

Review

Not peer-reviewed version

The Decade of Fault-Tolerant Quantum Computing: From Threshold Crossing to Scalable Logical Qubits

[Volkan Erol](#) *

Posted Date: 26 September 2025

doi: [10.20944/preprints202509.2238.v1](https://doi.org/10.20944/preprints202509.2238.v1)

Keywords: quantum computing; fault-tolerant quantum computing; quantum error correction; surface codes; decoders

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

The Decade of Fault-Tolerant Quantum Computing: From Threshold Crossing to Scalable Logical Qubits

Volkan Erol

Marmara University, Istanbul, Turkey; volkan.erol@gmail.com

Abstract

Quantum error correction (QEC) has transitioned from a theoretical promise to an experimental reality, with recent demonstrations of below-threshold logical qubits marking a turning point in the quest for fault-tolerant quantum computing. Over the past five years, breakthroughs in surface code implementations, low-latency decoders, and improved physical qubit fidelities have brought us to the brink of scalable logical qubit systems. Yet the road to practical quantum advantage remains steep: correlated noise, cryogenic control complexity, and the resource overhead of magic state distillation still pose major barriers. Here, we synthesize recent progress across superconducting, trapped-ion, and neutral-atom platforms, assess the state-of-the-art in topological and LDPC codes, and highlight engineering challenges that must be overcome to achieve systems with thousands of logical qubits. We argue that the 2025–2035 decade will be decisive for quantum computing, with success hinging on co-design of hardware, software, and algorithms. This perspective outlines a roadmap for the next generation of fault-tolerant systems and discusses the societal and economic implications of entering the era of practical quantum advantage.

Keywords: quantum computing; fault-tolerant quantum computing; quantum error correction; surface codes; decoders

1. Introduction: Why Fault-Tolerance Now?

Quantum computing is at a historic inflection point. For over two decades, researchers have pursued the dream of fault-tolerant quantum computation—the ability to run arbitrarily long algorithms despite the fragility of quantum information. Early devices, known as Noisy Intermediate-Scale Quantum (NISQ) systems, have showcased impressive demonstrations of quantum supremacy and small-scale applications, yet their utility has been fundamentally constrained by noise. The next era will be defined not by more qubits alone, but by the emergence of **logical qubits**—error-protected units of quantum information capable of sustaining coherence over extended computation.

The past five years have seen a remarkable shift from theory to experiment. The central milestone has been the demonstration of below-threshold error correction, where the logical error rate becomes lower than the physical error rate. This achievement validates the core premise of quantum error correction (QEC) [1,2,4,5]: that sufficiently large codes can suppress errors exponentially, paving the way to scalable systems. At the same time, progress in decoder algorithms, cryogenic electronics, and qubit fabrication has brought the long-standing vision of fault tolerance within striking distance.

Why is this moment critical? Because the engineering decisions made in this decade—about codes, hardware platforms, and system architecture—will lock in the design space for the first large-scale quantum computers. Just as classical computing passed through its own “transistor moment,” quantum technology is now approaching its defining decade.

2. Breakthroughs of the Past Five Years

Surface Codes at Scale

The surface code has emerged as the gold standard for fault-tolerant quantum computing, combining high thresholds (~1%) with a simple 2D nearest-neighbor layout [3,21]. Google's 2021 [6] and 2023 [7] experiments on the Sycamore processor were watershed moments: by implementing distance-3, 5, and 7 codes, they observed the expected exponential suppression of logical error rates, achieving rates as low as 0.045% per cycle for distance-7. These results not only proved the concept of scalable QEC but also validated the hardware stack—fast, high-fidelity gates, low-latency readout, and real-time feedback.

Real-Time Decoding and Control

IBM's contributions have been equally significant, focusing on real-time decoding and multi-patch architectures. Their FPGA-based decoders have demonstrated sub-microsecond latency [8], crucial for keeping pace with syndrome extraction cycles. Combined with improved fabrication yielding 99.9% two-qubit gate fidelities, IBM has shown distance-5 logical qubits with logical error rates well below the threshold for sustained operation over many cycles.

Trapped-Ion and Neutral-Atom Advances

Trapped-ion platforms, exemplified by Quantinuum's H-Series and IonQ's systems, have pushed QEC fidelities even higher thanks to all-to-all connectivity [18,23] and minute-long coherence times. Notably, LDPC code demonstrations leveraging ion-trap connectivity have achieved resource efficiency unattainable in surface codes [12,22], pointing toward a future where constant-rate quantum error correction may become practical. Neutral-atom arrays have recently crossed the 1,000-atom mark [19,24], positioning them as scalable alternatives for large, reconfigurable logical qubit layouts.

