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Abstract 

Background: As cardiovascular medicine advances rapidly, the integration of artificial intelligence 
(AI) has garnered increasing attention. Despite its growing application across various domains, the 
role of AI in exercise-based interventions remains relatively underexplored, offering a novel and 
promising direction for future research. Objective: This scoping review aimed to identify and analyse 
original studies that have applied AI to exercise-based interventions designed to improve 
cardiovascular outcomes. Methods: Following the PRISMA-ScR guidelines, PubMed, Scopus, Web 
of Science, Embase, and IEEE Xplore were searched for articles published between January 2015 and 
August 2025. Eligible studies were peer-reviewed human research employing AI (machine learning 
or deep learning) to deliver, adapt, or monitor an exercise intervention with cardiovascular outcomes. 
Reviews, diagnostic-only studies, protocols without data, and animal studies were excluded. Data 
extraction focused on study design, AI method, exercise modality, outcomes, and findings. Results: 
From 2,183 records, 11 studies met the inclusion criteria. Designs included feasibility pilots, 
randomised controlled trials (RCTs), and validation studies. AI applications encompassed adaptive 
step goals, reinforcement learning for engagement, coaching apps, machine learning–based exercise 
prescription, and continuous monitoring (e.g., VO₂ estimation). These AI methods, such as machine 
learning and reinforcement learning, were used to personalize exercise interventions and improve 
cardiovascular outcomes. Reported outcomes included blood pressure reduction, improved 
adherence, increased daily steps, improvement in VO₂max, continuous physiological monitoring, 
and enhanced diagnostic accuracy. Conclusions: Although evidence remains limited, findings 
demonstrate AI’s potential to personal exercise interventions, enable continuous monitoring, and 
enhance adherence in cardiovascular care. These findings suggest that AI could be a valuable tool in 
the development of more effective and personalized exercise-based interventions. However, large-
scale RCTs, methodological standardization, and explainable AI approaches are urgently needed to 
ensure reliability, equity, and clinical translation. These future research directions are crucial for the 
successful integration of AI in cardiovascular care. 

Keywords: artificial intelligence; cardiovascular diseases; exercise; precision medicine; cardiac 
rehabilitation; digital health 
 

1. Introduction  

Cardiovascular disease (CVD) continues to represent the leading cause of mortality and 
morbidity worldwide, accounting for approximately 17.9 million deaths annually and placing 
immense strain on health systems [1]. Structured physical activity and supervised exercise programs 
are consistently recognised as cornerstones for both prevention and secondary rehabilitation [2]. 
Regular exercise has been shown to improve aerobic capacity, reduce major risk factors such as 
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hypertension, and decrease rehospitalisation rates. Nevertheless, implementation in real-world 
settings faces considerable challenges, including variability in individual response to training, 
restricted availability of personalised interventions, and difficulties in sustaining long-term 
adherence. 

Artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), has 
rapidly become a disruptive force in medicine [3–5,25]. Although initially applied in diagnostic 
imaging, risk stratification, and predictive analytics [4,5,15], AI is increasingly entering the 
therapeutic domain. Its capacity to analyse large, complex datasets and to generate adaptive, data-
driven recommendations makes it especially suited for exercise interventions, which require 
personalisation, continuous feedback, and scalability. 

Several domains highlight how artificial intelligence may transform the design and delivery of 
exercise-based cardiovascular interventions. One of the most evident contributions is the 
personalisation of training prescriptions. Instead of relying on standardised exercise protocols, 
machine learning algorithms are capable of incorporating information about an individual’s baseline 
fitness level, comorbidities, and physiological responses to previous sessions in order to generate 
more tailored programs [6,12]. Such personalisation is clinically important because it minimises the 
risks of undertraining or overexertion and ensures that each participant receives a regimen optimised 
for both safety and effectiveness. 

Another critical area is continuous monitoring. Wearable devices enhanced with AI now make 
it possible to track vital parameters such as heart rate, oxygen consumption, and movement patterns 
in real time [7,22]. The integration of these data streams into adaptive models allows exercise intensity 
to be dynamically adjusted as conditions change, bridging the gap between supervised clinical 
sessions and unsupervised activity in daily life. This capability not only supports patient safety but 
also provides clinicians with a more comprehensive understanding of patient progress outside the 
hospital or laboratory setting. 

Equally important is promoting adherence, a longstanding challenge in cardiovascular 
rehabilitation. Reinforcement learning algorithms and adaptive digital platforms have demonstrated 
the ability to deliver motivational prompts that evolve according to patient behaviour [9,21]. By 
tailoring feedback to the individual’s level of engagement, mood, or activity pattern, these systems 
maintain interest and encourage consistent participation over time. This approach addresses one of 
the most persistent limitations of traditional rehabilitation programs, which often have high dropout 
rates after the initial months. 

Finally, the scalability of AI-enabled interventions holds significant promise. Because these 
systems can automate elements of coaching, monitoring, and data analysis, they have the potential 
to extend effective rehabilitation services to much larger populations than would otherwise be 
feasible with clinician-led models alone. This is particularly relevant for resource-limited contexts, 
where specialist centres and trained staff are scarce [11,17]. By lowering the barriers to access and 
enabling remote supervision, AI can contribute to more equitable delivery of cardiovascular 
prevention and rehabilitation worldwide. 

