver more than 
twice the number of packets compared to AEO and LEACH, with PUMA-GRID producing the 
highest values among all protocols. This emphasizes the advantage of combining PUMA’s adaptive 
cluster head election with grid based multi-hop routing, which reduces energy consumption and 
ensures more balanced utilization of resources. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2025 doi:10.20944/preprints202510.0115.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0115.v2
http://creativecommons.org/licenses/by/4.0/


 24 of 34 

 

(a) 

(b) 

Figure 9. Comparison of the number of packets delivered to the base station across different routing protocols 
with BS inside (a) and outside (b) the network. 

In Figure 9(b), when the base station is placed outside the network, packet delivery declines 
across all protocols because of the higher transmission energy required for long distance 
communication. LEACH and MR-LEACH remain the weakest performers, again highlighting their 
inability to adapt to challenging deployment conditions. AEO-SH and AEO-GRID manage to sustain 
a moderate level of throughput, but their improvement is still limited. The PUMA based protocols 
once again provide the best results, with PUMA-GRID achieving the highest number of packets 
followed closely by PUMA-SH. This consistent superiority across both scenarios highlights the 
robustness of the PUMA design, which successfully integrates residual energy awareness, node 
proximity, and efficient data forwarding mechanisms to maintain reliable communication even under 
more demanding conditions. 

In Figure 10(a), which shows the results with the base station located inside the network, the 
LEACH and MR-LEACH protocols exhibit very short lifetimes, with both the first and last nodes 
dying much earlier than in other protocols. This outcome is consistent with their limited energy-
awareness and reliance on probabilistic cluster head selection. In contrast, the AEO protocols (both 
single hop and grid-based) extend the network lifetime considerably, with the last node surviving 
much longer than in LEACH and MR-LEACH. However, while AEO demonstrates strong stability 
and balanced performance, the PUMA-based protocols, particularly PUMA-GRID, show the best 
performance overall. PUMA-GRID maintains live nodes for the longest duration, indicating that the 
combination of adaptive cluster head selection and grid-based routing significantly reduces energy 
imbalance and delays node deaths. PUMA-SH also performs strongly, maintaining a higher number 
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of live nodes than AEO protocols, though it falls slightly behind PUMA-GRID in sustaining the final 
rounds of operation. 

(a) 

(b) 

Figure 10. Comparison of the number of live nodes across different routing protocols with BS inside (a) and 
outside (b) the network. 

In Figure 10(b), when the base station is positioned outside the network, the performance 
differences between protocols become more pronounced. LEACH and MR-LEACH again show the 
shortest lifetime, confirming their inability to cope with the higher communication burden imposed 
by longer distances to the base station. AEO-SH and AEO-GRID perform considerably better, 
demonstrating resilience in maintaining active nodes for a longer time compared to LEACH. 
However, the PUMA protocols remain superior under this scenario. PUMA-SH shows the longest 
stability period, maintaining the largest number of live nodes until the later rounds, while PUMA-
GRID also achieves a significantly extended lifetime compared to AEO. These results confirm that 
PUMA’s optimization-driven cluster head election, combined with efficient routing, ensures more 
balanced energy consumption, making it the most effective approach for sustaining network 
operations regardless of the base station placement. 

In Figure 11(a), where the base station is located inside the network, the residual energy trends 
highlight clear differences between the protocols. LEACH and MR-LEACH deplete their energy 
rapidly, confirming their limited capacity to distribute communication loads evenly across the 
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network. Both protocols reach near-zero energy in significantly fewer rounds, reflecting their 
vulnerability to hotspot issues and lack of energy-aware clustering. In contrast, AEO-SH and AEO-
GRID extend energy sustainability further, with nodes maintaining moderate reserves across more 
rounds. This outcome is consistent with their energy-oriented cluster formation, which postpones 
full depletion. However, the best performance is observed in PUMA-based protocols, especially 
PUMA-GRID and PUMA-SH, which conserve energy most effectively. The balanced incorporation 
of residual energy, intra-cluster distance, and grid-based routing mechanisms enables slower 
depletion, maintaining higher energy levels through later rounds. This indicates that PUMA’s design 
succeeds in spreading energy consumption evenly while preventing premature exhaustion of cluster 
heads. 

