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Abstract

Energy efficiency and prolonged network lifetime remain key challenges in wireless sensor networks.
Clustering, cluster head selection, and routing are central to addressing these issues since they
directly affect energy consumption, data delivery, and overall network stability. In this work, we
introduce a novel hybrid protocol named PUMA-GRID, which uniquely integrates the recent Puma
Optimization Algorithm with a grid-based multi-hop routing framework. Unlike traditional
schemes, PUMA-GRID adaptively balances exploration and exploitation during cluster head
selection while learning optimal data forwarding paths through grid-based routing. This
combination provides improved adaptability, scalability, and load balancing, key strengths that
distinguish it from earlier AEO, LEACH, and static PUMA variants. The fitness function for cluster
head election incorporates intra cluster distance, distance to the base station, and residual energy,
with adjustable weights that allow flexible adaptation to deployment scenarios. Simulation
experiments were performed under different base station placements and weight configurations to
assess the influence of each factor. The results show that the effect of the weights depends strongly
on base station location, and that careful tuning is required to balance efficiency and fairness. Across
all scenarios, PUMA-GRID demonstrated superior performance compared to LEACH, AEO based
schemes, and other PUMA variants Overall, PUMA-GRID demonstrates an effective and scalable
solution for sustainable and energy-aware operation of wireless sensor networks.

Keywords: wireless sensor networks; energy efficiency; network lifetime; puma optimization
algorithm; cluster head selection; grid-based routing; multi-hop communication; metaheuristic
optimization; base station deployment; weighted fitness function

1. Introduction

In recent decades, computer networks, particularly wireless communications, have undergone
remarkable expansion due to continuous technological progress. Advances in microelectronics and
transducer design have enabled the development of compact, efficient, and low-cost devices capable
of detecting and measuring diverse physical quantities with high accuracy. These innovations have
paved the way for Wireless Sensor Networks (WSNs), a transformative technology widely
recognized by researchers and industry analysts [1-4]. A WSN consists of numerous sensor nodes
distributed across a geographical area, each capable of sensing, processing, and transmitting
information to a central Base Station (BS) [5]. However, transmitting large volumes of data consumes
significant energy, directly limiting network lifespan, particularly since nodes rely on small batteries
and are often deployed in hard-to-reach areas.

In addition to limited energy and transmission range, wireless sensor networks (WSNs) face
several other inherent challenges. These include signal interference from co-channel or adjacent
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wireless systems, low memory and processing capabilities of sensor nodes, narrow communication
bandwidth, constrained transmission range, and heightened vulnerability to environmental
disturbances and cyberattacks. For example, Kenyeres et al. [6] detail how narrow bandwidth, limited
memory, and constrained transmission range degrade WSN reliability and increase susceptibility to
noise and external interference. Likewise, Ahmad et al. [7] highlight how these resource constraints
amplify security challenges and make nodes vulnerable to attacks and faults.

To overcome this limitation, various routing strategies have been proposed, each aiming to
balance energy consumption and extend network lifetime [8-10]. These strategies are generally
classified into four families based on logical topology. In flat-based routing [11], all nodes share equal
roles, but flooding often leads to redundancy and overhead. Chain-based routing [12] reduces
transmissions by forming sequential links but increases delay. Tree-based routing [13] establishes a
parent—child hierarchy for data aggregation, while cluster-based routing [14] organizes nodes into
clusters managed by a Cluster Head (CH) that aggregates and forwards data to the BS, directly or via
other CHs. The main challenge lies in selecting optimal CHs, forming balanced clusters, and
maintaining efficient communication routes [15]. Clustering therefore remains central to improving
energy efficiency in WSNSs.

The pioneering Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol [14] and its
variants—LEACH-C [16], LEACH-1R [17,18], V-LEACH [19], TL-LEACH [20], and E-LEACH [21]—
introduced improvements such as centralized control, fixed clustering, backup cluster heads (CHs),
hierarchical communication, and energy-aware CH election. Despite these enhancements, they still
suffer from unbalanced energy consumption and limited network lifetime. Machine learning-based
clustering methods, including k-means [22,23] and DBSCAN (Density-based spatial clustering of
applications with noise) [24,25], have also been investigated. However, k-means requires prior
knowledge of the optimal number of clusters, while DBSCAN is highly sensitive to parameter
settings. These limitations highlight the need for more adaptive and robust clustering approaches.

Since their emergence in the early 1980s, metaheuristic algorithms have advanced considerably,
offering innovative strategies to enhance computational efficiency, solve complex large-scale
optimization problems, and provide robust solutions. They have achieved notable success in
addressing diverse combinatorial optimization tasks [26,27], with examples including Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Artificial Bee
Colony (ABC), and Grey Wolf Optimizer (GWO). A recently proposed population-based
metaheuristic, the Puma Optimizer Algorithm (PO) [28], is inspired by the hunting instincts and
territorial behaviors of pumas, effectively modeling their exploration and exploitation strategies to
solve optimization problems.

Despite extensive research on energy-efficient clustering and routing, many existing protocols
still face key limitations. Traditional methods often use fixed clustering structures that fail to adapt
to node energy variations, while optimization-based algorithms frequently overlook spatial balance
or introduce excessive control overhead. Moreover, the interaction between cluster formation and
routing remains loosely coupled, leading to uneven energy depletion and reduced coverage over
time. To address these challenges, this study introduces a unified clustering and routing framework
that integrates the adaptive exploration—exploitation capability of the Puma Optimization Algorithm
with grid-based multi-hop routing. The novelty lies in combining optimization-driven cluster head
selection with topology-aware routing, enabling dynamic energy balancing, improved scalability,
and extended network lifetime.

The major contributions of this paper are summarized as follows:

e Anovel clustering protocol, PUMA-GRID, designed to optimize energy consumption and extend
network lifetime.

e Exploiting the adaptive balance between exploration and exploitation: exploration identifies
diverse CH candidates, while exploitation refines them into energy-efficient selections. The
dynamic switching between these phases prevents premature convergence, improves robustness,
and ensures high-quality clustering solutions.
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e CH selection is guided by a fitness function based on three parameters: residual energy of
candidate CHs, distance to the BS, and distance from each node to its CH.

e Several experiments were conducted by varying the weight values of the fitness function to
evaluate their impacts under three different BS placements.

e Performance was assessed using multiple metrics, including residual energy, number of packets
sent to the BS, First Node Death (FND), Half Node Death (HND), Last Node Death (LND), energy
consumption per round, and the coverage fairness index (measuring the impact of node deaths
on coverage).

e The proposed protocol was compared against AEO, LEACH, PUMA-SH, and grid-enhanced
versions such as AEO-GRID.

Compared with previous studies, this paper addresses several limitations observed in existing
clustering and routing approaches. Traditional protocols such as LEACH and MR-LEACH provide
simple probabilistic or static cluster-head selection but lack adaptability to energy dynamics.
Optimization-based schemes like AEO, SHO-CH, and AVOACS incorporate heuristic search but
often ignore spatial routing balance. The proposed PUMA-GRID protocol distinguishes itself by
combining the adaptive exploration-exploitation behavior of the Puma Optimization Algorithm with
grid-based multi-hop routing, achieving enhanced load balancing, energy preservation, and coverage
fairness across varying deployment scenarios.

The remainder of this paper is organized as follows. Section 2 reviews clustering protocols that
employ metaheuristics for CH selection. Section 3 presents the PUMA algorithm, while Section 4
describes the proposed PUMA-GRID protocol. Section 5 discusses the simulation setup along with
the results and analysis. Finally, Section 6 concludes the paper.

2. Related Work

In AEOWSNC [29], a clustering protocol inspired by the Atomic Energy Optimization (AEO)
algorithm [30] was introduced to extend the operational lifespan of WSNs. The protocol selects
optimal CHs to minimize energy consumption while maintaining clustering efficiency. Each atom
represents a candidate CH set, initialized randomly with a predefined number of CHs and assigned
an energy level indicating its effectiveness. Through iterative operations such as energy transfer and
dissipation, atoms evolve toward improved solutions. The objective function evaluates each solution
based on the total distance from nodes to their CHs and from CHs to the BS, with the best solution
yielding the lowest value. Strong solutions are preserved, while weaker ones lose energy and are
replaced, ensuring a balance between exploration and exploitation. The protocol operates centrally,
with CHs transmitting data directly to the BS. Simulations confirm its efficiency over other protocols.
However, since the objective function considers only distance and not residual energy, CHs remain
in that role until depletion, leading to unbalanced energy usage and reduced coverage. This limitation
highlights the need for energy-aware optimization to further enhance performance.

