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Abstract

This paper develops a Bayesian framework for modeling extreme downside risk in cryptocurrency
markets, focusing on Bitcoin daily returns from 2014 to 2025. While the peaks-over-threshold (POT)
approach from Extreme Value Theory (EVT) is widely used in risk management, its application in
digital assets remains largely frequentist, offering limited insights into parameter uncertainty. By
embedding the Generalized Pareto Distribution (GPD) within a Bayesian inferential structure, we
estimate posterior distributions for the tail parameters and propagate them into Value-at-Risk (VaR)
and Expected Shortfall (ES). The results confirm significantly heavy-tailed loss distributions, with a
shape parameter around with a shape parameter around 0.21 (95% CI: 0.11-0.33). Posterior predictive
estimates indicate that Bitcoin’s daily 99% VaR is approximately —13.6%, while ES reaches -22.1%,
underscoring the inadequacy of VaR as a sole risk measure. Importantly, posterior credible intervals
highlight the uncertainty surrounding these estimates, offering risk managers probabilistic rather
than deterministic assessments of tail risk. The findings not only provide empirical support for the
regulatory shift from VaR to ES but also demonstrate the robustness of Bayesian EVT across prior
choices. This study contributes to the literature by combining Bayesian inference with EVT in the
context of cryptocurrency risk and offers a methodological foundation for future work on dynamic
and multi-asset tail modeling.

Keywords: Bayesian inference; value at risk; cryptocurrency markets; Bitcoin returns; Extreme Value
Theory; risk management

1. Introduction

The extraordinary volatility of cryptocurrency markets has renewed interest in the modeling of
financial tail risk. Bitcoin, in particular, has exhibited repeated cycles of sharp appreciation followed
by severe crashes, raising concerns about the adequacy of conventional risk measures. For example,
the losses observed during the 2018 correction and the 2022 sell-off highlight that extreme downside
events are not anomalies but recurrent features of digital asset markets. These stylized facts suggest
that heavy-tailed models are indispensable for capturing the risk profile of cryptocurrencies
(Katsiampa, Corbet, & Lucey, 2019).

Traditional risk management has long relied on Value-at-Risk (VaR), a quantile-based measure
that estimates the maximum expected loss at a given confidence level (Jorion, 2006). However, VaR
has been criticized for failing to capture the severity of losses beyond the chosen quantile (McNeil &
Frey, 2000). This limitation is particularly consequential in heavy-tailed environments, where tail
events can be both more frequent and more extreme than Gaussian-based models assume (Danielsson
& de Vries, 2000). Expected Shortfall (ES), also known as Conditional VaR, has emerged as a superior
alternative, as it accounts for the magnitude of losses in the tail distribution (Acerbi & Tasche, 2002).
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The Basel Committee on Banking Supervision (2016) has already endorsed ES as the preferred metric
for regulatory capital requirements, reflecting this conceptual shift.

Extreme Value Theory (EVT) provides a rigorous statistical foundation for modeling tail risk,
with the peaks-over-threshold (POT) method offering a flexible and efficient approach (Coles, 2001;
McNeil, Frey, & Embrechts, 2015). The POT method approximates exceedances above a high
threshold using the Generalized Pareto Distribution (Pickands, 1975), enabling inference about the
far tail of returns. While EVT has been extensively applied in equity and commodity markets, its use
in cryptocurrency markets remains relatively recent (Gkillas & Katsiampa, 2018). More importantly,
most studies rely on maximum likelihood estimation, which yields fragile point estimates and
asymptotic confidence intervals, especially problematic given the limited number of extreme events
in practice.

This paper argues that a Bayesian implementation of EVT offers significant advantages for
cryptocurrency risk management. By treating the parameters of the GPD as random variables,
Bayesian inference provides full posterior distributions, enabling risk managers to quantify
uncertainty in tail estimates. This approach aligns with calls in financial econometrics for richer
uncertainty quantification (Ardia, Bolliger, & Boudt, 2018). Moreover, Bayesian EVT facilitates the
incorporation of prior information and offers robustness checks across different prior specifications.