(a) 

(b) 

Figure 11. Residual energy comparison across different routing protocols with BS inside (a) and outside (b) the 
network. 

When the base station is placed outside the network, as shown in Figure 11(b), the disparities 
become more pronounced. LEACH and MR-LEACH remain the weakest performers, exhausting 
energy reserves very early, which underscores their inability to handle the longer transmission 
distances imposed by external base station placement. AEO-SH and AEO-GRID perform better, 
especially AEO-GRID, which manages to conserve energy longer due to its grid-based structure. 
Nonetheless, PUMA again demonstrates superior performance. PUMA-GRID shows the most stable 
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and gradual decline in residual energy, with PUMA-SH following closely. These results reveal that 
PUMA’s adaptive strategies are resilient under harsher transmission conditions, ensuring that energy 
dissipation is minimized and reserves last significantly longer than in competing protocols. 

In Figure 12, the number of control packets highlights the overhead introduced by each routing 
protocol. LEACH consistently shows the lowest control overhead in both scenarios, with BS inside 
and outside the network, since it relies on simple probabilistic clustering without frequent energy-
aware adjustments or sophisticated routing mechanisms. MR-LEACH increases the overhead slightly 
due to its multi-hop extension, which requires additional control messaging for route setup. 

(a) 

(b) 

Figure 12. Comparison of control packet overhead across different routing protocols with BS inside (a) and 
outside (b) the network. 

In contrast, the PUMA-based protocols generate a considerably higher number of control 
packets compared to LEACH and MR-LEACH. This overhead stems from the energy-aware cluster 
head selection and adaptive routing strategies that require additional coordination between nodes. 
While this increases control packet exchange, it directly contributes to improved energy balance and 
longer network lifetime, as observed in earlier figures. Between the two, PUMA-GRID typically 
introduces slightly more overhead than PUMA-SH, owing to the additional routing logic used in 
grid-based forwarding. 

The AEO-based protocols exhibit the highest overhead across both scenarios. Their complex 
optimization-driven clustering demands intensive control messaging to exchange node state 
information and maintain optimal configurations. This ensures strong energy distribution but comes 
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at the cost of higher overhead. Notably, AEO-GRID further increases the number of control packets 
compared to AEO-SH, reflecting the added cost of maintaining grid-based routing paths. 

In Figure 13(a), with the base station placed inside the network, PUMA-GRID consistently 
outperforms AEO-GRID in maintaining higher coverage fairness over longer periods. At high CFI 
thresholds such as eighty and sixty percent, PUMA-GRID achieves a larger number of rounds before 
the fairness level drops, demonstrating its ability to sustain widespread spatial coverage across the 
grid. As the fairness requirement becomes less strict, both protocols extend their network lifetimes, 
yet PUMA-GRID maintains a steady advantage, confirming its strength in balancing energy 
consumption while ensuring even node distribution. 

(a) 

(b) 

Figure 13. Network lifetime in terms of the last round sustaining different Coverage Fairness Index (CFI) 
thresholds for PUMA-GRID and AEO-GRID, with BS inside (a) and outside (b) the network. 

In Figure 13(b), where the base station is located outside the monitored area, the trend is 
reversed. AEO-GRID shows better resilience in sustaining higher CFI levels for longer rounds 
compared to PUMA-GRID. This is particularly evident at stricter thresholds such as eighty and sixty 
percent, where AEO-GRID achieves later last-round values. At lower fairness thresholds, such as 
twenty and ten percent, AEO-GRID still maintains its advantage, highlighting its efficiency in 
scenarios where longer-distance transmissions dominate. 

