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Abstract

In this work, we obtain an iterative formula that can be used for computing digits of π and nested
radicals of kind cn/

√
2 − cn−1, where c0 = 0 and cn =

√
2 + cn−1. We also show how with help of this

iterative formula the two-term Machin-like formulas for π can be generated and approximated. Some
examples with Mathematica codes are presented.

Keywords: constant pi; iteration; nested radicals; rational approximation

1. Introduction
Throughout many centuries computing digits of π remained a big challenge [1–4]. However, in

1876 English astronomer and mathematician John Machin found an efficient method to resolve this
problem. Historically, he was the first to calculate over 100 digits of π. In his approach, John Machin
discovered and then used the following remarkable formula [1–4]

π

4
= 4 arctan

(
1
5

)
− arctan

(
1

29

)
. (1)

Nowadays, the identities of kind

π

4
=

J

∑
j=1

Aj arctan

(
1
Bj

)
, Aj, Bj ∈ Q (2)

are named after him as the Machin-like formulas for π.
The arctangent terms in the Machin-like formulas for π can be computed by using the Maclaurin

expansion series

arctan(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞

∑
n=0

x2k−1

(2k − 1)!
, x ≤ |1|. (3)

Since according to this equation, we get

arctan(x) = x + O(x3),

the convergence of the Machin-like formulas (2) for π is always better when the values Bj are larger by
absolute value.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 September 2025 doi:10.20944/preprints202509.2112.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-9949-3866
https://doi.org/10.20944/preprints202509.2112.v1
http://creativecommons.org/licenses/by/4.0/


2 of 18

To estimate efficiency of the Machin-like formulas for π, Lehmer introduced a measure, defined
as [5–7]

µ =
J

∑
j=1

1
log10

(∣∣Bj
∣∣) .

According to this formula, the smaller measure indicates the higher efficiency of the Machin-like
formula π. Lehmer’s measure is smaller at larger absolute values of Bj and smaller number of the
summation terms J.

Generally, we should imply that Lehmer’s measure is valid only if all coefficients Bj are integers.
Otherwise if Bj /∈ Z, its fractional parts {

Bj
}
= Bj − ⌊Bj⌋

may cause further computational complexities requiring more usage of the computer memory and
extending considerably a run-time in computing digits of π [7]. As the fractional part is not desirable
in computation of the digits of π, it may be more preferable to apply the Machin-like formulas where
all coefficients Bj are integers.

The Machin-like formulas (2) for π can be validated by using the following relation

J

∏
j=1

(
Bj + i

)Aj ∝ (1 + i). (4)

The right side of this relation implies that the real part of the product must be equal to its imaginary
part as follows

ℜ
{

J

∏
j=1

(
Bj + i

)Aj

}
= ℑ

{
J

∏
j=1

(
Bj + i

)Aj

}
.

For example, the original Machin formula (1) for π can be readily validated by applying this relation

(5 + i)4(259 + i)−1 = 2(1 + i)

since the real and imaginary parts of the product are equal to the same number 2.
In our previous publication [8], we proposed a method for deriving the two-term Machin-like

formula for π in form
π

4
= 2k−1 arctan

(
1
α

)
+ arctan

(
1
β

)
, (5)

where α is an integer (see [9] for available values of α)

α =

⌊
ck√

2 − ck−1

⌋

that can be computed by using the nested radicals such that

c0 = 0, ck =
√

2 + ck−1

and
β =

2

[(α + i)/(α − i)]2
k−1 − i

− i. (6)

Recently, Gasull et al. proposed an alternative method to obtain the two-term Machin-like formula
for π of kind (5). In their publication, they suggested an iterative method based on Rj(n, x) functions
that can be defined as [7]

Rj(n, x) = tan(nσ + jπ/4), x = tan(σ), n, j ∈ N.
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Application of formula (6) for determination of the coefficient β is not optimal. In particular, as
integer k increases the exponent 2k−1 in the denominator blows up very rapidly. As a consequence, this
drastically delays computation. To resolve this problem, we proposed a two-step iteration procedure
[8] that will be discussed in the next section. However, this iteration involves squaring that doubles
the number of digits at each consecutive cycle of two-step iteration. Although as compared to equation
(6) this iterative procedure is more efficient, it still remains computationally costly at larger values of k.