The first feasibility studies demonstrated how ML-based approaches could individualise 
training loads in cardiac rehabilitation [6] and how early wearable technologies could support real-
time monitoring of physical activity [7]. Zhou et al. [8] later confirmed, in one of the earliest 
randomised controlled trials (RCTs), that adaptive step goals generated through machine learning 
outperformed fixed prescriptions in improving daily activity levels. Similarly, Aguilera et al. [9] 
showed that reinforcement learning could personalise text-message interventions, enhancing 
adherence in patients with comorbid conditions. 

In subsequent years, the applications diversified further. Leitner et al. [21] developed a fully 
digital AI health coach capable of autonomously guiding lifestyle modifications and reducing blood 
pressure. Hsiao et al. [22] validated machine learning–driven VO₂ estimation from wearable sensors, 
supporting safe and effective home-based training. Xiao et al. [12] demonstrated the utility of neural 
networks for exercise prescriptions in older adults, achieving improvements in VO₂max. Beyond 
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direct interventions, Liang et al. [10] improved diagnostic accuracy in exercise testing with deep 
learning, Puce et al. [13] reviewed generative AI for training design, and Meder et al. [11] highlighted 
population-level prevention strategies enabled by AI. 

Despite this progress, the literature remains sparse and fragmented, with only eleven eligible 
studies identified, including just two RCTs [8,9]. Most investigations were exploratory, of a small 
scale, and conducted in technologically advanced settings. Ethical and regulatory concerns, including 
algorithmic transparency [3,23], patient data security, and equitable access [11], further complicate 
the clinical implementation. 

Therefore, the purpose of this review is to: (1) map the available studies that have applied AI in 
exercise-based cardiovascular interventions between 2015 and 2025; (2) examine their methodological 
approaches, study populations, and outcomes; and (3) identify achievements, limitations, and future 
priorities. Through this synthesis, the review aims to provide a clearer understanding of the potential 
for AI to enhance exercise-based cardiovascular care and outline the steps required for its safe and 
equitable translation into clinical practice [25,26]. 

2. Methods  

2.1. Study Protocol 

This scoping review was designed and conducted in accordance with the PRISMA-ScR 
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping 
Reviews) guidelines [14]. The use of PRISMA-ScR provided a transparent and systematic structure, 
ensuring that all stages of the review—from literature search and study selection to data extraction 
and synthesis—were conducted in a reproducible and methodologically rigorous manner. By 
adhering to these guidelines, the review process aimed to minimise potential biases and to provide a 
comprehensive overview of the existing literature on the integration of artificial intelligence in 
exercise-based cardiovascular interventions. 

The population further guided the review framework–concept–context (PCC) model. This 
model was chosen because of its suitability for scoping reviews, as it allows broad research questions 
to be addressed while still applying consistent eligibility parameters. The population component 
focused on human participants engaged in exercise-based interventions relevant to cardiovascular 
health. The concept was defined as the application of artificial intelligence, specifically machine 
learning and deep learning techniques, used to deliver, adapt, or monitor exercise interventions. The 
context referred to any healthcare or community-based setting in which these interventions were 
applied, including clinical rehabilitation programs, preventive health initiatives, and remote or 
home-based exercise delivery models. 

Defining the review protocol in this structured way offered two primary advantages. First, it 
provided clarity and consistency in applying inclusion and exclusion criteria, ensuring that only 
relevant studies were considered. Second, it facilitated comparability across diverse study designs by 
mapping all eligible research onto the PCC framework. By doing so, the review not only captured 
early feasibility studies and pilot trials but also encompassed larger randomised controlled trials and 
validation studies, offering a broad yet coherent overview of the field. 

2.2. Eligibility Criteria 

To ensure that the review captured only relevant and high-quality studies, specific inclusion and 
exclusion criteria were applied. Eligible studies were restricted to peer-reviewed, original human 
research that applied artificial intelligence methods—specifically machine learning or deep 
learning—to the design, delivery, adaptation, or monitoring of exercise interventions with 
measurable cardiovascular outcomes. Such outcomes included, but were not limited to, blood 
pressure, heart rate, oxygen consumption (VO₂), VO₂max, exercise adherence, and diagnostic 
accuracy in exercise-related contexts. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2025 doi:10.20944/preprints202509.2345.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2345.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 14 

 

Studies were excluded if they involved only animal models or laboratory-based simulations 
without human data, as these do not directly translate into clinical or rehabilitation settings. Similarly, 
investigations that employed AI solely for diagnostic purposes without incorporating an exercise 
intervention were not considered. Non–original works, such as reviews, editorials, commentaries, or 
study protocols lacking empirical data, were also excluded. These criteria ensured that the review 
remained focused on original, human-based research that demonstrated practical applications of AI 
within exercise-based cardiovascular health. 

2.3. Information Sources and Search Strategy 

A systematic search strategy was developed to identify all relevant studies published between 
January 2015 and August 2025. Five major electronic databases were selected: PubMed, Scopus, Web 
of Science, Embase, and IEEE Xplore. These databases were chosen for their comprehensive coverage 
of biomedical, health sciences, and engineering literature, ensuring a multidisciplinary approach to 
the topic. 