The SHO-CH protocol [31] was proposed as an energy-efficient, cluster-based routing scheme
for heterogeneous WSNs. Its goal is to extend network lifetime while balancing energy consumption
across nodes. Inspired by the cooperative hunting strategies of spotted hyenas, the protocol balances
exploration and exploitation to select CHs that are both energy-efficient and strategically positioned.
CH selection is guided by a fitness function incorporating residual energy, distance between nodes
and their CHs, and distance from CHs to the BS. After aggregating data from members, CHs transmit
either directly to the BS or via intermediate CHs located closer to it. Simulation results demonstrate
that SHO-CH improves network lifetime and achieves more equitable energy distribution compared
to existing approaches.

The African Vulture Optimization Algorithm-based Energy Efficient Clustering Scheme
(AVOACS) [32] applies the scavenging and foraging behaviors of vultures to optimize CH selection.
Each vulture represents a candidate CH configuration, evaluated using a fitness function that
considers residual energy, distance to the sink, intra-cluster distance, and a communication mode
decider (CMD). After evaluation, the best two vultures guide the others, which update their positions
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relative to these leaders. A dynamic hunger rate controls the balance between exploration and
exploitation: initially promoting wide exploration and later encouraging intensive exploitation. Two
exploitation strategies are applied: refining searches via siege-fighting and spiral flight or intensifying
them by averaging around leaders or making aggressive jumps. This adaptive mechanism ensures a
smooth transition from global search to local refinement, preventing premature convergence. Results
show that AVOACS distributes energy more evenly, improves stability, and extends network lifetime
compared to conventional protocols.

The EEM-LEACH-ABC protocol [33] combines LEACH with the Artificial Bee Colony (ABC)
algorithm for energy-efficient clustering and routing. Initially, each node computes a fitness score
based on residual energy and distance to the BS to determine its suitability as a CH. Only high-fitness
nodes are considered candidates. The ABC algorithm then refines CH selection, with worker,
onlooker, and scout bees exploring and introducing new candidates to avoid local optima. To reduce
the transmission cost of distant CHs, a multi-hop relay mechanism is applied. Selected CHs are
ordered by weight to form a hierarchical relay tree. Each CH broadcasts advertisements, allowing
nearby nodes to join its cluster, and generates a TDMA schedule for organized transmissions. During
operation, CHs aggregate data and forward it either to the BS or through relay CHs. This adaptive
clustering and routing approach significantly delays the FND and extends overall network lifetime.

The Binary Dragonfly Algorithm (BDA)-based protocol [34] introduces a four-phase clustering
process. First, after deployment, each node sends a hello message to the BS containing its ID, location,
and residual energy. Second, CHs are selected using the Dragonfly Algorithm, with candidate
solutions evaluated by a fitness function integrating residual energy, distance to the BS, and
neighborhood degree (number of nearby nodes). Continuous solutions are mapped to binary values
using transfer functions. Third, cluster formation is performed through a fuzzy inference system
considering residual energy, distance to CHs, and neighborhood degree. Finally, data transmission
is achieved through path discovery, where nodes identify shortest routes to the CH, and CHs forward
aggregated data to the BS either directly or via other CHs in multi-hop fashion. This protocol extends
network lifetime by balancing energy usage, though reliance on fuzzy logic and multi-hop
forwarding through normal nodes can increase energy burden on some nodes, potentially affecting
long-term performance.

A hybrid protocol combining K-means and ACO [35] was also proposed. Initially, K-means
forms clusters based on spatial proximity, after which ACO selects CHs and determines optimal
routing paths. Decisions are guided by residual lifetime and energy efficiency (energy consumed in
transmission). This hybridization exploits the strengths of K-means in forming compact clusters and
ACO in optimizing routing. However, K-means alone is less effective in WSNs since it emphasizes
Euclidean distance to centroids, overlooking irregular node distributions and resulting in imbalanced
clusters and suboptimal energy usage.

Another hybrid approach combining K-means, PSO, and fuzzy logic [36] was introduced. K-
means first generates initial clusters, and its result is used as one particle in PSO, while the others are
generated randomly. After optimization, the best particle defines the final clusters. CHs are then
elected using fuzzy logic: Primary CHs are selected based on residual energy, distance to the BS, and
distance to the centroid; Secondary CHs are chosen considering residual energy, distance to the
centroid, and distance to the Primary CH. While this multi-layered selection improves clustering
efficiency, executing fuzzy logic at every node increases computational overhead and accelerates
energy depletion.

Zheng et al. [37] proposed a relay selection and deployment approach for non-orthogonal
multiple-access (NOMA) enabled multi-A AV-assisted wireless sensor networks. Their study jointly
optimizes relay placement and selection to enhance throughput and spectral efficiency under energy
and coverage constraints, demonstrating the growing research interest in deployment-aware WSN
optimization.

Table 1 summarizes the reviewed protocols in terms of CH selection methods, considered
variables (residual energy, distance to BS, intra-cluster communication), and routing strategies.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0115.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2025

d0i:10.20944/preprints202510.0115.v2

5 of 34

Overall, energy minimization in WSNs is achieved not only through metaheuristic-based CH
selections, such as evolutionary and swarm-intelligence algorithms, but also via classical clustering,
adaptive thresholding, and energy-aware multi-hop routing. These complementary approaches
balance network load, prolong node lifetime, and reduce communication overhead, leading to more
sustainable WSN deployments.

Table 1. Comparison of clustering protocols in WSNss.

CH Selection Parameters Routing Main Strengths Limits
Protocol
Method Considered Type
Simple implementation and Lacks energy-awareness in CH
Distance(Node, CH)
AEOWSNC AEO Single-hop efficient CH distance  rotation and scalability
Distance(CH, BS)
minimization
Residual energy Multih Balances exploration and High computational cost and limited
ulti-hop
SHO-CH Hyenas Distance(Node, CH) exploitation for better CH scalability
Single-hop
Distance(CH, BS) selection
Residual energy Adaptive switching between Increased overhead and slow
African Distance(Node, CH) exploration and exploitation convergence in large networks
AVOACS Distance(CH, BS) Single-hop h
Vulture phases
Communication
mode decider
EEM-LEACH- Residual energy Multi-hop ~ Reduces control overhead and Random CH initialization may cause
ABC
ABC Distance(CH, BS) Single-hop  improves network lifetime imbalance
Residual energy Maintains network connectivity —Sensitive to parameter tuning and
Distance(CH, ~ BS) Multi-hop .
BDA Dragonfly and energy balance dense topologies
Neighborhood Single-hop
degree
Residual energy Combines clustering accuracy Dependent on initial cluster
K-means and )
KPSOFL Distance(CH, BS) Single-hop  yyith adaptive optimization centroids and PSO randomness

PSO

Distance to centroid

3. Preliminaries: Puma Optimizer

The Puma Optimizer is inspired by the natural predatory strategies of pumas, which combine
learning, exploration, and exploitation behaviors to maximize hunting success [26]. The algorithm
emulates the gradual transition of pumas from inexperienced hunters to skilled predators through a
series of interconnected phases that adaptively balance global search and local refinement. This
design maintains population diversity in the early stages to promote exploration and gradually
intensifies the search around promising regions as convergence progresses. If the population
diversity decreases too rapidly, premature convergence may occur, causing the algorithm to settle
around local optima and leading to suboptimal cluster-head selection and energy imbalance. The
severity of this issue depends on the chosen control parameters, such as population size, learning
rate, and movement coefficients, which influence the exploration—exploitation balance. In the
proposed implementation, these parameters are adaptively tuned to preserve diversity and stability.
It is also noted that exploration and exploitation durations are measured in algorithmic iterations
rather than real-time units, as they depend on the internal convergence dynamics of the optimizer
rather than clock time.

3.1. Unexperienced Phase

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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At the start of the optimization, pumas are considered inexperienced hunters. This phase,
typically lasting only a few iterations, activates both exploration and exploitation simultaneously. By
combining wide roaming of the search space with initial local improvements, the algorithm mimics
the trial-and-error learning of young pumas. This balance provides an initial diversity of solutions
before specialization begins.

3.2. Experienced Phase

After the unexperienced stage, the algorithm assumes that pumas have gained hunting
experience. In this phase, the decision to favor exploration or exploitation is made adaptively, based
on their relative effectiveness in previous iterations. This adaptive behavior is governed by two
reinforcement counters: Scoregypiore and Scoregypioir - If exploration has yielded better
improvements, the algorithm emphasizes global roaming; otherwise, it prioritizes local exploitation.
This mechanism reflects the natural ability of experienced pumas to choose the most effective hunting
strategy.