Motivated by recent publications [10–16], we propose a more efficient approach in determination
of the coefficient β in equation (6). Furthermore, with these results we show how the constant π

and nested radicals consisting of square roots of 2 can be obtained. Some numerical results with
Mathematica codes are provided. To the best of our knowledge, this approach is new and has never
been reported in scientific literature.

2. Preliminaries
As it has been mentioned above, equation (6) should be avoided for computation of the constant

β at k ≫ 1. The following theorem shows how else the constant β can be calculated.

Theorem 1. There is a formula such that
β =

κk
1 − λk

, (7)

where {
κn = κ2

n−1 − λ2
n−1

λn = 2κ2
n−1λ2

n−1
n = {2, 3, 4, . . . k}, (8)

with initial values

κ1 =
α2 − 1
α2 + 1

and

λ1 =
2α2

α2 + 1
.

Proof. From induction it follows that

(κ1 + iλ1)
2k−1 =

k−1 powers of 2︷ ︸︸ ︷((
(κ1 + iλ1)

2
)2 ···

)2
=

k−2 powers of 2︷ ︸︸ ︷((
(κ2 + iλ2)

2
)2 ···

)2

=

k−3 powers of 2︷ ︸︸ ︷((
(κ3 + iλ3)

2
)2 ···

)2
=

k−n powers of 2︷ ︸︸ ︷((
(κn + iλn)

2
)2 ···

)2

=
(
(κk−2 + iλk−2)

2
)2

= (κk−1 + iλk−1)
2 = κk + iλk,

(9)

Therefore, from equations (6) and (9), we obtain

β =
2

κk + iλk − i
− i =

2κk

κ2
k + (λk − 1)2

+ i

(
2(1 − λk)

κ2
k + (λk − 1)2

− 1

)
. (10)

Since β is a real number, the imaginary part of the equation above must be equal to zero. Conse-
quently, we have

2(1 − λk)

κ2
k + (λk − 1)2

− 1 = 0

or
2(1 − λk) = κ2

k + (λk − 1)2
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or
κ2

k = 2(1 − λk)− (λk − 1)2. (11)

Substituting equation (11) into the real part of equation (10), we obtain equation (7). This com-
pletes the proof.

In our earlier publication [17], we show how to generate efficiently the multi-term Machin-like
formulas for π by using the following equation-template

π

4
= 2k−1 arctan

(
1

γk

)
+

(
M

∑
m=1

arctan

(
1⌊

θm,k
⌋))+ arctan

(
1

θM+1,k

)
, (12)

where

θm,k =
1 +

⌊
θm−1,k

⌋
θm−1,k⌊

θm−1,k
⌋
− θm−1,k

, m ≥ 2.

In the formula (12), we imply that M ≥ 0 such that at M = 0 the sum

M

∑
m=1

arctan

(
1⌊

θm,k
⌋)

is equal to zero. Consequently, when M = 0 the equation (12) is reduced to

π

4
= 2k−1 arctan

(
1

γk

)
+ arctan

(
1

θ1,k

)
, (13)

where γk = α and θ1,k = β according to equation (5) above. In fact, the equation (12) can be obtained
from equation (5) together with the following identity [17]

arctan
(

1
z

)
= arctan

(
1
⌊z⌋

)
+ arctan

(
⌊z⌋ − z

1 + z⌊z⌋

)
, z /∈ [0, 1).

