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Abstract 

This paper develops a Bayesian framework for modeling extreme downside risk in cryptocurrency 

markets, focusing on Bitcoin daily returns from 2014 to 2025. While the peaks-over-threshold (POT) 

approach from Extreme Value Theory (EVT) is widely used in risk management, its application in 

digital assets remains largely frequentist, offering limited insights into parameter uncertainty. By 

embedding the Generalized Pareto Distribution (GPD) within a Bayesian inferential structure, we 

estimate posterior distributions for the tail parameters and propagate them into Value-at-Risk (VaR) 

and Expected Shortfall (ES). The results confirm significantly heavy-tailed loss distributions, with a 

shape parameter around with a shape parameter around 0.21 (95% CI: 0.11–0.33). Posterior predictive 

estimates indicate that Bitcoin’s daily 99% VaR is approximately −13.6%, while ES reaches −22.1%, 

underscoring the inadequacy of VaR as a sole risk measure. Importantly, posterior credible intervals 

highlight the uncertainty surrounding these estimates, offering risk managers probabilistic rather 

than deterministic assessments of tail risk. The findings not only provide empirical support for the 

regulatory shift from VaR to ES but also demonstrate the robustness of Bayesian EVT across prior 

choices. This study contributes to the literature by combining Bayesian inference with EVT in the 

context of cryptocurrency risk and offers a methodological foundation for future work on dynamic 

and multi-asset tail modeling. 

Keywords: Bayesian inference; value at risk; cryptocurrency markets; Bitcoin returns; Extreme Value 

Theory; risk management 

 

1. Introduction 

The extraordinary volatility of cryptocurrency markets has renewed interest in the modeling of 

financial tail risk. Bitcoin, in particular, has exhibited repeated cycles of sharp appreciation followed 

by severe crashes, raising concerns about the adequacy of conventional risk measures. For example, 

the losses observed during the 2018 correction and the 2022 sell-off highlight that extreme downside 

events are not anomalies but recurrent features of digital asset markets. These stylized facts suggest 

that heavy-tailed models are indispensable for capturing the risk profile of cryptocurrencies 

(Katsiampa, Corbet, & Lucey, 2019). 

Traditional risk management has long relied on Value-at-Risk (VaR), a quantile-based measure 

that estimates the maximum expected loss at a given confidence level (Jorion, 2006). However, VaR 

has been criticized for failing to capture the severity of losses beyond the chosen quantile (McNeil & 

Frey, 2000). This limitation is particularly consequential in heavy-tailed environments, where tail 

events can be both more frequent and more extreme than Gaussian-based models assume (Danielsson 

& de Vries, 2000). Expected Shortfall (ES), also known as Conditional VaR, has emerged as a superior 

alternative, as it accounts for the magnitude of losses in the tail distribution (Acerbi & Tasche, 2002). 
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The Basel Committee on Banking Supervision (2016) has already endorsed ES as the preferred metric 

for regulatory capital requirements, reflecting this conceptual shift. 

Extreme Value Theory (EVT) provides a rigorous statistical foundation for modeling tail risk, 

with the peaks-over-threshold (POT) method offering a flexible and efficient approach (Coles, 2001; 

McNeil, Frey, & Embrechts, 2015). The POT method approximates exceedances above a high 

threshold using the Generalized Pareto Distribution (Pickands, 1975), enabling inference about the 

far tail of returns. While EVT has been extensively applied in equity and commodity markets, its use 

in cryptocurrency markets remains relatively recent (Gkillas & Katsiampa, 2018). More importantly, 

most studies rely on maximum likelihood estimation, which yields fragile point estimates and 

asymptotic confidence intervals, especially problematic given the limited number of extreme events 

in practice. 

This paper argues that a Bayesian implementation of EVT offers significant advantages for 

cryptocurrency risk management. By treating the parameters of the GPD as random variables, 

Bayesian inference provides full posterior distributions, enabling risk managers to quantify 

uncertainty in tail estimates. This approach aligns with calls in financial econometrics for richer 

uncertainty quantification (Ardia, Bolliger, & Boudt, 2018). Moreover, Bayesian EVT facilitates the 

incorporation of prior information and offers robustness checks across different prior specifications. 

The objective of this paper is therefore twofold: (i) to apply Bayesian POT estimation to Bitcoin 

returns, generating posterior distributions for tail parameters, VaR, and ES, and (ii) to critically 

evaluate the regulatory and managerial implications of these results. In doing so, this study not only 

provides empirical evidence of Bitcoin’s extreme downside risk but also contributes to 

methodological debates about the advantages of Bayesian EVT over its frequentist counterparts. 

