
Article Not peer-reviewed version

Human-Supervised AI-Driven Smart

Actuator System for Minimally Invasive

Surgical Robotics

Ritwik Raj Saxena * and Ritcha Saxena

Posted Date: 26 September 2025

doi: 10.20944/preprints202509.2216.v1

Keywords: human-in-the-loop design; actuation; minimally invasive surgery; surgical robotics; artificial

intelligence

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3387157


 

 

Article 

Human-Supervised AI-Driven Smart Actuator 

System for Minimally Invasive Surgical Robotics 

Ritwik Raj Saxena * and Ritcha Saxena 

University of Minnesota, Duluth 

* Correspondence: saxen130@d.umn.edu 

Abstract 

Background: AI has shown the potential to positively influence minimally invasive surgical robotics. 

Incorporation of AI can improve perception, planning, decision-making, and execution in this field. 

Existing systems include, but are not limited to, the STAR for supervised autonomous suturing, 

MAKO for orthopedic arthroplasty, CyberKnife for radiosurgery, and PROST for prostate 

interventions. Such systems have shown advancement in precision, image guidance, task 

automation, haptic feedback, and flexible safety management. However, unlike domains such as 

autonomous driving, surgical robotics has progressed more cautiously. Current platforms have been 

found to sporadically lack transparent supervision contracts, adequate surgeon-centric safety 

guarantees, standardized pathways for adaptive autonomy, embedded safeguards within their 

modes of operation, and validated metrics for assessing performance. Objective: This paper presents 

a conceptual framework for a human-supervised AI-driven smart actuator system focused on 

minimally invasive surgery. The goal of this paper is to propose a forward-looking proof of concept 

that formalizes surgeon authority, integrates AI-enabled perception and control, enforces provable 

safety constraints, enables adaptive assistance, and ensures continuous, patient-safe force regulation. 

Conceptual Design: This architecture incorporates compact backdrivable actuators. It also includes 

multimodal sensing that encompasses sensor data, force and torque, pose, endoscopic vision, and 

tissue impedance, as well as an AI stack based off a machine learning and reinforcement learning 

framework. The model delineates three operational modes. These include teleoperation enhanced by 

AI-based overlays, shared control that incorporates tremor suppression, virtual fixtures, as well as 

force regulation, and supervised autonomy where specific subtasks are carried out under surgeon 

pedal-hold and confidence gating. Safety is ensured using control barrier functions and model 

predictive safety filters, which block unsafe actions applying reinforcement learning. Aside from this, 

human-factor elements feature confidence-aware visualization, multimodal anomaly detection, and 

options for immediate overrides. Contribution: This study outlines a research roadmap. Our 

contributions include a formalized supervised-autonomy contract, a layered safety design combining 

reinforcement learning with provable constraint enforcement, surgeon-centered framework with 

immediate veto and transparency features, and a translational agenda spanning simulation, 

phantom, ex-vivo, and cadaveric validation. Conclusion: This paper aims to position AI as a 

cooperative assistant rather than an autonomous decision-maker in the field of robotic and precision 

surgery. The conceptual framework endeavors to address challenges in surgical robotics. These 

include precision, safety, transparency, and supervisory oversight. It synthesizes lessons from 

current exemplars. It articulates a pathway toward adaptive, auditable, transparently supervised, 

resilient, and patient-centered surgical systems. 

Keywords: human-in-the-loop design; actuation; minimally invasive surgery; surgical robotics; 

artificial intelligence 
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1. Introduction 

AI-driven surgical robotics plays a key role in modernizing the current healthcare paradigm. It 

ushers noteworthy improvements in patient care and operational efficiency. Such advanced systems 

utilize AI and robotic arms to perform precise, minimally invasive surgeries that reduce blood loss, 

pain, and recovery times [1–4]. Studies show that AI assistance can increase surgical precision by 40% 

and reduce complications by 30% [5]. Applying such techniques further results in shorter hospital 

stays and faster patient recovery. Smart surgical robotics is beneficial for complex procedures like 

tumor removal, heart surgeries, neuroanatomic surgeries, and joint replacements. They improve 

patient outcomes and overall satisfaction [6]. 

AI analyzes real-time data to help surgeons make better decisions and coordinate tasks, cutting 

down on surgery times and improving resource management. While the initial investment in this 

technology is substantial, the long-term savings from fewer complications and increased efficiency 

make it a worthwhile consideration for many hospitals [7]. 

Implementing AI robotics also presents several challenges. The high cost of the equipment and 

ongoing maintenance can be a barrier, especially for smaller and rural hospitals [8–10]. This fuels 

disparities in access to high-quality care [11]. A steep learning curve requires extensive training for 

surgical teams. Such training frequently involves simulations and augmented reality. As AI and 

robotics continue to advance, future developments like remote surgery and digital twins could 

further transform intelligent surgeries [5]. This creates hope for a future of more personalized and 

accessible care, especially in surgery. 

3.1. Robotics and Surgery 

The convergence of robotics and surgery represents one of the most profound renovations in 

modern medicine. Here, the precision of engineered machines harmonizes with the intuition and 

judgment of skilled surgeons. At its essence, surgical robotics integrates mechanical systems, 

computer vision, machine learning, and ergonomically designed interfaces to augment and, at times, 

partially or fully automate surgical tasks [12]. This fusion is not designed to displace surgeons but 

rather to enhance their capability, control, and accuracy. The result is a shift from purely manual 

interventions toward technologically mediated procedures that offer both enhanced precision and 

reduced risk. 

The idea of surgical robotics emerged in the late 1980s and 1990s. The early work and funding 

wasdriven by agencies such as the U.S. Defense Advanced Research Projects Agency (DARPA) and 

NASA, which sought to develop technology for remote surgery in combat zones and in space [13–16] 

Early systems such as the PUMA 560 demonstrated the potential of robotic precision in 

neurosurgical biopsies. This was followed by the rendering of ROBODOC in the field of orthopedics 

and AESOP, which was a voice-controlled laparoscopic camera-holding mechanical arm. Landmark 

progress was shepherded by the development of the ZEUS system in 1998 by Computer Motion, Inc. 

in Goleta, California. This system aided the first transatlantic telesurgery in 2001 known as Operation 

Lindbergh. The da Vinci platform, developed by Intuitive Surgical, Inc., demonstrated how robotic 

arms equipped with miniaturized instruments could replicate, and in many cases exceed, the surgical 

capacity of human hands [17]. It popularized teleoperated, multi–degree-of-freedom minimally 

invasive surgery with stereovision and wristed instruments. These systems established robotics as a 

transformative force in complex surgeries such as mitral valve repair, prostatectomy, and 

hysterectomy. These innovations made complex surgeries more controlled and less invasive, while 

preserving the surgeon’s oversight. 

Contemporary innovations broaden these foundations into exceedingly specialized and 

ergonomic systems. Platforms like the da Vinci SP feature single-port access [18]. Systems like 

CyberKnife and PROST have shown effectiveness in radiosurgery and in prostate biopsy [19,20]. 

Versius focuses on surgeon comfort [21]. Orthopedic solutions such as TiRobot employ optical 
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tracking and planning tools [22]. CARLO laser osteotome, EndoQuest’s flexible endoluminal device, 

and Levita’s magnet-assisted system diversify surgical robotic applications [23–25]. 