Consider how the two well-known Machin-like formulas for π can be derived by using equation
(12). At k = 2 and M = 0 equation (12) results in

π

4
= 2 arctan

(
1
2

)
− arctan

(
1
7

)
. (14)

This equation is commonly known as the Hermann’s formula for π [18]. At k = 2 and M = 0 equation
(12) leads to the original Machin formula (1) for π.

Application of the equation (12) may also be a useful technique to transform the arctangent term
with the quotient θ1,k = β into sum of arctangents with reciprocal integers. For example, at k = 4 we
get

γ4 =

⌊
c4√

2 − c3

⌋
=


√

2 +
√

2 +
√

2 +
√

2√
2 −

√
2 +

√
2 +

√
2

 = 10.

Consequently, applying two-step iteration (8) we can find that

θ1,4 = −147153121
1758719

.

Substituting these values into equation (12), results in

π

4
= 8 arctan

(
1

10

)
− arctan

(
1758719

147153121

)
. (15)
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As it has been mentioned above, it is desirable to apply reciprocal integers rather than quotients.
The equation (12) can be used to transform the quotients into reciprocal integers. For example, at k = 4
and M = 1 from equation (12) it follows that

π

4
= 8 arctan

(
1

10

)
− arctan

(
1
84

)
− arctan

(
579275

12362620883

)
.

At k = 4 and M = 2 equation (12) gives

π

4
= 8 arctan

(
1

10

)
− arctan

(
1
84

)
− arctan

(
1

21342

)
− arctan

(
266167

263843055464261

)
.

Incrementing the integer M over and over again, at k = 4 and M = 5 equation (12) finally yields
the 7-term Machin-like formula

π

4
= 8 arctan

(
1

10

)
− arctan

(
1
84

)
− arctan

(
1

21342

)
− arctan

(
1

991268848

)
− arctan

(
1

193018008592515208050

)
− arctan

(
1

197967899896401851763240424238758988350338

)
− arctan

(
1
Ω

)
,

(16)

Ω = 11757386816817535293027775284419412676799191500853701 . . .

8836932014293678271636885792397,

where all arctangent arguments are reciprocal integers.
As we can see, the Hermann’s (14), Machin’s (1) and the generated (16) formulas belong to the

same generic group as all of them can be derived by using the same equation-template (12).
The following Mathematica code validates the equation (16).

(* Define long string *)
longStr = StringJoin["11757386816817535293027775284419412676",

"7991915008537018836932014293678271636885792397"];

(* Computing the coefficient *)
coeff = (10 + I)^8*(84 + I)^-1*(21342 + I)^-1*(991268848 + I)^-1*

(193018008592515208050+I)^-1*
(197967899896401851763240424238758988350338 + I)^-1*

(FromDigits[longStr]+I)^-1;

Print[Re[coeff] == Im[coeff]];

by returning the output True.
Once all quotients are transformed into reciprocal integers, we can compute the digits of π by

using the Maclaurin series expansion (3) of the arctangent function. However, our empirical results
show that the following two expansion series

arctan(x) =
∞

∑
n=0

22n(n!)2

(2n + 1)!
x2n+1

(1 + x2)n+1 (17)
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and

arctan(x) = 2
∞

∑
n=1

1
2n − 1

gn(x)
g2

n(x) + h2
n(x)

, (18)

where
g1(x) = 2/x, h1(x) = 1,

gn(x) = gn−1(x)(1 − 4/x2) + 4hn−1(x)/x,

hn(x) = hn−1(x)(1 − 4/x2)− 4gn−1(x)/x,

can be used more efficiently for computing digits of π due to more rapid convergence.
Equation (17) is known as Euler’s series expansion. It is interesting to note that this series

expansion can be derived from the following integral [19]

arctan(x) =
∫ π/2

0

x sin u
1 + x2

1

1 − x2 sin2 u
1+x2

du.

Equation (18) can be derived by substituting

f (x, t) =
x
2

(
1

1 + ixt
+

1
1 − ixt

)
into the identity

∫ 1

0
f (x, t)dt = 2

M

∑
m=1

∞

∑
n=0

1
(2M)2n+1(2n + 1)!

