
Article Not peer-reviewed version

Automated Sleep Spindle Analysis in

Epilepsy EEG Using Deep Learning

Nikolay V. Gromov , Albina V. Lebedeva * , Artem A. Sharkov , Anna D. Grebenyukova , Anton E. Malkov ,

Svetlana A. Gerasimova , Lev A. Smirnov , Tatiana A. Levanova * , Alexander N. Pisarchik *

Posted Date: 25 September 2025

doi: 10.20944/preprints202509.2116.v1

Keywords: sleep spindles; epilepsy; automatic analysis; automatic segmentation; U-Net; SlumberNet; SEED

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/3550204
https://sciprofiles.com/profile/2016876
https://sciprofiles.com/profile/4425032
https://sciprofiles.com/profile/2622356
https://sciprofiles.com/profile/3559582
https://sciprofiles.com/profile/2875916
https://sciprofiles.com/profile/1082363


Article

Automated Sleep Spindle Analysis in Epilepsy EEG
Using Deep Learning
Nikolay V. Gromov 1 , Albina V. Lebedeva 1,2,* , Artem A. Sharkov 1,3,4 ,
Anna D. Grebenyukova1,6,4 , Anton E. Malkov 1,5 , Svetlana A. Gerasimova 1 ,
Lev A. Smirnov 1 , Tatiana A. Levanova 1,* , and Alexander N. Pisarchik 7,*

1 Research Center in the Field of Artificial Intelligence, Lobachevsky State University of Nizhny Novgorod, Russia;
2 Privolzhsky Research Medical University, Russia;
3 Department of Psychoneurology and Epileptology, Veltischev Research and Clinical Institute for Pediatrics and Pediatric

Surgery of the Pirogov Russian National Research Medical University, Russia;
4 Department of Neurology, Genomed, Russia;
5 Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Russia;
6 Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russia;
7 Center for Biomedical Technology, Universidad Politécnica de Madrid, Spain.
* Correspondence: lebedeva@neuro.nnov.ru (A.V.L.); tatiana.levanova@itmm.unn.ru (T.A.L.);

alexander.pisarchik@upm.es (A.N.P.)

Abstract

Sleep spindles, together with K-complexes, are hallmark oscillatory events observed in electroen-
cephalographic (EEG) recordings during stage N2 sleep. Alterations in spindle characteristics, in-
cluding frequency, amplitude, duration, and density, are frequently reported in epilepsy and may
reflect underlying disturbances in thalamocortical network function. Quantitative analysis of these
alterations has the potential to improve our understanding of epileptiform activity and support the
development of clinically useful biomarkers. In this work, we present an automated framework for
sleep spindle analysis in EEG recordings from both healthy subjects and patients with epilepsy. The
framework integrates deep learning architectures (1D U-Net, SlumberNet, and SEED) with statistical
evaluation methods to address two complementary tasks: (i) spindle segmentation and (ii) direct
regression-based prediction of spindle characteristics. The proposed approach was validated on two
datasets: the open-access Montreal Archive of Sleep Studies (MASS) and a custom clinical database of
pediatric epilepsy patients acquired at the Video-EEG Laboratory “Genomed” (Moscow, Russia). Our
results demonstrate that while both convolutional and hybrid recurrent–convolutional architectures
achieve comparable overall F1-scores, their precision–recall profiles differ substantially. This enables
a principled, context-specific selection of models, with U-Net favoring high sensitivity and SEED
favoring high precision. Moreover, we show that segmentation-based pipelines consistently outper-
form direct regression (segmentation-free) approaches for characteristic prediction. These findings
provide methodological guidance for the optimal deployment of deep learning models in sleep spindle
analysis and establish a foundation for robust, automated, and clinician-independent EEG biomarkers
in epilepsy.

Keywords: sleep spindles, epilepsy, automatic analysis, automatic segmentation, U-Net, SlumberNet,
SEED

1. Introduction
Sleep spindles are transient oscillatory events in the electroencephalogram (EEG), typically

observed during non-rapid eye movement (NREM) stage 2 sleep (N2), where they occur together with
K-complexes as distinctive hallmarks of neuronal activity. They appear as sinusoidal cycles in the
9–16 Hz range, lasting on average 0.5–3 seconds, with their spindle-shaped envelope inspiring their
name [1–3]. Generated primarily through thalamocortical interactions, spindles are considered cortical
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correlates of thalamic function and are thought to reflect the strength and plasticity of thalamocortical
networks [2]. They play an essential role in sleep continuity, memory consolidation, and synaptic
plasticity, while suppressing external sensory input and facilitating neural reorganization [4–6]. Spindle
dynamics also develop characteristic profiles across the lifespan, paralleling cortical maturation [2].
Numerous studies have demonstrated strong associations between spindle activity and cognitive
performance, including memory, information processing speed, and IQ [7,8], with fast spindles (12–
16 Hz) linked to efficient memory consolidation and information processing [5,9]. Abnormal spindle
activity has been reported in neurological and psychiatric disorders, with epilepsy being a notable case
where altered spindle generation may reflect pathological thalamocortical reorganization [8,10,11].

Altered spindle mechanisms have been observed in epilepsy, where activity and quantitative
parameters can be disrupted [12]. Although mechanisms are not fully understood, several consistent
findings have emerged. Spindle density may decrease in certain epilepsies, often coinciding with
spike–wave discharges (SWD) [13], which are characteristic 3–4 Hz bilateral events in idiopathic
generalized epilepsies [14]. In childhood epilepsy with centrotemporal spikes, reduced spindle activity
anticorrelates with spike frequency [15]. Spindle frequency can also be modulated by antiepileptic
drugs [16], while increased spindle duration has been observed immediately before seizures in noctur-
nal frontal lobe epilepsy [11]. Together, these findings suggest that spindle activity changes may serve
as biomarkers of epileptic foci. Beyond simple measures such as frequency or count, comprehensive
characterization, including duration, amplitude, spatial distribution, and localization, may provide
deeper insights into neural dynamics in both health and disease [17].