Parallel advances in sensing and navigation, such as Proprio’s light-field 3D guidance, showcase 

the integration of intelligence into robotic platforms [26,27]. This trajectory parallels the history of 

artificial intelligence, which has evolved from symbolic reasoning to today’s multimodal deep 

learning systems capable of perception, language, and spatial reasoning. Together, these histories 

chart a convergence where AI augments robotic dexterity with adaptive guidance and decision 

support. This defines the incipient era of intelligent surgical robotics. 

The canonical surgical robotics architecture can be described by three interacting modules. These 

are perception-navigation, surgical planning, and control-feedback [12,28]. Perception-navigation 

aggregates multi-source data such as optical and magnetic navigation, pre- and intraoperative 

imaging, endoscopic video, sensor feedback (e.g., force, temperature) etc., to expand the surgical field 

of view and quantify the operative context. Yet, despite high-fidelity sensing, traditional systems 

struggle to interpret complex imagery, to fuse modalities, and to generalize in unstructured 

environments. Surgical planning translates this information into executable plans. Despite that, 

current workflows ordinarily rely on subjective human decisions that are hard to quantify and 

standardize. Control-feedback strategies execute plans through mechanical actuation. These 

strategies maintain safety in dynamic but constrained environments and support intuitive human-

robot interaction. The control-feedback component is singularly challenging in unstructured surgical 

settings, where the interplay of human intent, robot motion, and tissue behavior is highly variable 

and time-critical [29]. 

Robotic systems in surgery can be delineated across several categories. These comprise 

supervisory-controlled systems, tele-surgical or telesurgery systems, and shared-control systems 

[30]. A supervisory-controlled system involves a surgeon pre-programming a robot to execute a 

procedure autonomously. The surgeon superintends and can intervene in its operation. Such a 

system is often deployed in orthopedics and neurosurgery. 

A tele-surgical system acts as an extension of the surgeon’s hands and eyes. It translates hand 

movements into scaled-down, tremor-free instrument actions. Within this system, a surgeon 

manually controls robotic arms from a separate, distant location [31]. The surgeon actively 

manipulates the robot’s instruments and performs the procedure in real-time. A tele-surgical system 

works best using real-time image feedback apart from a reliable, high-speed communication link for 

accurate control of the surgical manipulator. It permits an expert surgeon to consult and operate on 

patients in remote or underserved areas [32]. 

A shared-control system enables real-time collaboration between a surgeon and a robot during 

a surgical procedure. Both the surgeon and the robot are involved in handling the surgical 

instruments. The surgeon directly controls the robot’s movements but receives support and guidance 

from the system, which provides motion constraints and haptic feedback. The machine gives 

assistance to the surgeon and directs the surgeon’s actions along a desired path. The surgeon’s 

movements are stabilized and enhanced by the technology to improve precision and steadiness 

during complex surgeries [33]. 

The benefits of robotic assistance are perhaps best illustrated in procedures that demand extreme 

delicacy. For example, in ophthalmic microsurgery, robots are used to stabilize instruments beyond 

human capacity. Robots in such surgeries, where high precision is required to prevent any mishap, 

mitigate tremor during procedures such as retinal vein cannulation [34]. In orthopedics, robotic 

platforms like CORI surgical system by Smith and Nephew and THINK Surgical’s arthroplasty 

intervention TSolution One or ROBODOC empower surgeons to plan and execute joint replacement 

procedures with sub-millimeter accuracy [35,36]. This reduces the probability of implant 

misalignment. In neurosurgery, image-guided robotic systems guide precise electrode placement for 

deep brain stimulation to lower variability [37]. Hence, robotics in surgery brings consistency, 

reproducibility, and accuracy to fields where error margins are exceedingly narrow. This improves 

therapeutic accuracy and patient outcomes. 
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Robotic surgery finds significant applications in minimally invasive surgery (MIS). MIS is an 

approach that prioritizes smaller incisions and less tissue trauma for reduced pain and quicker 

recovery [38]. Robotics in minimally invasive surgery can be defined as the deployment of robotic 

technologies to optimize the efficacy, safety, and ergonomics of surgical interventions performed 

through small incisions. Robotics has furthered MIS by defeating its inherent limitations such as 

restricted range of motion, limited visibility, and surgeon fatigue due to complexity and high 

operative times. In robotic-assisted MIS, slender mechanical arms maneuver through tiny ports. They 

are guided by the surgeon by way of a console which provides magnified, high-definition, three-

dimensional visualization. The robotic instruments possess an enhanced range of articulation which 

exceed that of the human wrist. This capability of the robot in MIS enables complex suturing and 

dissection through miniature incisions [39]. 

Microsurgery refers to surgical procedures performed on very small structures such as blood 

vessels, lymphatic channels, and nerves. It normally requires magnification under an operating 

microscope. For error-free surgeries and improved chances of survival and quality of life, such 

operations demand extreme precision, tremor-free motion, and delicate handling of tissues that may 

be less than a millimeter in diameter [40]. Another type of surgery is stereotactic surgery. It is a 

minimally invasive technique that relies on a three-dimensional coordinate system to locate small 

targets within the body, such as brain neoplastic lesions. In stereotactic surgeries, instruments and 

probes are guided within the body with high accuracy. Stereotactic procedures are pre-planned, 

image-guided, and involve limited instrument mobility once the trajectory is defined [41]. 

The challenges of developing robotic systems for microsurgery arise from the need to replicate 

and even exceed the fine motor control of a human hand at microscopic scales. Robots must provide 

dexterity, precision, motion scaling, real-time adaptation, and force feedback sensitive enough to 

handle fragile tissues without causing damage [42]. Unlike stereotactic procedures, where the path 

to the target can be mathematically calculated and executed with relatively rigid, predefined 

movements, microsurgery requires continuous adjustment, adroit manipulation, and real-time 

decision-making. During microvascular anastomosis in a reconstructive or replantation procedure or 

a neurosurgical operation, a microsurgical robot must insert a micro-needle into a vein thinner than 

a human hair without puncturing adjacent tissues. This is far more demanding than positioning a 

rigid probe along a planned stereotactic trajectory [43]. 

The design of robotic devices for microsurgery must account for the surgeon’s need for enhanced 

deftness and visual magnification in highly constrained operative fields. Instruments must be exactly 

miniaturized yet flexible and capable of mimicking complex wrist-like motions within tight 

anatomical spaces. The integration of advanced imaging systems, such as optical coherence 

tomography, with robotic platforms becomes essential to provide real-time visual guidance at 

microscopic scales. In stereotactic surgery, robotic devices primarily serve to increase targeting 

accuracy and stability. Once aligned, the instrument path is relatively fixed, reducing the complexity 

of required manipulations. 

3.2. AI in Surgical Robotics 

Artificial intelligence–assisted or AI-assisted surgical robotics is a burgeoning field. AI is poised 

to transform surgical robotics from precision assistants into more adaptive, perceptive, and semi-

autonomous collaborators under surgeon supervision. The strengths of human surgeons include 

sound judgment, dexterity gained from training and experience, and sentient adaptability. In 

contrast, the strengths of robotic systems rely on their mechanical advantage, comprising stability, 

precision, and integrative sensing. The present chokepoints of robotic systems involve limited 

capability to interpret complex, dynamic surgical situations and to make granular and subtle 

decisions. AI is the bridge between the reciprocal strengths of surgeons and robotic systems. 