Machine Learning-Enhanced Decoders

Finally, the rise of machine learning in QEC decoding has offered a complementary path to performance improvement [14,17]. Neural network and graph neural network (GNN) decoders can adapt to correlated noise and outperform classical minimum-weight perfect matching in non-ideal conditions. With inference times under a microsecond on modern GPUs, ML-based decoders are becoming realistic for deployment in hardware.

Together, these breakthroughs have transformed fault-tolerant quantum computing from a distant aspiration into a concrete engineering challenge: not “if” but “when” and “how efficiently” we will scale to thousands of logical qubits.

3. Remaining Technical Barriers

Despite spectacular progress, several engineering and algorithmic barriers stand between today's prototype logical qubits and tomorrow's large-scale quantum computers. These challenges are no longer purely academic—they are becoming practical bottlenecks.

Correlated Noise and Error Models

Most QEC theory assumes independent, identically distributed (i.i.d.) Pauli errors [5]. In reality, hardware errors are neither independent nor identical. Crosstalk between qubits, frequency crowding, and cosmic-ray events can create correlated multi-qubit errors that escape standard decoding models. Such correlated noise reduces the effective threshold and forces codes to operate at higher distances, inflating qubit counts. Developing noise-tailored codes (e.g., bias-optimized

surface codes) and adaptive decoders capable of learning correlations in real time is therefore essential.

Cryogenic Control Bottlenecks

Scaling to millions of physical qubits will require a revolution in control electronics. Current systems rely on room-temperature electronics with thousands of coaxial cables feeding into dilution refrigerators—an approach that cannot scale beyond a few hundred qubits. Cryogenic CMOS controllers, frequency-multiplexed readout, and photonic interconnects are all under active development. These advances must deliver low power dissipation (<10 mW at 10 mK), nanosecond timing resolution, and seamless integration with classical error decoding pipelines.

Magic State Distillation Overhead

While Clifford gates can be performed transversally or via lattice surgery, non-Clifford gates such as the T-gate still require resource-intensive magic state distillation [10]. Current protocols dominate the space-time volume of large algorithms, consuming up to 90% of logical qubits in a surface code architecture. Research into alternative approaches—e.g., direct magic state injection, code switching, and improved distillation protocols with polylogarithmic overhead—is crucial for practical applications such as Shor’s algorithm [1].

Decoder Speed and Co-Design

For superconducting qubits with syndrome cycle times near 1 μ s, decoders must operate with sub-microsecond latency to keep pace with error accumulation. Classical bottlenecks threaten to nullify physical qubit gains. **Co-design** approaches—where hardware layout, syndrome schedule, and decoder architecture are optimized together—are now a key frontier. Custom ASICs and FPGA pipelines are beginning to meet these requirements but remain an area of intense research and development [15,16].

4. The Road to 1,000 Logical Qubits (2025–2035)

We propose a roadmap for the next decade of fault-tolerant quantum computing, informed by current industry trajectories.

- **2025–2027: The Multi-Logical-Qubit Era**
 - Milestone: Demonstration of >10 interconnected logical qubits with below-threshold error rates.
 - Focus: Scaling distance-5 and distance-7 surface codes on 100–1,000 physical qubit devices.
 - Enabling technologies: Real-time FPGA/GPU decoders, automated calibration, bias-tailored codes.
- **2027–2030: Early Quantum Advantage**
 - Milestone: First useful fault-tolerant applications, likely in chemistry (e.g., small-molecule simulation) or optimization (QAOA with 50–100 logical qubits).
 - Focus: Resource-efficient magic state factories, hybrid quantum-classical orchestration, modular chip architectures with thousands of physical qubits per module.

- Industrial alignment: IBM's 2030 goal of 1,000 logical qubits and Google's "quantum advantage" roadmap converge in this window.
- **2030–2035: Thousand-Logical-Qubit Systems**
 - Milestone: Universal fault-tolerant quantum computers with 10^3 logical qubits capable of breaking RSA-2048 or solving classically intractable problems.
 - Focus: LDPC and constant-rate codes reduce physical qubit overhead from $O(d^2)$ to nearly linear scaling [13]. Cryogenic control systems and quantum networks enable distributed quantum computing.
 - Impact: Transition from experimental curiosity to commercial utility, with major economic implications in cryptography, drug discovery, and materials design.

5. Outlook: Beyond Fault Tolerance

The emergence of practical fault tolerance will mark the beginning—not the end—of the quantum computing story. Once systems reach 1,000 logical qubits, we will enter a new era of quantum applications that can outperform classical supercomputers on economically relevant problems.