3.3. Exploration Phase

Exploration represents the roaming of pumas over wide territories in search of prey. In the
algorithm, candidate solutions are perturbed around the global best and other agents, modulated by
trigonometric functions such as cosine. This introduces nonlinear trajectories that expand the search
space, helping avoid stagnation and maintain diversity across the population.

3.4. Exploitation Phase

Exploitation simulates the stalking and chasing of prey once it has been detected. Here, agents
are drawn toward elite and neighboring solutions using sine-based functions, narrowing the search
to promising local regions. By reducing randomness and refining solution quality, exploitation
accelerates convergence while ensuring the final solutions are highly optimized.

3.5. Parameter Definitions

The PO algorithm relies on several key parameters and functions:
e  fi: Exploration Function, which governs roaming behavior:

fl(Xit) = Xit + 1y - cos(ry) - (XBet — Xlt) 1

XBest

where 1,1, € [0,1] are random numbers, and is the elite solution.

e f,: Exploitation Function, which models local pursuit around promising solutions:
fo(XE) = XBeSt + 1y - sin(r,) - (X]-t - X,ﬁ) ()

where 13,7, € [0,1] are random numbers, and X jt,X ! are random solutions.

* f3 (Adaptive Balancing Term): A time-varying coefficient that gradually decreases exploration
strength while increasing exploitation with iterations.

®  Scoregypiore and Scoregypioir: Reinforcement counters that track the relative success of each
phase. If exploration produces improvements, Scoregypore i incremented; otherwise,
exploitation is rewarded. Phase selection is determined by comparing the two scores.

e N:Population size.

e [LB,UB]: Lower and upper bounds of the search space.

®  Thax: Maximum number of iterations.

The choice of cosine and sine functions in equations (1) and (2) is intentional and reflects the
different objectives of the two phases. In the exploration phase, cosine provides a push—pull
oscillatory effect with larger displacements, allowing agents to roam widely and escape local minima.
In contrast, the exploitation phase uses sine, which generates smaller, smoother oscillations around
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zero, enabling precise local adjustments. This asymmetric design ensures that exploration remains
disruptive and diverse, while exploitation is fine-grained and convergent.

The key functions in PO algorithm govern the balance between exploration and exploitation and
directly influence convergence behavior and optimization performance. Specifically, the position
update and hunting functions control how pumas move through the search space, while the fitness
evaluation function determines the quality of each solution. These mechanisms together define the
algorithm’s capacity to avoid local optima and converge toward high-quality solutions.

3.6. PO Pseudocodes

The operational flow of the PO can be summarized in the following pseudocodes:

It is important to note that the global best solution X5t

is explicitly updated at the end of the
exploitation phase (Algorithm 3) but not during exploration (Algorithm 2). This design reflects the
different goals of the two phases: exploration aims to diversify the population by generating wide,
trial solutions, while exploitation focuses on refining and improving the elite solution. Updating
XBest during exploration could prematurely bias the search toward unstable exploratory candidates,
whereas updating it during exploitation ensures that only robust, locally improved solutions
influence the global best.
Algorithm 1: Puma Optimizer (PO)
Input: Population size N, maximum iterations T,,,, parameter settings
Output: Best solution X?¢5¢ and fitness value

Initialize a population of N pumas X; within [LB, UB]
Evaluate fitness of all pumas
Identify the best solution X5¢st

/] Unexperienced Phase
For t = 1 to 3 do
Apply Exploration Phase
Apply Exploitation Phase
End For

_
~ O

: /] Experienced Phase
: For t = 4 to Ty, do
If SCOTeExplore > SCOTeExploit
Apply Exploration Phase
If new solution improves X5est
Update XP5est
End If
Else
Apply Exploitation Phase
If new solution improves X5est
Update X5est
End If
Update control parameters (f1, f2, f3)
24: Recompute Scoregypiore and Scoregypioir
25: End For
26: Return XBest

NN NN R R R 2R R,
O el D T A BRSNS LI S O

Algorithm 2: Exploration Phase
Input: Population X/, best solution X5est
Output: Updated solutions X/**
1: Foreachpumai = 1 to N do
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2: Generate random 1,7, € [0,1]

3: XY = Xt + - cos(ry) * (XBest — Xb)
4: If X[**" is out of bounds

5: Reinitialize X[**" within [LB, UB]
6: End If

7

8: Evaluate fitness of X[**"

9: If fitness(X[**") better than fitness(X})
10: XE+L = xnew

11: Else

12: Xt =xt

13: End If

14: End For

Algorithm 3: Exploitation Phase
Input: Population X/, best solution X8est
Output: Updated solutions X/**

1: Foreachpuma i = 1 to N do

2 Select two random distinct pumas Xj, X
3 Xpew = XPest + ry-sin(ry) * (X; — X)
4: If X[V is out of bounds

5: Reinitialize X[**" within [LB,UB]
6: End If

7

8 Evaluate fitness of X[**"

9: If fitness(X[**") better than fitness(X/)
10: X+ = xnew

11: Else

12: Xt =xt

13: End If

14: End For

15: Update X5% if any Xf*! is better

4. The PUMA-GRID Protocol: Clustering with Grid-Based Multi-hop Routing

The proposed protocol, PUMA-GRID, introduces an advanced clustering and routing
framework to address the critical challenge of energy efficiency in WSNs. It leverages the Puma
Optimizer, a metaheuristic known for its adaptive balance between exploration and exploitation, to
dynamically optimize CH selection across the network. By navigating the complex combinatorial
space of possible CH assignments, PUMA explores diverse clustering configurations during the early
search stages and gradually intensifies its focus on promising regions of the solution space. This
adaptive tuning enables efficient convergence toward high-quality, energy-aware clustering
solutions.

In this study, PUMA-GRID assumes a single BS located either inside or at the edge of the
monitored area, which serves as the central data collection point. This assumption aligns with most
benchmark WSN configurations and facilitates consistent performance comparison. Although
deploying multiple BSs could further reduce communication distances and balance network load,
the proposed framework was designed and evaluated under a single-BS scenario.

To complement clustering, the approach incorporates a grid-based, machine-learning-inspired
multi-hop routing mechanism. Grid-based routing divides the wireless sensor network into uniform
virtual cells, facilitating energy-efficient data forwarding through structured multi-hop paths and
localized packet transmission. As highlighted in [38], this approach enhances scalability and ensures
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predictable communication costs, although its performance depends on appropriate grid
configuration to prevent problems such as empty cells and uneven node distribution.

4.1. Initialization

In the initialization phase, the clustering process is prepared by setting up candidate solutions
for CH selection. In the proposed protocol, the CH selection process is not predetermined within each
grid cell but dynamically optimized through the PUMA algorithm. All sensor nodes are initially
eligible to become CHs, and their selection depends on the fitness function that considers residual
energy, distance to the base station, and intra-cluster communication distance.

After random deployment of nodes in the target area, each node transmits its position
information to the BS, which then begins executing the PUMA algorithm. A population of m
individuals (candidate solutions) is generated, where each individual is represented as an n-length
binary vector. In this encoding, a value of 1 denotes that the node is selected as a CH, while 0 indicates
a regular sensor node. The desired number of CHs is specified as a user-defined percentage of the
total nodes. This binary representation, consistent with classical metaheuristic clustering approaches,
enables flexible exploration of CH configurations and establishes a solid foundation for the
optimization process.

4.2. PUMA-Based Clustering and Fitness Evaluation

PUMA balances exploration and exploitation through adaptive control mechanisms embedded
in its search dynamics. During the exploration phase, candidate solutions undergo wide, randomized
position adjustments that preserve diversity and help the algorithm avoid premature convergence.
As optimization progresses, PUMA transitions into the exploitation phase, where updates become
more focused, favoring local improvements around the current best solution. The number of CHs is
not strictly enforced during this process, allowing the search to flexibly explore a broader range of
configurations. This hyper-heuristic switching mechanism, as demonstrated in recent applications of
the Puma Optimizer, dynamically adjusts the exploration—exploitation ratio according to the
optimization context, enabling progressive refinement of clustering results while avoiding local
optima.

The fitness function in PUMA-GRID integrates three key metrics: (1) the total distance between
each regular node and its nearest CH, (2) the distance from each CH to the base station (BS), and (3)
the residual energy of the selected CHs. These components are combined using weighted coefficients
wy, w,, and ws, all in the range [0-1].

