Submitted:
26 September 2025
Posted:
26 September 2025
You are already at the latest version
Abstract
Keywords:
Introduction About Host Immunological Pathways
Eradicable Host Immune Responses
Tolerable Host Immune Responses
Bipolar Disorders and Major Depressive Disorder and Their Relations to THαβ Immunity
Autism and Its Relation to up-Regulated Innate Immunity and Down-Regulated Adaptive Immunity
Obsessive-Compulsive Disorder and Anxiety Which Are Related to TH22 Immunity
References
- Hu, W.C. A Framework of All Discovered Immunological Pathways and Their Roles for Four Specific Types of Pathogens and Hypersensitivities. Front Immunol 2020, 11, 1992. [CrossRef]
- Lee, Y.H.; Tsai, K.W.; Lu, K.C.; Shih, L.J.; Hu, W.C. Cancer as a Dysfunctional Immune Disorder: Pro-Tumor TH1-like Immune Response and Anti-Tumor THαβ Immune Response Based on the Complete Updated Framework of Host Immunological Pathways. Biomedicines 2022, 10. [CrossRef]
- Wen, T.H.; Tsai, K.W.; Wu, Y.J.; Liao, M.T.; Lu, K.C.; Hu, W.C. The Framework for Human Host Immune Responses to Four Types of Parasitic Infections and Relevant Key JAK/STAT Signaling. Int J Mol Sci 2021, 22. [CrossRef]
- Hu, W.C. Human immune responses to Plasmodium falciparum infection: molecular evidence for a suboptimal THαβ and TH17 bias over ideal and effective traditional TH1 immune response. Malar J 2013, 12, 392. [CrossRef]
- Hu, W.C. The Central THαβ Immunity Associated Cytokine: IL-10 Has a Strong Anti-Tumor Ability Toward Established Cancer Models In Vivo and Toward Cancer Cells In Vitro. Front Oncol 2021, 11, 655554. [CrossRef]
- Tsou, A.; Chen, P.J.; Tsai, K.W.; Hu, W.C.; Lu, K.C. THαβ Immunological Pathway as Protective Immune Response against Prion Diseases: An Insight for Prion Infection Therapy. Viruses 2022, 14. [CrossRef]
- Jones, G.H.; Vecera, C.M.; Pinjari, O.F.; Machado-Vieira, R. Inflammatory signaling mechanisms in bipolar disorder. J Biomed Sci 2021, 28, 45. [CrossRef]
- Kotzalidis, G.; Ambrosi, E.; Simonetti, A.; Cuomo, I.; Del Casale, A.; Caloro, M.; Savoja, V.; Rapinesi, C. Neuroinflammation in bipolar disorders. Neuroimmunology and Neuroinflammation 2015, 2. [CrossRef]
- Rosenblat, J.; McIntyre, R. Bipolar Disorder and Immune Dysfunction: Epidemiological Findings, Proposed Pathophysiology and Clinical Implications. Brain Sciences 2017, 7. [CrossRef]
- Huang, Y.M.; Shih, L.J.; Hsieh, T.W.; Tsai, K.W.; Lu, K.C.; Liao, M.T.; Hu, W.C. Type 2 hypersensitivity disorders, including systemic lupus erythematosus, Sjogren’s syndrome, Graves’ disease, myasthenia gravis, immune thrombocytopenia, autoimmune hemolytic anemia, dermatomyositis, and graft-versus-host disease, are THalphabeta-dominant autoimmune diseases. Virulence 2024, 15, 2404225. [CrossRef]
- Chiu, W.C.; Su, Y.P.; Su, K.P.; Chen, P.C. Recurrence of depressive disorders after interferon-induced depression. Transl Psychiatry 2017, 7, e1026. [CrossRef]
- Lai, J.Y.; Ho, J.X.; Kow, A.S.F.; Liang, G.; Tham, C.L.; Ho, Y.C.; Lee, M.T. Interferon therapy and its association with depressive disorders - A review. Front Immunol 2023, 14, 1048592. [CrossRef]