∂2n

∂t2n f (x, t)

∣∣∣∣∣
t= m−1/2

M

that we proposed and used earlier (see [20] and literature therein for more details). Computational test
we performed shows that the arctangent series expansion (18) is significantly faster in convergence
than the arctangent series expansion (17).

At k = 6 with help of the two-step iteration (8), we obtain

θ1,6 = −2634699316100146880926635665506082395762836079845121
38035138859000075702655846657186322249216830232319

.

Consequently, the two-term Machin-like formula for π becomes

π

4
= 32 arctan

(
1
40

)
− arctan

(
38035138859000075702655846657186322249216830232319

2634699316100146880926635665506082395762836079845121

)
.

As we can see, this equation contains a quotient with large number of digits in numerator and
denominator. We may attempt to reduce the number of digits by approximation. Unfortunately, the
two-step iteration (8) is not efficient in approximating θ1,k. Any our attempt to approximate θ1,k by
two-step iteration (8) either do not provide a desired accuracy or completely diverge from the value
θ1,k. This makes approximation inefficient and unpredictable especially at lager values of the integer k.

Moreover, the number of digits rapidly grows with increasing k. For example, at k = 27 and
M = 0 equation (12) results in

π

4
= 227−1 arctan

(
1

γ27

)
+ arctan

(
1

θ1,27

)
= 67108864 arctan

(
1

85445659

)
− arctan

(
9732933578 . . . 4975692799
2368557598 . . . 9903554561

)
,
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where argument in the second arctangent function contains 522, 185, 807 digits in the numerator and
522, 185, 816 digits in the denominator. In the recent publication, Gasull et al. showed that at k = 31
number of digits in the numerator and denominator in the two-term Machin-like formula for π of kind
(5) are 9, 647, 887, 023 and 9, 647, 887, 033, respectively (see Table 2 in [7]). Consequently, the two-step
iteration (8) is appeared to be impractical for approximating the constants θ1,k.

This problem can be effectively resolved by using a new method of iteration that will be shown in
the next section.

3. An Iterative Formula to Compute π

A problem that appears with two-step iteration (8) is a rapidly growing number of digits. In
particular, the number of digits in κn and λn doubles at each consecutive increment of the index n.
This may also restrict the application of the two-step iteration (8). The following theorem shows a new
iteration technique as an alternative to the double-step iteration (8).

Theorem 2. There is a two-term Machin-like formula

π

4
= arctan

(
1
u

)
+ arctan

(
u − 1
u + 1

)
.

Proof. The proof is straightforward and immediately follows from the following identity

arctan(x) + arctan(y) = arctan
(

x + y
1 − xy

)
. (19)

Specifically, assuming

x =
1
u

and
y =

u − 1
u + 1

,

according to identity (19) we have

1/u + (u − 1)/(u + 1)
1 − 1/u((u − 1)/(u + 1))

= 1.

This completes the proof since

arctan(1) =
π

4
.

Consider now the next theorem.

Theorem 3. There is a relation

2k−1 arctan
(

1
γk

)
= arctan

(
1
vk

)
,

where

vn =
1
2

(
vn−1 −

1
vn−1

)
, n = {2, 3, . . . k}

such that
v1 = γk.

Proof. Since

20 arctan
(

1
γ1

)
= arctan

(
1
v1

)
,

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 September 2025 doi:10.20944/preprints202509.2112.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2112.v1
http://creativecommons.org/licenses/by/4.0/


8 of 18

it follows that

21 arctan
(

1
γ2

)
= arctan

(
1
v2

)
,

where
1
v2

=
2/v1

1 − 1/v2
1

.

Similarly, at k = 3 we get

22 arctan
(

1
γ3

)
= arctan

(
1
v3

)
,

where
1
v3

=
2/v2

1 − 1/v2
2

.