W1+W2+W3=1 (3)

Additionally, a penalty term is introduced to discourage solutions where the number of CHs
deviates significantly from the desired count. This mechanism ensures a balance between flexibility
in exploration and compliance with user-defined network constraints. The objective function is
therefore formulated as follows:

Cost = wy X E ngggDist(i,j) +w, X E Dist(j,BS) — ws X E Energyj (4)
j

IEN\CH jecH jecH
+ a X |[NumCH — Kp¢|

where:
e Dist(i,j) is the Euclidean distance between node i and its associated CH j.
e Dist(j, BS) is the Euclidean distance between CH j and the base station.
o Energy], is the residual energy of CH ;.
e NumCH is the number of CHs in the current solution.
® K, is the desired number of CHs.

After evaluating all candidate solutions in the PUMA population using the objective function,
the individual with the minimum cost value is chosen as the best solution. This puma represents the
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most energy-efficient clustering configuration for the current round, achieving the optimal trade-off
among intra-cluster communication, CH-to-BS transmission, residual energy, and the cluster count
penalty. In this context, a round refers to a complete operational cycle consisting of cluster formation,
data sensing, aggregation by CHs, and data transmission to the BS. Algorithm 4 illustrates how
PUMA operates in selecting CHs.

Algorithm 4: Binary Puma Optimization Algorithm for WSN Clustering

1: Input: Number of sensors N; sensor positions (X, Y;); residual energy; base
station position (BS,, BS,); maximum iterations Tp,q,; weighted coefficients w;,
w,, and ws

2:  Output: Optimal binary vector of cluster heads (CHs); best fitness value

3: Initialize a population of pumas X;(i = 1,2,...,N) as binary vectors (1 for CH, 0
for normal node)

4: Evaluate the fitness of each puma using a weighted combination of residual
energy, distance to cluster center, and distance to base station (Equation 2)

5: Identify the best local solution as the leader

6: Foreachiteration t = 1 to 3 do

7 For each puma X; do

8: Apply exploration phase: roaming and searching for locally optimal CH
positions

9: Apply exploitation phase: refining CH selection using ambush/attack
strategies

10: Ensure updated positions remain binary (1 or 0)

11: End For

12: Evaluate fitness of all pumas

13: Update the leader (best solution so far)

14: End For

15: For each iteration t = 4 to Ty, do
16: For each puma X; do

17: Update positions using exploration and exploitation with adaptive
coefficients

18: Ensure updated positions remain binary (1 or 0)

19: End For

20: Evaluate fitness of all pumas

21: Update the leader (best solution so far)

22: End For

23: Return the leader as the optimal CH selection vector and its fitness value

4.3. Grid-Based Multi-Hop Routing via A*-Inspired Logic

After clustering, PUMA-GRID proceeds with a grid-based routing phase that employs a
machine-learning-style decision mechanism. The network field is divided into uniform grid cells of
user-defined size, with each CH residing in a specific cell. When forwarding aggregated data, a CH
selects its next-hop relay from an adjacent grid cell that lies closer to the BS. The forwarding rule
works like this: a CH will only choose another CH as a relay if going through it makes the total path
to the BS shorter than sending data directly. In short, if the detour is shorter, the CH forwards through
the relay. This heuristic emulates intelligent path selection, progressively routing data through
energy-efficient multi-hop corridors while avoiding unnecessary long-range transmissions. Figure 1
illustrates how the next CH is elected, and the detailed mechanism is provided in Algorithm 5.
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@ Clusterhead
@ Regular Node

Figure 1. Grid-based routing.

The grid size and number were determined empirically according to the network area and the
average communication range of sensor nodes. The objective was to balance routing accuracy with
computational and communication overhead. A smaller grid size allows finer routing granularity
and shorter transmission distances but increases the number of control decisions, while larger grids
simplify routing at the cost of suboptimal paths. In this work, the grid dimension was chosen to
achieve a moderate balance between these factors. Future extensions will consider adaptive grid
resizing to optimize performance dynamically under different network conditions.

Algorithm 5: Grid-Based Cluster Head Routing
1: Input: Set of CHs, BS, grid structure
2:  Output: Optimal multi-hop routing paths for data forwarding
3: For each clusterhead CH; do
4 If CH; and BS are in the same grid
5: Send data directly to BS
6: Else If BS is in a directly adjacent grid
7.
8
9

Send data directly to BS

Else
Search adjacent grid(s) in the direction of the BS
10: If one or more CHs exist in adjacent grids
11: Select CH; = argmin(Dist(CH;, CH) + Dist(CHy, BS)), where CH,
CHy,
belongs to adjacent grids
12: Forward data to CH;
13: Else
14: Extend search to next-level adjacent grids
15: If BS is found
16: Send data directly to BS
17: Else If one or more CHs exist
18: Select CH; = argmin(Dist(CHy, BS)), where CH) belongs to
CHy,
adjacent grids
19: Forward data to CH;
20: End If
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21: End If
22: End If
23: End For

24: Return final routing paths for all CHs

4.4. Adaptive Operation and Steady-State Execution

Once the best individual (lowest-cost solution) is identified, PUMA-GRID organizes clusters by
enabling CHs to broadcast advertisements. Ordinary nodes then join their nearest CH, and a time-
division schedule is established. During the steady-state phase, regular nodes sense data and transmit
it to their CH, which aggregates the data and forwards it through the grid-based multi-hop path
toward the BS. Re-clustering is triggered when the residual energy of CHs falls below defined
thresholds or when load imbalance occurs, thereby maintaining sustained energy-aware operation.

4.5. Complexity Analysis of PUMA-GRID

The computational complexity of the proposed PUMA-GRID protocol can be analyzed by
considering its two main components: CH selection based on PO and grid-based multi-hop routing.
In the clustering phase, PO operates over a population of P pumas, each representing a possible CH
configuration among N sensor nodes. During each iteration, the algorithm evaluates the fitness of
all individuals using the defined weighted objective function. This process involves computing intra-
cluster distances, CH-to-base-station distances, and residual energies. The cost of evaluating one
solution is O(N), leading to an overall clustering complexity of O(P X N x I), where I denotes the
number of iterations. This level of complexity is typical for metaheuristic-based clustering algorithms
and remains acceptable for moderate network sizes due to the algorithm’s parallelizable structure
and convergence efficiency.

In the routing phase, the grid-based multi-hop routing mechanism partitions the monitored area
into G grids, where each CH searches for the next-hop relay among adjacent grids. Assuming each
grid contains a small constant number of CHs, the selection of the next-hop node for each CH requires
a limited search over neighboring grids, resulting in a routing complexity of approximately 0(G) for
a single transmission round.

Consequently, the total computational complexity of PUMA-GRID per clustering round is
dominated by the POA component and can be expressed as O(P X N X I + G) which scales linearly
with the number of nodes and grids. The memory complexity is O(P X N), as the algorithm stores
the position vectors and fitness values for all candidate solutions.

5. Simulation Setup, Results, and Discussion

In practical deployments, sensor nodes can estimate their geographical positions through
various localization techniques depending on the application and cost constraints. Common
approaches include Global Positioning System (GPS) modules for outdoor environments, or signal-
based localization methods such as Received Signal Strength Indication (RSSI), Time of Arrival (ToA),
and Time Difference of Arrival (TDoA). In cases where GPS is not feasible, anchor-based or centroid
localization algorithms can be applied using a limited number of reference nodes with known
coordinates. The position of the base station is typically predefined and broadcast once to all nodes
during network initialization, enabling each node to store this information locally and use it for
cluster formation and routing decisions.

In the simulation study, we employed the first-order radio model for energy consumption as
presented in [39]. In this model, a radio transmits an L-bit data packet to a receiver at distance d
meters by dissipating an energy amount Ery (L, d). Similarly, a sensor node’s radio consumes Egpx (L)
energy to receive an L-bit message.
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The free-space channel (g¢,) is applied when d < d,, while the multi-path channel (&) is
applied when d = d,. Equation (3) expresses the energy required to transmit a packet of L-bit across
a distance d.

_ L*Eelec(L;d)‘l'L*ffs*dz,d <d, (5)
e L Eelec(L; d) + L Emp * d4,d > do

where: Eg..(L,d) is the energy needed to transfer a single bit over d meters, both ways. The
threshold distance at which the amplification factors begin to shift is known as d:

E
do = “Lﬁ 6)
mp

For the receiver to receive a packet of L bits, energy Egy(L) must be consumed as follows:
Epx(L) = L * Egiec 7)

The simulations were conducted in MATLAB using a network model to evaluate sensor node
performance. Energy consumption was analyzed both at the node level and across the entire network
using a standard radio energy model. A set of n sensor nodes was randomly deployed within the
monitored area, where they continuously gathered and exchanged data before transmitting it to the
BS after aggregation by the CHs. The CHs forwarded the data either directly to the BS or through
other CHs using multi-hop transmission. Table 2 summarizes the simulation characteristics and the
different BS positions.