Reinforcement learning, machine learning, including deep learning and computer vision, can 

improve perception, planning, and management in robot-assisted surgeries. This leads to more 

consistent, safe, and efficient surgeries [44]. 
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AI approaches were introduced into surgical robotics not only due to the recent rapid advances 

and growing accessibility of AI models, but also to overcome the limitations of classical methods [45–

48]. In perception-navigation, classical approaches to medical image analysis, including 

preprocessing approaches such as noise reduction (for example Gaussian Blur and median filtering), 

contrast enhancement (for example, histogram equalization), and color space conversion (for 

example, RGB to grayscale or HSV), image segmentation and object localization approaches such as 

segmentation (for example, region-based segmentation), thresholding (for instance, Otsu’s method), 

edge detection (for example, applying Canny and Sobel operators), feature extraction and description 

approaches, such as extracting shape and geometric features, texture analysis (for example, using 

Gabor filters or Local Binary Patterns optimization), and interest point detectors (for example, 

speeded-up robust features algorithm and scale-invariant feature transform algorithm), and 

mathematical morphology approaches such as erosion, dilation, top-hat transform, and black-hat 

transform, cannot capture the richness and variability of clinical imagery, nor do they scale to real-

time, context-aware guidance (Table 1). 

Table 1. Limitations of Classical Approaches in Perception–Navigation for Medical Image Analysis. 

Category Techniques Examples Limitations 

Preprocessing 

Noise reduction 
Gaussian Blur, 

Median filtering 

Limited adaptability; cannot 

handle diverse noise patterns in 

clinical imagery 

Contrast enhancement 
Histogram 

equalization 

Global adjustment lacks 

contextual awareness 

Color space conversion 
RGB converted to 

Grayscale or HSV 

Reduces dimensional richness; 

may lose clinically relevant 

details 

Segmentation & 

Localization 

Region-based 

segmentation 

Region growing, 

watershed 

methods 

Sensitive to noise and 

initialization; poor 

generalization 

Thresholding Otsu’s method 
Performance drops with non-

uniform illumination 

Edge detection 
Canny operator, 

Sobel operator 

Prone to spurious edges; limited 

robustness in complex anatomy 

Feature 

Extraction & 

Description 

Shape and geometric 

features 

Contours, 

boundary 

descriptors 

Not invariant to scale, rotation, 

or deformation 

Texture analysis 

Gabor filters, 

Local Binary 

Patterns (LBP) 

Sensitive to noise; limited 

capture of multi-scale texture 

Interest point detectors SIFT, SURF 
Computationally intensive; not 

scalable for real-time guidance 

Mathematical 

Morphology 
Basic operations Erosion, Dilation 

Over-simplifies structures; loses 

context 
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Advanced transforms 
Top-hat, Black-

hat 

Effective only in constrained 

scenarios; poor adaptability to 

variability 

General 

Limitation 
— — 

Cannot capture richness and 

variability of clinical imagery; 

poor scalability for real-time, 

context-aware guidance 

AI’s shift from handcrafted rules to data-driven learning allows it to overcome the limitations of 

classical image analysis in surgical robotics. Instead of relying on a human to define features through 

specific algorithmic approaches, deep learning models like CNNs automatically learn them from vast 

datasets of annotated surgical images [49–52]. This makes them robust to variations in various 

structural and environmental aspects such as tissue anomalies, anatomical aberrations, and lighting. 

This enables them to perform semantic segmentation, which classifies every pixel to create a context-

aware understanding of the surgical scene. Once trained, AI models can process live video streams 

in real-time. This provides surgeons with immediate, intelligent guidance essential for complex and 

critical procedures [53]. 

There may be other issues regarding application of traditional methods in surgical robotics. 

Conventionally, intraoperative monitoring relied on manually set thresholds and subjective 

observation. Multimodal fusion, such as registering intraoperative X-rays to preoperative CT, 

demands cognitive skills that are difficult to encode. Navigation spans two broad paradigms. These 

include CAD systems and CAM systems that follow preset plans under surgeon supervision, which 

are common in orthopedics and neurosurgery, where optical or magnetic trackers are applied. They 

also include master–slave assistants, where surgeons operate tools via endoscopic views. Both benefit 

from AI’s ability to interpret and predict on its own. This reduces reliance on operator experience 

and shortens experience curves [12]. Nevertheless, there can be mixed results regarding time savings 

early in adoption. This implies that AI models are complex and may involve time lag between input 

and output. 

Traditionally, surgical planning involves computer-assisted manual planning. Examples include 

screw trajectories in spine surgery and reduction strategies in trauma cases. This improves 

quantification and reproducibility [54]. Nonetheless, it is subjective and labor-intensive. Planning for 

assistant-style robots essentially occurs implicitly as the surgeon operates. However, this complicates 

standardization and post hoc analysis. Embedding AI into planning can turn tacit expertise into 

explicit, learnable patterns. This, in turn, automates elements such as puncture path selection, 

reduction trajectory design, implant sizing, and tissue tracking. This further improves consistency, 

reduces radiation exposure in radiotherapy, and preserves surgeon time for higher-level judgment 

[55,56]. 

In the realm of control-feedback, human–robot interaction (HRI) and robot–environment 

interaction (REI) assume importance. HRI considerations are aimed towards more natural ways for 

surgeons to express intent, improved situational awareness, and reliable oversight and override 

mechanisms. In laparoscopic settings, for example, camera guidance is often delegated to a human 

assistant. This potentially results in inefficiencies and communication challenges. Training and skill 

assessment are essential. However, it is frequently subjective and resource-intensive. REI 

considerations focus on the robot’s safe and effective engagement with tissue in environments 

characterized by limited field of view, randomly moving targets, and deformable anatomy such as 

dermis. Suturing exemplifies the challenges such as lack of native haptics. In many master–slave 

systems, this paucity complicates force regulation. It risks suture breakage and tissue damage. 

Emerging haptic-enabled systems promise to mitigate this. Yet, comprehensive solutions need better 

sensing, predictive control, and adaptive policies. 
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In perception/navigation, deep networks, such as encoder–decoder models like transformers, 

show the potential to improve segmentation of organs and tools across modalities. Transformer-

based and multiscale fusion networks can boost instrument tracking under occlusions and motion. 

Unsupervised and weakly supervised methods such as clustering reduce annotation burdens. For 

pathology classification, AI excels in pattern recognition from imaging such as spectroscopy. In 

complex signal processing, deep models can enable fast, precise intraoperative 3D reconstruction and 

registration, distal force estimation in tendon–sheath mechanisms without added sensors, and 

monocular depth estimation via domain-adapted adversarial networks and deep convolutional 

neural network-conditional random field (CNN-CRFs) [12,57]. The supervised adversarial network 

was possibly used for domain adaptation, which involves making synthetic data look more like real 

data. This was likely done because of class imbalance or lack of overall data, which might have led 

to inefficient training. CNN-CRFs were used to perform the actual depth estimation. For multi-source 

fusion, learning-based registration frameworks can align 2D fluoroscopy with 3D CT or estimate 

organ pose from endoscopic streams, improving guidance accuracy and speed. 

AI is shifting surgical robotics from computer-assisted manual planning to surgeon-assisted 

computer planning. Systems learn safe trajectories, detect anatomy, automate implant placement, 

adapt needle paths under deformation, enable autonomous endoscope navigation and workflow 

parsing, and improve control stability, camera tracking, and tremor compensation. They also support 

scalable skill assessment [58]. This includes NLP analysis and adaptation of operating room 

communication logs. REI advances involve instances like safe autonomous intracardiac navigation, 

reinforcement learning–optimized needle insertion and autonomous suturing. Clinical validation is 

early with limited human trials; larger studies are needed. Ethically and legally, surgeon primacy, 

accountability for higher autonomy, hybrid rule/learning designs, robust consent, rigorous 

regulation, and privacy-compliant data governance with clinician oversight must be emphasized. 

