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Abstract

This study uses extensive operational data to analyze Bayesian approaches for predicting photovoltaic
module degradation. It emphasizes the application of Bayesian statistics, which incorporates prior
knowledge and uncertainty in modeling degradation. Key model selection criteria, such as the Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC), are highlighted for determining
effective predictive models. The mechanical theory section discusses factors contributing to degra-
dation, including thermal stress and environmental influences. Three levels of Bayesian models are
introduced: Level 1 employs basic techniques, Level 2 uses advanced models like hierarchical Bayesian
models, and Level 3 explores complex techniques such as Bayesian networks. A comparative analysis
evaluates model performance using the Widely Applicable Information Criterion (WAIC), AIC, and
BIC criteria. This study demonstrates that while linear models are often sufficient for capturing
the degradation of photovoltaic systems, complex models are advantageous for addressing nonlin-
ear degradation phenomena, ultimately enhancing predictive maintenance strategies for improved
reliability and longevity.

Keywords: photovoltaic systems; Bayesian modeling; degradation analysis; Markov Chain Monte
Carlo; regression models; Weibull distribution

1. Introduction

Understanding the degradation patterns in photovoltaic (PV) systems is crucial for ensuring their
long-term performance and reliability [1]. Various factors, including potential-induced degradation,
environmental conditions, and aging effects, can influence degradation in PV systems [2]. To gain
insights into these degradation patterns, advanced modeling techniques are employed. In this study,
we emphasize the application of Bayesian linear regression as a robust approach for analyzing degra-
dation patterns in photovoltaic systems, highlighting how Bayesian principles enhance traditional
linear regression methods by incorporating prior knowledge and enabling probabilistic interpretations
of the results.

Bayesian modeling offers a flexible probabilistic framework for analyzing complex systems,
allowing for the incorporation of prior knowledge and updating of beliefs based on observed data.
By applying Bayesian modeling to PV systems, we can capture the uncertainties associated with
degradation processes and estimate the underlying degradation mechanisms [3]. This article aims to
provide an overview of the application of Bayesian modeling in understanding degradation patterns
in PV systems. We explore how Bayesian inference algorithms can be used to analyze degradation
mechanisms, estimate degradation rates, and predict the remaining useful life of PV modules. By
leveraging Bayesian statistics, we can gain valuable insights into the complex degradation processes
and develop strategies for optimizing system design, maintenance, and operation. Previous work has
demonstrated the effectiveness of Bayesian functional modeling for diagnostic applications in power
electronics, such as recognizing fault types in VSC DC cables [4].
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The core of the article focuses on the visualization and analysis of the Bayesian models. This
includes comparing basic models to advanced models, exploring the use of Markov Chain Monte
Carlo (MCMC) techniques, and analyzing the models using different R libraries, such as rstanarm and
brms.

The article explains how leveraging Bayesian statistics can provide valuable insights into the
complex degradation processes and assist in developing strategies for optimizing system design,
maintenance, and operation. The article then delves into the technical aspects, starting with a literature
review that sets the stage for the subsequent sections. This is followed by a discussion of the mechanical
theory underlying the degradation processes in PV systems, which informs the selection of appropriate
degradation models.

Finally, the article concludes by summarizing the key insights gained through the application of
Bayesian modeling in understanding degradation patterns in PV systems. The conclusions highlight
the benefits of this approach and its potential for optimizing system design, maintenance, and operation
to enhance the long-term performance and reliability of PV systems.

2. Photovoltaic Systems and Their Degradation

Understanding the causes and associated problems of degradation in photovoltaic systems
is critical for implementing effective maintenance protocols, troubleshooting methodologies, and
optimization strategies for these energy systems [5]. Operationalizing these strategies inevitably
involves scheduling inspections, repairs, and replacements under practical constraints; heuristic
decision-making remains a robust approach for such scheduling problems [6].

Figure 1 illustrates a model of a photovoltaic system, focusing on the electrical characteristics
and environmental conditions impacting its performance. This schematic representation includes key
components and parameters essential for understanding how a PV module operates.

Figure 1. Model of a photovoltaic system.

The resistor symbol labeled Rs models the internal resistance of the PV cells in series, affecting
current flow. The resistor symbol labeled Rp represents the leakage current paths across the PV cells,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.2206.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2025 d0i:10.20944/preprints202509.2206.v1

30f33

impacting voltage. Blocks labeled with i and v measure the output current and voltage from the PV
module.

The block labeled PV represents the mathematical model of the PV module, taking temperature
(T), irradiation (G), and voltage (V) as inputs to calculate current (I). Exposure to UV radiation, thermal
cycling, and physical wear can degrade the PV cells, reducing efficiency over time and leading to
lower power output and reduced energy conversion efficiency [7].

Increased Rs can occur due to corrosion or damage to cell interconnections. Higher series
resistance reduces the current output, leading to power losses. Rp might decrease due to moisture
ingress or material degradation, increasing leakage currents [8]. Lower Rp results in reduced voltage
and overall energy output.

Table 1 provides a detailed overview of various degradation causes in PV systems, encompassing
environmental factors, material fatigue, and operational stresses, along with their corresponding

problems.
Table 1. Photovoltaic panel failure causes and associated problems.

Cause Problem
Potential-Induced Degradation [9] Ion migration and conductive paths
Aging and Environmental Factors [10]  Premature deterioration
Hot and Humid Climates [11] Delamination and diode/box issues
Improper Tooling and Maintenance [12] Damage to components
Light-Induced Degradation [13] Loss of its rated wattage output
Bypass Diode Fault Leakage current under temperatures

Potential-induced degradation occurs due to a high voltage potential difference between the
module and the ground, leading to ion migration and conductive paths [14]. This phenomenon impacts
the performance and lifespan due to the accumulation of positive charges near the surface [15]. It can
induce a reverse bias in the p-n junction, reducing the cell’s output voltage and ultimately its power
output [3].

Aging of solar cells may lead to degradation and reduction in efficiency over time [16]. Factors
such as temperature fluctuations, high humidity, storms, and corrosion from salt in coastal areas
contribute to the degradation of solar cells [17]. The ion mobility accelerates with humidity and
temperature, increasing the potential-induced degradation effect.

Modules in hot and humid climates show higher degradation modes, leading to issues like
delamination, diode/box issues, and encapsulant discoloration [18]. The voltage potential and sign
of the module have an impact on the potential-induced degradation occurrence. It depends on the
position of the panel in the array and the system earthing [19].

Improper tooling and maintenance practices can lead to damage to components within the system
[20]. Inadequate maintenance may result in physical damage to critical components. Using tools that
are not calibrated correctly for precise measurements can lead to inaccuracies [21].