5.6. General Discussion 
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The comparative analysis across Figures 8 to 13 highlights not only which protocols perform 
better but also why these differences emerge, offering deeper insights into energy-aware routing for 
wireless sensor networks. The results confirm that network lifetime extension depends strongly on 
how effectively protocols balance energy among nodes. LEACH and MR-LEACH, with their 
probabilistic or static cluster head assignments, suffer from severe imbalance: some nodes deplete 
energy very early, leading to short stability periods. By contrast, optimization-based protocols such 
as PUMA and AEO explicitly consider residual energy and distances in their objective functions, 
which directly improves stability. PUMA-GRID achieves superior performance because it combines 
the adaptive exploration-exploitation mechanism of the Puma Optimizer with grid-based multi-hop 
routing. The optimizer dynamically refines cluster-head selection to avoid premature node depletion, 
while the grid structure shortens transmission distances and balances inter-cluster loads. This 
synergy minimizes redundant transmissions, preserves residual energy, and maintains spatial 
coverage more effectively than LEACH, AEO-based, or earlier PUMA variants. 

Throughput analysis provides further evidence of these differences. The number of packets 
delivered to the base station reflects both stability and how well a protocol manages congestion and 
redundancy. LEACH and MR-LEACH deliver very few packets because many nodes die early and 
surviving nodes face high transmission costs. AEO protocols improve throughput but remain limited 
by their sensitivity to initial cluster head assignments. PUMA protocols, especially PUMA-GRID, 
achieve the highest throughput in both scenarios, confirming that adaptive exploration–exploitation 
and efficient forwarding maximize sustained delivery. The improvement in PUMA-GRID is not only 
quantitative but also qualitative: by maintaining diverse cluster head distributions and structured 
forwarding paths, the network avoids congestion around central nodes, ensuring that throughput is 
steady rather than collapsing rapidly after a short period. 

The live node and residual energy trends provide complementary insights. LEACH and MR-
LEACH show sharp drops in both metrics, which reveals two main shortcomings: poor energy 
balancing and lack of residual energy consideration. AEO protocols distribute energy more 
effectively, reflected in smoother declines, but they still concentrate some load on selected cluster 
heads, leading to earlier depletion than PUMA. PUMA’s balance between exploration and 
exploitation ensures that cluster head roles rotate across different candidates, which distributes 
energy use more evenly and prevents premature exhaustion of high-energy nodes. Grid-based 
routing amplifies this effect by minimizing long direct transmissions, reducing the steep decline seen 
in other methods. These findings also show that the metric of residual energy alone can be 
misleading: although AEO maintains relatively high reserves at certain points, its coverage and 
fairness degrade earlier, indicating that spatial distribution of energy is as important as total reserves. 

The analysis of control packet overhead reveals another trade-off. LEACH achieves low 
overhead but at the expense of stability and fairness, showing that minimal control traffic is not useful 
when it results in early collapse. AEO incurs the highest overhead because of frequent information 
exchange for clustering and routing optimization. PUMA strikes a middle ground, requiring more 
control packets than LEACH but significantly fewer than AEO, while still achieving superior lifetime 
and fairness. This demonstrates that optimal protocol design is not about minimizing overhead but 
about maximizing utility per control packet. PUMA achieves this by linking its overhead directly to 
measurable lifetime gains, while AEO sometimes introduces overhead that outweighs the benefits, 
particularly when the base station is inside the field. 

Coverage fairness adds another dimension to the evaluation. A network that survives longer but 
collapses coverage in large regions may be unsuitable for applications such as environmental 
monitoring or surveillance. The Coverage Fairness Index results show that PUMA-GRID sustains 
higher fairness levels for longer when the base station is inside the network, reflecting its ability to 
spread cluster heads evenly and avoid clustering bias. Conversely, when the base station is outside, 
AEO-GRID maintains fairness for longer, indicating that its clustering strategy is more robust under 
asymmetric energy demands. This suggests that protocol suitability depends on deployment context 
and application requirements: for dense monitoring tasks where coverage uniformity is critical, 
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PUMA is more effective with central base stations, whereas AEO is better suited for external 
placements where energy burdens are unevenly distributed. 

Taken together, the findings show that PUMA-GRID provides the most consistent improvement 
across metrics when the base station is inside the network, combining high throughput, extended 
stability, balanced energy consumption, and strong fairness. When the base station is outside, AEO-
GRID performs competitively and often surpasses PUMA in fairness and energy distribution, 
although PUMA remains stronger in throughput. LEACH and MR-LEACH remain consistently weak 
across all scenarios, underscoring the necessity of energy-aware and adaptive clustering strategies. 
The results highlight that effective protocol design requires not only extending lifetime but also 
balancing energy, maintaining fairness, and managing overhead, with the choice of protocol 
ultimately depending on the deployment environment and application objectives. 