The FDA’s 510(k) in USA is a premarket submission that allows medical device manufacturers 

to demonstrate that their new device is substantially equivalent in safety and effectiveness to a legally 

marketed predicate device already on the market [59]. Furthermore, European Union (EU) regulates 

surgical robotic devices through Conformité Européene (CE) Mark certification (ensures compliance 

with EU’s safety, health, and environmental protection standards) within the ambit of the European 

Medical Devices Directive [60]. 

Several technical dimensions must be addressed to achieve reliable, safe, and clinically 

meaningful integration of AI and surgical robotics. Development of models should emphasize 

explainable and deterministic approaches that enhance interpretability and reproducibility. These 

should simultaneously improve real-time performance through model compression, hardware-

optimized deployment, and mechanisms for graceful degradation in the presence of uncertainty [61]. 

Data availability must be overcome. This requires multi-institutional collaboration, standardized 

annotation frameworks, dataset amalgamation, and privacy-preserving sharing strategies such as 

federated learning. These efforts can be supplemented with synthetic data derived from high-fidelity 

surgical simulation and generative models. This enables both pretraining and data augmentation for 

downstream tasks. Human–robot coordination is important. This depends on the design of intuitive 

surgeon interfaces and advanced feedback modalities. Richer haptic feedback has the potential to 

objectify traditionally subjective judgments, quantify ambiguous intraoperative indicators, and 

potentially automate repetitive actions. Building calibrated trust is oriented towards clinical adoption 

of such technologies. This requires the establishment of measurable safety improvements, 

transparent oversight mechanisms, robust logging for auditability, and clearly defined autonomy 

boundaries. Reliable pathways for manual handover must also be guaranteed, ensuring that the 

balance between trust and autonomy evolves alongside the system’s safeguards (Table 2). 
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Table 2. AI and Surgical Robotics Integration Requirements. 

Dimension Key Components Implementation Strategies 

Model 

Development 

Explainability and 

Determinism 

• Enhance interpretability 

• Improve reproducibility 

• Use transparent algorithms 

Real-time 

Performance 

• Model compression 

• Hardware-optimized deployment 

• Graceful degradation mechanisms for uncertainty 

Data Availability 

Multi-institutional 

Collaboration 

• Standardized annotation frameworks 

• Dataset amalgamation 

• Cross-institution partnerships 

Privacy & Sharing 

• Federated learning 

• Privacy-preserving strategies 

• Secure data protocols 

Synthetic Data 

• High-fidelity surgical simulation 

• Generative models 

• Pretraining capabilities 

• Data augmentation for downstream tasks 

Human-Robot 

Coordination 

Interface Design 
• Intuitive surgeon interfaces 

• Advanced feedback modalities 

Haptic Feedback 

• Objectify subjective judgments 

• Quantify ambiguous intraoperative indicators 

• Automate repetitive actions 

Trust & Clinical 

Adoption 

Safety 

Establishment 

• Measurable safety improvements 

• Transparent oversight mechanisms 

Accountability 
• Robust logging for auditability 

• Clearly defined autonomy boundaries 

Control 

Mechanisms 

• Reliable manual handover pathways 

• Balance between trust and autonomy 

• Evolving safeguards 

3.3. Actuators in Minimally Invasive Surgery 

The intersection of actuators and minimally invasive surgery (MIS) converge mechanical 

ingenuity and clinical precision to enhance patient outcomes. MIS is defined as the performance of 

surgical procedures through small incisions with specialized instruments and cameras. Compared to 

regular open surgery, MIS reduces trauma, accelerates recovery, and minimizes scarring [62]. At the 

bosom of these procedures lie actuators. Actuators convert energy into precise motion while 

balancing precision, force, size, and safety. These are devices that translate human effort and other 

forms of energy into controlled mechanical movement. They serve as the fundamental drivers of 

surgical tools. They enable delicate manipulations within constrained anatomical spaces. Without 

actuators, the dexterity and precision required for MIS would remain unattainable. This makes them 

indispensable to the development of advanced surgical systems. This highlights how actuators 

transform abstract surgical commands into precise physical actions, bridging the gap between 

surgeon intent and patient care [63]. 

The delineation of actuator design in MIS also reveals the unique challenges associated with the 

field. These devices must operate reliably in a compact form factor. While doing so, they must 
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maintain sterility, compatibility with delicate tissues, and resistance to fatigue over repeated use. 

Engineers must, therefore, balance force, precision, and miniaturization to design and construct 

these. For instance, in robotic-assisted laparoscopic surgery, actuators must allow multi-degree-of-

freedom motion while remaining small enough to fit through trocars less than a centimeter in 

diameter. A practical illustration can be found in flexible robotic catheters. They rely on miniature 

Shape Memory Alloy (SMA) actuators to navigate tortuous vascular pathways without damaging 

vessel walls [64]. These innovations show how actuator engineering must be finetuned to the specific 

biomechanical and clinical constraints of MIS. 

There are various types of actuators in MIS [65]. Electromechanical motors (as in systems like da 

Vinci) are power actuators which are mature, accurate, and easy to control, but their bulk limits 

extreme miniaturization. Piezoelectric actuators are characterized by fast, compact, high-precision 

motion. They are frequently used for ultrasonic tools and microsurgery. Yet, they suffer from short 

stroke and high-frequency drive requirements. Pneumatic actuators enable soft, compliant, tissue-

safe interaction. However, they trade off precision, linearity, and require external air. Hydraulics 

deliver smooth, high forces useful for orthopedic tools. The issue with them is that the fluid lines and 

leakage risks constrain their use in delicate settings. 

SMA actuators are silent, miniaturized devices. They include steerable catheters. However, they 

exhibit slow response, hysteresis, and fatigue under cycling. Magnetic actuation provides wireless 

manipulation. Their examples include magnet-assisted tools and capsules. They reduce invasiveness, 

and are, in this way, well-suited for MIS. However, the force drops as we go deeper. Also, in their 

context, field control is challenging. Electrostatic actuators perform excellently in microsurgery that 

applies micro-electro-mechanical systems owing to their precise and scalable motion. However, they 

have low force and environmental sensitivity. Hybrid systems combine various actuating 

mechanisms. These include pneumatic–hydraulic, piezo–electromagnetic etc. They balance 

compliance, force, and precision. However, this comes at the cost of higher design and control 

complexity. Summing up, no single actuator fits all MIS needs. Progress is trending toward integrated 

hybrid approaches coupled with advances in materials and control algorithms to deliver instruments 

that are simultaneously efficient, precise, compact, cost-effective and safe (Table 3). 

Table 3. Types of Actuators in Minimally Invasive Surgery. 