Light-induced degradation may lead to a loss of the solar panel’s rated wattage output over
time [22]. This degradation is caused by the exposure of the solar cells to light, which triggers
chemical reactions that reduce the panel’s efficiency and power output. Light-induced degradation is
particularly prevalent in certain types of solar cells [23].

A bypass diode fault can result in leakage current under elevated temperatures, affecting the
performance of photovoltaic modules. The fault may lead to increased leakage current [24]. However,
if a bypass diode becomes faulty [? ], it can introduce additional resistance and increase the leakage
current, leading to power losses and potential overheating.

High temperatures exert a detrimental influence on the electrical performance of PV modules.
As ambient temperature increases, the voltage output of the modules experiences a decline, which
directly correlates to a reduction in overall power generation.
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This phenomenon is quantitatively expressed through the temperature coefficient of efficiency,
which indicates that for every degree Celsius increase in temperature, the efficiency can decrease by
approximately 0.1% to 0.5 [25]. Consequently, under elevated temperature conditions, PV modules
may fail to deliver the anticipated energy output, adversely affecting their overall effectiveness in
harnessing solar energy.

In addition to impacting electrical performance, increased temperatures can induce thermal stress
within the materials constituting the PV modules [2]. Different components, such as glass, encapsulant,
and semiconductor materials, exhibit varying thermal expansion coefficients.

Differential expansion can lead to physical damage, including micro-cracks, delamination, and, in
severe cases, complete module failure over time. Such structural degradation not only compromises
the module’s performance but may also significantly shorten its operational lifespan, necessitating
earlier replacements and escalating maintenance costs.

3. Literature Review

Understanding the degradation processes of photovoltaic (PV) systems is crucial for optimizing
their performance and longevity. Degradation modeling serves as a vital tool in this context, enabling
researchers and practitioners to predict how various factors affect the efficiency and lifespan of PV
modules.

Table 2 presents an overview of different approaches used for degradation modeling in photo-
voltaics, including statistical inference, dynamic prediction, and machine learning. Each article listed
is associated with a specific method and technique employed for degradation modeling.

Table 2. Articles on photovoltaic panel modeling degradation.

Method Technique References
Dynamic prediction Hidden Markov Models ~ [26-30]
Statistical inference Factor Analysis, Regres- Factor Analysis [31? -33], Regression Anal-

sion Analysis, MCMC ysis [11,34,35], MCMC [36,37]
with probabilistic pro-
gramming

Machine Learning Reinforcement learning, Reinforcement learning [38-41], Deep
Deep Learning, Super- Learning [8,42,43], Supervised learning
vised learning, Cluster [44,45], Cluster Analysis [46,47]
Analysis

This comprehensive overview not only highlights the advancements in modeling techniques but
also underscores the importance of selecting appropriate methods tailored to specific degradation
scenarios in PV systems.

The distribution of articles indicates a diverse range of methodologies being explored in the
degradation modeling of PV panels, with a significant focus on statistical and machine learning
approaches. This diversity reflects the multifaceted challenges inherent in accurately modeling and
predicting the performance of PV systems over time.

Statistical methods have been widely utilized to analyze degradation patterns and predict perfor-
mance decline. These approaches often involve regression analysis, survival analysis, and time-series
modeling, which allow researchers to quantify degradation rates and identify significant factors influ-
encing performance. They provide a foundational understanding of degradation phenomena, enabling
practitioners to make informed decisions regarding maintenance and replacement.

In recent years, machine learning has emerged as a powerful tool for enhancing degradation
modeling. These techniques leverage large datasets to uncover complex patterns and relationships that
traditional statistical methods may overlook. Machine learning models, such as neural networks and
support vector machines, can be trained on historical performance data to predict future degradation
more accurately.
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Comparative analyses of various machine learning approaches have demonstrated their ability to
achieve lower mean absolute errors in degradation predictions compared to conventional methods.
This capability is particularly valuable as the deployment of PV systems increases globally, necessitating
more precise forecasting to optimize performance and investment returns.

The balance between statistical and machine learning methodologies underscores the complexity
of degradation modeling in photovoltaics. As the field evolves, integrating these approaches may
lead to more robust models that can better account for the variability in environmental conditions,
manufacturing differences, and operational stresses that affect PV performance. This integration is
crucial for advancing the reliability and efficiency of photovoltaic systems, ultimately contributing to
the broader goal of sustainable energy generation.

3.1. Hidden Markov Models

Hidden Markov Models (HMMs) are statistical models widely used for modeling time-series
data where the system being modeled is assumed to be a Markov process with hidden states. They
are particularly useful in scenarios where the system’s states are not directly observable but can be
inferred through observable data.

HMMs have been applied in various fields, including biological sequence analysis, logistics, and
machine learning. Applications in photovoltaic systems include fault diagnosis in solar panels, tem-
perature prediction in floating PV systems, degradation pathways in organic photovoltaics, redundant
fault diagnosis using IRT sensors, and performance analysis in PV modules.

For example, in [48], HMMs were employed to predict and diagnose parametric faults in solar
panel strings using low-cost sensors. This approach allowed for the modeling of dynamic fault
behavior, enabling accurate predictions and proactive fault diagnosis. Researchers in [49] used HMMs
to predict the temperature of photovoltaic modules under floating PV conditions. By modeling the
complex relationships between humidity, seawater flow, and evaporation, they accurately predicted
temperature changes over time.

In [50], HMMs were used to investigate degradation pathways for organic photovoltaics at
different temperatures. This method helped model transitions between degradation states, providing
insights into degradation mechanisms and optimizing system performance. In [51], a redundant fault
diagnosis approach was described using IRT sensors. HMMs were used to analyze thermal patterns to
detect abnormal behavior or faults, enhancing the reliability of photovoltaic systems. In [52], HMMs
modeled transitions between performance states of photovoltaic modules based on environmental
conditions, offering insights into dynamic degradation patterns.

3.2. Factor Analysis

Factor analysis is a statistical method used to identify underlying relationships between variables
by reducing data dimensionality. It is often used to uncover latent variables that explain observed
patterns in data. This technique is valuable in fields such as psychology, finance, and engineering
for simplifying complex datasets and identifying key factors. Applications in photovoltaic systems
include degradation analysis of rooftop PV modules, electrochemical degradation in bifacial silicon
modules, cluster analysis for failure mode assessment, and review of degradation assessment methods.

In [53], data visualization techniques were used to analyze degradation data of aged rooftop
photovoltaic modules. This approach facilitated the identification of patterns and trends over time. In
[54], factor analysis was employed to investigate electrochemical degradation modes in bifacial silicon
photovoltaic modules. The technique identified underlying factors contributing to degradation and
classified different modes based on these factors.