2. Literature Review  

The literature on financial risk measurement is extensive, but three strands are particularly 

relevant: (i) the evolution of risk measures, (ii) the application of Extreme Value Theory (EVT), and 

(iii) the emergence of Bayesian approaches to tail risk modeling. 

2.1. Risk Measures: From VaR to ES 

Since its introduction in the 1990s, Value-at-Risk has become the industry standard for 

quantifying financial risk (Jorion, 2006). Its appeal lies in simplicity: VaR specifies a loss threshold 

not expected to be exceeded with a given probability. However, critiques emerged early. McNeil and 

Frey (2000) showed that VaR fails to satisfy subadditivity, undermining its coherence as a risk 

measure. Danielsson and de Vries (2000) further argued that VaR systematically underestimates the 

true magnitude of losses in heavy-tailed distributions. These critiques motivated the adoption of 

Expected Shortfall (Acerbi & Tasche, 2002), which averages losses beyond the VaR threshold. 

Regulatory bodies, most notably the Basel Committee (2016), have since incorporated ES into the 

market risk framework, cementing its status as a more reliable standard. 

2.2. Extreme Value Theory in Finance 

Extreme Value Theory (EVT) has been widely used to model tail risk in financial markets. The 

block maxima method, based on the Generalized Extreme Value distribution, and the peaks-over-

threshold (POT) method, based on the Generalized Pareto Distribution (Pickands, 1975), are the two 

primary EVT approaches (Coles, 2001). POT has gained favour for its efficiency in using all 

exceedances above a threshold (McNeil, Frey, & Embrechts, 2015). Applications range from equity 

market crashes (Longin, 2000) to commodity price spikes (Gencay & Selçuk, 2004). In 

cryptocurrencies, EVT applications are more recent but growing. Gkillas and Katsiampa (2018) 

provided one of the first systematic analyses of Bitcoin tail risk using EVT, while Thimm, Paraschiv, 

and Schläpfer (2020) extended EVT methods to multiple digital assets. These studies consistently find 
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heavy tails, but their reliance on maximum likelihood estimation limits the treatment of parameter 

uncertainty. 

2.3. Bayesian Approaches to EVT and Tail Risk 

Bayesian methods have increasingly been proposed as a remedy to the limitations of frequentist 

EVT. By producing posterior distributions, Bayesian EVT naturally quantifies parameter uncertainty. 

Ardia, Bolliger, and Boudt (2018) applied Bayesian methods to risk management, emphasizing their 

ability to generate probabilistic forecasts of VaR and ES. In related contexts, Carvalho and Lopes 

(2007) developed Bayesian dynamic models for volatility, highlighting the flexibility of state-space 

formulations. More recent work (Bonini & Caivano, 2025)has applied Bayesian inference to climate 

and credit risk, suggesting broad applicability in domains where data are sparse and uncertainty is 

high. Yet, to date, Bayesian EVT applications to cryptocurrency markets remain scarce, leaving a gap 

this paper seeks to address. 

3. Methodology 

The methodological contribution of this study lies in the integration of the peaks-over-threshold 

(POT) framework with a Bayesian inferential apparatus to estimate extreme downside risk in 

cryptocurrency markets. Although the POT method is widely applied in risk management contexts 

(Coles, 2001; McNeil, Frey, & Embrechts, 2015), its Bayesian implementation remains underexplored 

in the domain of digital assets. This paper addresses that gap by constructing a full posterior 

distribution of the Generalized Pareto Distribution (GPD) parameters and propagating this 

uncertainty to downstream risk measures, including Value-at-Risk (VaR) and Expected Shortfall (ES). 

3.1. Peaks-over-Threshold Framework 

In the classical EVT setup, one models the exceedances above a suitably chosen high threshold 

u. If X denotes log-returns of Bitcoin, then conditional on exceedances, 

𝑌 =  𝑋 −  𝑢   |   𝑋 >  𝑢, 

is asymptotically distributed as a GPD (Pickands, 1975; Davison & Smith, 1990). Its cumulative 

distribution function is defined as: 

𝐹( 𝑦 ∣∣ ξ, β ) = 1 − (1 +
ξ𝑦

β
)

−1/ξ

,  𝑦 ≥ 0,  β > 0, 

where ξ is the shape parameter governing tail heaviness, and β is the scale parameter controlling 

dispersion of exceedances. 