Despite this importance, spindle research faces persistent challenges. As noted in [18], limited
dataset sizes, inconsistent reporting, and poor agreement on detection methodologies complicate
studies. EEG analysis is inherently time-intensive, often resulting in small datasets, and highlighting
the need for automated spindle detection to increase diagnostic accessibility while reducing expert
burden.

Deep neural networks (DNNs) now represent the state of the art in spindle detection, surpassing
wavelet-based methods [20,32–35] and classical machine learning [36–39]. Traditional approaches
rely on hand-crafted features [19,22,23], which are labor-intensive and prone to bias. By contrast,
DNNs learn hierarchical features directly from raw data, minimizing manual design and improving
scalability [24–26]. Nevertheless, current models face limitations, including high false positive rates,
poor generalizability across datasets due to protocol differences, and computational demands that
hinder clinical adoption. These challenges underscore the need for robust, efficient, and clinically
viable deep learning models.

The aim of this work is to analyze sleep spindles in EEG recordings from healthy subjects and
patients with epilepsy using deep learning. We evaluate different network architectures for automated
spindle detection under two strategies: (i) a segmentation-based pipeline, where spindles are first
detected and then characterized, and (ii) a segmentation-free pipeline, where spindle characteristics
are predicted directly from raw EEG. Performance is assessed using precision, recall, and F1-score to
determine the most suitable framework for clinical use. Using the optimal approach, we then compare
spindle characteristics between epilepsy patients and controls to investigate alterations in spindle
dynamics.

The remainder of this paper is organized as follows. Section 2 described the materials and datasets.
Section 3 details the methodology. Section 4 presents experimental results, including architecture
comparison, evaluation of segmentation-based versus segmentation-free approaches, and spindle
alterations in epilepsy. Section 5 discusses the implications of our findings, and Section 6 summarizes
conclusions and outlines directions for future work.

2. Materials and Data Recording Details
In this study, we perform a retrospective analysis of video-EEG recordings obtained from the

archive of the Video-EEG Laboratory Genomed (Moscow, Russia). Recordings were acquired during
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both wakefulness and sleep, with functional activation tests included when clinically indicated. The
monitoring duration for each subject ranged from 3 to 10 hours. EEG was recorded using the Neuroscope
system (Russia), with electrodes positioned according to the international 10–20 system.

2.1. Ethics Statement

All study procedures were reviewed and approved by the Bioethics Committee of the Institute
of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod.
The study was conducted in accordance with the Declaration of Helsinki and relevant institutional
guidelines.

2.2. Participants

A total of 24 individuals were included in the study: 12 patients with a confirmed diagnosis of
epilepsy and 12 neurologically healthy controls.

Both groups were further stratified into the following age cohorts:

• Early childhood (1–3 years): 2 patients (ages 2 and 3),
• Preschool age (4–6 years): 3 patients (ages 4, 5, and 6),
• Primary school age (7–11 years): 6 patients (ages 7, 8, 8, 8, 8, and 10),
• Adolescence (12–18 years): 1 patient (age 12).

The median age in both groups was 7.5 years (range: 2–12 years).

2.3. Data Acquisition and Automatic Preprocessing by Neuroscope Software

EEG recordings were reviewed using both bipolar and monopolar (referential) montages to enable
complementary assessment of spatial and temporal activity patterns. The acquisition and display
parameters were set as follows:

• Sweep speed: 30 mm/s
• Sensitivity: 7–15 µV/mm
• Low-frequency cutoff: 0.5 Hz
• High-frequency cutoff: 70 Hz
• Notch filter: 50 Hz (to suppress power-line interference)

Automatic preprocessing was performed using the Neuroscope software, which applied stan-
dardized filtering and artifact reduction procedures to ensure signal quality and consistency across
recordings.

2.4. Sleep Spindle Annotation

Ten-minute segments of stage N2 non-REM sleep, characterized by rhythmic spindle activity
(9–15 Hz) in fronto-central and vertex regions, were selected for manual annotation. Spindle markings
were independently reviewed by two EEG experts with more than five years of experience. In cases of
uncertainty, the final boundaries were determined through consensus.

Sleep spindles were classified into three categories according to amplitude, duration, and mor-
phology, with each category providing unique benefits for optimizing DL model training:

• Definite spindles (SP): amplitude ≥ 20 µV, duration ≥ 1 s, located in fronto-central and vertex
regions. SP serve as high-confidence “anchor” examples, offering clean prototypes of frequency,
temporal profile, and waveform shape. They reduce noise in the training set and ensure stable
learning during early stages.

• Probable spindles (PS): amplitude < 20 µV, duration ≥ 0.5 s, located in vertex and partially
fronto-temporal regions. PS capture borderline cases between genuine spindles and other oscilla-
tions (e.g., partial arousals, artifacts). Including these examples improves the model’s ability to
generalize and reduces overfitting to only idealized patterns.

• Dubious spindles (DS): amplitude 10–15 µV or duration < 0.5 s, isolated in frontal or vertex regions,
with unclear morphology. DS act as challenging negative or weakly positive examples. They train
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the network to reject artifacts and ambiguous oscillations, reflecting the complexity of real-world
EEG recordings, particularly in epilepsy. Balanced sampling of these categories across training
batches prevents overrepresentation of any one class and improves gradient stability.