In [55], cluster analysis was utilized to assess the severity of photovoltaic failure modes. By
clustering failure modes based on severity and impact, researchers prioritized risk areas and developed
targeted mitigation strategies. In [56], recent research on degradation assessment and diagnosis
methods for solar PV plants was reviewed. Factor analysis was used to identify underlying factors
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contributing to degradation, categorizing different assessment methods based on these factors. This
review provided a comprehensive overview of the field’s current state.

3.3. Regression Analysis

Regression analysis is a robust statistical technique employed to model and analyze the relation-
ships between a dependent variable and one or more independent variables [57]. This method is
essential for quantifying the nature and strength of these relationships, as well as for making informed
predictions based on empirical data.

In the context of photovoltaic systems, regression analysis finds numerous applications. It is
instrumental in conducting failure and performance analyses of PV modules, where researchers can
model the relationship between environmental factors (such as temperature and irradiance) and the
performance metrics of the panels [58]. This modeling helps in identifying thresholds beyond which
performance may significantly degrade.

Moreover, regression techniques are pivotal in the long-term degradation modeling of photo-
voltaic panels. Researchers can estimate degradation rates and predict future performance under
varying operational conditions by analyzing historical performance data. This predictive capability
is crucial for lifecycle assessments and for informing maintenance schedules, thereby enhancing the
reliability and efficiency of PV systems.

In [59], the researchers used regression analysis to analyze the failures and performance of
different aged PV modules under northern Algerian climate conditions. This approach helped identify
relationships between aging and performance, leading to the development of recommended solutions.
In [60], the researchers employed regression analysis to model the relationship between the age of
photovoltaic modules and their degradation patterns. This provided insights into the long-term
performance and reliability of the modules.

In [61], the researchers conducted an environmental impact assessment on a hybrid energy system,
considering performance degradation. By using Bayes” Theorem as a statistical inference technique,
they analyzed the probability of different environmental impacts based on the degradation of system
components, including photovoltaic modules.

3.4. Markov Chain Monte Carlo with Probabilistic Programming

Markov Chain Monte Carlo (MCMC) is a class of algorithms used for sampling from probabil-
ity distributions, particularly in Bayesian inference. Probabilistic programming is a programming
paradigm that allows for the specification of probabilistic models and the use of MCMC techniques to
perform inference on these models. This combination enables the analysis of complex systems and
the quantification of uncertainty in model parameters and predictions. Applications in photovoltaic
systems include degradation analysis of c-Si PV systems and degradation patterns in tropical climates.

In [62], the researchers used MCMC to analyze the relationship between the degradation of
c-Si photovoltaic systems and factors such as temperature, humidity, and solar radiation. Regression
analysis was employed to identify the key variables contributing to degradation and develop predictive
models. In [63], the researchers analyzed the degradation of photovoltaic modules in Dhaka’s tropical
wet and dry climate conditions. By using MCMC with probabilistic programming, they inferred the
degradation patterns and estimated the probabilities of different degradation modes for mono c-Si,
poly c-5i, and thin-film modules.

3.5. Reinforcement Learning

Reinforcement learning is a machine learning technique that involves an agent learning to take
actions in an environment to maximize a reward. The agent interacts with the environment, receives
feedback in the form of rewards or penalties, and learns to make decisions that lead to the most
favorable outcomes. This approach is particularly useful in complex, dynamic environments where
the optimal actions are not known a priori. Applications in photovoltaic systems include predictive
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fault diagnosis for ship PV systems, optimization of Fresnel-concentrated PV systems, degradation
prediction under future climate conditions, and comparative analysis of PV designs and advancements.

In [5], the researchers used reinforcement learning to train models to learn the patterns and
behaviors of ship photovoltaic module systems. This enabled them to predict and diagnose potential
faults in real time. The researchers in [64] employed reinforcement learning to optimize the operation
of Fresnel-concentrated photovoltaic systems, minimizing degradation and maximizing performance.

In [65], the researchers used reinforcement learning to simulate and optimize the behavior of
photovoltaic modules in response to changing environmental conditions, allowing them to predict
degradation patterns and develop mitigation strategies. In [13], the researchers used a comparative
analysis technique to evaluate and compare alternative designs and technological advancements of
phase change material-integrated photovoltaics, providing insights into the potential benefits and
drawbacks of each approach.

3.6. Deep Learning

Deep learning is a subset of machine learning that involves the use of artificial neural networks
with multiple hidden layers. These deep neural networks are capable of learning complex patterns
and representations from large datasets, making them particularly effective in tasks such as image
recognition, natural language processing, and predictive modeling. Applications in photovoltaic sys-
tems include degradation and energy performance modeling, performance and degradation analysis
of grid-connected solar PV plants, and defect detection in solar panels.

In [66], the researchers used deep learning to develop predictive models for assessing the degra-
dation patterns and energy performance of mono-crystalline photovoltaic modules in the Egyptian
context. In [67], the researchers employed deep learning techniques to analyze data from a large-scale
grid-connected solar photovoltaic power plant in a tropical semi-arid environment in India, identifying
patterns and anomalies indicative of system degradation.

The researchers in [68] focused on using deep learning techniques for the automatic detection of
various types of defects in solar panels, leveraging the ability of deep learning models to learn complex
patterns from data.

3.7. Supervised Learning

Supervised learning is a type of machine learning where the algorithm is trained on a labeled
dataset, meaning the input data is paired with the desired output or target variable. The goal is to
learn a mapping function that can accurately predict the output for new, unseen input data. Super-
vised learning algorithms are widely used in tasks such as classification, regression, and prediction.
Applications in photovoltaic systems include fault diagnosis in photovoltaic systems and electrical
parameter degradation prediction.

In [69], the researchers compared the performance of different supervised learning algorithms for
fault diagnosis in photovoltaic systems. By training models to classify and diagnose various types of
faults based on input data like voltage, current, and temperature measurements, they were able to
improve the reliability and performance of the systems.

In [70], the researchers analyzed the influence of passivation and solar cell configuration on the
electrical parameter degradation of photovoltaic modules. Using supervised learning techniques, they
trained models to predict degradation patterns based on these factors, providing insights into the
relationship between design choices and module performance.

3.8. Cluster Analysis

Cluster analysis is an unsupervised machine learning technique that aims to group similar data
points based on their characteristics. By identifying natural groupings or clusters within the data,
cluster analysis can provide insights into the underlying structure and patterns, which can be useful
for tasks such as segmentation, anomaly detection, and exploratory data analysis. Applications in
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photovoltaic systems include potential-induced degradation evaluation and comparative degradation
analysis under different climates.

In [71], the researchers used cluster analysis to group photovoltaic modules based on their
potential-induced degradation characteristics. This allowed them to identify the underlying factors
contributing to the polarization, which is crucial for understanding and mitigating degradation in
these modules.