Table 2. Simulation parameters for optimal PUMA-GRID weight selection.

Simulation Parameters Values/Ranges
Network Size 100 x 100 (m?)

BS Position (0, 0), (50, 50)
Number of Nodes 100

Node’s Initial Energy 0.1 (Joules)
Percentage of Clusterheads 5%

Packet Size 500 (Bytes)

Eclec 50 (nJoule/bit)

Efs 10 (pJoule/bit/m?)
Emp 0.0013 (p//bit/m*)
dy 10 (m)

Grid Size 10 — 40 (m)

The simulation parameters listed in Table 2 were selected based on widely adopted
configurations in WSN studies to ensure fair comparison and reproducibility. The network size of
100 x 100 m? and node count of 100 provide a moderate-density scenario suitable for evaluating
scalability. The percentage of cluster heads was fixed at 5%, as this value is commonly used in
protocols such as LEACH and its variants to maintain an optimal balance between energy
consumption and communication overhead. The initial energy (0.1 J) and packet size (500 bytes)
follow standard benchmarks used in energy-efficient routing simulations. The energy model
parameters (Egiec, &5, and &g,) correspond to the first-order radio model, while the threshold
distance d, = 10 m differentiates free-space and multipath propagation regions. The grid size (10-
40 m) range was tested to assess the effect of spatial partitioning on routing performance.

Before execution, all nodes are initialized with basic network information, including the total
number of nodes, grid dimensions, and the position of the base station, which is broadcast once
during setup. These parameters are required to compute distances and support clustering and
routing operations. Although this study uses static weight values for the fitness function, the same
framework can support adaptive weight adjustment, where weights are dynamically updated in real
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time according to network conditions such as average residual energy, node density, or
communication cost.

5.1. Choosing the Optimal Weights for the Fitness Function

To improve the energy efficiency of the proposed PUMA-GRID protocol, a multi-objective
fitness function was employed, combining three key factors with associated weights: the distance
from sensor nodes to their respective CH (w,), the distance from CHs to the BS (w,), and the residual
energy of the CH (w;). An additional penalty term with a fixed coefficient & = 10 is applied to
penalize deviations from the optimal number of CHs. The fitness function is minimized, and the
PUMA solution with the lowest cost is considered the optimal configuration for that iteration.

To identify the most suitable weight combinations, extensive simulations were conducted under
three BS deployment scenarios:

1) Located at the center of the sensor field,
2) Situated outside the network boundary.

Although a full factorial exploration would involve 36 weight combinations, only a
representative subset is reported here to avoid redundancy, while all possible combinations were
simulated and analyzed. Each configuration was evaluated using the following performance
indicators:

1) FND, HND, LND — the rounds when the first, half, and last nodes die, used to estimate network
lifetime and stability;

2) Live Nodes per Round — tracking the network’s vitality throughout the simulation;

3) Number of Packets Sent to the BS— reflecting data delivery capability;

4) Coverage Fairness Index (CFI) — defined as

CFl = Occupied Cells g
" Total Number of Cells ®

which measures the fraction of grid cells containing at least one live node, where CFI =1
indicates perfect spatial fairness and values near 0 reflect poor distribution; and
5) Residual Energy per Round — quantifying the energy dissipated by the entire network in each
round.

5.2. Impact of Weight Combinations on Different Metrics (BS Inside the Network)

Figure 2 illustrates the FND, HND, and LND of the same network under different weight
combinations when the BS is located inside the network. A higher value of w; directs the
optimization process to prioritize assigning nodes to nearby CHs. This reduces transmission energy,
balances load distribution, and delays the FND, thereby prolonging the initial operational phase of
the network. In contrast, a low w; neglects proximity, forcing some nodes to transmit over longer
distances, consume more energy, and die earlier.
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Figure 2. Effect of weight combinations on FND, HND and LND with BS inside the network.

The influence of w, on FND, HND, and LND is relatively minor when the BS is located at the
center of the network. Since the CH-to-BS distance remains short across all configurations, variations
in w, do not significantly affect energy consumption or network lifetime. Thus, minimizing CH-to-
BS distance is less critical in this deployment scenario.

A lower ws, which reduces emphasis on CH residual energy, generally results in a longer LND.
This is because CH selection becomes more diversified and less biased toward high-energy nodes,
enabling more nodes to remain active over time. Conversely, a high w; favors repeated selection of
energy-rich nodes, which may initially appear beneficial but eventually accelerates their depletion
due to overuse, thereby reducing LND.

When w; and w, differ significantly, even a high w; can still produce an extended LND. This
demonstrates that the interaction among weights plays a decisive role, and certain imbalanced
combinations can nevertheless enhance overall energy efficiency.

Figure 3 shows the number of packets sent to the BS under different weight combinations when
the BS is located inside the network. The analysis reveals that the choice of weights (w;,w,, w;) has
a significant effect on the volume of data successfully delivered. A higher value of w; substantially
increases the number of packets, emphasizing the importance of prioritizing intra-cluster distance in
CH selection. This improves local communication efficiency and ensures more reliable data
forwarding.
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Figure 3. Effect of weight combinations on data delivery with BS inside the network.

In contrast, lower values of w, are associated with higher packet counts. This indicates that
giving excessive weight to the distance between CHs and the BS can reduce throughput, particularly
when the BS is located within the network where CH-to-BS distances are already short. Thus,
minimizing the emphasis on w, in such scenarios helps preserve higher packet delivery rates.

The role of w; is also evident: lower values, which reduce the influence of residual energy in
CH selection, tend to yield more packets. This outcome suggests that excessive reliance on energy-
rich nodes can lead to their overuse, while a moderate level of randomness or fairness in CH rotation
distributes the forwarding load more evenly and supports sustained throughput.

Figure 4 illustrates the effect of different weight combinations on three performance metrics
when the BS is located inside the network: (a) number of live nodes, (b) residual energy, and (c) the
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Figure 4. Effect of weight combinations on live nodes (a), residual energy (b), and CFI (c) with BS inside the

network.

A higher value of w; generally extends the number of live nodes and preserves residual energy
for longer rounds. This is because prioritizing the distance between nodes and their CHs reduces
transmission costs, balances energy consumption across nodes, and delays early depletion.
Consequently, higher w,; values also correlate with improved coverage fairness, as nodes remain
distributed and active for longer. In contrast, a lower w; accelerates node death and energy
dissipation due to longer communication distances, which results in uneven coverage and reduced
fairness over time.

The effect of w, is comparatively limited in this scenario since the BS is centrally located, and
CH-to-BS distances are already short across all configurations. As a result, increasing w, does not
significantly alter node survival, energy consumption, or fairness. Nonetheless, excessive emphasis
on w, can slightly reduce throughput and energy efficiency by constraining CH selection
unnecessarily.

For wj, the results show that a moderate value contributes to more balanced performance across
all three metrics. A lower wz, which reduces emphasis on CH residual energy, helps sustain node
activity and fairness by diversifying CH selection, but it can accelerate overall energy depletion.
Conversely, a very high w; biases the algorithm toward repeatedly selecting energy-rich nodes,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202510.0115.v2
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2025 d0i:10.20944/preprints202510.0115.v2

18 of 34

which may appear beneficial initially but leads to concentrated energy usage, faster depletion of those
nodes, and lower fairness.

5.3. Impact of Weight Combinations on Different Metrics (BS Outside the Network)

Figure 5 presents the effect of different weight combinations on FND, HND, and LND when the
BS is located outside the network. The results highlight that the placement of the BS substantially
changes how the weights influence network lifetime.
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Figure 5. Effect of weight combinations on FND, HND and LND with BS outside the network.

A higher value of w; continues to delay FND by emphasizing proximity between nodes and
their CHs. This reduces intra-cluster energy costs and prevents early depletion of distant nodes.
However, the improvement in HND and LND is less pronounced compared with the BS-inside
scenario, since a larger proportion of energy is consumed in long-range CH-to-BS transmissions,
regardless of efficient clustering.

The role of w, becomes more significant when the BS is external. Higher w, values extend both
HND and LND, as prioritizing shorter CH-to-BS distances helps reduce the energy cost of long-range
transmissions. In contrast, very low w, values degrade overall performance because CHs are
sometimes selected without regard for their distance to the BS, leading to higher energy consumption
and earlier node death.

The influence of w; remains consistent with earlier findings: moderate values provide balanced
performance, while very high values lead to repeated use of energy-rich nodes, causing faster
depletion and reduced LND. Conversely, very low ws; improves fairness in CH rotation but may
accelerate energy consumption across the network.