Actuator Type Mechanism Examples in MIS Advantages Limitations 

Electromechanical 

Actuators 

Electric motors 

(DC, stepper, 

servo) convert 

electrical 

energy into 

precise 

rotary/linear 

motion 

Motor-driven 

robotic arms (e.g., 

da Vinci system) 

High precision, 

controllability, 

reliable 

integration with 

control 

algorithms 

Bulky 

compared to 

other actuators; 

limited 

miniaturization 

in very small 

instruments 

Piezoelectric 

Actuators 

Use 

piezoelectric 

crystals that 

deform under 

electric field to 

generate 

motion 

Ultrasonic scalpels, 

micro-manipulators 

for ophthalmic and 

neurosurgery 

Very high 

precision, fast 

response, 

compact size 

Limited stroke 

length; requires 

high-frequency 

driving voltage 
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Pneumatic 

Actuators 

Compressed air 

generates 

pressure to 

drive linear or 

rotary motion 

Soft robotic 

grippers, inflatable 

balloons for dilation 

Lightweight, 

compliant, safe 

for tissue 

interaction 

Less precise, 

nonlinear 

behavior, 

dependency on 

external air 

supply 

Hydraulic 

Actuators 

Pressurized 

fluid drives 

pistons or 

chambers for 

motion 

High-force surgical 

tools, orthopedic 

robots 

High force 

density, smooth 

motion 

Requires fluid 

lines; potential 

risk of leakage 

inside patient 

environment 

SMA Actuators 

Metals (e.g., 

NiTi alloys) 

change shape 

when heated 

and return 

when cooled 

Steerable catheters, 

flexible endoscopic 

tools 

Miniaturization 

potential, silent 

operation, 

compact 

integration 

Slow response 

time, hysteresis, 

limited 

durability 

under cycling 

Magnetic 

Actuators 

External 

magnetic fields 

manipulate 

embedded 

magnets in 

instruments 

Levita’s MARS 

(magnet-assisted 

surgical system), 

capsule endoscopy 

Wireless 

control, 

minimally 

invasive 

manipulation, 

reduced 

mechanical 

linkages 

Limited force at 

depth, requires 

careful control 

of magnetic 

fields 

Electrostatic 

Actuators 

Electric field 

generates force 

between 

charged 

plates/elements 

Micro-electro-

mechanical systems 

(MEMS) for 

microsurgery 

High precision, 

scalable to 

micro-scale 

Very low force 

output, 

sensitive to 

environmental 

conditions 

Hybrid Actuation 

Systems 

Combine two or 

more actuation 

methods for 

optimized 

performance 

Pneumatic–

hydraulic soft 

robots, 

piezoelectric–

electromagnetic 

micromanipulators 

Balance of 

precision, 

compliance, and 

force 

Complexity in 

design and 

control 

integration 

The integration of AI into actuators in minimally invasive surgery marks the next transformative 

step in this trajectory. Traditionally, actuators respond to direct surgeon inputs. But AI-enabled 

actuators can interpret complex surgical contexts, optimize their own responses, and even anticipate 

the surgeon’s needs. These actuators embed machine learning algorithms into their control systems 

[66]. Such surgical robots can adaptively adjust force, speed, and trajectory in real time. For example, 

an AI-driven actuator could prevent inadvertent tissue damage by automatically limiting applied 
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force when resistance patterns suggest fragile anatomy. In microsurgical procedures, AI-enhanced 

piezoelectric actuators could achieve sub-millimeter accuracy by compensating for tremors or 

predicting motion patterns [67]. This convergence of AI and actuation introduces not only greater 

precision but also an element of autonomous decision support. It gears towards semi-autonomous 

surgical systems that amplify rather than replace the surgeon’s expertise. 

2. Background 

The past two decades have witnessed notable developments in intelligent surgical systems. 

These advances have been driven by progress accomplished in the fields of robotics, augmented 

reality, haptic technology, predictive analytics, computer vision, large language models (LLMs), and 

multimodal AI. Robotic platforms such as the da Vinci Surgical System have transformed urological, 

gynecological, thoracic, colorectal, bariatric and general surgical procedures. The da Vinci Surgical 

System was first introduced in 1999 by Intuitive Surgical, Inc. The first clinical use of the da Vinci 

Surgical System was in 1999, and it received FDA approval in 2000 [68]. 

Systems such as the da Vinci system are harbingers of minimally invasive techniques in surgery. 

These techniques improve precision, tremor filtration, precise implant placement, unbiasedness in 

soft tissue assistance, magnified visualization, optimized resections, diminishment in patient pain, 

blood loss reduction, faster recovery, and surgeon control, confidence, and comfort. More recently, 

orthopedic navigation systems such as ROSA Knee and Mako SmartRobotics have integrated AI-

based planning and intraoperative feedback to augment implant positioning [69]. These 

developments demonstrate that technology has reached a level of sophistication which was merely 

thinkable a decade ago. 

However, despite these advancements, the role of the human surgeon in robotic surgeries 

remains central, as intelligent surgery requires continuous surgeon-centered monitoring to ensure 

safety, adaptability, and ethical responsibility. One of the strongest arguments for human oversight 

lies in the unpredictability of surgical practice. Smart systems show surpassing performance at 

repetitive tasks and structured decision-making but are inherently limited by their training data and 

algorithmic scope. For example, it has been noted that during robotic-assisted cardiac procedures, 

unexpected or rare tissue variations such as calcification and fragility require improvisation beyond 

the programmed parameters of robotic systems [70]. 

Current intelligent technologies have limited capability in recognizing abnormal bleeding 

during surgeries. Some surgical technologies can trigger compensatory suction in the form of a 

remedial action. However, such technologies still lack the competence to devise a novel surgical 

pathway in real time. Only the surgeon’s expertise, developed through effective clinical training and 

sustained professional experience, can adapt strategies under such unpredictable conditions [71,72]. 

Another vital dimension that arises in case of smart robotic surgeries is that of ethical decision-

making and patient-centered judgment. Intelligent algorithms may suggest technically optimal 

interventions but cannot balance them against broader patient values [73]. For instance, in 

neurosurgical oncology, AI-assisted resection planning can recommend wide excision margins to 

maximize tumor clearance. This can increase chances of saving the life of the patient and reduce the 

probability of cancer recurrence or neoplastic metastasis, thus potentially improving their lifespan. 

Yet, a surgeon may decide on a more conservative approach to preserve speech or motor function, 

accepting a slightly higher risk of recurrence in favor of quality of life. This form of moral reasoning 

and context-sensitive decision-making is beyond the capacity of autonomous systems. This makes 

human oversight indispensable in intelligent robotic surgeries. 

The risks inherent to technology itself also underscore the necessity of human monitoring. 

Between 2000 and 2013, the FDA’s MAUDE database documented over 10,000 reports related to 

robotic surgery adverse events, including more than 8,000 device malfunctions, which encompassed 

system errors, instrument failures, and software malfunctions. These malfunctions led to incidents 

such as falling pieces of instruments into patients, electrical arcing, unintended operations of 
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instruments, and video or imaging errors. A comprehensive study found 144 deaths, 1,391 patient 

injuries, and 8,061 device malfunctions reported during this period [74]. 

Although improvements in design have reduced such incidents sine the study was published, 

hardware and software failures stay ineluctable in complex systems. Without a surgeon monitoring 

in real time, such failures could escalate into life-threatening complications. As with aviation, where 

autopilot functionality requires pilot supervision, robot-assisted surgery demands human oversight 

as a fail-safe mechanism against technological vulnerabilities. 

The human connection in surgery is nonpareil. Trust in medicine has been considered a technical 

contract between patient and physician. However, it is really an interpersonal relationship between 

them. In studies of patient perceptions of robotic surgery, individuals consistently report greater 

comfort when assured that their surgeon maintains active control throughout the procedure. A 2024 

review highlighted that the public perceives robotic surgery as riskier and shows reluctance unless 

reassured that a skilled surgeon is ultimately in charge and supervising the robotic system. [75]. This 

finding illustrates that patient confidence depends on the presence of a responsible human operator 

rather than blind reliance on automation. Surgeon-centered monitoring, therefore, is not just a 

technical necessity but a cornerstone of patient trust and therapeutic alliance. 