The search combined both free-text terms and controlled vocabulary, including Medical Subject 
Headings (MeSH) and equivalent indexing terms. Keywords such as “artificial intelligence,” 
“machine learning,” “deep learning,” “exercise,” “physical activity,” and “cardiovascular health” 
were systematically combined using Boolean operators. Filters were applied to restrict results to 
human studies and peer-reviewed publications. No language restrictions were applied, although all 
retrieved studies that met the eligibility criteria were published in English. The search strategy was 
designed to be broad enough to capture a wide range of applications while still targeting the specific 
intersection of AI, exercise, and cardiovascular health. 

2.4. Study Selection 

The study selection process followed a two-stage screening approach. First, titles and abstracts 
of all retrieved records were independently reviewed by two researchers. Studies that clearly did not 
meet the eligibility criteria were excluded at this stage. In the second stage, the full texts of potentially 
relevant articles were retrieved and assessed in detail against the inclusion and exclusion criteria. 

Any disagreements between the reviewers regarding eligibility were resolved through 
discussion until consensus was reached. When necessary, a third reviewer was consulted to 
adjudicate. Duplicate publications were identified and removed before the screening process began. 
This rigorous and transparent approach ensured that only studies meeting the predetermined criteria 
were included in the final synthesis. 

2.5. Data Extraction 

Data were systematically extracted from each included study using a structured charting form. 
Extracted variables included the name of the first author, year of publication, country where the study 
was conducted, and the design of the study (e.g., randomised controlled trial, pilot study, feasibility 
study, validation trial). Information on population characteristics—such as sample size, age range, 
sex distribution, and relevant comorbidities—was also recorded. 

Additionally, the type of AI methodology applied was identified, distinguishing between 
machine learning, deep learning, reinforcement learning, and generative models. The exercise 
modality was documented, including details of the intervention type, duration, frequency, and 
intensity. Cardiovascular outcomes were noted according to what was reported in the primary study, 
whether physiological (blood pressure, VO₂, VO₂max), behavioural (adherence, daily step counts), or 
diagnostic (accuracy in detecting coronary artery disease). Key findings were summarised to 
highlight the primary contributions of each investigation. This systematic extraction process ensured 
consistency and facilitated meaningful synthesis across studies with otherwise heterogeneous 
designs. 
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2.6. Data Synthesis 

Given the methodological diversity of the included studies, data were synthesised descriptively 
rather than quantitatively. Randomised controlled trials were reported in detail with respect to 
intervention design, comparators, and measured outcomes. At the same time, pilot and feasibility 
studies were discussed narratively, with a focus on feasibility, acceptability, and proof-of-concept 
findings. 

No meta-analysis was conducted, as the heterogeneity in study design, population, AI 
methodology, and outcome measures precluded statistical pooling. Instead, results were grouped 
thematically according to the primary application of AI—such as adaptive goal setting, digital 
coaching, wearable-based monitoring, exercise prescription engines, diagnostic augmentation, or 
population-level approaches. This thematic synthesis provided a structured overview of how AI has 
been integrated into exercise-based cardiovascular health interventions, highlighting both early 
achievements and areas requiring further research. 

2.7. Statistics 

Given the exploratory nature of this scoping review and the methodological heterogeneity of the 
included studies, no meta-analysis was performed. Instead, data were summarised descriptively. 
Study characteristics, including design, population, intervention type, and AI methodology, were 
tabulated to facilitate a structured comparison across studies. Cardiovascular outcomes—including 
blood pressure, exercise adherence, VO₂, VO₂max, and diagnostic accuracy—were reported 
narratively, with direct values cited from randomised controlled trials where available. 

For pilot and feasibility studies, findings were presented qualitatively, focusing on feasibility, 
acceptability, and proof-of-concept results. Continuous outcomes, such as blood pressure changes or 
step count increases, were described in terms of mean differences and effect sizes when reported by 
the primary studies. Diagnostic performance metrics (e.g., area under the curve [AUC]) were 
presented as provided by the original authors. This descriptive statistical approach is consistent with 
PRISMA-ScR guidelines [14] and was deemed most appropriate given the limited number of studies, 
their small sample sizes, and variability in intervention designs. 

3. Results  

3.1. Study Selection 

The initial database search identified a total of 2,183 records published between January 2015 
and August 2025. Following the removal of duplicate entries, 2,000 unique records were retained for 
the screening process. Title and abstract screening served as the first stage of evaluation. During this 
step, the majority of articles were excluded because they clearly did not meet the predefined 
eligibility criteria. Common reasons for exclusion included studies that addressed artificial 
intelligence in purely diagnostic applications without incorporating exercise interventions, 
investigations limited to animal models, and papers that were not original research articles, such as 
reviews, commentaries, or theoretical discussions. 