The objective of this paper is therefore twofold: (i) to apply Bayesian POT estimation to Bitcoin
returns, generating posterior distributions for tail parameters, VaR, and ES, and (ii) to critically
evaluate the regulatory and managerial implications of these results. In doing so, this study not only
provides empirical evidence of Bitcoin’s extreme downside risk but also contributes to
methodological debates about the advantages of Bayesian EVT over its frequentist counterparts.

2. Literature Review

The literature on financial risk measurement is extensive, but three strands are particularly
relevant: (i) the evolution of risk measures, (ii) the application of Extreme Value Theory (EVT), and
(iii) the emergence of Bayesian approaches to tail risk modeling.

2.1. Risk Measures: From VaR to ES

Since its introduction in the 1990s, Value-at-Risk has become the industry standard for
quantifying financial risk (Jorion, 2006). Its appeal lies in simplicity: VaR specifies a loss threshold
not expected to be exceeded with a given probability. However, critiques emerged early. McNeil and
Frey (2000) showed that VaR fails to satisfy subadditivity, undermining its coherence as a risk
measure. Danielsson and de Vries (2000) further argued that VaR systematically underestimates the
true magnitude of losses in heavy-tailed distributions. These critiques motivated the adoption of
Expected Shortfall (Acerbi & Tasche, 2002), which averages losses beyond the VaR threshold.
Regulatory bodies, most notably the Basel Committee (2016), have since incorporated ES into the
market risk framework, cementing its status as a more reliable standard.

2.2. Extreme Value Theory in Finance

Extreme Value Theory (EVT) has been widely used to model tail risk in financial markets. The
block maxima method, based on the Generalized Extreme Value distribution, and the peaks-over-
threshold (POT) method, based on the Generalized Pareto Distribution (Pickands, 1975), are the two
primary EVT approaches (Coles, 2001). POT has gained favour for its efficiency in using all
exceedances above a threshold (McNeil, Frey, & Embrechts, 2015). Applications range from equity
market crashes (Longin, 2000) to commodity price spikes (Gencay & Selguk, 2004). In
cryptocurrencies, EVT applications are more recent but growing. Gkillas and Katsiampa (2018)
provided one of the first systematic analyses of Bitcoin tail risk using EVT, while Thimm, Paraschiv,
and Schldpfer (2020) extended EVT methods to multiple digital assets. These studies consistently find
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heavy tails, but their reliance on maximum likelihood estimation limits the treatment of parameter
uncertainty.

2.3. Bayesian Approaches to EVT and Tail Risk

Bayesian methods have increasingly been proposed as a remedy to the limitations of frequentist
EVT. By producing posterior distributions, Bayesian EVT naturally quantifies parameter uncertainty.
Ardia, Bolliger, and Boudt (2018) applied Bayesian methods to risk management, emphasizing their
ability to generate probabilistic forecasts of VaR and ES. In related contexts, Carvalho and Lopes
(2007) developed Bayesian dynamic models for volatility, highlighting the flexibility of state-space
formulations. More recent work (Bonini & Caivano, 2025)has applied Bayesian inference to climate
and credit risk, suggesting broad applicability in domains where data are sparse and uncertainty is
high. Yet, to date, Bayesian EVT applications to cryptocurrency markets remain scarce, leaving a gap
this paper seeks to address.

3. Methodology

The methodological contribution of this study lies in the integration of the peaks-over-threshold
(POT) framework with a Bayesian inferential apparatus to estimate extreme downside risk in
cryptocurrency markets. Although the POT method is widely applied in risk management contexts
(Coles, 2001; McNeil, Frey, & Embrechts, 2015), its Bayesian implementation remains underexplored
in the domain of digital assets. This paper addresses that gap by constructing a full posterior
distribution of the Generalized Pareto Distribution (GPD) parameters and propagating this
uncertainty to downstream risk measures, including Value-at-Risk (VaR) and Expected Shortfall (ES).