Figure 6 presents the effect of different weight combinations on the number of packets delivered
to the BS when the BS is located outside the network. The results show that the role of weights shifts
compared with the BS-inside scenario, reflecting the higher energy cost of long-range CH-to-BS
communication.
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Figure 6. Effect of weight combinations on data delivery with BS outside the network.

A higher value of w; significantly improves packet delivery, as prioritizing intra-cluster
distance reduces energy consumption during local transmissions and leaves more residual energy
available for forwarding data to the distant BS. This effect is particularly evident for combinations
where w; dominates, leading to the highest packet counts.

The influence of w, becomes more pronounced with the BS outside the network. Lower values
of w, often correspond to higher packet counts, indicating that assigning excessive weight to CH-to-
BS distance can restrict CH selection without substantially reducing long-range transmission costs.
Conversely, when w, is kept moderate, it contributes positively by preventing inefficient CH
placements.

The effect of w; is more nuanced. Lower to moderate values support higher packet delivery
rates by diversifying CH selection and preventing the repeated overuse of energy-rich nodes. In
contrast, very high w; values limit CH rotation, concentrating energy demands on a few nodes and
reducing the overall number of packets delivered.

Figure 7 shows the effect of different weight combinations on (a) the number of live nodes, (b)
residual energy, and (c) the CFI when the BS is located outside the network. The results emphasize
how weight selection affects network longevity and energy balance under the more demanding
external BS setting.
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Figure 7. Effect of weight combinations on live nodes (a), residual energy (b), and CFI (c) with BS outside the

network.

A higher value of w; supports longer node survival by prioritizing intra-cluster proximity. As

seen in Figure 7(a), configurations with high maintain a greater number of live nodes over time,
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which translates into slower residual energy depletion in Figure 7(b). In contrast, lower w,; values
accelerate node deaths due to increased transmission distances, leading to earlier energy exhaustion
and a faster decline in fairness.

The role of w, is more critical when the BS is external. Configurations with moderate to high
w, exhibit extended residual energy and a slower decline in live nodes, as prioritizing CH-to-BS
distance mitigates the cost of long-range transmissions. Figure 7(c) confirms this, where higher w,
values sustain higher CFI levels for longer periods, ensuring more balanced spatial coverage.

The influence of w; is evident in fairness outcomes. Moderate w; values help diversify CH
selection and balance the workload, contributing to extended CFI stability. However, very high
ws risks over-relying on energy-rich nodes, which may initially improve residual energy but
ultimately accelerate fairness degradation as these nodes deplete more quickly.

5.4. Discussion

The analysis of weight combinations under both deployment scenarios—BS inside and BS
outside the network—provides important insights into the role of w;, w,, and w; in optimizing
network lifetime, energy efficiency, and fairness.

When the BS is located inside the network, a higher emphasis on w; consistently improves
performance across most metrics. Prioritizing intra-cluster distance minimizes transmission costs,
delays FND, and sustains a larger number of live nodes, ultimately extending LND. In this scenario,
the effect of w, is minimal, as the distance between CHs and the BS is already short and does not
significantly impact energy consumption or throughput. Meanwhile, moderate values of w; prove
beneficial by balancing the reuse of high-energy nodes with fairness in CH rotation, thereby
supporting longer coverage and stable CFI.

In contrast, when the BS is outside the network, the influence of w, becomes critical. Long-range
CH-to-BS transmissions dominate energy consumption and assigning higher weight to w, helps
select CHs closer to the BS, reducing transmission costs and improving HND, LND, and residual
energy utilization. While w; remains important for sustaining intra-cluster efficiency and
supporting high packet delivery, its relative dominance is reduced compared with the BS-inside case.
As before, moderate values of w; yield more balanced performance by preventing overuse of
energy-rich nodes and maintaining fairness in coverage.

Across both scenarios, packet delivery results confirm that the highest throughput is achieved
when w; is high, w, is keptlow to moderate, and w; remains moderate. However, fairness metrics
such as CFI suggest that purely maximizing throughput may compromise spatial coverage unless
residual energy is also considered. Thus, configurations with overly low w; improve packet counts
but reduce coverage balance over time, while excessively high w; shorten LND by exhausting
selected nodes prematurely.

Synthesizing these findings, the best overall weight configuration emerges as a combination
where w; is high (0.5-0.7), w, is low to moderate (0.1-0.3 when the BS is inside, and 0.2-0.4 when
the BS is outside), and w; is moderate (0.2-0.3). This setup ensures efficient intra-cluster
communication, controlled CH-to-BS distance, and fair utilization of residual energy, resulting in
extended network lifetime, sustained packet delivery, and improved coverage fairness across both
deployment scenarios.

5.5. Comparison of Different Routing Protocols

To validate the effectiveness of the proposed PUMA-GRID protocol, its performance was
evaluated against several well-established clustering and routing schemes, including LEACH, AEO-
based variants, and different implementations of PUMA (single-hop, multi-hop, and grid-based). The
comparison considered a range of performance metrics that collectively capture both network
longevity and efficiency: the stability period expressed through the rounds of first, half, and last node
deaths; the total number of packets successfully delivered to the base station; the evolution of live
nodes over time; the residual energy trends; the overhead in terms of control packets exchanged; and
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the coverage fairness index, which reflects the spatial distribution of active nodes. Simulations were
conducted under two deployment scenarios, with the base station placed either inside or outside the
sensor field, to assess protocol behavior under varying communication constraints.

For the simulation parameters (Table 3), we extended the network to 200 x 200 m?, and
increased the initial energy of each node to 0.5 joules. In addition, parameters values are set for grid
size, w;, w,, and ws.

Table 3. Simulation parameters for comparing routing protocols.

Simulation Parameters Values/Ranges
Network Size 200 x 200 (m?)

BS Position (0, 0), (100, 100)
Number of Nodes 300

Node’s Initial Energy 0.5 (Joules)
Percentage of Clusterheads 5%

Packet Size 500 (Bytes)

Eolec 50 (nJoule/bit)

Efs 10 (pJoule/bit/m?)
Emp 0.0013 (pJ/bit/m*)
d, 10 (m)

Grid Size 40 (m)

w1 0.7

w, 0.2

W3 0.1

In Figure 8(a), where the base station is located inside the network, LEACH and MR-LEACH
show the weakest results. Both suffer from extremely early FND and a rapid progression to HND,
which indicates highly unbalanced energy consumption. Their LND values are also much shorter
than those achieved by optimization-based methods, confirming that their probabilistic cluster-head
selection does not provide adequate energy distribution, even under the relatively favorable
condition of a centrally placed BS.

The AEO-based protocols offer a noticeable improvement over LEACH and MR-LEACH,
extending the HND and LND considerably. Between the two, AEO-GRID performs slightly better,
benefiting from its structured multi-hop forwarding, which helps to alleviate the energy burden of
long transmissions. Nevertheless, both variants still experience relatively early FND compared with
PUMA-based methods, limiting their stability phase in the initial part of the network’s lifetime.
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Figure 8. Comparison of FND, HND, and LND across different routing protocols with BS inside (a) and outside
(b) the network.

PUMA-SH and PUMA-GRID achieve the best overall performance in the BS-inside scenario.
PUMA-SH delays FND significantly while maintaining a strong stability period, and PUMA-GRID
further extends LND, achieving the longest lifetime among all protocols. This outcome demonstrates
the benefit of combining PUMA's adaptive clustering with grid-based routing, which balances traffic
loads and prevents energy hotspots. As a result, PUMA-GRID delivers the most balanced and long-
lasting operation when the BS is positioned inside the sensor field.

In Figure 8(b), where the base station is located outside the monitored area, the performance
trends change noticeably. LEACH and MR-LEACH degrade further, with extremely short lifetimes
and minimal stability. Nodes in these protocols consume excessive energy when transmitting to the
distant BS, leading to very early network collapse.

Interestingly, under this more challenging deployment, the AEO-based protocols outperform all
others. AEO-SH and particularly AEO-GRID achieve the longest HND and LND, clearly showing
their strength in distributing energy fairly when longer communication distances are involved. The
fitness-driven clustering of AEO, combined with grid-based routing, enables the network to adapt
effectively to the harsher conditions, sustaining activity longer than both PUMA-based and classical
approaches.

The PUMA protocols still maintain competitive results, especially in terms of delaying FND, but
their lifetimes are shorter than those of the AEO-based methods in this scenario. PUMA-SH provides
moderate stability, while PUMA-GRID achieves a balanced performance but cannot match the
endurance of AEO-GRID. This indicates that while PUMA excels under central BS placement, AEO
is better suited for external BS deployments, where its clustering and routing strategies better handle
the additional communication overhead.