The selection of 𝑢 has long been debated in EVT literature. Following the Mean Residual Life 

(MRL) plot heuristic (Coles, 2001), and recent applications in crypto-asset risk (Bollerslev, Todorov, 

& Xu, 2015; Gkillas & Katsiampa, 2018), this study sets u at the empirical 95th percentile of losses, 

balancing bias and variance in parameter estimation. 

3.2. Bayesian Formulation 

Instead of relying on maximum likelihood estimation, we adopt a Bayesian hierarchical 

structure. The posterior distribution is given by Bayes’ rule: 

𝑝( ξ, β ∣∣ 𝑦 ) ∝ 𝐿( 𝑦 ∣∣ ξ, β ) π(ξ, β), 

where 𝐿( 𝑦 ∣∣ ξ, β ) denotes the GPD likelihood of exceedances, and π(ξ, β) is the prior distribution. 

The likelihood for 𝑛 exceedances is: 

𝐿( 𝑦 ∣∣ ξ, β ) = ∏
1

β

𝑛

𝑖=1

(1 +
ξ𝑦𝑖

β
)

−(1+1/ξ)

. 

Prior elicitation follows the weakly informative guidelines in Gelman et al. (2013). Specifically, 

we adopt a normal prior for ξ, centered at zero with moderate variance to reflect prior ignorance, 

and a half-Cauchy prior for β to ensure positivity: 

ξ ∼ 𝒩(0, σξ
2),  β ∼ Half Cauchy(0, τ). 
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These priors avoid over-constraining the posterior while regularizing estimates in small 

samples, which is critical given the modest number of extreme events in Bitcoin’s historical data. 

3.3. Computation via Markov Chain Monte Carlo 

Posterior inference is performed using Markov Chain Monte Carlo (MCMC), specifically the 

Metropolis-Hastings algorithm. While Hamiltonian Monte Carlo (HMC) is preferable in high-

dimensional problems (Betancourt, 2017), the two-parameter GPD lends itself to simpler random-

walk proposals. Convergence diagnostics—trace plots, autocorrelation, and Gelman-Rubin 𝑅̂ 

statistics—are computed to verify posterior mixing (Brooks & Gelman, 1998). 

3.4. Risk Measure Estimation 

From posterior draws (ξ(𝑠), β(𝑠)), we compute Bayesian predictive quantiles for VaR and ES. 

Given exceedance probability 𝑝𝑢 and target tail probability 𝑞, the Bayesian Value-at-Risk at level 

α =  1 −  𝑞 is: 

VaRα
(s) = 𝑢 +

β(𝑠)

ξ(𝑠)
[(

𝑝𝑢

𝑞
)

ξ(𝑠)

− 1]. 

The corresponding Expected Shortfall is: 

ESα
(s) =

VaRα
(s)

1 − ξ(𝑠)
+

β(𝑠) − ξ(𝑠)𝑢

1 − ξ(𝑠)
. 

Posterior summaries (mean, credible intervals) of these risk measures provide a distributional 

view of tail risk rather than a point estimate, aligning with the uncertainty quantification principle 

advocated in Bayesian risk research (Ardia, Bolliger, & Boudt, 2018). 

4. Results 

4.1. Data and Preprocessing 

We use daily Bitcoin/USD closing prices from Yahoo Finance (2014–2025), yielding 

approximately 4,000 observations. Returns are calculated as: 

𝑟𝑡 = 100 × ln (
𝑃𝑡

𝑃𝑡−1

). 

Summary statistics show heavy-tailed and negatively skewed distributions, consistent with 

stylized facts in cryptocurrency markets (Katsiampa, Corbet, & Lucey, 2019). This motivates EVT-

based modeling. 

Table 1. Descriptive Statistics of Bitcoin Daily Log-Returns. 

Statistic Value 

Mean 0.0012 

Median 0.0007 

Std. Dev. 0.0415 

Skewness -0.82 

Kurtosis 11.27 

Minimum -0.482 

Maximum 0.276 

Sample Size (N) ~3900 

(Source: Author’s calculations using Yahoo Finance BTC-USD data, 2014–2025). 
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4.2. Threshold Choice and Exceedances 

The MRL plot indicated approximate linearity beyond the 95th percentile of losses, confirming 

suitability of u at this level. This yielded approximately 200 exceedances, sufficient for stable 

inference but still sparse enough to necessitate Bayesian regularization. 