The inclusion of “definite,” “probable,” and “dubious” categories encourages the model to learn
generalized spindle features rather than overfitting to specific patients or recording systems. This
strategy increases robustness to variability in EEG equipment, recording conditions, and age-related
signal differences.

2.5. EEG Data Sets Containing Sleep Spindles

Despite EEG’s central role in epilepsy diagnosis, consciousness disorders, and neurological re-
search, resources explicitly dedicated to large-scale EEG remain underrepresented. Namely, databases
associated with the DREAMS project [27] are very restricted in size. The Sleep Heart Health Study
also proposes a PSG database derived from a prospective cohort study [28]. However, this large
collection failed to become accepted as a standard resource by third parties. Potential causes for this
limited use may be associated with the fact that the investigators proposing the database were not
aiming to provide an open-access and general purpose archive. Indeed, it is oriented specifically
towards the investigation of relationships between sleep-disordered breathing and heart diseases, and
its recordings are available only upon special request and approval. Also, the EEG montage (C3-A2
and C4-A1 channels, sampled at 125 Hz) is relatively limited for general-purpose investigations in
sleep research.

Another source of databases is Physionet. For example, here can be found the CAP sleep database,
which include 108 nights with three (or more) EEG channels, from different populations (16 healthy
and 92 pathological), targeting the study of cyclic alternating patterns. One can also mention the
archive from St Vincent’s University Hospital, which consists of 25 overnight PSGs with two EEG
channels from a population of subjects with sleep apnea. Also on Physionet the database from [29] is
available. It consists of 61 PSGs with two EEG channels, from subjects with mild sleep onset difficulties,
recorded at 100 Hz. However, these archives are limited in different aspects (number of channels,
sampling frequency, number of records). Also, in our opinion, none of these databases has been widely
accepted for benchmarking automated systems.

Note that recently a large-scale, deidentified, and standardized EEG database supporting artificial
intelligence-driven and reproducible research in epilepsy and broader clinical neuroscience was
released, Harvard Electroencephalography Database (HEEDB) [31].

It is also worth to mention here crowd-sourcing annotation projects. The most famous of them,
Massive Online Data Annotation (MODA) is a web-based open source online scoring platform, which
was used in order to produce a large open-source dataset of human-scored sleep spindles (5342
spindles, from 180 subjects). Polysomnographic data for annotation from 180 subjects was sourced
from the MASS database. The dataset was split into two ’phases’, where phase 1 consisted of 100
younger subjects (mean age of 24.1 years old) and phase 2 consisted of 80 older subjects (mean age of
62.0 years old). A subset of N2 stage sleep from the C3 channel was sampled from each subject (see
methods for details). After that 25 sec epochs of this single channel EEG were presented to expert PSG
technologists, researchers, and non-expert scorers. As a result, almost 100000 candidate spindles were
identified by all scorers combined.

Nevertheless, a custom databases created for specific needs of a certain study are still required.
Therefore, in our study we collected custom database of clinical EEG records from patients with
epilepsy and controls during stage N2 non-REM sleep, characterized by rhythmic spindle activity in
fronto-central and vertex regions, and manually annotate them.

2.6. The Montreal Archive of Sleep Studies (MASS)

One of the most widely used database in sleep studies is the Montreal Archive of Sleep Studies
(MASS) [30]. It is an open-access collaborative database of laboratory-based polysomnography (PSG)
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recordings which includes whole-night recordings from 200 participants, 97 males (aged 42.9 ± 19.8
years) and 103 females (aged 38.3 ± 18.9 years). These recordings were pooled from eight different
research protocols performed in three different hospital-based sleep laboratories. All recordings feature
a sampling frequency of 256 Hz and EEG montage of 4–20 channels plus standard electro-oculography
(EOG), electromyography (EMG), electrocardiography (ECG) and respiratory signals. Nevertheless,
this database include only healthy controls and therefore is of limited applicability in epilepsy studies.

In this study, we used the SS2 subset, which includes expert annotations of sleep spindles and
K-complexes. The SS2 subset contains recordings from 19 healthy subjects (8 males and 11 females).
Sleep spindles and K-complexes were annotated by two independent experts: the first expert labeled
all 19 recordings, while the second expert labeled sleep spindles in 15 recordings.

EEG data were acquired using the standard 10–20 electrode placement system at a sampling rate
of 256 Hz. The primary montage consisted of 16 channels (C3, C4, Cz, F3, F4, F7, F8, O1, O2, P3, P4, Pz,
T3, T4, T5, T6), with additional electrodes (Fp1, Fp2, Fpz, Pz, Cz) included depending on the subset
and reference CLE channel. The dataset also provides complementary physiological signals, including
EOG (4 channels: left, right, up, down), EMG (1 bipolar channel), ECG (1 channel), and respiratory
thermistance.

For this work, we considered only the 15 recordings annotated by both experts. Reference labels
were obtained by merging their annotations. Obvious labeling artifacts were identified and removed
prior to model training.

We employed MASS as a benchmark dataset for the spindle segmentation task. Details of this
evaluation are provided in Section 4.1.

3. Methodology
The methodology of this study includes of the following main steps: (i) data preprocessing, (ii)

characterization of sleep spindles, (iii) construction and evaluation of deep neural network (DNN)
architectures, (iv) sleep event detection, and (v) training and evaluation using quantitative metrics.