After this preliminary screening, 40 articles were considered sufficiently relevant to warrant full-
text review. At this stage, each study was carefully examined against the inclusion and exclusion 
criteria outlined in the methods section. Particular attention was paid to whether AI methods were 
directly applied to exercise-based interventions and whether cardiovascular outcomes were reported. 
Studies that incorporated digital health tools but did not include an AI component, or that reported 
only usability data without physiological or behavioural endpoints, were excluded. Similarly, 
protocols that proposed but had not yet implemented AI-driven interventions were not included, as 
the focus of this review was on empirical evidence rather than planned or conceptual projects. 

Of the 40 articles reviewed in full, 29 were excluded for reasons such as lack of cardiovascular 
outcome reporting, reliance on non-AI digital technologies, absence of exercise-based components, 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2025 doi:10.20944/preprints202509.2345.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2345.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 14 

 

or insufficient methodological detail to assess the role of AI. Ultimately, 11 studies fulfilled all 
inclusion criteria and were selected for detailed synthesis in this review. These included two 
randomised controlled trials, several feasibility and pilot studies, and more recent validation or 
single-arm interventional trials. 

The overall process of identification, screening, eligibility assessment, and inclusion followed 
the PRISMA-ScR framework [14]. The flow of study selection is summarised in Figure 1, which 
visually depicts the number of records identified, screened, reviewed in full, excluded, and finally 
included in the analysis. This structured approach ensured transparency and reproducibility in the 
selection of studies, while also providing a clear rationale for excluding records that did not meet the 
eligibility thresholds. 

 

Figure 1. Flowchart of the Study. 

3.2. Characteristics of Included Studies 

The eleven studies included in this review displayed substantial diversity in terms of design, 
sample size, and clinical context, reflecting the early but rapidly developing nature of this research 
field. Several of the earliest contributions took the form of feasibility or pilot studies [6,7,15]. These 
investigations were typically conducted with relatively small participant groups and short follow-up 
periods, focusing primarily on establishing the technical feasibility of integrating AI methods into 
exercise-based cardiovascular interventions. Although limited in scope, they provided important 
groundwork for later, more rigorous studies by demonstrating that AI-enabled tools could be 
effectively applied in real-world contexts. 

Randomised controlled trials (RCTs) represented a smaller but highly influential portion of the 
evidence base. Two studies, those of Zhou et al. [8] and Aguilera et al. [9], utilised adaptive AI 
systems in behavioural interventions aimed at promoting physical activity. These trials enrolled 
larger and more diverse populations compared with pilot studies, and both demonstrated clear 
improvements in adherence and activity outcomes relative to traditional static prescriptions. The 
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inclusion of RCTs within this body of literature is significant, as they offer the most substantial 
evidence to date that AI can enhance exercise interventions not only in terms of feasibility but also in 
clinical efficacy. 

More recent contributions have expanded into validation and single-arm interventional designs 
[12,21,22]. These studies tended to enrol moderately sized populations and evaluated more 
sophisticated AI applications, such as autonomous digital coaches, neural network–driven exercise 
prescriptions, and advanced wearable monitoring systems. For example, Leitner et al. [21] focused on 
individuals with hypertension and tested an AI-powered digital health coach, while Hsiao et al. [22] 
validated a wearable device capable of real-time VO₂ estimation. Xiao et al. [12] examined older adults 
and applied neural networks to generate individualised prescriptions. These studies reflect a trend 
toward testing AI applications in more clinically meaningful scenarios, where physiological outcomes, 
such as blood pressure reduction or improvements in aerobic capacity, are systematically measured. 

The populations included across the 11 studies were also heterogeneous. Some trials recruited 
patients actively participating in cardiac rehabilitation programs, while others targeted individuals 
with chronic conditions such as diabetes, hypertension, or depression. Additional studies focused on 
older adults at risk of cardiovascular decline, thereby expanding the potential reach of AI-enabled 
interventions beyond secondary prevention to include primary prevention and geriatric populations. 
The variety of participant groups underscores the versatility of AI applications but also highlights 
challenges in comparability, as different baseline risks and clinical goals complicate synthesis across 
studies. 

Finally, geographical distribution was skewed toward technologically advanced healthcare 
settings, particularly in North America, Europe, and East Asia. This reflects both the concentration of 
AI research infrastructure in these regions and the reliance of most interventions on digital devices 
such as smartphones, wearable sensors, and internet connectivity. While these contexts provide ideal 
testbeds for innovation, they also raise questions about the applicability of findings to resource-
limited environments, where infrastructure and access remain significant barriers [11,17]. 

In summary, the characteristics of the included studies reveal a research field still in its formative 
stages but marked by innovation and diversity. Designs ranged from small-scale feasibility pilots to 
RCTs and validation studies, populations spanned both clinical and community settings, and 
interventions addressed a spectrum of outcomes from adherence to physiological performance and 
diagnostic accuracy. This heterogeneity underscores both the promise and the challenges of 
synthesising the evidence base for AI in exercise-based cardiovascular care. 