In [72], the researchers employed cluster analysis to group crystalline silicon photovoltaic modules
based on their degradation patterns. By identifying common characteristics or factors that contribute
to the degradation, they were able to compare the performance of modules under different climatic
conditions.

These articles highlight the diverse range of methodologies used for degradation modeling,
showcasing the interdisciplinary nature of research in this field. By exploring these approaches,
researchers gained insights into the strengths and limitations of different methods and selected
appropriate techniques for their specific degradation modeling tasks.

By understanding temperature-related degradation mechanisms, stakeholders can implement
targeted interventions to enhance the resilience and efficiency of PV systems, ultimately optimizing
their performance in varying environmental conditions.

Data sourced from Kaggle, specifically the dataset titled Solar Power Generation Data provided by
Aditya Raj Agrawal, offers empirical insights into these degradation effects. The dataset, registered in
May 2020, includes solar power generation data for a specific plant collected at 15-minute intervals
over a 34-day period.

The DC and AC power outputs are illustrated in Figure 2, while Figure 3 presents the irradia-
tion levels alongside module and ambient temperatures. Notably, periods during which parameter
values exhibit declines indicative of degradation in the photovoltaic system are highlighted in red,
providing a visual representation of the correlation between temperature fluctuations and performance
degradation.
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Figure 2. DC and AC power outcome.
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Figure 3. Module and ambient temperature with irradiation.

4. Selection of Degradation Models

In the field of modeling degradation in photovoltaic systems, the choice of appropriate models is
crucial in understanding and predicting the performance of these systems over time [73]. The selection
of models at different levels, including basic, mid-advanced, and advanced methods, is essential to
capture the diverse degradation patterns observed in photovoltaic systems [74]. The available data for
photovoltaics analysis, such as DC power, AC power, ambient temperature, module temperature, and
irradiation over time, presents a rich source of information for model development and validation.

The basic models for degradation estimation in photovoltaic systems include linear, quadratic,
and Poisson regression. These models are tailored to align with the fundamental presumptions under-
pinning the data and the observed degradation patterns [75]. They are well-suited for capturing both
linear and non-linear relationships between input characteristics and the target variables, providing a
foundational understanding of degradation processes in photovoltaic systems.

Moving to the mid-advanced level, the selection includes the Weibull Model, linear model,
generalized linear model (GLM), and hierarchical generalized linear model (HGLM) [75]. These
methods are chosen based on their ability to capture more complex degradation patterns [76]. The
flexibility of the Weibull model, the non-linear capabilities of GLMs, and the suitability of HGLMs
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for capturing hierarchical structures and dependencies in degradation data make them appropriate
choices for mid-advanced degradation estimation.

At the advanced level, the chosen methods involve MCMC RStan Sampling and MCMC brms
Sampling of the linear model, GLM, and HGLM. These advanced techniques are justified based on
the need to address complex degradation patterns and to ensure a more sophisticated approach to
parameter estimation [77]. The MCMC sampling techniques provide a robust framework for estimating
the parameters of the selected models, aligning with the critical aspect of model selection in machine
learning and the need to choose a suitable model for the problem and the dataset at hand.

4.1. Basic Models

The selection of basic models such as linear, quadratic, and Poisson regression for degradation
estimation in PV systems aligns with the fundamental presumptions underpinning the data and the
issue [78]. These models are consistent with the simple degradation patterns observed in PV systems
and are well-suited for capturing linear and non-linear relationships between input characteristics and
the target variable [76]. The use of these basic models is in line with the principle of recognizing the
presumptions that various models make and ensuring that the chosen model is consistent with these
presumptions.

4.1.1. Linear Regression

Bayesian linear regression is a form of conditional modeling where the mean of one variable
is expressed as a linear combination of other variables [79]. The primary objective is to obtain the
regression coefficients” posterior probability and enable out-of-sample regression prediction.

The Bayesian approach involves supplementing the data with additional information to derive
more accurate predictions and account for data uncertainty [67]. It also incorporates prior knowledge
to provide more precise estimates of the data.

The Bayesian technique has been successfully applied in various domains and is known for its
mathematical robustness [29]. It is particularly valuable when there is a need to ascertain the prior
probability for model parameters and obtain a full range of inferential solutions, unlike traditional
regression methods.

4.1.2. Quadratic Regression

In the context of non-linear photovoltaic degradation patterns, the Bayesian approach to quadratic
regression involves the utilization of priors and posterior distributions to model the relationship
between the independent and dependent variables [35]. Unlike traditional frequentist methods, the
Bayesian approach incorporates uncertainty as a fundamental part of the modeling process, providing
a formal and consistent way to reason in the presence of uncertainty.

The application of Bayesian quadratic regression in real-world scenarios has shown promise
in capturing non-linear degradation patterns, particularly in the context of photovoltaics and other
non-linear systems [54]. By leveraging the probabilistic nature of the Bayesian approach, researchers
and practitioners have been able to gain deeper insights into the non-linear relationships between
variables and develop more accurate predictive models for degradation patterns.

4.1.3. Poisson Regression

The application of Bayesian Poisson regression in anomaly detection within photovoltaic degra-
dation patterns has shown promise in capturing and modeling count data characteristics [50]. Studies
have shown that the Bayesian approach to regression, particularly in non-linear contexts, can lead
to improved modeling accuracy compared to traditional frequentist methods [80]. By accounting for
uncertainty and leveraging prior information, the Bayesian quadratic regression can provide more ro-
bust and accurate estimates of the non-linear degradation patterns, leading to more reliable predictive
models.
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4.1.4. Weibull Model

When applying the Bayesian approach to the Weibull model, the focus is on leveraging Bayesian
principles to estimate the parameters of the Weibull distribution and incorporate prior knowledge into
the modeling process [8]. This integration of Bayesian principles enables a more comprehensive and
flexible framework for degradation estimation, especially in scenarios where the degradation patterns
exhibit diverse characteristics.

Bayesian principles offer flexibility in handling complex degradation patterns, allowing for the
inclusion of additional parameters or covariates to capture various factors influencing degradation in
PV systems [65]. This adaptability is instrumental in accurately modeling diverse degradation patterns
and estimating degradation over time.

4.2. Mid-Advanced Methods

The mid-advanced methods, including the Weibull model, generalized linear model (GLM), and
hierarchical generalized linear model (HGLM), are chosen based on their ability to capture more
complex degradation patterns [62]. These models are selected after considering the assumptions,
constraints, and hyperparameters unique to each model, as well as the need to choose a model that
is good enough for the problem [12]. The flexibility of the Weibull model, the non-linear capabilities
of GLMs, and the suitability of HGLMs for capturing hierarchical structures and dependencies in
degradation data make them appropriate choices for mid-advanced degradation estimation.