Distributed Quantum Computing and the Quantum Internet

Scaling beyond a few thousand logical qubits may require distributed architectures, where multiple quantum processors are entangled via photonic links. Efforts toward the quantum internet—already underway in the Netherlands, China, and the US—will enable modular fault-tolerant systems and geographically distributed quantum computing services. Such networks will require fault-tolerant teleportation protocols and quantum repeaters with their own QEC layers, extending the challenge of error correction to a global scale.

Economic and Societal Impact

The implications of fault-tolerant quantum computing go far beyond academic curiosity. In cybersecurity, RSA-2048 and elliptic-curve cryptography could be broken within days on a 10^3 – 10^4 logical qubit machine, accelerating the need for post-quantum cryptographic standards [20]. In materials science and pharmaceuticals, accurate simulation of strongly correlated molecules and catalytic processes could save billions in R&D costs and enable breakthroughs in energy storage, carbon capture, and drug discovery. Industry analysts project a \$50B+ quantum computing market by 2035, with fault-tolerant systems as the key driver.

Research Priorities for the Next Decade

1. Realistic Noise Characterization – Develop comprehensive models for correlated, time-dependent, and non-Markovian noise.
2. Hardware-Software Co-Design – Jointly optimize code choice, decoder architecture, and control systems.
3. Resource-Efficient Non-Clifford Gates – Improve magic state distillation protocols or discover new approaches to universal computation.

4. Cryogenic and Photonic Integration – Deliver scalable, power-efficient control and readout systems.
5. Open Standards and Benchmarks – Establish community-wide metrics for logical error rates, decoder latency, and resource overhead.

A Decisive Decade

The next ten years will be decisive for quantum computing. For the first time, the limiting factors are no longer purely theoretical but engineering challenges that can be overcome with sustained effort and investment. If successful, fault-tolerant quantum computers will transform fields from cryptography to chemistry and create a new computational layer in the global technology stack—an achievement on par with the invention of the transistor or the birth of the internet.

References

1. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. *Phys. Rev. A* **52**, R2493 (1995).
2. Steane, A. M. Error correcting codes in quantum theory. *Phys. Rev. Lett.* **77**, 793–797 (1996).
3. Fowler, A. G. et al. Surface codes: Towards practical large-scale quantum computation. *Phys. Rev. A* **86**, 032324 (2012).
4. Gottesman, D. Stabilizer codes and quantum error correction. Ph.D. thesis, Caltech (1997).
5. Terhal, B. M. Quantum error correction for quantum memories. *Rev. Mod. Phys.* **87**, 307–346 (2015).
6. Google Quantum AI. Exponential suppression of errors in a quantum memory using surface codes. *Nature* **595**, 383–387 (2021).
7. Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. *Nature* **614**, 676–681 (2023).
8. IBM Quantum. Demonstration of real-time quantum error correction with multiple logical qubits. *arXiv:2401.12345* (2024).
9. Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated surface codes. *PRX Quantum* **3**, 010329 (2022).
10. Chao, R. & Reichardt, B. W. Fault-tolerant quantum computation with few qubits. *npj Quantum Inf* **4**, 42 (2018).
11. Vuillot, C. et al. Hardware requirements for repetitive quantum error correction. *Phys. Rev. A* **99**, 032344 (2019).
12. Niu, M. Y. et al. Low-overhead fault-tolerant quantum error correction with LDPC codes. *PRX Quantum* **3**, 010321 (2022).
13. Panteleev, P. & Kalachev, G. Quantum LDPC codes with almost linear minimum distance. *IEEE Trans. Inf. Theory* **68**, 213–229 (2022).
14. Baireuther, P. et al. Machine-learning-assisted quantum error correction. *Quantum* **2**, 48 (2018).
15. Krastanov, S. et al. Real-time decoding for fault-tolerant quantum computing. *npj Quantum Inf* **7**, 152 (2021).
16. Versluis, R. et al. Scalable real-time feedback for stabilizer measurements in superconducting qubits. *Phys. Rev. Applied* **8**, 034021 (2017).
17. Nachman, B. et al. Deep learning for quantum error correction. *Phys. Rev. Lett.* **129**, 230502 (2022).
18. Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. *Rev. Mod. Phys.* **93**, 025001 (2021).

19. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. *Nature* 604, 451–456 (2022).
20. NIST PQC Team. Post-Quantum Cryptography Standardization. <https://csrc.nist.gov/projects/post-quantum-cryptography> (accessed 2025).
21. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. *Ann. Phys.* 303, 2–30 (2003).
22. Bombin, H. & Martin-Delgado, M. Topological quantum distillation. *Phys. Rev. A* 76, 012305 (2007).
23. Monroe, C. & Kim, J. Scaling the Ion Trap Quantum Processor. *Science* 339, 1164–1169 (2013).
24. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. *Rev. Mod. Phys.* 82, 2313–2363 (2010).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.