In Figure 9(a), where the base station is located inside the network, LEACH and MR LEACH
achieve the lowest packet delivery, reflecting their limitations in balancing energy and sustaining
communication. The probabilistic cluster head election of LEACH and the multi-hop variation of MR
LEACH result in nodes depleting their energy too early, which reduces the overall throughput. AEO-
SH and AEO-GRID perform better, with noticeable gains in packet delivery compared to LEACH,
but their performance remains moderate and unable to match the more advanced designs. In contrast,
the PUMA based approaches clearly dominate. Both PUMA-SH and PUMA-GRID deliver more than
twice the number of packets compared to AEO and LEACH, with PUMA-GRID producing the
highest values among all protocols. This emphasizes the advantage of combining PUMA’s adaptive
cluster head election with grid based multi-hop routing, which reduces energy consumption and
ensures more balanced utilization of resources.
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Figure 9. Comparison of the number of packets delivered to the base station across different routing protocols
with BS inside (a) and outside (b) the network.

In Figure 9(b), when the base station is placed outside the network, packet delivery declines
across all protocols because of the higher transmission energy required for long distance
communication. LEACH and MR-LEACH remain the weakest performers, again highlighting their
inability to adapt to challenging deployment conditions. AEO-SH and AEO-GRID manage to sustain
a moderate level of throughput, but their improvement is still limited. The PUMA based protocols
once again provide the best results, with PUMA-GRID achieving the highest number of packets
followed closely by PUMA-SH. This consistent superiority across both scenarios highlights the
robustness of the PUMA design, which successfully integrates residual energy awareness, node
proximity, and efficient data forwarding mechanisms to maintain reliable communication even under
more demanding conditions.

In Figure 10(a), which shows the results with the base station located inside the network, the
LEACH and MR-LEACH protocols exhibit very short lifetimes, with both the first and last nodes
dying much earlier than in other protocols. This outcome is consistent with their limited energy-
awareness and reliance on probabilistic cluster head selection. In contrast, the AEO protocols (both
single hop and grid-based) extend the network lifetime considerably, with the last node surviving
much longer than in LEACH and MR-LEACH. However, while AEO demonstrates strong stability
and balanced performance, the PUMA-based protocols, particularly PUMA-GRID, show the best
performance overall. PUMA-GRID maintains live nodes for the longest duration, indicating that the
combination of adaptive cluster head selection and grid-based routing significantly reduces energy
imbalance and delays node deaths. PUMA-SH also performs strongly, maintaining a higher number
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of live nodes than AEO protocols, though it falls slightly behind PUMA-GRID in sustaining the final
rounds of operation.
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Figure 10. Comparison of the number of live nodes across different routing protocols with BS inside (a) and

outside (b) the network.

In Figure 10(b), when the base station is positioned outside the network, the performance
differences between protocols become more pronounced. LEACH and MR-LEACH again show the
shortest lifetime, confirming their inability to cope with the higher communication burden imposed
by longer distances to the base station. AEO-SH and AEO-GRID perform considerably better,
demonstrating resilience in maintaining active nodes for a longer time compared to LEACH.
However, the PUMA protocols remain superior under this scenario. PUMA-SH shows the longest
stability period, maintaining the largest number of live nodes until the later rounds, while PUMA-
GRID also achieves a significantly extended lifetime compared to AEO. These results confirm that
PUMA'’s optimization-driven cluster head election, combined with efficient routing, ensures more
balanced energy consumption, making it the most effective approach for sustaining network
operations regardless of the base station placement.

In Figure 11(a), where the base station is located inside the network, the residual energy trends
highlight clear differences between the protocols. LEACH and MR-LEACH deplete their energy
rapidly, confirming their limited capacity to distribute communication loads evenly across the
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network. Both protocols reach near-zero energy in significantly fewer rounds, reflecting their
vulnerability to hotspot issues and lack of energy-aware clustering. In contrast, AEO-SH and AEO-
GRID extend energy sustainability further, with nodes maintaining moderate reserves across more
rounds. This outcome is consistent with their energy-oriented cluster formation, which postpones
full depletion. However, the best performance is observed in PUMA-based protocols, especially
PUMA-GRID and PUMA-SH, which conserve energy most effectively. The balanced incorporation
of residual energy, intra-cluster distance, and grid-based routing mechanisms enables slower
depletion, maintaining higher energy levels through later rounds. This indicates that PUMA'’s design
succeeds in spreading energy consumption evenly while preventing premature exhaustion of cluster
heads.
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Figure 11. Residual energy comparison across different routing protocols with BS inside (a) and outside (b) the

network.

When the base station is placed outside the network, as shown in Figure 11(b), the disparities
become more pronounced. LEACH and MR-LEACH remain the weakest performers, exhausting
energy reserves very early, which underscores their inability to handle the longer transmission
distances imposed by external base station placement. AEO-SH and AEO-GRID perform better,
especially AEO-GRID, which manages to conserve energy longer due to its grid-based structure.
Nonetheless, PUMA again demonstrates superior performance. PUMA-GRID shows the most stable
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and gradual decline in residual energy, with PUMA-SH following closely. These results reveal that
PUMA'’s adaptive strategies are resilient under harsher transmission conditions, ensuring that energy
dissipation is minimized and reserves last significantly longer than in competing protocols.

In Figure 12, the number of control packets highlights the overhead introduced by each routing
protocol. LEACH consistently shows the lowest control overhead in both scenarios, with BS inside
and outside the network, since it relies on simple probabilistic clustering without frequent energy-
aware adjustments or sophisticated routing mechanisms. MR-LEACH increases the overhead slightly
due to its multi-hop extension, which requires additional control messaging for route setup.
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Figure 12. Comparison of control packet overhead across different routing protocols with BS inside (a) and
outside (b) the network.

In contrast, the PUMA-based protocols generate a considerably higher number of control
packets compared to LEACH and MR-LEACH. This overhead stems from the energy-aware cluster
head selection and adaptive routing strategies that require additional coordination between nodes.
While this increases control packet exchange, it directly contributes to improved energy balance and
longer network lifetime, as observed in earlier figures. Between the two, PUMA-GRID typically
introduces slightly more overhead than PUMA-SH, owing to the additional routing logic used in
grid-based forwarding.

The AEO-based protocols exhibit the highest overhead across both scenarios. Their complex
optimization-driven clustering demands intensive control messaging to exchange node state
information and maintain optimal configurations. This ensures strong energy distribution but comes
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at the cost of higher overhead. Notably, AEO-GRID further increases the number of control packets
compared to AEO-SH, reflecting the added cost of maintaining grid-based routing paths.

In Figure 13(a), with the base station placed inside the network, PUMA-GRID consistently
outperforms AEO-GRID in maintaining higher coverage fairness over longer periods. At high CFI
thresholds such as eighty and sixty percent, PUMA-GRID achieves a larger number of rounds before
the fairness level drops, demonstrating its ability to sustain widespread spatial coverage across the
grid. As the fairness requirement becomes less strict, both protocols extend their network lifetimes,
yet PUMA-GRID maintains a steady advantage, confirming its strength in balancing energy
consumption while ensuring even node distribution.
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Figure 13. Network lifetime in terms of the last round sustaining different Coverage Fairness Index (CFI)
thresholds for PUMA-GRID and AEO-GRID, with BS inside (a) and outside (b) the network.

In Figure 13(b), where the base station is located outside the monitored area, the trend is
reversed. AEO-GRID shows better resilience in sustaining higher CFI levels for longer rounds
compared to PUMA-GRID. This is particularly evident at stricter thresholds such as eighty and sixty
percent, where AEO-GRID achieves later last-round values. At lower fairness thresholds, such as
twenty and ten percent, AEO-GRID still maintains its advantage, highlighting its efficiency in
scenarios where longer-distance transmissions dominate.

5.6. General Discussion
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The comparative analysis across Figures 8 to 13 highlights not only which protocols perform
better but also why these differences emerge, offering deeper insights into energy-aware routing for
wireless sensor networks. The results confirm that network lifetime extension depends strongly on
how effectively protocols balance energy among nodes. LEACH and MR-LEACH, with their
probabilistic or static cluster head assignments, suffer from severe imbalance: some nodes deplete
energy very early, leading to short stability periods. By contrast, optimization-based protocols such
as PUMA and AEO explicitly consider residual energy and distances in their objective functions,
which directly improves stability. PUMA-GRID achieves superior performance because it combines
the adaptive exploration-exploitation mechanism of the Puma Optimizer with grid-based multi-hop
routing. The optimizer dynamically refines cluster-head selection to avoid premature node depletion,
while the grid structure shortens transmission distances and balances inter-cluster loads. This
synergy minimizes redundant transmissions, preserves residual energy, and maintains spatial
coverage more effectively than LEACH, AEO-based, or earlier PUMA variants.