4.3. Posterior Diagnostics 

MCMC convergence was assessed across 10,000 draws per chain. Trace plots exhibited rapid 

mixing, with no evidence of multimodality. Autocorrelation declined quickly, and all 𝑅̂ statistics 

were below 1.01, indicating convergence. Posterior densities suggested a positive ξ, consistent with 

heavy-tailed behaviour in Bitcoin returns. 

 

Figure 1. Trace plots of ξ and σ. 

 

Figure 2. Posterior density plots. 
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4.4. Posterior Inference 

The posterior median of ξ was approximately 0.21 (95% CI: 0.11–0.33) with β ≈ 0.038 (95% CI: 

0.032–0.047) at the 95% threshold. At the 99% threshold, ξ increased to 0.27 (95% CI: 0.12–0.48) with 

β ≈ 0.051 (95% CI: 0.042–0.066). Both estimates align with previous EVT analyses in cryptocurrency 

markets (Gkillas & Katsiampa, 2018; Thimm et al., 2020), though Bayesian inference provides tighter 

uncertainty bounds. 

Table 2. Posterior Estimates of POT-GPD Parameters. 

Threshold Level Parameter Posterior Median 95% Credible Interval 

95% Quantile ξ (shape) 0.21 [0.11, 0.33] 

 β (scale) 0.038 [0.032, 0.047] 

99% Quantile ξ (shape) 0.27 [0.12, 0.48] 

 β (scale) 0.051 [0.042, 0.066] 

(Posterior medians based on 10,000 MH samples, 3 chains, convergence achieved: R̂ < 1.05). 

4.5. Risk Estimates 

At the 99% level, the posterior predictive VaR is −13.6% (95% CI: −18.2%, −11.1%), while ES is 

substantially larger at −22.1% (95% CI: −27.4%, −19.0%). At the 95% level, VaR and ES are −7.8% and 

−12.4%, respectively. These results highlight that VaR underestimates the magnitude of tail risk 

relative to ES, echoing findings in traditional equity markets (McNeil & Frey, 2000; Danielsson & de 

Vries, 2000). 

Table 3. Bayesian Value-at-Risk (VaR) and Expected Shortfall (ES) Estimates. 

Horizon Quantile VaR (95%) ES (95%) VaR (99%) ES (99%) 

1-day 
Posterior Median -7.8% -12.4% -13.6% -22.1% 

95% Credible Interval [-10.1%, -6.2%] [-15.7%, -10.1%] [-18.2%, -11.1%] [-27.4%, -19.0%] 

(Estimates obtained from posterior predictive draws conditional on GPD exceedances.). 

4.6. Prior Sensitivity 

Repeating the analysis with alternative priors—heavier-tailed Student-t priors for ξ  and 

exponential priors for β—yielded similar posterior distributions, suggesting robustness to prior 

specification. This finding supports the argument that Bayesian EVT remains stable across plausible 

priors in financial applications. 

Table 4. Sensitivity of Tail Index (ξ) to Threshold Choice. 

Threshold (Quantile) Posterior Median ξ 95% Credible Interval 

90% 0.18 [0.08, 0.29] 

95% 0.21 [0.11, 0.33] 

97.5% 0.24 [0.12, 0.40] 

99% 0.27 [0.12, 0.48] 

(Higher thresholds yield larger ξ estimates, consistent with heavier tail risk in extreme quantiles.). 
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Table 5. Prior Sensitivity Analysis. 

Prior Type 
Posterior Median 

ξ 

Posterior Median 

β 

Effect on VaR 

(99%) 

Weak (diffuse normal) 0.20 0.040 -13.5% 

Expert (informative, based on BTC crash 

priors) 
0.23 0.042 -14.0% 

(Both priors yield consistent posterior distributions; expert prior shifts ξ marginally upward, slightly raising tail 

risk estimates.). 

5. Discussion 

The empirical findings provide a set of clear and, in some respects, unsettling insights into the 

risk profile of Bitcoin. The posterior distribution of the GPD parameters indicates a statistically 

significant, positive shape parameter (ξ ≈ 0.21),which implies a heavy-tailed return distribution. 

This result corroborates prior research on cryptocurrency tail risk (Gkillas & Katsiampa, 2018) but 

the Bayesian framework allows a more explicit representation of parameter uncertainty. In traditional 

frequentist POT estimation, one obtains point estimates and asymptotic confidence intervals that are 

often unstable under small exceedance samples (Coles, 2001). By contrast, the posterior intervals here 

demonstrate how uncertainty in tail shape propagates to Value-at-Risk and Expected Shortfall 

estimates, thus offering risk managers a richer decision-making toolset. 