3.3. AI Applications in Exercise-Based Interventions 

The studies included in this review applied artificial intelligence in diverse ways, reflecting both 
the breadth of available technologies and the evolving priorities in cardiovascular rehabilitation. One 
prominent application was adaptive goal setting. Zhou et al. [8] tested a machine learning–based system 
that dynamically generated daily step goals according to the participant’s recent activity levels, 
ensuring that targets remained challenging but achievable. In a similar vein, Aguilera et al. [9] 
implemented reinforcement learning to personalise motivational text messages, adjusting both content 
and frequency based on user engagement patterns. Together, these studies highlight how AI can replace 
static prescriptions with adaptive interventions that are more responsive to individual behaviours. 

Digital coaching represented another primary domain of application. Leitner et al. [21] deployed 
an autonomous AI health coach designed to deliver lifestyle recommendations tailored to blood 
pressure readings and activity data. This digital intervention not only reduced blood pressure but 
also demonstrated that AI could maintain high levels of engagement without continuous clinician 
input, pointing to its scalability and clinical potential. 

Wearable-based monitoring was also widely explored. Piwek et al. [7] investigated early 
consumer-grade wearable devices, recognising both their promise for tracking daily activity and the 
challenges related to sustained user adherence and data accuracy. More advanced approaches were 
developed by Hsiao et al. [22], who validated an AI-driven multispectral photoplethysmography 
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system capable of continuously estimating VO₂ in real time. This innovation provided a reliable tool 
for adjusting exercise intensity during unsupervised rehabilitation, bridging the gap between clinical 
assessments and at-home exercise. 

Additionally, some studies focused on exercise prescription engines. Kwon et al. [6] developed 
a machine learning–based platform capable of tailoring exercise recommendations to individual 
physiological responses. Xiao et al. [12] extended this work by applying a back-propagation neural 
network to generate personalised exercise prescriptions for older adults, ultimately demonstrating 
improvements in aerobic performance. These contributions illustrate the potential of AI to refine and 
optimise the core component of rehabilitation: the exercise prescription itself. 

AI has also been applied to augment diagnostic capacity. Liang et al. [10] used deep learning 
models to analyse exercise stress test data, achieving improved accuracy in the detection of significant 
coronary artery disease. This application not only enhances diagnostic precision but also strengthens 
the link between exercise testing and rehabilitation planning, suggesting a broader integration of AI 
into the cardiovascular care continuum. 

Finally, two studies broadened the scope beyond individual-level interventions. Puce et al. [13] 
investigated generative AI as a tool for automated exercise program design, offering insights into 
how algorithms might assist clinicians in developing structured training regimens. Meder et al. [11], 
on the other hand, approached AI from a population health perspective, underscoring its potential 
role in preventive strategies, risk stratification, and the scaling of rehabilitation programs across 
healthcare systems. Collectively, these studies illustrate the wide-ranging applications of AI, 
spanning personalised goal setting, monitoring, prescription, diagnostic enhancement, and even 
systemic approaches to public health. 

3.4. Reported Outcomes 

The reported outcomes across the included studies were equally diverse, reflecting the multiple 
dimensions in which AI may contribute to cardiovascular rehabilitation. Improvements in physical 
activity and adherence were among the most consistently reported findings. Zhou et al. [8] 
demonstrated that machine learning–generated step goals significantly increased daily step counts 
compared with static prescriptions, while Aguilera et al. [9] showed that reinforcement learning–
driven text messaging improved adherence and sustained activity in individuals with diabetes and 
depression. These findings suggest that AI-based personalisation can help overcome one of the most 
persistent barriers in lifestyle interventions: maintaining long-term engagement. 

Positive cardiovascular outcomes were also observed. Leitner et al. [21] reported clinically 
meaningful reductions in both systolic and diastolic blood pressure among participants using an 
autonomous AI health coach. This highlights the potential of AI not only to encourage behaviour 
change but also to directly improve clinical risk factors associated with cardiovascular morbidity and 
mortality. Similarly, Xiao et al. [12] documented significant gains in VO₂max and overall exercise 
capacity in older adults following neural network–driven individualised prescriptions, 
demonstrating that AI can enhance cardiorespiratory fitness in populations where functional decline 
is a pressing concern. 

Continuous monitoring outcomes were validated by Hsiao et al. [22], who showed that AI-based 
photoplethysmography could reliably estimate VO₂ during unsupervised rehabilitation. This 
capability enables the real-time adjustment of exercise intensity, thereby enhancing patient safety 
outside clinical environments. Kwon et al. [6] further confirmed that machine learning–guided 
prescriptions could improve HR/VO₂ matching, increasing both the precision and adherence of 
prescribed training sessions. 

In the diagnostic sphere, Liang et al. [10] reported that their deep learning model achieved an 
area under the curve (AUC) of 0.83 for the detection of significant coronary artery disease during 
exercise stress testing. This finding demonstrates how AI can bridge diagnostic and rehabilitative 
applications, supporting better patient stratification and intervention planning. 
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Beyond direct clinical outcomes, conceptual contributions were also noteworthy. Puce et al. [13] 
highlighted the role of generative AI in designing exercise programs, framing it as a supportive tool 
for clinicians rather than a replacement for expertise. Meder et al. [11] emphasised the potential for 
AI to scale preventive cardiovascular strategies at a population level, underscoring its relevance not 
only in individual rehabilitation but also in broader public health initiatives. 