Therefore, by induction for an arbitrary integer k we can write

2k−1 arctan
(

1
γk

)
= arctan

(
1
vk

)
,

where
1
vk

=
2/vk−1

1 − 1/v2
k−1

.

The equation above can be rewritten as

vk =
1
2

(
vk−1 −

1
vk−1

)
. (20)

and this proves the theorem.

Thus, from this and above theorems it follows that

π

4
= 2k−1 arctan

(
1
v1

)
+ arctan

(
vk − 1
vk + 1

)
. (21)

where
vk − 1
vk + 1

=
1
θ1

.

The iterative formula (20) and equation (21) are our main results. Despite simplicity, their
significance can be demonstrated in computing digits of π and nested radicals consisting of square
roots of 2.

4. Approximation Methodologies
4.1. A Rational Approximation of π

Recently, we have reported a rational approximation for π by approximating the two-term Machin-
like formula (13) [21]. Here we show how a rational approximation for π can be constructed by using
the equation (21) based on iterative formula (20).

Consider the following theorem.

Theorem 4. There is a limit such that
lim
k→∞

ck = 2.
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Proof. This is Ramanujan’s nested radical. Since

ck =

√
2 +

√
2 +

√
2 + . . . +

√
2︸ ︷︷ ︸

k square roots

=
√

2 + ck−1,

we can write
lim
k→∞

ck = lim
k→∞

√
2 + ck−1 = lim

k→∞

√
2 + ck.

Let
z = lim

k→∞
ck.

Then, solving the equation
z =

√
2 + z

or
z2 − z − 2 = 0,

we get two solutions z1 = −1 and z2 = 2. Since the sequence

{c0, c1, c2, c3, . . .} =

{
0,
√

2,
√

2 +
√

2,

√
2 +

√
2 +

√
2, . . .

}

monotonically increases and positive at any cn except c0 = 0, we have to exclude the negative solution.
Consequently, the theorem is proved.

From the theorem 4 we can make a conclusion that

lim
k→∞

√
2 − ck = 0 (22)

since due to relation
lim
k→∞

ck = 2

leading to
lim
k→∞

√
2 − ck =

√
2 − lim

k→∞
ck = 0

the limit (22) follows.
Next, will we try to find a rational approximation for computing digits of π. This can be done by

using equation (21). In order to approximate it, we need to consider two lemmas below.

Lemma 1. There is a limit such that

π

4
= lim

k→∞
2k−1 arctan

(
1

γk

)
.

Proof. By definition
ck√

2 − ck−1
− 1 < γk <

ck√
2 − ck−1

.

Since
lim
k→∞

ck = 2

while
lim
k→∞

√
2 − ck−1 = 0

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 September 2025 doi:10.20944/preprints202509.2112.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2112.v1
http://creativecommons.org/licenses/by/4.0/


10 of 18

we can infer that
lim
k→∞

ck√
2 − ck−1

= ∞.

Therefore, we can write
lim
k→∞

γk√
2 − ck−1/ck

= 1

from which it follows that

lim
k→∞

arctan

(√
2 − ck−1

ck

)
= lim

k→∞
arctan

(
1

γk

)
and proof of this lemma follows since [22]

lim
k→∞

2k−1 arctan

(√
2 − ck−1

ck

)
=

π

4
. (23)

Lemma 2. There is a limit

π

4
= lim

k→∞

(
2k−1

γk
+

1
θ1,k

)
= lim

k→∞

(
2k−1

v1
+

vk − 1
vk + 1

)
.

Proof. The proof follows immediately from the lemma 1 and due to equation (21).

The importance of the lemma 2 can be seen by comparing the accuracy of two approximations

π

4
≈ 2k−1

γk
=

2k−1

v1
(24)

and
π

4
≈ 2k−1

γk
+

1
θ1,k

=
2k−1

v1
+

vk − 1
vk + 1

. (25)

Since vk is very close to unity, the double-term rational approximation (25) can be simplified as

π

4
≈ 2k−1

v1
+

vk − 1
2

. (26)

Mathematica code below shows how number of digits of π can be computed by using a single-
and double-term rational approximations (24) and (26), respectively.