3.1. Peaks-over-Threshold Framework

In the classical EVT setup, one models the exceedances above a suitably chosen high threshold
u. If X denotes log-returns of Bitcoin, then conditional on exceedances,
Y=X—-u| X >u,
is asymptotically distributed as a GPD (Pickands, 1975; Davison & Smith, 1990). Its cumulative
distribution function is defined as:

B Ey—l/ﬁ
F(yIE,B)—l—(1+E) , y=0, B>0,

where § is the shape parameter governing tail heaviness, and f is the scale parameter controlling
dispersion of exceedances.

The selection of u has long been debated in EVT literature. Following the Mean Residual Life
(MRL) plot heuristic (Coles, 2001), and recent applications in crypto-asset risk (Bollerslev, Todorov,
& Xu, 2015; Gkillas & Katsiampa, 2018), this study sets u at the empirical 95th percentile of losses,
balancing bias and variance in parameter estimation.

3.2. Bayesian Formulation

Instead of relying on maximum likelihood estimation, we adopt a Bayesian hierarchical
structure. The posterior distribution is given by Bayes’ rule:
p(&B1y) o L(y1&B)m(Ep),
where L(y | §B) denotes the GPD likelihood of exceedances, and m(§, ) is the prior distribution.
The likelihood for n exceedances is:

L(y|z.s)=]l[%(1+%)

-(1+1/9)

Prior elicitation follows the weakly informative guidelines in Gelman et al. (2013). Specifically,
we adopt a normal prior for &, centered at zero with moderate variance to reflect prior ignorance,
and a half-Cauchy prior for $ to ensure positivity:

g~ N(0,07), B ~ Half Cauchy(0,T).
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These priors avoid over-constraining the posterior while regularizing estimates in small
samples, which is critical given the modest number of extreme events in Bitcoin’s historical data.

3.3. Computation via Markov Chain Monte Carlo

Posterior inference is performed using Markov Chain Monte Carlo (MCMC), specifically the
Metropolis-Hastings algorithm. While Hamiltonian Monte Carlo (HMC) is preferable in high-
dimensional problems (Betancourt, 2017), the two-parameter GPD lends itself to simpler random-
walk proposals. Convergence diagnostics—trace plots, autocorrelation, and Gelman-Rubin R
statistics—are computed to verify posterior mixing (Brooks & Gelman, 1998).

3.4. Risk Measure Estimation

From posterior draws (§, ), we compute Bayesian predictive quantiles for VaR and ES.
Given exceedance probability p, and target tail probability q, the Bayesian Value-at-Risk at level

(s)
VaR® = 1 + gjjj [(Z_u)E _ 1].
The corresponding Expected Shortfall is:
ES(S) _ VaR(SS) B(S) — E(S)u
o 1—¢(® 1—E6)
Posterior summaries (mean, credible intervals) of these risk measures provide a distributional

a=1-—q is:

view of tail risk rather than a point estimate, aligning with the uncertainty quantification principle
advocated in Bayesian risk research (Ardia, Bolliger, & Boudt, 2018).

4. Results

4.1. Data and Preprocessing

We use daily Bitcoin/USD closing prices from Yahoo Finance (2014-2025), yielding
approximately 4,000 observations. Returns are calculated as:
Py
1, = 100 X In (Pt—l)-
Summary statistics show heavy-tailed and negatively skewed distributions, consistent with
stylized facts in cryptocurrency markets (Katsiampa, Corbet, & Lucey, 2019). This motivates EVT-
based modeling.

Table 1. Descriptive Statistics of Bitcoin Daily Log-Returns.

Statistic Value
Mean 0.0012
Median 0.0007
Std. Dev. 0.0415
Skewness -0.82
Kurtosis 11.27
Minimum -0.482
Maximum 0.276
Sample Size (N) ~3900

(Source: Author’s calculations using Yahoo Finance BTC-USD data, 2014-2025).
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The MRL plot indicated approximate linearity beyond the 95th percentile of losses, confirming

suitability of u at this level. This yielded approximately 200 exceedances, sufficient for stable

inference but still sparse enough to necessitate Bayesian regularization.