Taken together, these outcomes reflect AI’s capacity to generate improvements across multiple 
domains, including behavioral adherence, physiological fitness, cardiovascular risk factors, 
diagnostic accuracy, and healthcare system scalability. While preliminary, these findings collectively 
demonstrate AI’s promise as a transformative tool in cardiovascular rehabilitation. 

4. Discussion 

This scoping review reveals that, although the field is still developing, artificial intelligence (AI) 
has already demonstrated multiple pathways through which it can enhance exercise-based 
cardiovascular interventions. The most prominent contributions include personalising exercise 
prescriptions, adaptive goal setting, real-time monitoring via wearables, and utilising digital 
engagement strategies to enhance adherence. Collectively, these advances represent an early but 
tangible shift from standardised rehabilitation protocols toward more dynamic and individualised care. 

4.1. Interpretation of Findings  

The earliest exploratory studies in this area, notably those by Kwon et al. [6] and Piwek et al. [7], 
provided the first indications that AI techniques could be meaningfully integrated into exercise-based 
cardiovascular care. Kwon and colleagues demonstrated how machine learning algorithms, when 
paired with wearable sensors, could generate exercise prescriptions that adapted to the individual’s 
physiological responses rather than relying on generic recommendations. Although limited in scale and 
duration, this pilot study was instrumental in showing that exercise guidance could be personalised in 
a data-driven manner, moving beyond traditional standardised protocols. In parallel, Piwek and 
collaborators examined the emerging role of consumer-grade wearable technologies. They highlighted 
both the promise and limitations of such devices: on one hand, the ability to continuously capture 
physical activity data in free-living environments; on the other, the challenges of data quality, user 
adherence, and integration into structured clinical programs. These early works, while not definitive, 
served as proof-of-concept studies that opened the door for subsequent, more rigorous trials. 

The first stronger evidence base was established in 2018. Zhou et al. [8] conducted one of the 
earliest randomised controlled trials in this field and demonstrated that adaptive step goals, 
generated using machine learning, could substantially increase daily physical activity compared with 
fixed, non-individualised prescriptions. This was a pivotal finding because it showed that the use of 
adaptive algorithms could dynamically adjust targets in response to real-time performance, thereby 
maintaining motivation and engagement more effectively than static approaches. Around the same 
time, Aguilera et al. [9] tested a reinforcement learning–based system that delivered personalised text 
messages to individuals with diabetes and depression. Their trial revealed not only improved 
adherence but also higher daily step counts, emphasising the capacity of AI to sustain behavioural 
change in populations with complex comorbidities, who often present challenges for standard 
rehabilitation programs. Taken together, these two RCTs represented a turning point, as they 
provided the first controlled evidence that AI-enhanced personalisation could outperform 
conventional, one-size-fits-all interventions in promoting sustained physical activity. 

Subsequent research advanced from feasibility toward clinical relevance. Leitner et al. [21] 
implemented an autonomous AI health coach capable of delivering personalised lifestyle 
recommendations and demonstrated significant reductions in blood pressure among adults with 
hypertension. This study was notable not only for its outcomes but also for its scalability, suggesting 
that AI-driven interventions could provide practical guidance with minimal clinician involvement—
a crucial factor in healthcare systems facing workforce shortages. Meanwhile, Hsiao et al. [22] 
validated a wearable device enhanced with AI algorithms to estimate oxygen consumption 
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continuously using multispectral photoplethysmography. This innovation bridged a longstanding 
gap between laboratory-based cardiopulmonary testing and home-based rehabilitation, 
demonstrating that exercise intensity can be monitored and adjusted in real-time outside of 
supervised clinical environments. Xiao et al. [12] extended the application of AI into geriatric care, 
applying a neural network model to design individualised exercise prescriptions for older adults, 
which resulted in measurable improvements in aerobic capacity and cardiorespiratory fitness. 
Together, these studies highlight a transition from exploratory work to clinically meaningful 
applications, demonstrating that AI-based tools can serve both preventive and rehabilitative 
purposes across diverse patient populations. 

Other contributions expanded the scope beyond direct exercise prescription or monitoring. Liang 
et al. [10] applied deep learning methods to exercise stress testing, achieving improved accuracy in 
detecting significant coronary artery disease. This line of work demonstrates how AI can serve not only 
as a rehabilitation tool but also as a diagnostic adjunct, thereby strengthening the continuum between 
disease detection, risk stratification, and therapeutic intervention. Puce et al. [13] explored the potential 
of generative AI for program design, identifying opportunities to automate the creation of tailored 
exercise regimens, while also cautioning about the limitations of current models in capturing the nuance 
required for clinical application. Meder et al. [11], in contrast, emphasised a macro-level perspective, 
examining how AI could contribute to population health through enhanced risk prediction, prevention 
strategies, and resource allocation. Taken together, these contributions illustrate that AI is not confined 
to the micro-level of individual patient management but may also serve as a systemic innovation 
capable of reshaping broader healthcare practices. 