- Magri, C.; Giacopuzzi, E.; Sacco, C.; Bocchio-Chiavetto, L.; Minelli, A.; Gennarelli, M. Alterations observed in the interferon α and β signaling pathway in MDD patients are marginally influenced by cis-acting alleles. Scientific Reports 2021, 11. [CrossRef]
- Mostafavi, S.; Battle, A.; Zhu, X.; Potash, J.B.; Weissman, M.M.; Shi, J.; Beckman, K.; Haudenschild, C.; McCormick, C.; Mei, R., et al. Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing. Mol Psychiatry 2014, 19, 1267-1274. [CrossRef]
- Schaefer, M.; Schmidt, F.; Neumer, R.; Scholler, G.; Schwarz, M. Interferon-alpha, cytokines and possible implications for mood disorders. Bipolar Disord 2002, 4 Suppl 1, 111-113. [CrossRef]
- Schlaak, J.F.; Trippler, M.; Hoyo-Becerra, C.; Erim, Y.; Kis, B.; Wang, B.; Scherbaum, N.; Gerken, G. Selective hyper-responsiveness of the interferon system in major depressive disorders and depression induced by interferon therapy. PLoS One 2012, 7, e38668. [CrossRef]
- Rossi, A.; Renzetti, D.; D’Albenzio, L.; Gianfelice, D.; Kalyvoka, A.; Rinaldi, O. Case of mania induced by withdrawal of interferon-alpha in a patient affected by bipolar disorder. Psychiatry Clin Neurosci 2002, 56, 647-648. [CrossRef]
- Anjum, S.; Qusar, M.; Shahriar, M.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, M.R. Altered serum interleukin-7 and interleukin-10 are associated with drug-free major depressive disorder. Ther Adv Psychopharmacol 2020, 10, 2045125320916655. [CrossRef]
- Roque, S.; Correia-Neves, M.; Mesquita, A.R.; Palha, J.A.; Sousa, N. Interleukin-10: a key cytokine in depression? Cardiovasc Psychiatry Neurol 2009, 2009, 187894. [CrossRef]
- Hsu, J.W.; Lirng, J.F.; Wang, S.J.; Lin, C.L.; Yang, K.C.; Liao, M.H.; Chou, Y.H. Association of thalamic serotonin transporter and interleukin-10 in bipolar I disorder: a SPECT study. Bipolar Disord 2014, 16, 241-248. [CrossRef]
- Ancelin, M.L.; Norton, J.; Ritchie, K.; Chaudieu, I.; Ryan, J. Steroid 21-hydroxylase gene variants and late-life depression. BMC Res Notes 2021, 14, 203. [CrossRef]
- İmre, O.; Güldeste Yılmaz, İ.V. Neutrophil-Lymphocyte Ratio, Monocyte-Lymphocyte Ratio and Platelet-Lymphocyte Ratio in Manic Episode Patients with Bipolar Disorder. European Journal of Therapeutics 2023, 29, 110-115. [CrossRef]
- Hung, Y.Y.; Huang, K.W.; Kang, H.Y.; Huang, G.Y.; Huang, T.L. Antidepressants normalize elevated Toll-like receptor profile in major depressive disorder. Psychopharmacology (Berl) 2016, 233, 1707-1714. [CrossRef]
- López-Cacho, J.M.; Gallardo, S.; Posada, M.; Aguerri, M.; Calzada, D.; Mayayo, T.; Lahoz, C.; Cárdaba, B. Characterization of Immune Cell Phenotypes in Adults with Autism Spectrum Disorders. Journal of Investigative Medicine 2016, 64, 1179-1185. [CrossRef]
- Meltzer, A.; Van de Water, J. The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017, 42, 284-298. [CrossRef]
- Moreno, R.J.; Abu Amara, R.; Ashwood, P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain, Behavior, and Immunity 2025, 123, 1147-1158. [CrossRef]
- Blum, K.; Bowirrat, A.; Sunder, K.; Thanos, P.K.; Hanna, C.; Gold, M.S.; Dennen, C.A.; Elman, I.; Murphy, K.T.; Makale, M.T. Dopamine Dysregulation in Reward and Autism Spectrum Disorder. Brain Sci 2024, 14. [CrossRef]