Clear[k, c, flNum, accNum, v1, vk];

(* Integer k *)
k = 3000;

(* Use if needed: $RecursionLimit = 100000; *)
$RecursionLimit = 50000;

c[0] := c[0] = 0;
c[n_] := c[n] = SetAccuracy[Sqrt[2 + c[n - 1]], k];

(* Floor number *)
flNum = Floor[c[k]/Sqrt[2 - c[k - 1]]];
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(* Accuracy number *)
accNum = Length[RealDigits[flNum][[1]]];

(* Coefficient v_1 *)
v1 = SetAccuracy[flNum, 2*accNum];

Print["At k = ", k, " number of digits of \[Pi] with single term: ",
MantissaExponent[\[Pi] - 4 (2^(k - 1)/v1)][[2]] // Abs];

(* Compute coefficient v_k *)
vk = v1;
Do[vk = 1/2 (vk - 1/vk), k - 1];

Print["At k = ", k, " number of digits of \[Pi] with two terms: ",
MantissaExponent[\[Pi] - 4 (2^(k - 1)/v1
+ (vk - 1)/2)][[2]] //Abs];

This code generates the following output:

At k = 3000 number of digits of π with single term: 902
At k = 3000 number of digits of π with two terms: 1805

As we can see from this example, once we know the value of the constant vk, at k = 3000 the
number of digits of π is doubled from 902 to 1805.

4.2. An Approximation of π with Cubic Convergence

Now we show how to obtain a formula for π with cubic convergence. Consider the following
theorem.

Theorem 5. The two-term Machin-like formula (13) for π can be represented in trigonometric form as

π

4
= arctan

(
2k−1

γk

)
+ arctan

1 − sin
(

2k−1 arctan
(

2γk
γ2

k−1

))
cos
(

2k−1 arctan
(

2γk
γ2

k−1

))


Proof. Applying de Moivre’s theorem we can write

(κ1 + iλ1)
2k−1

=
(

κ2
1 + iλ2

1

)2k−2(
cos
(

2k−1Arg(κ1 + iλ1)
))

+ i sin
(

2k−1Arg(κ1 + iλ1)
)

Substituting equation above into equation (10) and taking into consideration that θ1,k = β we get

θ1,k =
cos
(

2k−1Arg(κ1 + iλ1)
)

1 − sin
(
2k−1Arg(κ1 + iλ1)

) .

Since
Arg(x + iy) = arctan

( y
x

)
, x > 0,

it follows that

Arg(κ1 + iλ1) = arctan

(
2γk

γ2
k − 1

)
, x > 0.
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Consequently, the equation (10) can be represented as

θ1,k =

cos
(

2k−1 arctan
(

2γk
γ2

k−1

))
1 − sin

(
2k−1 arctan

(
2γk

γ2
k−1

)) (27)

and this completes the proof.

We may attempt to approximate the coefficient θ1,k. Since

2γk

γ2
k − 1

→ 2
γk

with increasing k, the equation (27) can be approximated as

θ1,k ≈
cos
(

2k−1 arctan
(

2
γk

))
1 − sin

(
2k−1 arctan

(
2

γk

)) .

Since
arctan(x) ≈ x, |x| ≪ 1,

the approximation above can be further simplified as

θ1,k ≈
cos
(

2k

γk

)
1 − sin

(
2k

γk

) . (28)

Using the following trigonometric identities

cos(x) =
2 tan(x/2)

1 + tan2(x/2)

and

sin(x) =
1 − tan2(x/2)
1 + tan2(x/2)

the equation (28) can be expressed as

θ1,k ≈
1 + tan2

(
2k−1/γk

)
1 − tan

(
2k−1/γk

) .