3.1. Data Preprocessing for Sleep Spindle Analysis

To select the optimal frequency range for band-pass filtering, we first calculated spectrograms for
the EEG recordings:

Xk =

∣∣∣∣∣N−1

∑
n=0

(
xne−i2π k

N n
)∣∣∣∣∣, (1)

where xn denotes the EEG sample from a given channel, Xk is the spectral power at frequency k, and
N is the length of the fast Fourier transform (FFT), set to 256. The step size between consecutive FFT
windows was 128.

Labels provided in the dataset were mapped onto the spectrograms, resulting in two groups:
(i) spectrograms corresponding to sleep spindle segments, and (ii) spectrograms corresponding to
non-spindle segments. We then calculated the average spectra for both groups and analyzed their
differences for each EEG channel.

As expected, the most prominent differences appeared in the spindle frequency range. Based
on these findings, a band-pass filter of 0.1–35 Hz was applied to the EEG recordings. Following
filtering, each channel was normalized to zero mean and unit variance, and artifacts were attenuated
by clipping amplitudes at ±10. However, subsequent experiments demonstrated that normalization
was not essential for DNN training, as model performance remained nearly identical with or without
normalization.

3.2. Sleep Spindle Characteristics

Sleep spindles are defined by their spectral (frequency content and intra-frequency structure) and
temporal (shape and duration) properties [53]. In this study, we quantified four main characteristics:
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(i) average duration, (ii) average maximal amplitude, (iii) average frequency, and (iv) number of
spindles, as illustrated in Figure 1.

Figure 1. Main characteristics of sleep spindles: number of spindles, duration, maximal amplitude, and average
frequency.

Let x denote a segment of an EEG recording, and SS = {ss0, ss1, . . . , ssn} be the set of sleep
spindles detected in this segment.

The average duration was calculated as:

D =
1

|SS| ∑
ss∈SS

(
tfinish(ss)− tstart(ss)

)
, (2)

where tstart(ss) and tfinish(ss) are the start and end times of spindle ss, respectively.
To compute amplitude and frequency, the EEG signal from each channel was centered:

x̂t = xt − E(x), (3)

where E(x) is the mean of x over the analysis window.
The average maximal amplitude was then obtained as:

A =
1

|SS| ∑
ss∈SS

( tfinish(ss)
max

t=tstart(ss)
x̂t

)
. (4)

Amplitude values were averaged across all EEG channels.
The average frequency was estimated using zero-crossing counts:

F =
1

|SS| ∑
ss∈SS

(
ZC(x̂(ss))

tfinish(ss)− tstart(ss)

)
, (5)

where ZC(x) denotes the number of zero-crossings in the signal x, and x̂(ss) represents the signal
segment corresponding to spindle ss. Frequencies were averaged across all channels.

The number of spindles is defined as the cardinality of the set SS:

N = |SS|. (6)

Finally, the spindle density was computed as the proportion of recording time occupied by
spindles [54,55]:

Density =
1
T ∑

ss∈SS

(
tfinish(ss)− tstart(ss)

)
, (7)
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where T is the duration of the analyzed EEG segment x.

3.3. Performance of DNN Architectures on Pathological Spindles

Automated sleep spindle detection is crucial for advancing sleep research and clinical diagnostics,
offering scalability and objectivity beyond manual scoring. While traditional methods, including
wavelet analysis [20,32–35] and classical machine learning (e.g., SVM [36], KNN [37], decision trees
[38], bagging classifiers [39]), have laid the groundwork, deep neural networks (DNNs) now represent
the state of the art due to their superior ability to learn complex features directly from raw data.

Approaches based on DNN architectures show superior performance with respect to the F1-score.
Three main types of DNN architectures can be used in this task: (i) convolutional neural networks
(CNN), capable of automatic feature extraction and learning, (ii) recurrent neural networks (RNN),
particularly LSTMs, designed for time series processing, and (iii) mixed architectures allowing the
benefits of both approaches to be used to improve the quality of sleep spindles detection. Mixed
architectures often can be additionally equipped with attention heads or specific data preprocessing or
feature selection pipelines, see, e.g., [40,41].

In this study, we investigated two families of DNN architectures: (1) CNNs based on ResNet, and
(2) hybrid models combining CNN and recurrent layers.

3.3.1. SlumberNet Architecture

SlumberNet is a convolutional deep learning model based on the residual network (ResNet)
architecture, originally developed by Jha et al. [50] to classify sleep stages in mice using EEG and EMG
signals. The authors also demonstrated how the model could be adapted for human polysomnographic
data.

In our work, we modified SlumberNet for spindle characteristic prediction in a segmentation-free
framework. Specifically, the original classification task was reformulated as a regression problem,
and an encoder module was added to obtain compressed latent representations of EEG segments. A
schematic of the adapted architecture is shown in Figure 2.
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(a) (b)

Figure 2. Schematic representation of the SlumberNet network architecture. (a) Complete model. (b) Structure of
a single residual block.

To reduce the original time resolution before residual blocks, we introduced two initial convo-
lutional layers. Each residual block contains convolution, batch normalization, and dropout layers.
The network is composed of multiple such blocks (eight in our implementation), followed by a global
average pooling layer and a fully connected layer. The compression ratio of the Conv1d layers and the
number of residual blocks were optimized via grid search.

3.3.2. U-Net Architecture

The U-Net model is one of the most widely used CNN architectures for segmentation tasks. The
1D U-Net is an adaptation of the original 2D image segmentation model to one-dimensional sequential
data, making it well suited for biomedical signal analysis, including EEG. The schematic representation
of the 1D U-Net architecture is presented in Figure 3.
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Figure 3. Schematic representation of the 1D U-Net architecture.