Intelligent surgical systems have reformed medical operative practice by improving precision, 

minimizing invasiveness, integrating AI-based decision support, fast-tracking routine surgeries, and 

reducing surgical costs for patients, doctors, and medical service providers. Such systems, however, 

must continue to be classified as smart tools rather than autonomous agents. The human surgeon is 

indispensable in providing adaptability to unforeseen complications. He or she exercises ethical 

judgment and mitigates technological risks. These are key to maintain patient trust. Intelligent 

surgery must therefore be guided by surgeon-centered monitoring. Surgical technology must serve 

as augmentation rather than substitution of human expertise. Future innovation should aim at 

strengthening this collaboration. We must ensure that intelligent systems amplify the surgeon’s 

overseeing role in patient care. 

3. Methods 

The development of surgical robotics has entered a phase where the question is no longer 

whether machines can support physicians in complex procedures but how to integrate them without 

undermining human authority. This proof of concept proposes an intelligent actuator system for 

minimally invasive surgery that augments, rather than replaces, the expertise of the surgeon. The 

predominant goal of suggesting this devise is to enhance stability, precision, and efficacy by 

embedding artificial intelligence paradigms such as machine learning and reinforcement learning 

into the actuation pipeline for automation. Despite that, the defining principle of the design is that 

the surgeon remains in command at all times. The robot is framed as a cooperative assistant, never a 

substitute decision-maker. Every design choice is oriented around provable safety, transparent 

behavior, and full auditability. A simple flowchart of the system is provided in Figure 1. The same is 

provided in the numbered pseudocode format in the form of Algorithm 1. 

Algorithm 1: Human-Supervised Intelligent Surgical Actuator System 

Input: 

• Selected mode ∈ {Teleoperation, Shared Control, Supervised Autonomy} 

• Surgeon commands 

• Sensor feedback (force, position, safety signals) 

• System confidence estimate (τ threshold) 

• Dead-man switch state 

Output: 

• Safe execution of motion commands through actuators 

• Possible reversion to Shared Control or system stop on anomaly 

1: function SurgicalControl(Mode, SurgeonCommands, Sensors) 
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2: switch Mode do 

3: case Teleoperation: 

4: Commands ← SurgeonCommands 

5: Commands ← SafetyFilter(Commands) 

6: Actuators ← LowLevelControl(Commands) 

7: Execute(Actuators) 

8: 

9: case Shared Control: 

10: Assist ← Assistance(SurgeonCommands) 

11: Commands ← CommandMix(SurgeonCommands, Assist) 

12: Commands ← SafetyFilter(Commands) 

13: Actuators ← LowLevelControl(Commands) 

14: Execute(Actuators) 

15: 

16: case Supervised Autonomy: 

17: if not PreconditionsMet(Sensors) then 

18: return SurgicalControl(Shared, SurgeonCommands, Sensors) 

19: end if 

20: Commands ← ExecutePolicy(Sensors) 

21: Commands ← SafetyFilter(Commands) 

22: Actuators ← LowLevelControl(Commands) 

23: Execute(Actuators) 

24: end switch 

25: 

26: while TaskNotComplete do 

27: if AnomalyDetected(Sensors) or OverrideDetected() then 

28: StopMotion(<100 ms) 

29: DisableTorque() 

30: return SurgicalControl(Shared, SurgeonCommands, Sensors) 

31: end if 

32: end while 

33: end function 

34: 

35: function EStop() 

36: StopMotion(<100 ms) 

37: DisableTorque() 

38: return SurgicalControl(Shared, SurgeonCommands, Sensors) 

39: end function 

40: function Assistance(SurgeonCommands) 

41: // Apply tremor suppression, virtual fixtures, and force limits 

42: return AssistedCommands 

43: end function 

44: 

45: function CommandMix(SurgeonCommands, Assist) 

46: // Combine raw surgeon input with assistive corrections 

47: return MixedCommands 

48: end function 

49: 

50: function SafetyFilter(Commands) 

51: // Enforce safety constraints (e.g., hard limits, CBF, MPSF) 

52: return SafeCommands 
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53: end function 

54: 

55: function LowLevelControl(Commands) 

56: // Convert commands into actuator-level signals 

57: return ActuatorSignals 

58: end function 

59: 

60: function Execute(Actuators) 

61: // Send actuator signals for motion execution 

62: end function 

63: 

64: function PreconditionsMet(Sensors) 

65: if DeadManPressed(Sensors) = false then return false 

66: if Confidence(Sensors) < Threshold then return false 

67: if not InGreenZone(Sensors) then return false 

68: if not SensorsNominal(Sensors) then return false 

69: return true 

70: end function 

71: 

72: function ExecutePolicy(Sensors) 

73: // Choose bounded primitive or learned RL policy 

74: return PolicyCommands 

75: end function 

76: 

77: function AnomalyDetected(Sensors) 

78: // Check for anomaly, confidence drop, or zone exit 

79: return Boolean 

80: end function 

81: 

82: function OverrideDetected() 

83: // Detect explicit surgeon override 

84: return Boolean 

85: end function 

Clinical procedures such as endoscopic submucosal dissection in gastroenterology and 

microsuturing in urology and gynecology serve as ideal use cases for this design. These tasks are 

constrained and repetitive. Nevertheless, they demand extraordinary delicacy. They manifest a 

setting where shared autonomy can tellingly reduce human workload without lessening the 

surgeon’s control. The envisioned system provides three operational layers. The baseline is pure 

teleoperation, where the robot acts only as a stable intermediary and AI modules annotate the field. 

The default mode is shared control, as shown in Algorithm 1 as well as the flowchart (Figure 1). Here, 

the surgeon specifies goals and the system stabilizes hand motion, suppresses tremor, enforces virtual 

fixtures, and modulates force and velocity. The most advanced mode is supervised autonomy. It is 

designed for brief subtasks such as following a defined cut path or maintaining a safe force threshold. 

Even here, autonomy is permitted only under strict gating conditions. The surgeon must maintain 

active engagement through a dead-man switch, safety constraints must remain unviolated, and 

system confidence must exceed a calibrated threshold. Autonomy halts instantly with a pedal release, 

manual override, or if an anomaly is detected (Table 4). 
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Figure 1. Flowchart of the Proposed Human-Supervised Intelligent Actuator for Minimally Invasive Surgery. 

Table 4. Operational Layers in the Proposed Human-in-the-loop AI Surgical Actuation System. 

Layer Description AI Function Human Oversight 

Teleoperation 
Surgeon drives robot 

manually 

Annotation and 

measurement only 

Full human control; no 

autonomy 
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Shared Control 

Surgeon specifies 

goals; system assists in 

realizing the goals 

Stabilizes motion, 

suppresses tremor, 

enforces virtual fixtures, 

modulates force/velocity 

Surgeon remains 

decision-maker; real-

time assistance 

Supervised 

Autonomy 

Short, bounded 

subtasks, such as 

following a cut path, 

maintaining safe force 

Executes subtasks under 

confidence and safety 

gating 

Surgeon holds the dead-

man switch; instant 

reversion on pedal 

release, override, or 

detection of an anomaly 

The technical foundation of Ai-powered surgical actuation rests on robust instrumentation. 