4.3. Posterior Diagnostics

MCMC convergence was assessed across 10,000 draws per chain. Trace plots exhibited rapid

mixing, with no evidence of multimodality. Autocorrelation declined quickly, and all R statistics

were below 1.01, indicating convergence. Posterior densities suggested a positive &, consistent with

heavy-tailed behaviour in Bitcoin returns.
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4.4. Posterior Inference

The posterior median of & was approximately 0.21 (95% CI: 0.11-0.33) with {3 = 0.038 (95% CI:
0.032-0.047) at the 95% threshold. At the 99% threshold, & increased to 0.27 (95% CI: 0.12-0.48) with
[ = 0.051 (95% CI: 0.042-0.066). Both estimates align with previous EVT analyses in cryptocurrency
markets (Gkillas & Katsiampa, 2018; Thimm et al., 2020), though Bayesian inference provides tighter
uncertainty bounds.

Table 2. Posterior Estimates of POT-GPD Parameters.

Threshold Level Parameter Posterior Median 95% Credible Interval

95% Quantile & (shape) 0.21 [0.11, 0.33]

[ (scale) 0.038 [0.032, 0.047]
99% Quantile & (shape) 0.27 [0.12, 0.48]

B (scale) 0.051 [0.042, 0.066]

(Posterior medians based on 10,000 MH samples, 3 chains, convergence achieved: R'<1.05).

4.5. Risk Estimates

At the 99% level, the posterior predictive VaR is -13.6% (95% CI: -18.2%, —11.1%), while ES is
substantially larger at —22.1% (95% CI: —27.4%, —=19.0%). At the 95% level, VaR and ES are -7.8% and
-12.4%, respectively. These results highlight that VaR underestimates the magnitude of tail risk
relative to ES, echoing findings in traditional equity markets (McNeil & Frey, 2000; Danielsson & de
Vries, 2000).

Table 3. Bayesian Value-at-Risk (VaR) and Expected Shortfall (ES) Estimates.

Horizon Quantile VaR (95%) ES (95%) VaR (99%) ES (99%)
Posterior Median -7.8% -12.4% -13.6% -22.1%
95% Credible Interval [-10.1%, -6.2%] [-15.7%, -10.1%] [-18.2%, -11.1%] [-27.4%, -19.0%]

1-day

(Estimates obtained from posterior predictive draws conditional on GPD exceedances.).

4.6. Prior Sensitivity

Repeating the analysis with alternative priors—heavier-tailed Student-t priors for & and
exponential priors for B —yielded similar posterior distributions, suggesting robustness to prior
specification. This finding supports the argument that Bayesian EVT remains stable across plausible
priors in financial applications.

Table 4. Sensitivity of Tail Index (&) to Threshold Choice.

Threshold (Quantile) Posterior Median § 95% Credible Interval
90% 0.18 [0.08, 0.29]
95% 0.21 [0.11, 0.33]
97.5% 0.24 [0.12, 0.40]
99% 0.27 [0.12, 0.48]

(Higher thresholds yield larger £ estimates, consistent with heavier tail risk in extreme quantiles.).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 5. Prior Sensitivity Analysis.

Posterior Median Posterior Median Effect on VaR

Prior Type
P £ B (99%)
Weak (diffuse normal) 0.20 0.040 -13.5%
Expert (informative, based on BTC crash
0.23 0.042 -14.0%

priors)

(Both priors yield consistent posterior distributions; expert prior shifts & marginally upward, slightly raising tail

risk estimates.).