Like its 2D counterpart, the 1D U-Net follows an encoder–decoder structure with skip connections.
The encoder progressively reduces the temporal resolution of the input through convolution and
downsampling layers, while the decoder reconstructs the signal using upsampling layers. Skip
connections bridge encoder and decoder stages, ensuring that fine-grained temporal features are
preserved.

The network receives an EEG segment of size W × F as input. The encoder comprises L downsam-
pling blocks, each consisting of convolutions (to increase the number of channels) and D convolutional
layers with residual connections. The decoder contains L upsampling blocks, each concatenating the
corresponding encoder output and applying convolutions with decreasing channel dimensionality. A
final one-dimensional convolution with kernel size 1 produces the output segmentation mask of size
W × 2.

One of the main advantages of the 1D U-Net is its ability to capture both short- and long-range
dependencies in sequential data with relatively low computational cost. Its symmetric encoder–decoder
design ensures that information is preserved across different temporal scales, which is essential
for accurate spindle segmentation. Input window size, number of encoder/decoder blocks, and
convolutional depth D were tuned as hyperparameters via grid search.

In this study, we compared the 1D U-Net and SEED models for the task of sleep spindle segmen-
tation (see Section 4.1).

3.4. Sleep EEG Event Detector

The Sleep EEG Event Detector (SEED) is a state-of-the-art deep learning model for sleep spindle
segmentation [51]. It combines CNNs for local feature extraction with bidirectional long short-term
memory (BiLSTM) layers for contextual modeling, thereby capturing both fine-grained temporal
structure and long-range dependencies in EEG signals.

The SEED workflow consists of three stages: local encoding, contextualization, and sample-wise
classification. Input segments contain 5040 time samples, of which the central 4000 samples constitute
the prediction window. To mitigate boundary artifacts, 520 samples are appended on each side. The
model outputs a dense probability sequence of 500 samples, corresponding to one prediction per 8
input samples.

In the local encoding stage, a convolutional block extracts low-level temporal features and
downsamples the signal by a factor of eight, yielding a compressed multivariate time series of length
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500. The contextualization stage then applies BiLSTMs to integrate information across distant samples,
enabling the network to capture dependencies beyond the receptive field of convolutional filters.
Finally, in the classification stage, a one-dimensional convolution followed by a softmax layer produces
sample-wise probabilities of belonging to the positive (spindle) or negative (background) class.

The architecture of SEED is illustrated in Figure 4. It begins with two one-dimensional con-
volutions (kernel size = 3, output channels F = 64), followed by max pooling and convolutional
multi-dilated blocks (MDBs), which capture patterns across multiple temporal scales. Boundary
shortening is applied to align feature maps, and two dropout layers (q1 = 0.2, q2 = 0.5) provide regu-
larization. Contextual dependencies are modeled by BiLSTMs with N1 = 128 hidden units. The final
classification stage uses two one-dimensional convolutions (kernel size = 1): the first maps to N2 = 256
features, while the second produces two output channels corresponding to event vs. background
classes.

Batchnorm

Average Pooling

Conv 3, F

Conv 3, F

MDB 3, 2F

MDB 3, 2F

Average Pooling

Border crop

Average Pooling

Dropout q1

BiLSTM, N1

Dropout q2

BiLSTM, N1

Dropout q2

Conv 1, N2

Conv 1, 2

Upsampling

Figure 4. Schematic representation of the SEED network architecture.

To extend SEED beyond its original design, we introduced several modifications. For segmenta-
tion tasks, upsampling layers were incorporated to preserve temporal resolution. For regression tasks,
the upsampling layers were replaced with linear layers, and the degree of compression in the early
convolutional blocks was increased to obtain more compact latent representations.

Model hyperparameters were tuned via grid search. For segmentation, the prediction window
size and input expansion were optimized based on the average F1-score across test or cross-validation
folds. For regression, the hidden size of the final linear layer was treated as a hyperparameter and
optimized according to the mean squared error (MSE) loss.
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In this study, we employed SEED in both classification and regression settings (see Sections 4.1,
4.2 for details).

3.5. Training Process and Evaluation Metrics

For clinical EEG recordings, model training was carried out using a cross-validation scheme.
Given the limited number of subjects, in each iteration all but two recordings were used for training,
while the remaining two served as the evaluation set. This strategy was chosen instead of a single
train–test split (used for the MASS dataset) to obtain a more reliable estimate of model generalization
across different patients. Performance metrics were averaged across folds, reducing bias from random
data partitioning and providing a more robust evaluation in real-world scenarios.

3.5.1. Segmentation-Based vs. Segmentation-Free Approaches

Two strategies for predicting sleep spindle characteristics were compared:

• Segmentation-based approach: Sleep spindles were first detected using DNN models in a sequence
labeling framework, where each EEG time point was classified as spindle or non-spindle. Spindle
characteristics were then computed from the resulting segmentation.

• Segmentation-free approach: Spindle characteristics were predicted directly from raw EEG segments
using regression models, without an intermediate segmentation step.

Within the segmentation-free approach, we examined two subsettings: (i) training a network to
predict each characteristic independently, and (ii) training a single network to predict all four charac-
teristics simultaneously using normalized outputs and weighted loss terms. Numerical experiments
demonstrated that the multi-output setting consistently underperformed the single-output models in
terms of MSE.

3.5.2. Loss Functions

For segmentation tasks, the binary cross-entropy (BCE) loss was used:

BCE = − 1
n

n

∑
i=1

(
yi log(ŷi) + (1 − yi) log(1 − ŷi)

)
, (8)

where n is the number of training samples, yi is the ground-truth label, and ŷi is the predicted
probability.