4.2.1. Linear Model

The Bayesian approach to modeling the degradation of photovoltaics for linear models involves
the integration of prior information with data to propose hierarchical Bayesian models that capture the
nonlinear degradation paths observed in photovoltaic systems [77]. This approach offers a powerful
tool for accurately capturing and estimating the intricate degradation patterns observed in photovoltaic
data. Linear models include Bayesian change-point regression models and Bayesian bi-exponential
models, which are designed to capture the intricate degradation patterns observed in photovoltaic
systems [79]. This holistic approach to degradation modeling encompasses various factors, including
aging issues and the impact of degradation on solar PV performance.

4.2.2. Generalized Linear Model (GLM)

The Bayesian approach allows for the estimation of non-linear degradation patterns within GLMs,
providing a powerful framework for capturing the complexities of degradation over time in PV systems
[64]. This flexibility is crucial in accurately modeling the non-linear degradation that is often observed
in PV systems. The application of Bayesian GLMs in PV systems degradation estimation provides
a mechanism to account for uncertainty in degradation estimation, especially when dealing with
non-linear patterns [77]. The probabilistic nature of GLM allows for a more nuanced understanding
of the uncertainties associated with the degradation process in PV systems, leading to more reliable
estimates and predictions.

4.2.3. Hierarchical Generalized Linear Model

Hierarchical Generalized Linear Models are advanced statistical models that extend the capabili-
ties of Generalized Linear Models to accommodate hierarchical or nested data structures [31]. In the
context of photovoltaic degradation data, HGLMs are particularly valuable for capturing complex de-
pendencies and hierarchical structures that may exist within the data, providing a more comprehensive
framework for degradation estimation in diverse scenarios [51] .

The Bayesian approach enables HGLMs to effectively capture complex dependencies and hierar-
chical structures within photovoltaic degradation data[63]. This is particularly valuable in scenarios
where the degradation patterns exhibit intricate relationships and dependencies across multiple levels,
such as spatial or temporal dependencies, which are common in photovoltaics degradation data.
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4.3. Advanced Methods

The advanced methods involve Markov Chain Monte Carlo (MCMC) sampling techniques for
estimating parameters of linear, GLM, and HGLM models [38]. Specifically, the difference between
the usage of MCMC RStan sampling and MCMC brms sampling lies in the underlying software and
interfaces used for Bayesian regression modeling.

The MCMC RStan sampling technique utilizes Stan as the MCMC sampler, providing a powerful
framework for Bayesian regression modeling [81]. Stan is a probabilistic programming language for
statistical modeling and high-performance statistical computation which provides flexibility in specify-
ing prior distributions, likelihood functions, and model structures, allowing for the incorporation of
domain knowledge and prior information into the modeling process.

4.4. MCMC Sampling with brms and Model Evaluation

On the other hand, MCMC brms sampling leverages the brms package, which interfaces with
Stan to fit Bayesian generalized (non-)linear multivariate multilevel models [12]. It supports the
fitting of various models, including linear, robust linear, count data, survival, response times, ordinal,
zero-inflated, hurdle, and self-defined mixture models.

In this study, we rigorously tested the MCMC sampling techniques of RStan and brms within
the frameworks of linear models, generalized linear models, and hierarchical linear models. This
evaluation aims to assess the performance and applicability of these techniques in fitting Bayesian
regression models across various modeling scenarios.

4.5. Visualization of Models

The models discussed include linear regression, quadratic regression, Poisson regression, Weibull
models, generalized linear models, and hierarchical linear models. Each employs different mathemat-
ical approaches to capture the relationships between predictor variables and PV panel degradation
outcomes. Table 3 summarizes the prediction goals and potential mathematical formulas used for each
model, where X denotes predictor variables, Y denotes degradation, B, «, A are parameters, and ¢ is

time.
Table 3. Goals and formulas of used models.
Model Type Prediction Goal Mathematical Formula
Linear Regression Predicts continuous response Y = Bo+ 1 X1+ BoXo+ ...+ BuXy + €

variables (e.g., efficiency)
based on predictors.
Quadratic Regression  Captures non-linear relation- Y = B+ 1 X + B2 X +¢
ships by including squared
terms of predictors.
Poisson Regression Models count data related log(A) = Bo+ B1X1+BaXo+ ...+ BuXn
to degradation events (e.g.,
number of failures).

Weibull Model Analyzes time-to-event out- f(ta, ) = g(%)ﬁ et/
comes related to degradation
(e.g., lifespan).
Generalized Linear Examines complex data struc- ¢(E(Y)) = Bo+ B1X1 + ... + BnXn
Model tures with various response
distributions.
Hierarchical Linear Accounts for nested data Yij = Bo+ P1Xij + uj + €
Model structures and variability

among groups.
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In hierarchical linear models, i represents individual observations within a group and j represents
the different groups or clusters. u; represents the random effect associated with the j-th group,
capturing variability among groups not explained by fixed effects, and €;; is the residual error term for
the i-th observation in the j-th group.

In the context of hierarchical linear models, Y;; denotes the response variable for the i-th observa-
tion in the j-th group, while X;; represents the predictor variable for the i-th observation in the j-th
group. The term u; signifies the random effect associated with the j-th group, and ¢;; is the error term
for the i-th observation in the j-th group.

Moreover, in broader regression contexts, X represents the predictor variables, Y indicates degra-
dation, and various parameters such as 8, «, and A are utilized to define the relationships and
characteristics of the models. Here, t refers to time, particularly in time-to-event analyses like the
Weibull model.
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Figure 4. Linear regression model.
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Figure 5. Quadratic regression model.
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Figure 8. Generalized linear model.

4.6. Analysis of Models

In this section, we compare the linear, quadratic, and Poisson regression models with the Weibull
model, focusing on the provided estimates, standard errors, t-values, and p-values. Figure 9 presents
the residuals, including minimum, 1Q, median, 3Q, and maximum values, which are essential for
assessing the goodness of fit and the distribution of errors in the models.

Linear Regression Summary Statistics Square Regression Summary Statistics
10 10
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t.05216 -z 05617 e
v 0 i -1.4804 .-~ e 0 b3 -1.4520. -~
Z . - E] . -
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Figure 9. Residual analysis in basic models.

Figure 10 displays the coefficients, including Estimate, Std. Error,  value, and Pr(> |t|), providing
insights into the significance and impact of the predictor variables in the regression models.
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Figure 10. Coefficient analysis in basic models.

The comparison sheds light on the suitability of each model for analyzing survival data and
estimating reliability, particularly in the context of photovoltaic degradation. Additionally, we consider
the implications of the model comparisons for understanding the behavior of systems over time and
the estimation of hazard functions.

The findings indicate that the presence of negative values in linear and quadratic models suggests
that they can predict outcomes falling below a certain baseline or threshold. In contrast, the Poisson
model exhibits a narrower range and lower median, indicating a more conservative approach in its
estimates, likely capturing the distribution of low-frequency events. Meanwhile, the Weibull model
outputs entirely positive values, emphasizing the magnitude or duration of phenomena rather than
their frequencies.