5. Discussion

The empirical findings provide a set of clear and, in some respects, unsettling insights into the
risk profile of Bitcoin. The posterior distribution of the GPD parameters indicates a statistically
significant, positive shape parameter (§ ~ 0.21),which implies a heavy-tailed return distribution.
This result corroborates prior research on cryptocurrency tail risk (Gkillas & Katsiampa, 2018) but
the Bayesian framework allows a more explicit representation of parameter uncertainty. In traditional
frequentist POT estimation, one obtains point estimates and asymptotic confidence intervals that are
often unstable under small exceedance samples (Coles, 2001). By contrast, the posterior intervals here
demonstrate how uncertainty in tail shape propagates to Value-at-Risk and Expected Shortfall
estimates, thus offering risk managers a richer decision-making toolset.

An important observation is the divergence between posterior VaR and ES estimates. At the 99%
confidence level, VaR suggests a loss threshold of approximately —13.6%, while ES yields -22.1%,
with a credible interval extending beyond —20%. The gap between these measures is not trivial: VaR
effectively truncates the risk profile at a quantile, whereas ES integrates over the worst-case tail
beyond that quantile. In line with McNeil and Frey (2000), this study shows that ES provides a more
coherent risk measure, particularly in environments where distributions exhibit power-law tails. The
fact that Bitcoin’s ES is nearly one-third larger than its VaR suggests that investors and regulators
who rely on VaR alone may be systematically underestimating the severity of potential losses.

The robustness of results across prior specifications is also instructive. Bayesian models are often
criticized for their dependence on prior beliefs (Gelman et al., 2013). Yet, as Reynkens et al. (2017)
argue in the context of financial EVT, when priors are weakly informative and grounded in plausible
tail behaviour, posterior inference tends to stabilize. This study finds empirical support for that claim.
Shifting from Gaussian to Student-t priors for § did not materially alter risk measures, nor did
adopting exponential priors for . Thus, the Bayesian EVT framework appears not only flexible but
also resilient in practice, making it suitable for volatile assets like Bitcoin.

Another dimension worth discussing concerns the temporal stability of tail risk. This study
aggregates across a long sample (2014-2025), thereby smoothing out periods of crisis and calm. Yet,
previous work (Bollerslev, Todorov, & Xu, 2015; Ardia et al., 2017) has shown that extreme risks in
financial markets exhibit clustering, often linked to volatility regimes. Bitcoin is no exception: crashes
in 2018 and 2022 were not only sharp but also temporally concentrated. One implication is that
Bayesian EVT, as applied here, could be extended to a dynamic framework in which GPD parameters
evolve over time via state-space models or Bayesian filtering (Carvalho & Lopes, 2007). This would
allow analysts to distinguish between "calm-state" and "crisis-state” tails —an innovation not yet fully
realized in crypto-asset risk modeling.

The methodological contribution is therefore twofold. First, it demonstrates that Bayesian
inference is not simply an alternative to maximum likelihood estimation; it fundamentally changes
the type of knowledge conveyed to practitioners. Rather than presenting a point VaR estimate, which
could misleadingly appear precise, the Bayesian framework communicates the range of plausible
outcomes and the degree of confidence in each. Second, it underscores the potential for Bayesian EVT
to serve as a bridge between statistical rigor and practical utility. Risk managers often require not just
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"best guesses" but quantified uncertainty, especially when reporting to boards, regulators, or
investors. The results here suggest that Bayesian EVT can fulfill that role in the cryptocurrency
domain.

Finally, the study raises regulatory implications. If Bitcoin’s daily ES at 99% confidence is around
-16%, this level of downside risk challenges the adequacy of current margining and capital
requirements in exchanges and derivative markets. The European Banking Authority (2019) and the
Basel Committee on Banking Supervision (2016) have already endorsed ES over VaR in market risk
regulation. This study reinforces that policy shift, providing concrete evidence from a novel and
highly volatile asset class. Importantly, by framing results within a Bayesian context, regulators can
better appreciate the inherent uncertainty of risk forecasts, rather than treating them as deterministic.

Regulatory and Managerial Implications

The empirical results derived from the Bayesian peaks-over-threshold estimation for Bitcoin
highlight several important implications for both regulators and risk managers. First, the heavy-
tailed posterior distributions of the shape parameter & indicate that extreme losses remain far more
probable than would be suggested by conventional normal-based models. For financial institutions
with direct or indirect exposures to crypto-assets, this raises the concern that reliance on Value-at-
Risk alone, still widely used in internal risk monitoring, may systematically underestimate the scale
of tail events (McNeil & Frey, 2000; Danielsson & de Vries, 2000).