For regression tasks (direct prediction of spindle characteristics), the MSE loss was optimized:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2. (9)

3.5.3. Evaluation Metrics

For segmentation, model performance was evaluated at the level of complete spindle events, not
individual samples, using precision, recall, and F1-score:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 = 2 · Precision · Recall
Precision + Recall

, (10)

where TP, FP, and FN denote the numbers of true positives, false positives, and false negatives,
respectively.

3.5.4. Hyperparameter Optimization

Hyperparameters were optimized via grid search. For segmentation, the optimal settings were
chosen based on the averaged F1-score across folds; for regression, the mean MSE loss was used as the
selection criterion. In segmentation, the input window size was set to 4000 samples for the 1D U-Net,
and to 4000 + 520 samples (with boundary padding) for SEED. The predicted label segment length
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was 4000 samples for both networks. In regression mode, SEED used a hidden layer size of 256 in the
final linear block.

4. Results
In this section, we present the principal findings of our study, supported by empirical evidence

and quantitative analysis. For each set of experiments, we provide a focused discussion that interprets
the results, situates them within existing literature, and highlights their implications for understanding
epilepsy-related sleep spindle dynamics in EEG recordings.

4.1. Comparison of DL Architectures for Sleep Spindle Segmentation

We first evaluated the quality of sleep spindle segmentation across different DNN architectures to
identify the most suitable model. The experiments were conducted on a 10-minute EEG fragment for
clinical recordings and on standard-length recordings for the MASS dataset. Model performance was
assessed using precision, recall, and F1-score, with automatic annotations compared against expert
labels on a spindle-by-spindle (event-level) basis.

As shown in Figure 5, both architectures produced accurate spindle segmentations, closely aligned
with expert annotations. The quantitative results are summarized in Tables 1 (MASS dataset) and 2
(clinical dataset).
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Figure 5. Example of sleep spindle segmentation on the Fp1-F3 lead of a patient with epilepsy. Expert annotations
are shown in blue, automatic segmentation by 1D U-Net in orange, and SEED in red.

Table 1. Performance of SEED and 1D U-Net for sleep spindle segmentation on the MASS dataset.

SEED U-Net

Precision 0.87 ± 0.06 0.78 ± 0.09
Recall 0.74 ± 0.16 0.83 ± 0.12

F1-score 0.79 ± 0.10 0.79 ± 0.06
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Table 2. Performance of SEED and 1D U-Net for sleep spindle segmentation on the clinical dataset.

SEED U-Net

Precision 0.89 ± 0.10 0.87 ± 0.12
Recall 0.81 ± 0.10 0.85 ± 0.07

F1-score 0.84 ± 0.08 0.86 ± 0.09

The results show that both U-Net and SEED achieve comparable F1-scores on the MASS dataset
and clinical data. However, the trade-off between precision and recall differs: SEED exhibits higher
precision (fewer false positives), whereas U-Net achieves higher recall (fewer missed spindles). This
difference reflects their architectural design: recurrent layers in SEED favor specificity, while U-Net’s
convolutional structure prioritizes sensitivity. Depending on the clinical objective, one architecture
may be preferable over the other, for example, U-Net when minimizing missed detections, and SEED
when reducing false alarms.

4.2. Comparison of Segmentation-based and Segmentation-Free Approaches

Next, we compared two strategies for predicting spindle characteristics. The first approach
(segmentation-based) derives spindle properties using formulas from Section 3.2 applied to automat-
ically segmented events. The second approach (segmentation-free) directly predicts characteristics
using regression networks, bypassing explicit segmentation.

4.2.1. Distribution Analysis

We first compared distributions of spindle characteristics obtained via the two approaches against
expert-derived ground truth. This analysis was carried out using CNN-based models (1D U-Net and
SlumberNet) and hybrid architectures with recurrent layers (SEED). The distributions are shown in
Figure 6. For both model families, the segmentation-based approach produces distributions that more
closely match expert annotations. By contrast, direct regression tends to generate overly smoothed
(averaged) outputs. An exception is observed with SEED, where amplitude and frequency distributions
remain relatively consistent across both approaches.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 September 2025 doi:10.20944/preprints202509.2116.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2116.v1
http://creativecommons.org/licenses/by/4.0/


15 of 27

(a)

0 1 2 3 4
Duration, sec

0

1

2

3

De
ns

ity

0 1 2 3 4
Duration, sec

0 50 100 150
Amplitude, V

0.00

0.02

0.04

0.06

De
ns

ity

0 50 100 150
Amplitude, V

0 10 20 30
Frequency, Hz

0.00

0.05

0.10

0.15

De
ns

ity

0 10 20 30
Frequency, Hz

0 10 20 30 40
Number

0.00

0.05

0.10

0.15

De
ns

ity

0 10 20 30 40
Number(b)

0 1 2 3 4
Duration, sec

0

1

2

3

De
ns

ity

0 1 2 3 4
Duration, sec

0 50 100 150
Amplitude, V

0.00

0.02

0.04

0.06

De
ns

ity

0 50 100 150
Amplitude, V

0 10 20 30
Frequency, Hz

0.00

0.05

0.10

0.15

De
ns

ity

0 10 20 30
Frequency, Hz

0 10 20 30 40
Number

0.00

0.05

0.10

0.15

De
ns

ity

0 10 20 30 40
Number

Figure 6. Distributions of spindle characteristics on clinical data. (a) ResNet-based models (1D U-Net:
segmentation-based; SlumberNet: segmentation-free). (b) Hybrid models with recurrent layers (SEED for
both approaches). Blue dash-dotted line: expert annotations (ground truth). Red solid line: segmentation-based
prediction. Green dashed line: segmentation-free prediction.