Throughput analysis provides further evidence of these differences. The number of packets
delivered to the base station reflects both stability and how well a protocol manages congestion and
redundancy. LEACH and MR-LEACH deliver very few packets because many nodes die early and
surviving nodes face high transmission costs. AEO protocols improve throughput but remain limited
by their sensitivity to initial cluster head assignments. PUMA protocols, especially PUMA-GRID,
achieve the highest throughput in both scenarios, confirming that adaptive exploration-exploitation
and efficient forwarding maximize sustained delivery. The improvement in PUMA-GRID is not only
quantitative but also qualitative: by maintaining diverse cluster head distributions and structured
forwarding paths, the network avoids congestion around central nodes, ensuring that throughput is
steady rather than collapsing rapidly after a short period.

The live node and residual energy trends provide complementary insights. LEACH and MR-
LEACH show sharp drops in both metrics, which reveals two main shortcomings: poor energy
balancing and lack of residual energy consideration. AEO protocols distribute energy more
effectively, reflected in smoother declines, but they still concentrate some load on selected cluster
heads, leading to earlier depletion than PUMA. PUMA’s balance between exploration and
exploitation ensures that cluster head roles rotate across different candidates, which distributes
energy use more evenly and prevents premature exhaustion of high-energy nodes. Grid-based
routing amplifies this effect by minimizing long direct transmissions, reducing the steep decline seen
in other methods. These findings also show that the metric of residual energy alone can be
misleading: although AEO maintains relatively high reserves at certain points, its coverage and
fairness degrade earlier, indicating that spatial distribution of energy is as important as total reserves.

The analysis of control packet overhead reveals another trade-off. LEACH achieves low
overhead but at the expense of stability and fairness, showing that minimal control traffic is not useful
when it results in early collapse. AEO incurs the highest overhead because of frequent information
exchange for clustering and routing optimization. PUMA strikes a middle ground, requiring more
control packets than LEACH but significantly fewer than AEO, while still achieving superior lifetime
and fairness. This demonstrates that optimal protocol design is not about minimizing overhead but
about maximizing utility per control packet. PUMA achieves this by linking its overhead directly to
measurable lifetime gains, while AEO sometimes introduces overhead that outweighs the benefits,
particularly when the base station is inside the field.

Coverage fairness adds another dimension to the evaluation. A network that survives longer but
collapses coverage in large regions may be unsuitable for applications such as environmental
monitoring or surveillance. The Coverage Fairness Index results show that PUMA-GRID sustains
higher fairness levels for longer when the base station is inside the network, reflecting its ability to
spread cluster heads evenly and avoid clustering bias. Conversely, when the base station is outside,
AEO-GRID maintains fairness for longer, indicating that its clustering strategy is more robust under
asymmetric energy demands. This suggests that protocol suitability depends on deployment context
and application requirements: for dense monitoring tasks where coverage uniformity is critical,
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PUMA is more effective with central base stations, whereas AEO is better suited for external
placements where energy burdens are unevenly distributed.

Taken together, the findings show that PUMA-GRID provides the most consistent improvement
across metrics when the base station is inside the network, combining high throughput, extended
stability, balanced energy consumption, and strong fairness. When the base station is outside, AEO-
GRID performs competitively and often surpasses PUMA in fairness and energy distribution,
although PUMA remains stronger in throughput. LEACH and MR-LEACH remain consistently weak
across all scenarios, underscoring the necessity of energy-aware and adaptive clustering strategies.
The results highlight that effective protocol design requires not only extending lifetime but also
balancing energy, maintaining fairness, and managing overhead, with the choice of protocol
ultimately depending on the deployment environment and application objectives.

5.7. Limitations

Although the proposed PUMA-GRID protocol achieves notable improvements in energy
efficiency, stability, and coverage fairness compared with existing approaches, several limitations
should be acknowledged.

First, the study was carried out in an idealized simulation environment where effects such as
interference, packet loss, retransmissions, and signal fading were not modeled in detail. The use of
the free space propagation model provided a simplified baseline for evaluating the optimization
behavior of the algorithm, but it does not capture the full complexity of real wireless environments.
Incorporating more realistic communication stacks and physical channel models will be an important
step in future experimental work.

Second, the grid-based routing structure was designed mainly to complement the PUMA
optimization mechanism rather than to serve as a new routing method. While the grid approach
effectively reduces long distance transmissions and balances the load among cluster heads, it does
not adapt dynamically to variations in node density, node failures, or irregular spatial distributions.
Empty grid cells or uneven deployments can cause routing inefficiencies or temporary
disconnections. However, the simplicity and scalability of the grid model make it appropriate for
evaluating the energy optimization capability of PUMA based clustering. Future studies will consider
adaptive grid resizing and density aware routing mechanisms to improve resilience in heterogeneous
network conditions.

Third, the proposed approach assumes that all nodes are static and identical in terms of initial
energy and communication capacity. This assumption may not hold in practice, where node
movement, hardware variation, or environmental factors can influence network performance.
Extending the protocol to support mobile and heterogeneous sensor nodes would enhance its
practical applicability.

Finally, the current configuration of weights in the fitness function is determined through
simulation rather than through an adaptive real time process. Although this study identified effective
weight combinations for different base station placements, a real time adaptation based on current
network conditions such as remaining energy, node distribution, or data traffic could further enhance
performance and reliability.

6. Conclusions

This paper presented PUMA-GRID, a new clustering and routing protocol for wireless sensor
networks that combines the Puma Optimization Algorithm with a grid-based A* inspired multi-hop
routing method. The proposed framework was designed to address two main challenges in WSNs:
extending network lifetime and ensuring balanced energy consumption among sensor nodes. By
using the adaptive exploration and exploitation balance of the Puma Optimizer, PUMA-GRID
achieved more effective cluster head selection compared to traditional and peer protocols. At the
same time, the grid-based routing strategy reduced long distance transmissions by selecting
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intermediate relays in an intelligent manner, which lowered communication overhead and limited
the hotspot problem.

Extensive simulations with the base station placed both inside and outside the monitored field
demonstrated the strength of PUMA-GRID across different performance metrics. The protocol
consistently delayed the rounds of first, half, and last node death, showing improved stability and
longer lifetime. It also increased packet delivery, maintained more live nodes, preserved residual
energy more efficiently, and reduced the number of control packets compared to LEACH and AEO
based protocols. In addition, the Coverage Fairness Index analysis showed that PUMA-GRID
ensured more uniform spatial coverage, which is essential for real world applications such as
environmental monitoring and disaster detection. The study of weight combinations confirmed that
the balance between intra cluster distance, distance to the base station, and residual energy must be
adapted to deployment conditions for the best outcome.

Although the results are promising, more work is required to bring the protocol closer to
practical use. Future directions include extending PUMA-GRID to mobile sensor networks where
mobility of nodes and the base station introduce further challenges in cluster stability and routing.
Another important step is to integrate adaptive methods, such as learning based models, that can
adjust fitness function weights automatically as the network changes. Further improvements may
also be achieved by cross layer optimization that considers routing, medium access scheduling, and
duty cycling together to reduce energy use.
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Abbreviations

The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AEO Atomic Energy Optimization

AEO-GRID AEO with Grid based Routing

AEO-SH AEO Single Hop

AEOWSNC Atomic Energy Optimization for Wireless Sensor Network Clustering
AVOACS African Vulture Optimization Algorithm based Clustering Scheme
BDA Binary Dragonfly Algorithm

BS Base Station

CFI Coverage Fairness Index

CH Cluster Head
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CMD Communication Mode Decider
DBSCAN Density-Based Spatial Clustering of Applications with Noise
EEM-LEACH-ABC  Energy Efficient Multi hop LEACH with Artificial Bee Colony
FND First Node Dead
GA Genetic Algorithm
GPS Global Positioning System
GWO Grey Wolf Optimizer
HND Half Node Dead
KPSOFL K-means + Particle Swarm Optimization + Fuzzy Logic
LEACH Low Energy Adaptive Clustering Hierarchy
LND Last Node Dead
NOMA Non-Orthogonal Multiple-Access
PO Puma Optimizer
PSO Particle Swarm Optimization
PUMA-GRID Puma Optimizer with Grid based Routing
PUMA-SH Puma Optimizer Single Hop
RSSI Received Signal Strength Indication
SHO-CH Spotted Hyena Optimizer for Cluster Head selection
TDMA Time Division Multiple Access
TDoA Time Difference of Arrival
ToA Time of Arrival
WSN Wireless Sensor Network
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