4.7. Regression Models: Residuals and Coefficients

When comparing regression models, it is important to consider their performance in terms of
residuals. Residuals are the differences between the observed values and the predicted values from
the regression model. By examining the distribution of residuals, we can assess how well the model
fits the data and identify any patterns or discrepancies.

Based on the provided estimates, standard errors, t-values, and p-values, we can make some
observations about the regression models and their relationship to photovoltaic degradation. However,
it is important to note that without additional context or information about the specific variables and
data used in the models, it is difficult to draw definitive conclusions.

In the linear regression model, the positive estimate for the module temperature suggests that
as the temperature increases, there is a positive effect on the response variable (possibly related
to photovoltaic degradation). The p-value for the module temperature indicates that this effect is
statistically significant at a certain level of significance.
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The quadratic regression model does not show a significant relationship between the intercept
and module temperature variables, as indicated by the high p-values. This suggests that the quadratic
regression model may not be a good fit for explaining photovoltaic degradation based on the provided
data.

The Poisson regression model shows a statistically significant relationship between the intercept
and module temperature variables, as indicated by the p-values. A low p-value suggests that the
relationship is unlikely to be due to chance.

The Weibull distribution, being a probability distribution rather than a regression model, provides
estimates for the intercept and module temperature parameters. The estimates suggest a relationship
between the variables. The statistically significant p-value for the module temperature indicates that
this relationship is also likely not due to chance.

4.8. Weibull Model Compared to Regression

The Weibull model is commonly used in reliability analysis, including the analysis of photovoltaic
degradation. It can be used to analyze the degradation of photovoltaic modules by estimating the
failure rate or hazard function over time, providing insights into the reliability and lifetime of the
modules.

Comparing minimum, 1st quartile, median, 3rd quartile, and maximum values, we can see that the
Weibull distribution has significantly larger values compared to the regression models. The minimum
value of the Weibull distribution is already larger than the maximum values of the regression models.
The quartiles and median of the Weibull distribution are also much higher.

4.9. Three Types of Linear Models

In this section, we compare the linear, generalized, and hierarchical linear models. Similar to
the basic models section, Figure 11 contains the residuals and Figure 12 presents the coefficients.
These coefficients offer valuable insights into the significance and influence of the predictor variables
incorporated within the regression models.
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Figure 11. Residual analysis in linear models.
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Figure 12. Coefficient analysis in linear models.

The analysis of the summary statistics for the linear models reveals that they yield identical
results, suggesting that the choice of the model may not significantly impact the interpretation of the
data in this case. This uniformity indicates that simpler models may suffice when the data does not
exhibit complex relationships.

4.10. Comparing Basic Models to Advanced Models

The linear models show a significantly higher maximum residual compared to basic models,
indicating that they may better capture the variability in the data. However, the presence of zeros in
the minimum and first quartile suggests that these models may also be more robust in certain contexts,
potentially reducing the impact of outliers.

While basic models provide a straightforward approach to regression analysis, they may struggle
with complex datasets, as indicated by their wider range of residuals. In contrast, linear models offer
enhanced flexibility and robustness, making them suitable for more intricate data relationships. The
choice between these models should be guided by the specific characteristics of the data and the goals
of the analysis.

4.11. Markov Chain Monte Carlo Models

The results from the MCMC RStan analysis provide a comprehensive view of the estimated
parameters, namely alpha, beta, and sigma. Figures 13, 14, 15, 16, and 17 depict the mean parameter
estimates and their associated standard errors across the various chains. These visualizations are
essential for interpreting the reliability of the estimates and understanding the model’s performance,
laying the groundwork for further inferential statistics and decision-making.
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Figure 13. MCMC parameter estimates (chain 1).
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Figure 14. Standard Error for MCMC RStan.
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MCMC Rstan Parameters Values
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Figure 15. MCMC RStan Parameters Values.
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Figure 16. Estimates for MCMC RStan Parameters.
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Estimates for MCMC Rstan Parameters
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Figure 17. Elapsed Time for MCMC RStan.

The MCMC RStan results shown in Figure 13 indicate that the parameter estimates for alpha, beta,
and sigma are stable and precise across the different chains. The low standard errors and standard
deviations, as shown in Figure 14, further support the reliability of these estimates. The visualizations
created using ggplot2 provide a clear and effective means of communicating these findings.

Figure 15 provides clear evidence of the stability and reliability of the MCMC parameter estimates
across the four chains. The consistent values for alpha, beta, and sigma, along with their low standard
deviations, indicate that the MCMC process has performed effectively. This enables researchers to
confidently use these parameter estimates for further analysis and decision-making processes in their
modeling efforts.

The findings from Figure 16 indicate that both alpha and beta parameters are well estimated with
high precision, while sigma and log posterior values provide important context regarding the model’s
fit and reliability.

The stability and precision of these estimates reinforce confidence in the results derived from the
MCMC sampling process, paving the way for further analysis or decision-making in the modeling
efforts.

Figure 17 presents that while chains 1 and 2 exhibit longer warm-up durations, chains 3 and 4
show greater efficiency in processing, especially during the warm-up phase. This insight is crucial
for refining MCMC configurations in future analyses, as it underscores the significance of tracking
elapsed times to facilitate effective model fitting.

Figure 18 shows the elapsed time for MCMC brms.
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Estimates for MCMC brms Parameters
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Figure 18. Elapsed Time for MCMC brms.

Figure 19 provides an informative summary of the MCMC parameter estimates across different
chains. The consistency in the alpha, beta, and sigma parameters suggests that the model is stable
and reliable. The slight variations in the log posterior standard deviations across chains indicate some
uncertainty, which is important for understanding the model’s fit.
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Figure 19. MCMC brms Parameters Values.

Figure 20 provides clear evidence of the stability and reliability of the MCMC parameter estimates
across the three parameters. The negative intercept suggests a significant baseline effect, while the
estimates for DC Power and DC Power E2 indicate minimal to no effect. The convergence of the chains
and the highly effective sample sizes further support the reliability of these estimates.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.2206.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 September 2025 d0i:10.20944/preprints202509.2206.v1

23 of 33

Elapsed Time for MCMC brms

Chain 1 Chain 2
12.5 10.791 10.293
10.0 T .
6.849
—_ 75 5.511 5.280 [ ]
8 5.0 * . 3.544
E *
8 25
1]
& 0.0
o
E Chain 3 Chain 4
F125
o
°10.0
& 7.5 5 687
T 4764
5.0 4218 b 3632 .
25 1.469 1.131
* L ]
0.0
Warm-up Sampling Total Warm-up Sampling Total

Measurement Type

Figure 20. Estimates for MCMC brms Parameters.