4.2.2. Prediction Accuracy

Scatter plots in Figure 7 illustrate the relationship between predicted and expert-calculated
characteristics. Segmentation-based predictions cluster more closely around the diagonal (ideal match),
while segmentation-free predictions show larger deviations, consistent with their averaging tendency.
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Figure 7. Scatter plots of predicted vs. expert-derived spindle characteristics. (a) ResNet-based networks
(1D U-Net: segmentation-based; SlumberNet: segmentation-free). (b) SEED for both approaches. Red circles:
segmentation-based predictions; green triangles: segmentation-free predictions. The gray diagonal marks perfect
agreement.

4.2.3. Error Analysis

We further quantified errors using the absolute relative error (ARE), defined as

ARE =
|x − x̂|
|x| × 100%, (11)
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where x is the expert-derived value and x̂ is the model-predicted value. Boxplots in Figure 8 show
that segmentation-based approaches consistently achieve lower AREs. Statistical testing (paired t-test,
ρ < 0.01) confirmed the significance of these differences.
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Figure 8. Comparison of ARE for spindle duration, amplitude, frequency, and count. (a) ResNet-based models.
(b) SEED. Red: segmentation-based predictions. Green: segmentation-free predictions. Black dots: mean values.
Asterisks: significant differences (ρ < 0.01).

To better characterize error distributions, we also computed empirical cumulative distribution
functions (ECDFs) of ARE (Figure 9). Segmentation-based methods consistently achieve higher
fractions of predictions with low error, underscoring their robustness.
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Figure 9. ECDF of ARE for spindle characteristics. (a) ResNet-based models. (b) SEED. Red: segmentation-based
predictions. Green: segmentation-free predictions. Asterisks mark the maximum ARE values at which ECDF
reaches 1.

Overall, the segmentation-based approach outperforms segmentation-free regression. The explicit
localization of events during segmentation enables more precise estimation of spindle properties. By
contrast, direct regression without segmentation must implicitly infer event structure, often leading to
information loss and characteristic averaging. These findings suggest that segmentation remains a
critical step for accurate and clinically reliable characterization of sleep spindles.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 September 2025 doi:10.20944/preprints202509.2116.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2116.v1
http://creativecommons.org/licenses/by/4.0/


19 of 27

4.3. Alterations in Sleep Spindle Properties in Established Epilepsy

We compared sleep spindle characteristics between patients with epilepsy and control subjects
using expert annotations and the outputs of our 1D U-Net segmentation model, which demonstrated
superior performance (highest F1-score). Representative examples of sleep spindles from both groups
are shown in Figure 10, illustrating clear morphological alterations in the epileptic cohort.
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Figure 10. Representative sleep spindles in the Fp2-F4 and F4-C4 derivations for a patient with epilepsy (upper
panel) and a matched control subject (lower panel). Both examples are derived from EEG recordings of 8-year-old
subjects from the primary school cohort. Cyan: prototypical spindle; Blue: pathological spindle observed in
epilepsy.
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Quantitative analysis revealed significant alterations in key spindle parameters in epilepsy. Fig-
ure 11 presents the distributions of spindle duration, amplitude, oscillatory frequency, count, and
density. The most pronounced and statistically significant group differences were observed in spin-
dle duration and density, a finding consistent across both expert annotations and model-derived
segmentations (Mann-Whitney U test, *p* < 0.01 for both comparisons).
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Figure 11. Distribution of sleep spindle characteristics for control (cyan) and epilepsy (blue) groups. Parameters
were derived from (a) expert-annotated (ground truth) and (b) 1D U-Net-predicted spindle segments. Black
asterisks denote statistically significant inter-group differences (*p* < 0.01, Mann-Whitney U test).

To evaluate the separability of the two groups in a multivariate feature space, we employed
a k-nearest neighbors (KNN) classifier. Spindle density was selected as a key integrative feature,
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as it encapsulates information on both spindle occurrence and duration. Figure 12 visualizes the
decision boundaries generated by the KNN model in two feature subspaces. The analysis demon-
strated high group separability, with classification accuracies of 82% (amplitude vs. density) and 85%
(frequency vs. density), confirming that the identified alterations in spindle properties provide a robust
electrophysiological signature of epilepsy.
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Figure 12. KNN-based classification of 2-minute EEG segments from controls (circles) and patients with epilepsy
(crosses). Decision boundaries for each group are shaded in cyan (controls) and blue (epilepsy). High separability
is achieved using feature pairs of (a) spindle amplitude and density, and (b) spindle frequency and density, with
accuracies of 82% and 85%, respectively.

In summary, our results demonstrate that epilepsy is associated with significant and quantifiable
alterations in sleep spindle morphology and incidence. The automated analysis of these features
provides a robust biomarker that can reveal a detailed picture of thalamocortical dysfunction in
epilepsy. This approach has strong potential to facilitate rapid diagnosis and guide targeted therapeutic
strategies.

5. Discussion
This study provides the first rigorous evaluation of modern DNN architectures for detecting and

characterizing sleep spindles in EEG recordings affected by epilepsy. We show that while both 1D
U-Net and SEED achieve competitive overall performance (F1-scores), their precision–recall trade-offs
differ markedly in the clinical setting. This highlights a key insight: model selection cannot rely solely
on F1-scores but must be tailored to the clinical objective and tolerance for error type.

5.1. Clinical Model Selection Framework

Our results support a principled strategy for selecting models in clinical practice:

• High-Precision Option (e.g., SEED): Prioritizes minimizing false positives. This is advantageous
in diagnostic contexts, where misclassifying epileptiform discharges or noise as spindles can
corrupt biomarker quantification and lead to misleading conclusions. In this setting, SEED
provides high confidence in detected spindles.