5.7. Limitations 

Although the proposed PUMA-GRID protocol achieves notable improvements in energy 
efficiency, stability, and coverage fairness compared with existing approaches, several limitations 
should be acknowledged. 

First, the study was carried out in an idealized simulation environment where effects such as 
interference, packet loss, retransmissions, and signal fading were not modeled in detail. The use of 
the free space propagation model provided a simplified baseline for evaluating the optimization 
behavior of the algorithm, but it does not capture the full complexity of real wireless environments. 
Incorporating more realistic communication stacks and physical channel models will be an important 
step in future experimental work. 

Second, the grid-based routing structure was designed mainly to complement the PUMA 
optimization mechanism rather than to serve as a new routing method. While the grid approach 
effectively reduces long distance transmissions and balances the load among cluster heads, it does 
not adapt dynamically to variations in node density, node failures, or irregular spatial distributions. 
Empty grid cells or uneven deployments can cause routing inefficiencies or temporary 
disconnections. However, the simplicity and scalability of the grid model make it appropriate for 
evaluating the energy optimization capability of PUMA based clustering. Future studies will consider 
adaptive grid resizing and density aware routing mechanisms to improve resilience in heterogeneous 
network conditions. 

Third, the proposed approach assumes that all nodes are static and identical in terms of initial 
energy and communication capacity. This assumption may not hold in practice, where node 
movement, hardware variation, or environmental factors can influence network performance. 
Extending the protocol to support mobile and heterogeneous sensor nodes would enhance its 
practical applicability. 

Finally, the current configuration of weights in the fitness function is determined through 
simulation rather than through an adaptive real time process. Although this study identified effective 
weight combinations for different base station placements, a real time adaptation based on current 
network conditions such as remaining energy, node distribution, or data traffic could further enhance 
performance and reliability. 

6. Conclusions 

This paper presented PUMA-GRID, a new clustering and routing protocol for wireless sensor 
networks that combines the Puma Optimization Algorithm with a grid-based A* inspired multi-hop 
routing method. The proposed framework was designed to address two main challenges in WSNs: 
extending network lifetime and ensuring balanced energy consumption among sensor nodes. By 
using the adaptive exploration and exploitation balance of the Puma Optimizer, PUMA-GRID 
achieved more effective cluster head selection compared to traditional and peer protocols. At the 
same time, the grid-based routing strategy reduced long distance transmissions by selecting 
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intermediate relays in an intelligent manner, which lowered communication overhead and limited 
the hotspot problem. 

Extensive simulations with the base station placed both inside and outside the monitored field 
demonstrated the strength of PUMA-GRID across different performance metrics. The protocol 
consistently delayed the rounds of first, half, and last node death, showing improved stability and 
longer lifetime. It also increased packet delivery, maintained more live nodes, preserved residual 
energy more efficiently, and reduced the number of control packets compared to LEACH and AEO 
based protocols. In addition, the Coverage Fairness Index analysis showed that PUMA-GRID 
ensured more uniform spatial coverage, which is essential for real world applications such as 
environmental monitoring and disaster detection. The study of weight combinations confirmed that 
the balance between intra cluster distance, distance to the base station, and residual energy must be 
adapted to deployment conditions for the best outcome. 

Although the results are promising, more work is required to bring the protocol closer to 
practical use. Future directions include extending PUMA-GRID to mobile sensor networks where 
mobility of nodes and the base station introduce further challenges in cluster stability and routing. 
Another important step is to integrate adaptive methods, such as learning based models, that can 
adjust fitness function weights automatically as the network changes. Further improvements may 
also be achieved by cross layer optimization that considers routing, medium access scheduling, and 
duty cycling together to reduce energy use. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