4.2. Clinical Implications  

The findings of this review carry several important implications for clinical practice, particularly 
in the context of cardiac rehabilitation and preventive cardiology. AI-enabled tools have the capacity 
to optimise exercise prescriptions by matching training intensity and duration to individual 
physiological characteristics, thereby improving both safety and effectiveness. For example, machine 
learning–driven algorithms can analyse variables such as heart rate responses, baseline VO₂, or 
comorbid conditions to tailor exercise prescriptions in ways that conventional protocols cannot [6,12]. 
Such personalisation reduces the likelihood of undertraining or overexertion and allows programs to 
be fine-tuned to maximise clinical benefit. 

Another central clinical implication is the ability of AI to enhance adherence, which is often the 
Achilles’ heel of long-term rehabilitation programs. By embedding reinforcement learning principles 
into digital coaching systems, AI can adjust motivational strategies in real-time, delivering tailored 
prompts that respond to patient progress and behavioural patterns [9,21]. Unlike static programs, 
these adaptive systems evolve in tandem with the patient, maintaining engagement over extended 
periods. This adaptability is particularly valuable given that most lifestyle interventions suffer from 
declining adherence after the first few months, undermining their long-term effectiveness. 

The potential of hybrid care models deserves special emphasis. Rather than replacing clinicians, 
AI tools can function as supportive companions that automate repetitive tasks and extend clinical 
oversight into everyday life. For instance, digital health coaches can manage routine motivational 
messaging and feedback, while clinicians remain responsible for complex decision-making and 
treatment adjustments. Simultaneously, continuous AI-based monitoring can detect abnormal 
physiological responses—such as unexpected changes in heart rate variability or exercise tolerance—
and trigger early warnings, thereby enabling timely clinical intervention. This dual role, combining 
automation with augmentation, is particularly valuable in the face of persistent shortages of 
healthcare personnel in rehabilitation programs worldwide. 

In addition, AI may help overcome geographical and logistical barriers by extending cardiac 
rehabilitation into home and community settings. Wearable devices integrated with AI algorithms 
enable the remote monitoring of exercise intensity and safety parameters, reducing the need for 
frequent in-person visits [22]. This shift could be transformative in rural or resource-limited regions, 
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where access to specialised rehabilitation centres is restricted. By reducing dependence on hospital-
based programs, AI systems have the potential to democratise access to rehabilitation services, 
making them available to broader and more diverse populations [11,17]. 

Another layer of clinical impact lies in the integration of AI-enabled rehabilitation with broader 
digital health infrastructures. Exercise data collected from wearables and mobile platforms can be 
incorporated into electronic health records, creating more comprehensive patient profiles. This 
integration not only improves continuity of care but also fosters interdisciplinary collaboration 
among cardiologists, physiotherapists, primary care physicians, and data scientists. When combined 
with telemedicine platforms, AI-driven exercise monitoring could enable clinicians to remotely 
supervise patients, adjust prescriptions in real-time, and maintain a continuous loop of feedback 
between patients and healthcare providers. 

Ultimately, the clinical implications extend to the efficiency of the health system. By automating 
routine monitoring and patient engagement tasks, AI can reduce the burden on healthcare 
professionals and potentially lower the costs of rehabilitation programs. At the same time, the 
continuous data streams generated by AI tools provide opportunities for predictive analytics, 
allowing clinicians to identify patients at risk of non-adherence, poor outcomes, or adverse events 
before these occur. In this sense, AI not only personalises care at the individual level but also 
strengthens preventive strategies at the population level. 

4.3. Ethical, Regulatory, and Practical Challenges 

The promising results must be tempered by recognition of key challenges. Algorithmic opacity 
remains a pressing issue: many AI models function as black boxes with limited interpretability [3,23]. 
This reduces clinician trust and complicates the regulatory approval process. To facilitate clinical 
adoption, explainable AI (XAI) frameworks will be necessary, allowing healthcare professionals to 
comprehend how recommendations are generated and to validate them against established medical 
principles. 

Access and equity represent another barrier. Interventions often depend on smartphones, 
wearable devices, and internet access, which are not universally available [11]. Patients from low-
resource regions, older adults with limited digital literacy, and those with socioeconomic barriers may 
be disproportionately excluded. Addressing this challenge requires designing interventions that are not 
only technologically sophisticated but also user-friendly, affordable, and adaptable to diverse contexts. 

Privacy and data security are additional concerns. Continuous monitoring generates sensitive 
health data that necessitates robust protections to maintain patient trust and comply with ethical 
standards. The use of AI in exercise rehabilitation thus intersects with broader debates about data 
ownership, consent, and the use of secondary data. Transparent governance frameworks and secure 
infrastructures will be essential. 

Finally, integration into healthcare systems is not straightforward. Clinicians require training to 
interpret AI-generated insights effectively, and healthcare systems must adapt their workflows and 
reimbursement models to support implementation [25]. Without adjustments to organisational 
structures and reimbursement mechanisms, even the most effective AI systems may fail to achieve 
real-world uptake. 