• High-Recall Option (e.g., 1D U-Net): Prioritizes capturing all true spindles, tolerating more false
positives. This is valuable for screening or longitudinal monitoring, where the cost of missing
altered spindle activity outweighs the burden of reviewing additional candidate events.

This framework empowers clinicians and researchers to select architectures not only based on
accuracy but also in alignment with the clinical trade-off between false positives and false negatives.

5.2. Synthesis of Challenges and Contributions

Our work addresses two central challenges in automated sleep EEG analysis:

• Limited annotated clinical data. We mitigate this barrier by introducing a curated dataset of
sleep spindles in pediatric epilepsy, showing that DNNs remain effective despite pathological
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spindle morphology. This resource provides a foundation for future model development and
benchmarking in clinical populations.

• Building reliable clinical pipelines. We demonstrate and validate robust spindle segmentation as a
key pipeline component. Automating this step reduces expert workload, improves reproducibility,
and enables integration of spindle analysis into diagnostic and monitoring workflows.

The divergent performance of the models can be explained by their architectural inductive biases.
CNNs such as the 1D U-Net specialize in capturing local patterns, which enhances sensitivity but
risks false positives from events with similar local structure. In contrast, hybrid models like SEED
leverage bidirectional recurrent layers to integrate long-range temporal dependencies, allowing better
discrimination of true spindles from epileptiform discharges or other artifacts, thereby increasing
precision.

5.3. The Critical Data Gap in Epilepsy Sleep Research

A persistent obstacle in this field is the lack of large-scale, annotated EEG datasets reflecting
pathological sleep. Existing public archives, including DREAMS [27], CAP, St Vincent’s, and Kemp
et al. [29] on PhysioNet, suffer from small size, limited electrode montages, low sampling rates, or
a primary focus on conditions such as sleep apnea. The Montreal Archive of Sleep Studies (MASS)
[30] remains a high-quality benchmark, but as it contains only healthy subjects, it is inadequate for
studying spindle alterations in epilepsy. Even recent large-scale initiatives such as the Harvard EEG
Database (HEEDB) [31] are not designed for spindle-specific research.

The gap extends to spindle annotations. Efforts such as MODA [46] have successfully generated
large-scale labels, but these are again based on MASS recordings. Consequently, state-of-the-art models
(e.g., DOSED [42], SpindleNet [25], RED-CWT [43], SpindleU-Net [40], and SUMO [45]) have been
validated only on normal spindles. Their robustness to pathological morphologies, particularly those
altered by epileptiform discharges, remained untested prior to this study. This limitation has slowed
the clinical translation of powerful CNN, RNN, and hybrid architectures such as SEED [51] into
epilepsy care.

To bridge this gap, we developed a unique database of annotated EEG from pediatric patients
with epilepsy and matched controls during N2 sleep. This dataset enables systematic investigation
of spindle alterations associated with epilepsy and serves as a benchmark for evaluating advanced
DNNs under pathological conditions. Beyond advancing methodology, it provides a translational step
toward clinically viable, automated spindle analysis in epilepsy.

6. Conclusions and Future Directions
This study demonstrates the efficacy of deep learning for identifying and analyzing alterations in

sleep spindles within EEG recordings from patients with epilepsy. Through a structured investigation,
we have established several key findings with significant implications for both neuroscience research
and clinical diagnostics.

Our primary contribution is the creation of a novel, expert-annotated dataset of sleep spindles in a
pediatric cohort with established epilepsy, addressing a critical gap in publicly available resources that
predominantly feature data from healthy subjects. Utilizing this dataset, we rigorously benchmarked
state-of-the-art DNN architectures, namely 1D U-Net and SEED, for spindle segmentation. We
confirmed that while both models achieve competitive performance, they exhibit a crucial clinical
trade-off: the 1D U-Net architecture favors high recall, maximizing the detection of true spindles,
whereas the SEED model favors high precision, minimizing false positives. This distinction provides a
principled framework for model selection based on specific clinical scenarios, moving beyond a sole
reliance on the F1-score.

Furthermore, our analysis definitively established that an automated segmentation step is indis-
pensable for the accurate quantification of spindle characteristics. By applying this optimized pipeline,
we identified statistically significant alterations in key spindle parameters, including duration, am-
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plitude, and density, in patients with epilepsy compared to matched controls. These quantifiable
differences manifest as well-separable clusters in the feature space, confirming that DNN models can
effectively capture the pathological signature of epilepsy embedded within sleep microarchitecture.

In summary, this work provides a robust foundation for using automated tools to extract reliable
biomarkers from sleep EEG in epilepsy. The precision-recall trade-off we identified offers clinicians
a flexible choice between a sensitive screening tool (high-recall model) and a specific diagnostic
confirmatory tool (high-precision model).

Future Directions will build directly upon these findings:

(i) Dataset Expansion: Curating a larger, multi-center dataset encompassing diverse epilepsy syn-
dromes and age groups to enhance model generalizability and robustness.

(ii) Clinical Translation: Developing real-time detection algorithms and integrating spindle analysis
with other EEG biomarkers (e.g., slow waves, epileptiform discharges) into a unified clinical
dashboard to aid diagnosis and monitor therapy response.

(iii) Validation: The essential next step towards clinical implementation is a rigorous external valida-
tion of our models and proposed pipeline on a completely independent patient cohort to confirm
their efficacy and reliability.

By elucidating the strengths and limitations of different DNN architectures, this study provides
valuable guidance for researchers and clinicians, paving the way for advanced, automated tools that
can reduce diagnostic latency and improve patient care in epilepsy.
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