ABC Artificial Bee Colony 
ACO Ant Colony Optimization 
AEO Atomic Energy Optimization 
AEO-GRID AEO with Grid based Routing 
AEO-SH AEO Single Hop 
AEOWSNC Atomic Energy Optimization for Wireless Sensor Network Clustering 
AVOACS African Vulture Optimization Algorithm based Clustering Scheme 
BDA Binary Dragonfly Algorithm 
BS Base Station 
CFI Coverage Fairness Index 
CH Cluster Head 
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CMD Communication Mode Decider 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
EEM-LEACH-ABC Energy Efficient Multi hop LEACH with Artificial Bee Colony 
FND First Node Dead 
GA Genetic Algorithm 
GPS Global Positioning System 
GWO Grey Wolf Optimizer 
HND Half Node Dead 
KPSOFL K-means + Particle Swarm Optimization + Fuzzy Logic 
LEACH Low Energy Adaptive Clustering Hierarchy 
LND Last Node Dead 
NOMA Non-Orthogonal Multiple-Access 
PO Puma Optimizer 
PSO Particle Swarm Optimization 
PUMA-GRID Puma Optimizer with Grid based Routing 
PUMA-SH Puma Optimizer Single Hop 
RSSI Received Signal Strength Indication 
SHO-CH Spotted Hyena Optimizer for Cluster Head selection 
TDMA Time Division Multiple Access 
TDoA Time Difference of Arrival 
ToA Time of Arrival 
WSN Wireless Sensor Network 

References 

1. Almuntasheri, Sumayah, and Mohammed JF Alenazi. "Software-defined network-based energy-aware 
routing method for wireless sensor networks in industry 4.0." Applied Sciences 12, no. 19 (2022): 10073. 

2. Sarkar, Nurul I., and Sonia Gul. "Deploying wireless sensor networks in multi-story buildings toward 
internet of things-based intelligent environments: an empirical study." Sensors 24, no. 11 (2024): 3415. 

3. Jubair, Ahmed Mahdi, Rosilah Hassan, Azana Hafizah Mohd Aman, Hasimi Sallehudin, Zeyad Ghaleb Al-
Mekhlafi, Badiea Abdulkarem Mohammed, and Mohammad Salih Alsaffar. "Optimization of clustering in 
wireless sensor networks: techniques and protocols." Applied Sciences 11, no. 23 (2021): 11448. 

4. Baranidharan, B., and B. J. A. S. C. Santhi. "DUCF: Distributed load balancing unequal clustering in wireless 
sensor networks using fuzzy approach." Applied Soft Computing 40 (2016): 495-506. 

5. Jafari, Hasan, Mousa Nazari, and Shahaboddin Shamshirband. "Optimization of energy consumption in 
wireless sensor networks using density-based clustering algorithm." International Journal of Computers 
and Applications 43, no. 1 (2021): 1-10. 

6. Kenyeres, Martin, Jozef Kenyeres, and Sepideh Hassankhani Dolatabadi. "Distributed consensus gossip-
based data fusion for suppressing incorrect sensor readings in wireless sensor networks." Journal of Low 
Power Electronics and Applications 15, no. 1 (2025): 6. 

7. Ismail, Shereen, Zakaria El Mrabet, and Hassan Reza. "An ensemble-based machine learning approach for 
cyber-attacks detection in wireless sensor networks." Applied Sciences 13, no. 1 (2022): 30. 

8. Yousif, Zahid, Intesab Hussain, Soufiene Djahel, and Yassine Hadjadj-Aoul. "A novel energy-efficient 
clustering algorithm for more sustainable wireless sensor networks enabled smart cities applications." 
Journal of sensor and actuator networks 10, no. 3 (2021): 50. 

9. Noh, Kyeong Mi, Jong Hyuk Park, and Ji Su Park. "Data transmission direction based routing algorithm 
for improving network performance of IoT systems." Applied Sciences 10, no. 11 (2020): 3784. 

10. Lorincz, Josip, Antonio Capone, and Jinsong Wu. "Greener, energy-efficient and sustainable networks: 
State-of-the-art and new trends." Sensors 19, no. 22 (2019): 4864. 

11. Zagrouba, Rachid, and Amine Kardi. "Comparative study of energy efficient routing techniques in wireless 
sensor networks." Information 12, no. 1 (2021): 42. 