This leads to

1
θ1,k

≈
1 − tan

(
2k−1/γk

)
1 + tan2

(
2k−1/γk

) . (29)

Since
tan2

(
2k−1/γk

)
converges faster to 1 than

tan
(

2k−1/γk

)
,

we can simplify approximation (29) as

1
θ1,k

≈ 1
2

(
1 − tan

(
2k−1/γk

))
. (30)
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Substituting approximation (30) into equation (13), we can approximate the two-term Machin-like
formula (1) for π as follows

π

4
≈ arctan

(
1

γk

)
+ arctan

(
1
2

(
1 − tan

(
2k−1

γk

)))
.

Consequently, from the lemma 2 we have

π

4
≈ 2k−1

γk
+

1
2

(
1 − tan

(
2k−1

γk

))
. (31)

Consider now the following limit

lim
x→π/4

2 sin2(x)
tan(x)

= 1.

Since numerator of this limit is very close to its denominator near vicinity of π/4, we may replace
tangent function in approximation (31) with twice of square of sine function. This leads to

π

4
≈ 2k−1

γk
+

1
2

(
1 − 2 sin2

(
2k−1

γk

))

or
π

4
≈ 2k

2γk
+

1
2

cos

(
2k

γk

)
or

π

2
≈ 2k

γk
+ cos

(
2k

γk

)
. (32)

Equation (32) provides a hint for computation of π. Using an heuristic assumption by change of
the variable such that

2k

γk
→ a1, k ≥ 1,

we may attempt to compute π by using the following iteration

an = an−1 + cos(an−1) (33)

resulting in

lim
n→∞

an =
π

2
.

The following is a Mathematica code for computing digits of π with help of the iterative formula
(33).

Clear[a, accNum, n];

(* Initial accuracy number *)
accNum = 10;

(* Initial value of π/2 *)
a = SetAccuracy[3.145926/2, accNum];

Print["--------------------------------------"];
Print["Iteration n", " | ", "Number of digits of π"];
Print["--------------------------------------"];
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(* Iteration *)
For[n = 1, n <= 8, a = SetAccuracy[a + Cos[a], accNum];

Print[n, " | ", MantissaExponent[Pi
- 2*a][[2]]//Abs]; accNum = 5*accNum; n++];

Print["--------------------------------------"];

The output of this code:

--------------------------------------
Iteration n | Number of digits of π
--------------------------------------
1 | 8
2 | 26
3 | 76
4 | 232
5 | 698
6 | 2095
7 | 6288
8 | 18868
--------------------------------------

shows that the iterative formula (33) provides cubic convergence since number of digits of π increases
by a factor of 3 after each iteration.

4.3. A Numerical Solution for the Nested Radicals with Roots of 2

As we can see, approximation (26) doubles the number of digits of π. However, this approach can
be used not only for computing digits of π. It can also be used to compute nested radical consisting of
square roots of 2. In particular, by using iterative formula (20) we can compute the nested radical with
roots of 2 as follows

vk
vk−n

≈
√

2 − cn

cn+1
.

Mathematica code below shows how to generate digits of the nested radicals with roots of 2 at
n = 3

vk
vk−3

≈
√

2 − c3

c4
=

√
2 −

√
2 +

√
2 +

√
2√

2 +
√

2 +
√

2 +
√

2

.

Clear[k, c, flNum, accNum, v]

(*Assign value of k*)
k = 5000;

(* Increase if needed: $RecursionLimit = 100000; *)
$RecursionLimit = 50000;

(* Define nested radicals *)
c[0] := c[0] = 0;
c[n_] := c[n] = SetAccuracy[Sqrt[2 + c[n - 1]], k];

(* Compute floor number *)
flNum = Floor[c[k]/Sqrt[2 - c[k - 1]]];

(*Set accuracy with accuracy number*)
accNum = Length[RealDigits[flNum][[1]]];
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(*Compute v_k*)
v[1] := v[1] = SetAccuracy[Floor[flNum], accNum];
v[n_] := v[n] = 1/2 (v[n - 1] - 1/v[n - 1]);