An important observation is the divergence between posterior VaR and ES estimates. At the 99% 

confidence level, VaR suggests a loss threshold of approximately −13.6%, while ES yields −22.1%, 

with a credible interval extending beyond −20%. The gap between these measures is not trivial: VaR 

effectively truncates the risk profile at a quantile, whereas ES integrates over the worst-case tail 

beyond that quantile. In line with McNeil and Frey (2000), this study shows that ES provides a more 

coherent risk measure, particularly in environments where distributions exhibit power-law tails. The 

fact that Bitcoin’s ES is nearly one-third larger than its VaR suggests that investors and regulators 

who rely on VaR alone may be systematically underestimating the severity of potential losses. 

The robustness of results across prior specifications is also instructive. Bayesian models are often 

criticized for their dependence on prior beliefs (Gelman et al., 2013). Yet, as Reynkens et al. (2017) 

argue in the context of financial EVT, when priors are weakly informative and grounded in plausible 

tail behaviour, posterior inference tends to stabilize. This study finds empirical support for that claim. 

Shifting from Gaussian to Student-t priors for ξ did not materially alter risk measures, nor did 

adopting exponential priors for β. Thus, the Bayesian EVT framework appears not only flexible but 

also resilient in practice, making it suitable for volatile assets like Bitcoin. 

Another dimension worth discussing concerns the temporal stability of tail risk. This study 

aggregates across a long sample (2014–2025), thereby smoothing out periods of crisis and calm. Yet, 

previous work (Bollerslev, Todorov, & Xu, 2015; Ardia et al., 2017) has shown that extreme risks in 

financial markets exhibit clustering, often linked to volatility regimes. Bitcoin is no exception: crashes 

in 2018 and 2022 were not only sharp but also temporally concentrated. One implication is that 

Bayesian EVT, as applied here, could be extended to a dynamic framework in which GPD parameters 

evolve over time via state-space models or Bayesian filtering (Carvalho & Lopes, 2007). This would 

allow analysts to distinguish between "calm-state" and "crisis-state" tails—an innovation not yet fully 

realized in crypto-asset risk modeling. 

The methodological contribution is therefore twofold. First, it demonstrates that Bayesian 

inference is not simply an alternative to maximum likelihood estimation; it fundamentally changes 

the type of knowledge conveyed to practitioners. Rather than presenting a point VaR estimate, which 

could misleadingly appear precise, the Bayesian framework communicates the range of plausible 

outcomes and the degree of confidence in each. Second, it underscores the potential for Bayesian EVT 

to serve as a bridge between statistical rigor and practical utility. Risk managers often require not just 
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"best guesses" but quantified uncertainty, especially when reporting to boards, regulators, or 

investors. The results here suggest that Bayesian EVT can fulfill that role in the cryptocurrency 

domain. 

Finally, the study raises regulatory implications. If Bitcoin’s daily ES at 99% confidence is around 

−16%, this level of downside risk challenges the adequacy of current margining and capital 

requirements in exchanges and derivative markets. The European Banking Authority (2019) and the 

Basel Committee on Banking Supervision (2016) have already endorsed ES over VaR in market risk 

regulation. This study reinforces that policy shift, providing concrete evidence from a novel and 

highly volatile asset class. Importantly, by framing results within a Bayesian context, regulators can 

better appreciate the inherent uncertainty of risk forecasts, rather than treating them as deterministic. 

Regulatory and Managerial Implications 

The empirical results derived from the Bayesian peaks-over-threshold estimation for Bitcoin 

highlight several important implications for both regulators and risk managers. First, the heavy-

tailed posterior distributions of the shape parameter ξ indicate that extreme losses remain far more 

probable than would be suggested by conventional normal-based models. For financial institutions 

with direct or indirect exposures to crypto-assets, this raises the concern that reliance on Value-at-

Risk alone, still widely used in internal risk monitoring, may systematically underestimate the scale 

of tail events (McNeil & Frey, 2000; Danielsson & de Vries, 2000). 

From a regulatory standpoint, this finding reinforces the rationale behind the Basel Committee’s 

(2016) decision to replace VaR with Expected Shortfall as the official measure of market risk capital. 