Figure 18 shows that while chains 1 and 2 show longer warm-up times, chains 3 and 4 demonstrate
more efficient processing, particularly in the warm-up phase. This information could be valuable for
optimizing MCMC configurations in future analyses, as it highlights the importance of monitoring
elapsed times to ensure efficient model fitting. The stability and efficiency of the MCMC process are
crucial for obtaining reliable estimates, and this plot effectively illustrates those dynamics.

The MCMC RStan results indicate that the parameter estimates for «, §, and ¢ are stable and
precise across the different chains. The low standard errors and standard deviations further support
the reliability of these estimates. The visualizations created using ggplot2 provide a clear and effective
means of communicating these findings.

Figure 17 provides clear evidence of the stability and reliability of the MCMC parameter estimates
across the four chains. The consistent values for «, B, and ¢, along with their low standard deviations,
indicate that the MCMC process has performed effectively. This enables researchers to confidently use
these parameter estimates for further analysis and decision-making processes in their modeling efforts.

5. Comparing Usage of Different Libraries in R

By comparing the MCMC results from both RStan and brms, as shown in Figures 19, 20, and 18,
we can draw deeper insights into the model’s efficacy and reliability, paving the way for informed
conclusions and recommendations based on these findings, particularly in terms of model fitting,
performance, and usability.

The standard errors of the mean for the chains in brms are generally larger than those in RStan,
indicating that the RStan model may have more precise estimates for the parameters.

Both models report R values close to 1.00, indicating good convergence. However, the brms model
shows slightly higher Bulk and Tail Effective Sample Sizes (ESS), suggesting better mixing and more
reliable estimates.

The brms model took significantly longer to run, with total sampling times ranging from 5.28
seconds to 10.791 seconds per chain. In contrast, the RStan model completed in about 2.365 seconds to
3.808 seconds per chain. This suggests that RStan may be more efficient for certain models, particularly
when computational resources are limited.

The brms library for MCMC is designed to be user-friendly, allowing users to specify models
using a formula syntax similar to that of base R functions. This makes it accessible for users who
may not be familiar with the Stan programming language. RStan, while powerful, requires a deeper
understanding of Stan’s syntax and model specification, which can be a barrier for some users.
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Both packages leverage Stan’s robust MCMC algorithms, but brms offers a wider range of built-in
distributions and link functions, making it suitable for a broader array of modeling scenarios.

5.1. Comparing Advanced Models to Previous Models

The AIC, BIC (Bayesian Information Criterion), and WAIC (Widely Applicable Information
Criterion) metrics serve as critical tools for model evaluation [63], and Table 4 summarizes them
because AIC is flexible and suitable for exploratory analyses, BIC is conservative and favors simpler
models, and WAIC is robust for complex Bayesian models, making each criterion valuable in different
modeling contexts.

Table 4. Summary of AIC, BIC, and WAIC.

Criterion Basic Models Linear Models Advanced Models
AIC 1545.032 (Weibull) to co (Pois reg) ~14,195.6 3.353 x 107 (MCMC RStan)
BIC 1556.42 (Weibull), co (Pois reg) ~14,219.82 3.353 x 107 (MCMC RStan)

WAIC 1543.032 (Weibull), co (Pois reg) ~14,193.6 -

Formulas for AIC, BIC and WAIC are calculated by formulas (1), (2) and (3)

AIC = 2k2In(L) 1)
BIC = In(n)k*2In(L) 2)
WAIC = —2) (In(p(y;(6)) Var(In(p(yi(6)))) 3)

where k is the number of parameters in the model, L is the maximum likelihood of the model, 7 is
the number of observations in the dataset, p(y;|0) is the posterior predictive distribution for the ith
observation given the parameters 6 and Var(In(p(y;|6))) is the variance of the log of the posterior
predictive distribution, which accounts for uncertainty in the predictions.

Table 4 summarizes the AIC, BIC, and WAIC values for different categories of models, including
basic, linear, and advanced models. It highlights the performance of each model type, indicating which
models yield the best fit based on these criteria.

Basic models generally provide better AIC values than linear and advanced models, suggesting
they may be more suitable for the data. Basic models outperform linear and advanced models in terms
of BIC, indicating they may be more appropriate for the dataset. Basic models again show superior
WAIC values compared to linear and advanced models.

The analysis suggests that basic models, particularly the Weibull model, are not only more
effective in fitting the data but also demonstrate a more appropriate balance of complexity and fit
compared to linear and advanced models.

AIC is calculated using the formula, where k is the number of parameters in the model and L is
the likelihood of the model [44]. AIC is best used in exploratory analyses where capturing the best
fit is crucial, particularly in smaller datasets where the risk of overfitting is lower [18]. The penalty
for complexity in AIC is moderate, allowing for a balance between model fit and complexity [26]. It
encourages the inclusion of additional parameters if they significantly improve the model’s likelihood.

BIC is ideal for situations where simplicity is prioritized to avoid overfitting and enhance in-
terpretability [58]. The term log(n)k increases the penalty for complexity as the sample size grows,
making BIC more conservative in model selection [34]. BIC imposes a high penalty for complexity,
particularly in larger datasets, which discourages the use of overly complex models [28]. This makes it
more stringent than AIC in terms of model selection.

WAIC is calculated using the formula, where p(y;|0) represents the posterior predictive dis-
tribution [70]. This approach focuses on the model’s predictive performance rather than just the
likelihood.
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The penalty for complexity in WAIC is variable and depends on the model’s predictive accuracy
[61]. It adapts to the model’s ability to generalize to new data, making it less rigid than AIC and BIC.
WAIC is most effective in evaluating complex Bayesian models, particularly hierarchical structures, by
providing a robust measure of predictive performance while accounting for parameter uncertainty
[71].

Figure 21 shows informative criteria values for each kind of model. The consistently lower values
for basic models suggest they effectively balance these aspects.

AIC, BIC, and WAIC Values for Different Models

AlIC
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Figure 21. AIC, BIC, and WAIC Values for Different Models

MCMC models provide a robust framework for evaluating model fit through AIC, BIC, and WAIC.
While basic and linear models may yield lower values for these criteria in certain contexts, MCMC
allows for a more nuanced assessment of model performance by incorporating the entire posterior
distribution of parameters.

AIC values range from 1545.032 (Weibull) to Inf (Poisson regression), indicating that the Weibull
model performs best among basic models. AIC values are significantly higher for linear models, with
all models around 14195.6, suggesting a poorer fit than basic models. MCMC RStan has an extremely
high AIC of 33531673, indicating a very poor fit.