12. Alfawaz, Oruba, Ahmed M. Khedr, Bader Alwasel, and Walid Osamy. "Reliability evaluation for chain 
routing protocols in wireless sensor networks using reliability block diagram." Journal of Sensor and 
Actuator Networks 12, no. 2 (2023): 34. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2025 doi:10.20944/preprints202510.0115.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0115.v2
http://creativecommons.org/licenses/by/4.0/


 33 of 34 

 

13. Osamy, Walid, Ahmed M. Khedr, Ahmed Aziz, and Ahmed A. El-Sawy. "Cluster-tree routing based 
entropy scheme for data gathering in wireless sensor networks." IEEE Access 6 (2018): 77372-77387. 

14. Heinzelman, Wendi B., Anantha P. Chandrakasan, and Hari Balakrishnan. "An application-specific 
protocol architecture for wireless microsensor networks." IEEE Transactions on wireless communications 
1, no. 4 (2002): 660-670. 

15. Sabor, Nabil, Mohammed Abo-Zahhad, Shigenobu Sasaki, and Sabah M. Ahmed. "An unequal multi-hop 
balanced immune clustering protocol for wireless sensor networks." Applied Soft Computing 43 (2016): 
372-389. 

16. Xinhua, Wu, and Wang Sheng. "Performance comparison of LEACH and LEACH-C protocols by NS2." In 
2010 Ninth International Symposium on Distributed Computing and Applications to Business, Engineering 
and Science, pp. 254-258. IEEE, 2010. 

17. Omari, Mohammed, and Soumia Laroui. "Simulation, comparison and analysis of wireless sensor networks 
protocols: LEACH, LEACH-C, LEACH-1R, and HEED." In 2015 4th International Conference on Electrical 
Engineering (ICEE), pp. 1-5. IEEE, 2015. 

18. Omari, Mohammed. "LEACH-IR: Enhancing the LEACH protocol using the first round clusters." 
International Journal of Computer and Information Technology 3, no. 5 (2014): 1403-1408. 

19. Mehmood, Amjad, Jaime Lloret Mauri, M. Noman, and Houbing Song. "Improvement of the wireless 
sensor network lifetime using LEACH with vice-cluster head." Ad Hoc Sens. Wirel. Networks 28, no. 1-2 
(2015): 1-17. 

20. Loscri, V., G. Morabito, and Salvatore Marano. "A two-levels hierarchy for low-energy adaptive clustering 
hierarchy (TL-LEACH)." In IEEE vehicular technology conference, vol. 62, no. 3, p. 1809. IEEE; 1999, 2005. 

21. Patel, Himanshu B., and Devesh C. Jinwala. "E-LEACH: Improving the LEACH protocol for privacy 
preservation in secure data aggregation in Wireless Sensor Networks." In 2014 9th International Conference 
on Industrial and Information Systems (ICIIS), pp. 1-5. IEEE, 2014. 

22. Angadi, Basavaraj M., and Mahabaleshwar S. Kakkasageri. "K-means and fuzzy based hybrid clustering 
algorithm for wsn." International Journal of Electronics and Telecommunications (2023): 793-801. 

23. Yang, Xiang, Tingpu Liu, and Dengteng Deng. "Inter-cluster multi-hop routing algorithm based on K-
means." In 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), pp. 
1296-1301. IEEE, 2018. 

24. Kotary, Dinesh Kumar, and Satyasai Jagannath Nanda. "A distributed neighbourhood DBSCAN algorithm 
for effective data clustering in wireless sensor networks." Wireless Personal Communications 121, no. 4 
(2021): 2545-2568. 

25.  Omari, Mohammed, Mohammed Kaddi, Khouloud Salameh, and Ali Alnoman. "Advancing Image 
Compression Through Clustering Techniques: A Comprehensive Analysis." Technologies 13, no. 3 (2025): 
123. 

26. Kmich, Mohamed, Nawal El Ghouate, Ahmed Bencharqui, Hicham Karmouni, Mhamed Sayyouri, S. S. 
Askar, and Mohamed Abouhawwash. "Chaotic Puma Optimizer Algorithm for controlling wheeled mobile 
robots." Engineering Science and Technology, an International Journal 63 (2025): 101982. 