- Gvirts Probolovski, H.Z.; Dahan, A. The Potential Role of Dopamine in Mediating Motor Function and Interpersonal Synchrony. Biomedicines 2021, 9. [CrossRef]
- Papa, I.; Saliba, D.; Ponzoni, M.; Bustamante, S.; Canete, P.F.; Gonzalez-Figueroa, P.; McNamara, H.A.; Valvo, S.; Grimbaldeston, M.; Sweet, R.A., et al. T(FH)-derived dopamine accelerates productive synapses in germinal centres. Nature 2017, 547, 318-323. [CrossRef]
- Hughes, H.K.; R.J.Moreno; Ashwood, P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain, Behavior, and Immunity 2023, 108, 245-254. [CrossRef]
- Heuer, L.S.; Rose, M.; Ashwood, P.; Van de Water, J. Decreased levels of total immunoglobulin in children with autism are not a result of B cell dysfunction. J Neuroimmunol 2012, 251, 94-102. [CrossRef]
- Sabourin, K.R.; Reynolds, A.; Schendel, D.; Rosenberg, S.; Croen, L.A.; Pinto--Martin, J.A.; Schieve, L.A.; Newschaffer, C.; Lee, L.C.; DiGuiseppi, C. Infections in children with autism spectrum disorder: Study to Explore Early Development (SEED). Autism Research 2018, 12, 136-146. [CrossRef]
- Bozkurt, H.; Simsek, S.; Sahin, S. Elevated levels of cortisol, brain-derived neurotropic factor and tissue plasminogen activator in male children with autism spectrum disorder. Autism Res 2021, 14, 2078-2084. [CrossRef]
- Gao, J.; Zou, J.; Yang, L.; Zhao, J.; Wang, L.; Liu, T.; Fan, X. Alteration of peripheral cortisol and autism spectrum disorder: A meta-analysis. Front Psychiatry 2022, 13, 928188. [CrossRef]
- Baron-Cohen, S.; Auyeung, B.; Nørgaard-Pedersen, B.; Hougaard, D.M.; Abdallah, M.W.; Melgaard, L.; Cohen, A.S.; Chakrabarti, B.; Ruta, L.; Lombardo, M.V. Elevated fetal steroidogenic activity in autism. Molecular Psychiatry 2014, 20, 369-376. [CrossRef]
- Claflin, D.I.; Schmidt, K.D.; Vallandingham, Z.D.; Kraszpulski, M.; Hennessy, M.B. Influence of postnatal glucocorticoids on hippocampal-dependent learning varies with elevation patterns and administration methods. Neurobiol Learn Mem 2017, 143, 77-87. [CrossRef]
- Ashwood, P.; Enstrom, A.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.L.; Croen, L.A.; Ozonoff, S.; Pessah, I.N.; Van de Water, J. Decreased transforming growth factor beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol 2008, 204, 149-153. [CrossRef]
- Gladysz, D.; Krzywdzinska, A.; Hozyasz, K.K. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018, 55, 6387-6435. [CrossRef]
- Han, Y.M.; Cheung, W.K.; Wong, C.K.; Sze, S.L.; Cheng, T.W.; Yeung, M.K.; Chan, A.S. Distinct Cytokine and Chemokine Profiles in Autism Spectrum Disorders. Front Immunol 2017, 8, 11. [CrossRef]
- Denzel, D.; Runge, K.; Feige, B.; Pankratz, B.; Pitsch, K.; Schlump, A.; Nickel, K.; Voderholzer, U.; Tebartz van Elst, L.; Domschke, K., et al. Autoantibodies in patients with obsessive-compulsive disorder: a systematic review. Transl Psychiatry 2023, 13, 241. [CrossRef]
- Endres, D.; Pollak, T.A.; Bechter, K.; Denzel, D.; Pitsch, K.; Nickel, K.; Runge, K.; Pankratz, B.; Klatzmann, D.; Tamouza, R., et al. Immunological causes of obsessive-compulsive disorder: is it time for the concept of an “autoimmune OCD” subtype? Transl Psychiatry 2022, 12, 5. [CrossRef]