BIC values also show the Weibull model as the best performer (1556.42), while the Poisson model
is not applicable (Inf). BIC values are consistently high (around 14219.82) for linear models, indicating
a poor fit relative to basic models. MCMC RStan’s BIC is similarly high (33531697), reinforcing its poor
fit.

WAIC values indicate the Weibull model (1543.032) as the best, while the Poisson model is not
applicable (Inf). WAIC values are consistent with AIC and BIC, showing high values around 14193.6
for linear models. WAIC for MCMC RStan is not provided, but the high AIC and BIC suggest a poor
fit.

Linear models rely heavily on assumptions such as normality of residuals and homoscedasticity.
MCMC models, on the other hand, are less sensitive to these assumptions, making them more robust
in various scenarios. This robustness can result in more reliable AIC, BIC, and WAIC values, as MCMC
models can still perform well even when the data do not meet the stringent assumptions required by
linear models.
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MCMC models can accommodate complex and hierarchical structures that basic and linear
models may struggle to represent. This flexibility allows MCMC to model non-linear relationships and
interactions more effectively, which can lead to better-fit metrics. Although basic models may show
lower AIC, BIC, and WAIC values, they often do so at the expense of oversimplifying the underlying
data structure. MCMC’s ability to model complexity can ultimately lead to more accurate predictions
and insights.

The evaluation of model performance through AIC, BIC, and WAIC metrics reveals that the
Weibull model consistently demonstrates superior fit among basic models, making it the most reliable
choice for analysis. In contrast, both linear models and advanced models like MCMC RStan exhibit
significantly poorer fits, as evidenced by their elevated AIC and BIC values.

This analysis underscores the necessity of careful model selection, as choosing a model with a
better fit can greatly enhance the validity and reliability of statistical findings. Ultimately, the results
advocate for prioritizing the Weibull model in future analyses while exercising caution with more
complex models that do not provide a better fit.

6. Model Performance Comparison

The Weibull model is the top performer among basic models, showing the best fit across AIC, BIC,
and WAIC metrics. Linear models demonstrate significantly poorer fits compared to basic models,
with consistently high AIC and BIC values.

The MCMC RStan model has extremely high AIC and BIC values, indicating a very poor fit and
highlighting the need for caution in using advanced models that do not improve upon basic models.

Basic models are more effective than linear models, indicating that simpler models may be more
appropriate for the data. They are favored over advanced models, indicating that simpler approaches
may yield better results.

Table 5 comprehensively compare various statistical models based on their performance metrics.
The models are categorized into three groups: Basic Models, Linear Models, and Advanced Models.
Each table highlights the fit of these models to the dataset, providing insights into their effectiveness
and suitability for analysis. The conclusions drawn from these comparisons will guide researchers in
selecting the most appropriate modeling approach for their data.
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Comparison

Basic Models

Linear Models

Advanced Models

Basic vs. Linear Mod-

Basic models demon-

Linear models show

The stark contrast in

els strate significantly high values across fit metrics suggests
lower AIC, BIC, all criteria, suggest- that basic models are
and WAIC values, ing they may not be preferable over linear
indicating a better fit. ~ suitable for the data. models.

Basic vs. Advanced Basic models out- Advanced models, par-

Models perform  advanced ticularly MCMC RStan,
models in AIC, BIC, do not provide a better
and WAIC, with fit than basic models.
MCMC RStan show- The high values for ad-
ing extremely high vanced models suggest

Linear vs. Advanced
Models

values.

Linear models show
high AIC, BIC, and
WAIC values, similar
to advanced models.

they may not be neces-
sary given the perfor-
mance of basic models.

Advanced models do
not significantly out-
perform linear models
based on the provided

metrics. The perfor-
mance of both model
types suggests that nei-
ther is particularly ef-
fective for the dataset.

There is little distinction in performance between linear and advanced models, indicating a need
to reevaluate model choice. While basic models may provide lower AIC, BIC, and WAIC values in
some cases, MCMC models offer significant advantages in terms of flexibility, robustness, uncertainty
quantification, and predictive performance.

These benefits make MCMC a powerful tool for model selection and evaluation, particularly in
complex datasets where traditional models may fall short. Therefore, despite the current findings
favoring simpler models, the potential of MCMC models should not be overlooked, especially in
scenarios where a deeper understanding of the data is required.

7. Conclusions

The paper provides a comparison of Bayesian models used for degradation modeling in photo-
voltaic systems. It has yielded several significant findings regarding the analysis of regression models
and their implications for understanding the relationship between DC power and response variables.

The significance of DC power varies across different regression models, with notable effects
in Linear and Weibull models, but not in the Quadratic model. This suggests that model choice is
critical in interpreting results. The analysis of residuals reveals distinct distributions across models; the
Poisson model has lower medians and a narrower range compared to Linear and Quadratic models,
which include negative values. This highlights the importance of model selection based on data
characteristics. In medium-advanced models, linear models produced identical results, indicating that
simpler models may be sufficient when data relationships are not complex.

The GLM and HGLM models introduced a significant quadratic effect, suggesting more complex
relationships than the linear model, underscoring the need for model complexity based on data
behavior. The MCMC RStan results show stable and precise parameter estimates across different
chains, with low standard errors, reinforcing the reliability of these estimates for further analysis.

The use of plots to illustrate regression results and residual distributions enhances comprehension
and facilitates a better understanding of model behavior. The article provides a thorough comparison
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of basic and linear models, showcasing the implications of model choice on interpreting relationships
within data.

The evaluation of MCMC chains for both RStan and brms models offers valuable insights into
the performance and reliability of Bayesian analysis techniques. By highlighting the significance of
model choice, the article contributes practical guidance for researchers in selecting appropriate models
based on their data’s characteristics. The findings contribute to a methodological framework for
analyzing regression models, emphasizing the need to consider both complexity and the underlying
data characteristics.

Future research could explore other regression models beyond those analyzed, such as mixed-
effects models, to assess their performance and significance of DC power. Investigating the findings
with larger and more diverse datasets could provide insights into model robustness and generalizability
across different contexts. The predictive modeling approach presented here complements recent
studies on energy consumption forecasting in complex infrastructures [82]. Our predictive model
yields accurate estimates of failure rates under operational conditions. Yet, translating predictions into
actionable strategies requires system-level integration. Similar integrated approaches of forecasting
plus decision support have been demonstrated in domains such as budget planning, marrying time-
series methods and BI tools to assist operational decisions [83].

Future studies could focus on optimizing MCMC configurations further by analyzing elapsed
times and efficiency across various datasets to enhance model fitting processes. Additionally, future
research could delve deeper into non-linear relationships and interactions between variables, utilizing
more complex models to uncover hidden patterns in the data.

Incorporating machine learning techniques alongside traditional statistical models could enhance
predictive performance and allow for more nuanced analyses of complex relationships in data.
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BIC Bayesian Information Criterion
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