27. Chaudhari, Kinjal, and Ankit Thakkar. "Travelling salesman problem: An empirical comparison between 
aco, pso, abc, fa and ga." In Emerging Research in Computing, Information, Communication and 
Applications: ERCICA 2018, Volume 2, pp. 397-405. Singapore: Springer Singapore, 2019. 

28. Abdollahzadeh, Benyamin, Nima Khodadadi, Saeid Barshandeh, Pavel Trojovský, Farhad Soleimanian 
Gharehchopogh, El-Sayed M. El-kenawy, Laith Abualigah, and Seyedali Mirjalili. "Puma optimizer (PO): a 
novel metaheuristic optimization algorithm and its application in machine learning." Cluster Computing 
27, no. 4 (2024): 5235-5283. 

29. Benhadji, Mohammed, Mohammed Kaddi, and Mohammed Omari. "Atomic Energy Optimization for 
Wireless Sensor Network Clustering (AEOWSNC) Protocol for Energy-Efficient Wireless Sensor 
Networks." Engineering, Technology & Applied Science Research 15, no. 3 (2025): 22802-22810. 

30. Omari, Mohammed, Mohammed Kaddi, Khouloud Salameh, Ali Alnoman, and Mohammed Benhadji. 
"Atomic Energy Optimization: A Novel Meta-Heuristic Inspired by Energy Dynamics and Dissipation." 
IEEE Access (2024). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2025 doi:10.20944/preprints202510.0115.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0115.v2
http://creativecommons.org/licenses/by/4.0/


 34 of 34 

 

31. Sharma, Neha, Vishal Gupta, Prashant Johri, and Ahmed A. Elngar. "SHO-CH: Spotted hyena optimization 
for cluster head selection to optimize energy in wireless sensor network." Peer-to-Peer Networking and 
Applications 18, no. 3 (2025): 1-18. 

32. Kumar, Mohit, Ashwani Kumar, Sunil Kumar, Piyush Chauhan, and Shitharth Selvarajan. "An African 
vulture optimization algorithm based energy efficient clustering scheme in wireless sensor networks." 
Scientific Reports 14, no. 1 (2024): 31412. 

33. Zhang, Shiwei, Xinghan Liu, and Mohammad Trik. "Energy efficient multi hop clustering using Artificial 
Bee Colony metaheuristic in WSN." Scientific Reports 15, no. 1 (2025): 26803. 

34. Behzadi, Mohamadhosein, Homayun Motameni, Hosein Mohamadi, and Behnam Barzegar. "Multi-
Objective Energy-Efficient Clustering Protocol for Wireless Sensor Networks: An Approach Based on 
Metaheuristic Algorithms." IET Wireless Sensor Systems 15, no. 1 (2025): e70011. 

35. Al-Khayyat, Abdullah Tareq Ali, and Abdullahi Ibrahim. "Energy optimization in wsn routing by using 
the K-means clustering algorithm and ant colony algorithm." In 2020 4th International Symposium on 
Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1-4. IEEE, 2020. 

36. Gamal, Marwa, Nagham E. Mekky, H. H. Soliman, and Noha A. Hikal. "Enhancing the lifetime of wireless 
sensor networks using fuzzy logic LEACH technique-based particle swarm optimization." IEEE Access 10 
(2022): 36935-36948. 

37.  K. Zheng, J. Fu and X. Liu, "Relay Selection and Deployment for NOMA-Enabled Multi-AAV-Assisted 
WSN," in IEEE Sensors Journal, vol. 25, no. 9, pp. 16235-16249, 2025. 

38. Sivasankarareddy, V., Sundari, G., Rami Reddy, C., Aymen, F. and Bortoni, E.C., 2021. Grid-based routing 
model for energy efficient and secure data transmission in wsn for smart building applications. Applied 
Sciences, 11(22), p.10517. 

39. Kaddi, Mohammed, Mohammed Omari, Khouloud Salameh, and Ali Alnoman. "Energy-efficient 
clustering in wireless sensor networks using Grey Wolf Optimization and enhanced CSMA/CA." Sensors 
24, no. 16 (2024): 5234. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 November 2025 doi:10.20944/preprints202510.0115.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202510.0115.v2
http://creativecommons.org/licenses/by/4.0/