Miniaturized brushless motors and piezoelectric stacks should deliver precise and backdrivable 

motion. Integrated brakes must ensure safe holds. Multimodal sensing captures six-axis forces, motor 

currents, tissue impedance, and thermal feedback during cautery. Stereovision capability and 

electromagnetic tracking provide tool localization. These inputs support the construction of anatomy-

aware virtual fixtures. These are software guard rails that constrain motion to safe paths. 

On the intelligence side, perception modules are based on fine-tuned foundation models that 

segment tissue layers and vessels in real time. The models report uncertainty to both the surgeon and 

the safety layer. Control modules employ reinforcement learning wrapped in safety filters such as 

control barrier functions or predictive safety shields. This attempts to guarantee that any proposed 

action violating force, velocity, or workspace constraints is automatically rejected. Adaptive 

impedance controllers learn tissue stiffness online to optimize safe interaction. Libraries of learned 

movement primitives execute bounded maneuvers such as knot pulling or fine cutting. Anomaly 

detection combines vision and force data to flag slips, bleeding, or tissue delamination. They trigger 

immediate slow-downs, haptic cues, and surgeon confirmation pipelines. 

The human-machine interface is designed with transparency and trust in mind. Surgeons receive 

confidence-aware overlays that visually fade when algorithmic certainty declines. A three-line status 

display conveys operating mode, safety state, and system confidence. Haptic channels deliver tremor 

suppression, force reflection, and gentle repulsion near prohibited zones. Surgeons can disengage 

autonomy instantly through multiple redundant affordances including foot pedal, clutch, and voice 

command, while continuous force regulation ensures that tissue loading remains within safe limits 

in all modes. Each of these is designed to stop motion within milliseconds (Table 5). 

Table 5. System Architecture, including Instrumentation, AI/ML Inclusion, & Human Factors. 

Component 
Subsystem or 

Function 
Description 

Instrumentation & 

Actuation 

Actuators 
Miniature BLDC or piezo stacks with high reduction, 

backdrivable stages; integrated brakes for safe hold 

Sensing 

6-axis force/torque at the wrist, motor currents, tip pose 

from stereo/endoscopic vision + EM tracker, 

temperature (cautery), and tissue impedance 

Virtual Fixtures 
Software “guard rails” that constrain tool motion to safe 

corridors or planes (anatomy-aware) 

AI/ML Stack 

(Assistive) 
Perception 

Foundation vision model fine-tuned on endoscopic 

video to segment tools, tissue layers, and vessels; 
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uncertainty quantification (MC-Dropout/Deep 

Ensembles) surfaces confidence to UI and safety layer 

Control 

Safety-filtered RL with CBF and Model Predictive 

Safety Filters rejecting unsafe actions; adaptive 

impedance control learning tissue stiffness online; 

learned skill primitives for short, bounded maneuvers 

(knot-pull, micro-cut) 

Anomaly 

Detection 

Multimodal change-point detection on force + vision to 

flag slip, bleeding, or delamination; triggers slow-down, 

haptic cue, and visual alert; requires human 

confirmation 

Human Factors & 

UI 

Visualization 

Confidence-aware overlays: segmentation masks and 

planned trajectories fade with lower confidence; 

threshold surgeon-tunable; three-line status display 

(Mode, Safety, Confidence) 

Haptics 
Tremor suppression, force reflection, gentle repulsion 

near no-go zones 

Takeover 

Affordances 

Foot pedal, clutch button, and voice “Hold” command; 

immediate AI disengage (<10 ms torque disable, <100 

ms motion stop) 

Safety is codified at several layers. These include hard interlocks constrain tip speed and force, 

software shields filter all learned policies, and mode guarding prevents autonomy outside verified 

green zones. High explainability is maintained. On-demand cards summarize path plans, segmented 

structures and active constraints are present, post-hoc counterfactuals show what would have 

occurred without safety filtering. A failure-protected devise, similar to a full black-box recorder in a 

flight, logs all data streams, surgeon inputs, and software versions. This device supports audit, 

quality assurance, and incident investigation. Development practices are aligned with international 

standards for medical devices, risk management, usability, and cybersecurity. The requirement of 

continuous human supervision is formalized in hazard analyses and design controls (Table 6). 

Table 6. Safety, Explainability, and Compliance Features. 

Category Description 

Safety Envelope 
Hard limits on tip speed, force, and workspace enforced via control barrier 

functions (CBFs); software cannot override hardware interlocks 

Action Shields 
All reinforcement learning outputs pass through a safety supervisor that 

enforces constraints and rate limits 

Mode Guarding 
Autonomy permitted only in labeled “green zones” with verified anatomy; 

exiting a zone forces immediate reversion to shared control 

Explainability 

On-demand “Why now?” cards display planned path, top segmented 

structures, confidence, and active constraints; post-hoc counterfactuals show 

what the controller would have done without safety filters 

Audit & 

Traceability 

Black-box recorder logs sensor data, commands, model versions, and 

surgeon inputs to support quality assurance and root-cause analysis 
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Standards-aligned 

Development 

Compliance with ISO 14971 (risk management), IEC 62366 (usability 

engineering), IEC 60601 (electrical/EMC), IEC 62304 (software lifecycle), and 

FDA cybersecurity guidance; human supervision is formally required in 

hazard analysis and design inputs, and autonomy cannot be enabled without 

active human engagement 

Validation should stress realism and rigor. Perception modules are pretrained on large surgical 

video corpora and fine-tuned for organ-specific subtasks. Reinforcement learning models are trained 

in high-fidelity simulation using photo-realistic digital twins and finite-element tissue models. Bench 

testing begins with synthetic phantoms. It measures accuracy, path error, and tissue interaction 

forces. It progresses to ex vivo tissue models that evaluate cut quality and hemostasis. User studies 

compare novice and expert surgeons in different modes of operation. Metrics including workload, 

error rates, override frequency, and tissue damage scores are employed for evaluation. Strict stopping 

rules ensure that safety interventions and unacknowledged anomalies automatically pause 

autonomous features (Table 7). 

Table 7. Data, Training, and Validation for the Proposed Actuator System. 

Category Description Metrics / Evaluation 

Datasets 

Curated endoscopic/laparoscopic pictures/videos 

with pixel-wise labels (tissue layers, vessels), 

Microscopic biopsy images etc. may also be used; 

synchronized force/position logs and adverse-event 

tags should be used for training. 

Supports perception 

training and RL 

supervision; enables 

anomaly detection 

Training 

Protocols 

Pretrain perception on large surgical video corpora; 

fine-tune per organ/site. Train RL in digital twin 

simulation (photo-real endoscopy + tissue Finite 

Element Method or FEM) with domain 

randomization; deploy with safety filter 

Accuracy of segmentation, 

RL adherence to 

force/velocity constraints, 

confidence calibration 

Bench 

Tests 

Assess accuracy, peak force, path error; Ex-vivo 

tissue: evaluate cut quality, hemostasis using 

synthetic phantoms (artificial models that simulate 

human tissues, organs, or anatomical structures). 

Path error, peak and mean 

force, tissue damage, 

constraint violations 

User 

Studies 

Novice and expert surgeons perform tasks across 

modes. Simulate novice and expert surgeon 

performance in a realistic, reproducible way using 

human-in-the-loop testing on synthetic phantoms 

combined with adjustable system parameters and AI-

augmented tools. 