- Geis, C.; Grunewald, B.; Weishaupt, A.; Wultsch, T.; Toyka, K.V.; Reif, A.; Sommer, C. Human IgG directed against amphiphysin induces anxiety behavior in a rat model after intrathecal passive transfer. J Neural Transm (Vienna) 2012, 119, 981-985. [CrossRef]
- von Zedtwitz, K.; Feige, B.; Maier, A.; Schaefer, S.L.; Nickel, K.; Reisert, M.; Spiegelhalder, K.; Venhoff, N.; Brumberg, J.; Urbach, H., et al. Amphiphysin and GAD65 IgG antibodies in patients with obsessive-compulsive syndromes. Eur Neuropsychopharmacol 2025, 90, 80-82. [CrossRef]
- Cepeda, Y.; Elizondo-Vega, R.; Garrido, C.; Tobar, C.; Araneda, M.; Oliveros, P.; Ordenes, P.; Carril, C.; Vidal, P.M.; Luz-Crawford, P., et al. Regulatory T cells administration reduces anxiety-like behavior in mice submitted to chronic restraint stress. Front Cell Neurosci 2024, 18, 1406832. [CrossRef]
- Wu, W.; Wen, F.; Hu, J.; Li, L. Overexpression of ATF4 Inhibits Ferroptosis to Alleviate Anxiety Disorders by Activating the TGF-β Signaling Pathway. Neuropsychiatric Disease and Treatment 2024, Volume 20, 1969-1983. [CrossRef]
- Özkan, Y.; Kandemir, H.; Sapmaz, Ş.Y.; Taneli, F. TGF-β1, neopterin, tetrahydrobiopterin, and nitric oxide levels in pediatric obsessive–compulsive disorder. Journal of Obsessive-Compulsive and Related Disorders 2021, 29. [CrossRef]
- Chou, Y.J.; Tai, Y.H.; Dai, Y.X.; Lee, D.D.; Chang, Y.T.; Chen, T.J.; Chen, M.H. Obsessive-compulsive disorder and the associated risk of autoimmune skin diseases: a nationwide population-based cohort study. CNS Spectr 2022, 10.1017/S1092852921000973, 1-7. [CrossRef]
- Fabricius, R.A.; Sorensen, C.B.; Skov, L.; Debes, N.M. Cytokine profile of pediatric patients with obsessive-compulsive and/or movement disorder symptoms: A review. Front Pediatr 2022, 10, 893815. [CrossRef]
- Fontenelle, L.F.; Barbosa, I.G.; Luna, J.V.; de Sousa, L.P.; Abreu, M.N.; Teixeira, A.L. A cytokine study of adult patients with obsessive-compulsive disorder. Compr Psychiatry 2012, 53, 797-804. [CrossRef]
- Jose, D.; Dinakaran, D.; Shivakumar, V.; Subbanna, M.; Reddy, Y.C.J.; Venkatasubramanian, G.; Narayanaswamy, J.C. Plasma IL-6 levels in unmedicated, comorbidity free obsessive-compulsive disorder. Int J Psychiatry Clin Pract 2021, 25, 437-440. [CrossRef]
- Sarmin, N.; Roknuzzaman, A.S.M.; Sarker, R.; Rashid, M.O.; Hasan, A.; Qusar, M.; Kabir, E.R.; Islam, M.R.; Mahmud, Z.A. Exploring the role of interleukin-1beta and interleukin-6 in the pathophysiology of obsessive-compulsive disorder. PLoS One 2024, 19, e0306125. [CrossRef]
- Westwell-Roper, C.; Best, J.R.; Naqqash, Z.; Au, A.; Lin, B.; Lu, C.; Shao, L.; Beasley, C.L.; Stewart, S.E. Severe symptoms predict salivary interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha levels in children and youth with obsessive-compulsive disorder. J Psychosom Res 2022, 155, 110743. [CrossRef]
- Hamieh, A.M.; Mallaret, G.; Meleine, M.; Lashermes, A.; Roumeau, S.; Boudieu, L.; Barbier, J.; Aissouni, Y.; Ardid, D.; Gewirtz, A.T., et al. Toll-like receptor 5 knock-out mice exhibit a specific low level of anxiety. Brain, Behavior, and Immunity 2021, 93, 226-237. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