Print[MantissaExponent[v[k]/v[k - 3] - Sqrt[2 - c[3]]/c[4]][[2]] //
Abs, " computed digits of nested radical"];

This code produces the following output:

1506 computed digits of nested radical

It is interesting to note that due to relation

vk
vk−1

≈
√

2 −
√

2√
2 +

√
2
=

√
2 − 1

we can compute
√

2 and its total numbers of correct digits by using the following command lines:

Print["Computed square root of 2 is ", N[1 + v[k]/v[k - 1], 20],"..."];

Print[MantissaExponent[(v[k]/v[k - 1] + 1) - Sqrt[2]][[2]] //
Abs, " computed digits of square root of 2"];

,
This Mathematica command line generates the following output:

Computed square root of 2 is 1.4142135623730950488...
1506 computed digits of square root of 2

There are several different methods [23–25] that can be used for computing digits of
√

2. However,
the method of computation that we developed here can be implemented beyond

√
2 for efficient

computation of the nested radicals with roots of 2 of kind

√
2 − cn−1

cn
.

These nested radicals are utilized in formulas like (23) and

π

4
= ∑

k≥2
2k−1 arctan

(√
2 − ck−1

ck

)
.

Furthermore, due to relation
√

2 − cn−1

cn
≈ 1

2

√
2 − cn−1, n ≫ 1,

this technique can also be applied for computation of the nested radicals with roots of 2 of kind√
2 ±

√
2 +

√
2 +

√
2 + . . ..

as an alternative to other known methods [10,16,26,27].
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4.4. An Approximation to π with Arbitrary Convergence

Consider how equation (21) can be used for computing digits of π. Rather than to apply it directly
for computing digits of π, we can apply equation (12) to transform quotient

1
θ1,k

=
vk − 1
vk + 1

(34)

into reciprocal integers (compare equations (15) and (16) above before and after transformation).
Another approach to compute π is to approximate θk directly during process of iteration.

The following Mathematica code shows how to compute digits of π by approximating equation
(34) in iteration process.

Clear[k, accNum, c, v1, vk, n]

(* Integer k *)
k = 50;

(* Define array of accuracy numbers *)
accNum = {100000, 200000, 300000, 400000, 500000};

(* Define nested radicals *)
c[0] := c[0] = 0;
c[n_] := c[n] = SetAccuracy[Sqrt[2 + c[n - 1]], k];

n = 1;
Do[

(* Setting accuracy *)
v1 = SetAccuracy[Floor[c[k]/Sqrt[2 - c[k - 1]]], accNum[[n]]];

(* Computing v_k *)
vk = v1; Do[vk = 1/2 (vk - 1/vk), k - 1];

Print["n = ", n, ", ", MantissaExponent[\[Pi] -
4*(2^(k - 1)*ArcTan[1/v1] + ArcTan[(vk - 1)/(vk + 1)])][[2]] //

Abs, " digits of π"];
n++, 5];

The output of this code is

n = 1, 100014 digits of π
n = 2, 200014 digits of π
n = 3, 300014 digits of π
n = 4, 400014 digits of π
n = 5, 500014 digits of π

The number of digits in the Mathematica code above is determined by list variable accNum
consisting of a sequence of 5 numbers as given by

accNum = {100000, 200000, 300000, 400000, 500000};

If we increase these numbers, then the number of correct digits of π increases by the same factors.
From this example we can see that by increasing parameters in the list variable accNum, we can archive
an arbitrary convergence rate.

5. Conclusions
An iterative formula (20) that can be used for computing π and nested radicals with roots of 2 is

derived. It is shown how this iterative formula can be implemented to generate and approximate the
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two-term Machin-like formulas for π. Developing this approach, a simple trigonometric formula for π

with cubic convergence can be obtained. Some examples with Mathematica codes are provided.
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