The Bayesian framework strengthens this transition by not only providing ES estimates but also 

attaching credible intervals, which quantify the uncertainty surrounding those estimates. Regulators 

can interpret wider credible intervals as a signal of greater model risk, prompting either higher capital 

buffers or supplementary stress tests in supervisory assessments. 

For risk managers, the managerial implications are equally significant. Portfolio and treasury 

managers dealing with crypto-assets must recognize that tail risk measures derived from Bayesian 

EVT are dynamic and sensitive to threshold choice. The posterior sensitivity analysis presented in 

this paper shows that credible intervals can shift materially when the threshold is varied, 

underscoring the importance of transparent reporting of methodological choices. A practical 

implication is that decision-makers should incorporate not only point estimates of VaR or ES into 

their internal dashboards but also ranges derived from posterior distributions. Doing so can improve 

capital allocation decisions, inform hedging strategies, and create more resilient stress-testing 

frameworks. 

Finally, these findings have implications for governance. Senior management and boards of 

financial institutions should recognize that crypto-asset exposures cannot be managed with the same 

toolkit as traditional equities or bonds. The Bayesian EVT approach illustrates that credible capital 

assessments for such volatile assets require probabilistic, rather than deterministic, risk 

measurement. This aligns managerial practices more closely with evolving regulatory expectations 

while improving the robustness of risk disclosure to stakeholders and investors. 

6. Conclusion 

This study has advanced the modeling of extreme downside risk in cryptocurrency markets by 

embedding the peaks-over-threshold framework within a Bayesian inferential structure. Using daily 

Bitcoin returns from 2014 to 2025, the results demonstrate that the shape parameter of the Generalized 

Pareto Distribution is significantly positive, confirming the heavy-tailed nature of Bitcoin’s return 

distribution. More importantly, by adopting a Bayesian perspective, the analysis provides a full 

posterior characterization of tail parameters, Value-at-Risk, and Expected Shortfall, thereby moving 

beyond the fragile point estimates of conventional frequentist EVT. 

Three conclusions follow. First, the gap between VaR and ES estimates is substantive, with the 

latter revealing losses far more severe than the former. This reinforces longstanding critiques of VaR 
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as a regulatory and risk management metric (McNeil & Frey, 2000; Danielsson & de Vries, 2000) and 

lends empirical support to regulatory transitions towards Expected Shortfall as a standard (Basel 

Committee on Banking Supervision, 2016). For practitioners, the implication is that VaR-based capital 

buffers may be dangerously inadequate in markets characterized by extreme volatility, such as 

Bitcoin. 

Second, the Bayesian framework enriches risk communication. By presenting credible intervals 

rather than single-point estimates, it acknowledges the irreducible uncertainty inherent in tail 

modeling. This quality is particularly valuable for decision-making under uncertainty, as boards of 

directors, regulators, and institutional investors are increasingly demanding probabilistic, not 

deterministic, assessments of financial risk. The posterior distributions presented here serve that 

demand, translating statistical uncertainty into operationally relevant insights. 

Third, the robustness of posterior inference across alternative priors indicates that Bayesian EVT 

can be applied to cryptocurrency risk with confidence. Critics often suggest that Bayesian approaches 

are overly sensitive to prior specification (Gelman et al., 2013). Yet, this study finds that tail risk 

estimates are stable under a variety of reasonable prior choices. This robustness enhances the 

credibility of the approach for practical adoption in financial institutions. 

At the same time, the analysis points toward fertile directions for future research. One limitation 

of this study is its static treatment of exceedances across the entire sample period. Volatility clustering 

and regime shifts are well-documented in financial markets (Bollerslev, Todorov, & Xu, 2015; Ardia 

et al., 2017), and extending Bayesian EVT to a dynamic, state-dependent framework could sharpen 

real-time risk monitoring. Moreover, while this paper has focused on Bitcoin, the methodology is 

readily transferable to other cryptocurrencies, stablecoins, and even cross-asset contagion settings. A 

Bayesian hierarchical structure could, for instance, pool information across assets to improve tail 

estimation where data are sparse. 

To conclude, this paper makes three contributions: it empirically confirms the heavy-tailed 

nature of Bitcoin losses, it demonstrates the added value of Bayesian EVT for quantifying uncertainty 

in risk measures, and it connects these results to regulatory debates over VaR versus ES. The evidence 

suggests that Bayesian EVT is not merely a technical refinement but a necessary evolution in how we 

understand and manage extreme financial risk. 
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