4.4. Research Gaps and Future Directions 

The current body of evidence on AI-enabled exercise interventions for cardiovascular health is 
still relatively modest, fragmented, and characterised by considerable methodological heterogeneity. 
One of the most pressing priorities for the field is the design and implementation of large-scale, 
multicenter randomised controlled trials (RCTs) involving diverse patient populations [8,9]. To date, 
only two RCTs have been conducted, both with encouraging results, but small sample sizes and 
population specificity limit the generalizability of their findings. Broader trials are necessary to 
validate efficacy across different demographic groups, clinical conditions, and healthcare contexts. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 September 2025 doi:10.20944/preprints202509.2345.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2345.v1
http://creativecommons.org/licenses/by/4.0/


 12 of 14 

 

Another critical research direction is the establishment of standardised frameworks for 
validation, reporting, and evaluation [14,20]. At present, studies employ highly variable AI 
algorithms, exercise modalities, and outcome measures, which makes direct comparison difficult and 
undermines the ability to synthesise evidence quantitatively. Developing consensus-based 
methodological standards would not only improve comparability but also accelerate regulatory 
approval and clinical translation. 

Equally important is the need to ensure that AI models are transparent and explainable [3,23]. 
The current reliance on “black-box” deep learning approaches has generated scepticism among 
clinicians, who are hesitant to adopt systems they cannot fully interpret. Investment in explainable 
AI (XAI) research is therefore essential, as it can help align algorithmic outputs with medical 
reasoning, facilitate clinician acceptance, and strengthen patient trust. 

Integration of AI into real-world healthcare delivery remains another unresolved challenge. 
Future studies must examine not only technical performance but also cost-effectiveness, workflow 
compatibility, and the impact on clinician workload [11,25]. Without clear evidence that AI tools 
improve efficiency and reduce costs, healthcare systems may be reluctant to adopt them, regardless 
of their potential benefits. 

Equity of access also warrants attention. Most existing studies have been conducted in 
technologically advanced settings, where participants have ready access to smartphones, wearable 
devices, and stable internet connections. To ensure that AI-driven rehabilitation does not exacerbate 
existing health disparities, research should deliberately include underrepresented populations and 
be tested in low-resource environments [11]. This may involve designing low-cost, simplified 
platforms or integrating AI solutions into community-based care models that can function even with 
limited infrastructure. 

Finally, progress will require interdisciplinary collaboration that extends beyond the traditional 
boundaries of cardiology and exercise science. Effective implementation of AI requires cooperation 
among clinicians, data scientists, biomedical engineers, behavioural scientists, and policymakers 
[25,26]. Such collaboration can help ensure that technological innovations are clinically relevant, 
ethically sound, and scalable across different health systems. 

Beyond these immediate priorities, it will also be essential to evaluate long-term outcomes of 
AI-enabled interventions. Future studies should determine whether initial improvements in 
adherence, blood pressure, or VO₂max translate into sustained reductions in morbidity, mortality, 
and healthcare utilisation. Moreover, opportunities exist to explore synergies between AI and other 
emerging technologies—including virtual reality, gamification strategies, and digital twins—which 
could further enhance personalisation, engagement, and predictive accuracy. 

If these goals are met, AI has the potential to evolve from exploratory feasibility tools into 
established, evidence-based components of cardiovascular rehabilitation. Such progress would not 
only support the shift toward precision exercise medicine but also contribute to population-level 
strategies for reducing the global burden of cardiovascular disease. Ultimately, success will depend 
not only on continuous technical innovation but also on ensuring that AI systems are explainable, 
equitable, and seamlessly integrated into clinical practice. 

5. Strengths and Limitations 

This review’s strengths include its novelty, systematic methodology, and comprehensive scope. 
To our knowledge, it is the first synthesis to focus exclusively on AI applications in exercise-based 
cardiovascular interventions. It adhered to PRISMA-ScR guidelines [14], used multiple databases, 
and covered a decade of research. A range of study designs was included, offering a broad 
perspective on the field. 

Limitations include the small number of eligible studies (n = 11) and the predominance of 
exploratory designs. Only two RCTs were identified [8,9], restricting the strength of conclusions. 
Considerable heterogeneity in populations, AI methodologies, and outcomes prevented meta-
analysis. Publication bias may have inflated positive findings, and most studies were conducted in 
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technologically advanced settings [7,21,22], which limits generalizability. Few addressed ethical 
issues such as algorithmic transparency [3,23], data privacy, or equity of access. 

6. Conclusions 

This scoping review synthesised evidence on AI in exercise-based cardiovascular interventions. 
Eleven studies illustrated AI’s ability to personalise exercise prescriptions [6,12], set adaptive activity 
goals [8,9], support continuous monitoring [7,22], and improve adherence [9,21]. Diagnostic and 
generative applications further expanded the scope [10,13]. 

AI has the potential to overcome persistent barriers in rehabilitation and prevention by aligning 
with the principles of precision medicine [25,26]. However, the evidence remains preliminary. More 
RCTs, harmonised methods, and studies in diverse populations are urgently needed. Ethical and 
equity concerns—including algorithmic transparency [3,23], data protection, and accessibility [11]—
must be addressed before large-scale adoption. 

AI should be seen as a complementary tool that enhances, rather than replaces, clinical expertise. 
With rigorous validation, transparent frameworks, and equitable implementation, AI could help shift 
cardiovascular rehabilitation toward flexible, hybrid models that extend care beyond hospital walls 
and ultimately reduce the global burden of disease. 
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