Task time, path error, 

max/mean force, tissue 

damage score, constraint 

violations, override 

frequency, NASA-TLX 

workload 

Stopping 

Rules 

If any safety-filter intervention exceeding threshold 

per minute; if any unacknowledged anomaly pauses 

autonomy 

Ensures safe human 

oversight; triggers session 

pause 

Milestones progress from baseline teleoperation with virtual fixtures, through shared control 

and supervised autonomy, to cadaveric studies under institutional review. They culminate in risk-

refined prototypes suitable for regulatory pre-submission (Table 8). 
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Table 8. Proposed Milestones Table for the Development of a Human-in-the-loop Design Intelligent Actuator 

for Minimally Invasive Surgery. 

Proposed Milestones 

(M) 
Description Evaluation / Deliverable 

M1: Teleoperation 

Baseline teleoperation with full 

sensing and virtual fixtures on 

bench phantom 

Verify accurate motion, force limits, 

and path following; initial usability 

feedback 

M2: Shared Control 

Tremor suppression, force 

limits, and anatomy-aware 

virtual fixtures 

Measure path error, force adherence, 

and surgeon workload reduction; refine 

UI overlays 

M3: Supervised 

Autonomy 

Primitives 

Short micro-task automation 

under pedal-hold and 

confidence gating 

Evaluate task execution accuracy, 

safety filter performance, and override 

response 

M4: Ex-vivo 

Evaluation 

Complete system tested on ex-

vivo tissue models 

Assess cut quality, hemostasis, 

constraint violations, and human-

factors outcomes 

M5: Cadaver Lab & 

Regulatory Prep 

IRB-approved cadaver studies; 

refine risk controls; pre-

submission to regulators 

Document compliance with safety 

standards; produce human-factors 

report and prepare submission package 

The research agenda that unfolds from this concept prompts uncertainties that are both technical 

and human-centered. It queries whether reinforcement learning under safety filters compares with 

classical impedance control in terms of constraint adherence and surgeon workload. It stimulates an 

argument whether confidence-aware visualization adequately reduces unnecessary interruptions 

and improves tissue handling or not. It voices reservations on the patterns and efficacy of the 

overrides which are supposed to serve as predictors of near-miss events. It asks whether the interface 

proactively cues surgeon attention. Addressing such subjects should not only sharpen the technology 

but also refine the principles of supervised autonomy in surgery. 

The system should deliver not just a prototype robot but a framework. The project provides 

open-source safety modules. It also provides formal proofs demonstrating adherence to operational 

constraints. Curated multimodal datasets for perception and control will also be used. This will 

support reproducibility and enabling further research. Human-factors studies will supply evidence 

that surgeon workload can be reduced without compromising authority over the procedure. At its 

core, the work articulates a contract of supervised autonomy. The robot must declare its intent, 

disclose its confidence, and accept immediate human veto. When such an ethos is embedded, the 

project positions itself as a blueprint for the future of intelligent surgical robotics. 

4. Discussion 

The proposed human-in-the-loop surgical actuator blueprint demonstrates design and technical 

feasibility. However, several limitations warrant careful consideration. The actuators, although 

miniaturized and compact, may still face constraints in extreme microsurgical spaces [76,77]. This 

may limit their applicability in procedures with ultra-confined anatomy such as capillaries in eyes 

[78]. Teleoperation, even when enhanced with AI-based overlays, relies heavily on the surgeon’s 

ability to interpret augmented visual cues [80]. Misalignment between AI annotations and actual 

tissue states could create subtle cognitive burdens [81]. Supervised autonomy, while gated by dead-

man switches and confidence thresholds, may not be able to entirely eliminate risks associated with 

unmodeled tissue behavior and unexpected intraoperative events. The formalized provable 
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constraint enforcement offers a layer of protection. Despite that, its assurances are bound to model 

accuracy and sensor fidelity. This may leave substantial residual uncertainty in dynamic, patient-

specific conditions. 

Human factors, in spite of safeguards such as confidence-aware visualization, multimodal 

anomaly detection, immediate override options, etc. present auxiliary challenges. Surgeons must 

remain continuously attentive [82,83]. The cognitive load of monitoring confidence overlays and 

status indicators may partially offset workload reduction [84,85]. Thresholds for autonomy gating, 

such as confidence and force limits, require cautious standardization [86]. Overly conservative 

settings may deteriorate efficiency. On the other hand, permissive thresholds may increase safety 

risks. The supervised-autonomy contract is conceptually robust [87]. But it depends on strict 

adherence to operational protocols. It may also be difficult to enforce consistently in high-stress 

surgical environments. 

Validation protocols, including simulation, phantoms, ex-vivo tissue, and cadaver studies, are 

limited by their fidelity to real clinical scenarios. Tissue properties, bleeding dynamics, and 

unexpected anatomical variation are further difficult to replicate fully [88,89]. This can inflate 

performance estimates in controlled environments. The integration of AI paradigms such as ML and 

reinforcement learning into surgical control systems introduces software complexity, time lag, and 

potential for emergent failures [90,91]. This requires rigorous long-term monitoring and iterative 

refinement [92–94]. The system is designed to be auditable, transparent, and patient-centered. 

However, possible limitations accentuate the fact that AI-assisted surgical actuation cannot replace 

the nuanced judgment of the human surgeon [95,96]. 

5. Conclusions 

Our work advances a surgeon supervised paradigm for intelligent actuation in minimally 

invasive surgery. It addresses the absence of explicit supervision contracts, the need for provable 

safety wrapped around learning based control, and practical pathways for adaptive assistance that 

preserve surgeon authority. We introduce a conceptual architecture that couples compact, 

backdrivable actuation and multimodal sensing with an AI stack for perception and control. It is 

governed by a formalized supervised autonomy contract. The system operates across three modes, 

teleoperation with AI overlays, shared control with tremor suppression and anatomy aware virtual 

fixtures, and tightly bounded supervised autonomy. Each of these is gated by surgeon engagement, 

confidence thresholds, and real time safety checks. 

The crux of the design is a layered safety framework that pairs reinforcement learning and 

learned skill primitives. These are accompanied with constraint-enforcing filters, enforced limits on 

workspace, immediate human override through redundant affordances, continuous force regulation 

to protect tissue, and confidence-aware AI guidance for responsible decision support. Confidence-

aware visualization, multimodal anomaly detection, logging, and predictive intent modeling provide 

transparency, auditability, surgeon-centric situational awareness, anticipatory decision support, and 

adaptive safety assurance. 

Nevertheless, there are possible drawbacks to look out for in such a proof of concept. Safety 

guarantees are bounded by model fidelity, sensing quality, sim-to-real transfer, unmodeled tissue 

variability, and latency in human-robot interaction. Extreme microsurgical workspaces and 

unmodeled events have the potential to challenge the performance of the robotic system. Vigilance 

demands may shift cognitive load rather than eliminate it. To overcome the limitations, early results 

must be interpreted watchfully and rigorously confirmed in larger, diverse studies. 

The constraints underscore our framing of AI as an augmentative assistant in place of an 

autonomous decision maker in surgeries. We believe that the future work should focus on robust 

clinical validation. Stronger formal guarantees for contact rich interaction, such as passivity layers 

with verifiable reinforcement learning should also be considered and incorporated. Data 

infrastructure, such as privacy-preserving multi-institutional amalgamated super-datasets, 

standardized annotations, open benchmarks, interoperable data formats, and reproducible 
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evaluation pipelines can prove essential. Regulatory strategies that support controlled model updates 

will also help. 
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