From a regulatory standpoint, this finding reinforces the rationale behind the Basel Committee’s
(2016) decision to replace VaR with Expected Shortfall as the official measure of market risk capital.
The Bayesian framework strengthens this transition by not only providing ES estimates but also
attaching credible intervals, which quantify the uncertainty surrounding those estimates. Regulators
can interpret wider credible intervals as a signal of greater model risk, prompting either higher capital
buffers or supplementary stress tests in supervisory assessments.

For risk managers, the managerial implications are equally significant. Portfolio and treasury
managers dealing with crypto-assets must recognize that tail risk measures derived from Bayesian
EVT are dynamic and sensitive to threshold choice. The posterior sensitivity analysis presented in
this paper shows that credible intervals can shift materially when the threshold is varied,
underscoring the importance of transparent reporting of methodological choices. A practical
implication is that decision-makers should incorporate not only point estimates of VaR or ES into
their internal dashboards but also ranges derived from posterior distributions. Doing so can improve
capital allocation decisions, inform hedging strategies, and create more resilient stress-testing
frameworks.

Finally, these findings have implications for governance. Senior management and boards of
financial institutions should recognize that crypto-asset exposures cannot be managed with the same
toolkit as traditional equities or bonds. The Bayesian EVT approach illustrates that credible capital
assessments for such volatile assets require probabilistic, rather than deterministic, risk
measurement. This aligns managerial practices more closely with evolving regulatory expectations
while improving the robustness of risk disclosure to stakeholders and investors.

6. Conclusion

This study has advanced the modeling of extreme downside risk in cryptocurrency markets by
embedding the peaks-over-threshold framework within a Bayesian inferential structure. Using daily
Bitcoin returns from 2014 to 2025, the results demonstrate that the shape parameter of the Generalized
Pareto Distribution is significantly positive, confirming the heavy-tailed nature of Bitcoin’s return
distribution. More importantly, by adopting a Bayesian perspective, the analysis provides a full
posterior characterization of tail parameters, Value-at-Risk, and Expected Shortfall, thereby moving
beyond the fragile point estimates of conventional frequentist EVT.

Three conclusions follow. First, the gap between VaR and ES estimates is substantive, with the
latter revealing losses far more severe than the former. This reinforces longstanding critiques of VaR
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as a regulatory and risk management metric (McNeil & Frey, 2000; Danielsson & de Vries, 2000) and
lends empirical support to regulatory transitions towards Expected Shortfall as a standard (Basel
Committee on Banking Supervision, 2016). For practitioners, the implication is that VaR-based capital
buffers may be dangerously inadequate in markets characterized by extreme volatility, such as
Bitcoin.

Second, the Bayesian framework enriches risk communication. By presenting credible intervals
rather than single-point estimates, it acknowledges the irreducible uncertainty inherent in tail
modeling. This quality is particularly valuable for decision-making under uncertainty, as boards of
directors, regulators, and institutional investors are increasingly demanding probabilistic, not
deterministic, assessments of financial risk. The posterior distributions presented here serve that
demand, translating statistical uncertainty into operationally relevant insights.

Third, the robustness of posterior inference across alternative priors indicates that Bayesian EVT
can be applied to cryptocurrency risk with confidence. Critics often suggest that Bayesian approaches
are overly sensitive to prior specification (Gelman et al.,, 2013). Yet, this study finds that tail risk
estimates are stable under a variety of reasonable prior choices. This robustness enhances the
credibility of the approach for practical adoption in financial institutions.

At the same time, the analysis points toward fertile directions for future research. One limitation
of this study is its static treatment of exceedances across the entire sample period. Volatility clustering
and regime shifts are well-documented in financial markets (Bollerslev, Todorov, & Xu, 2015; Ardia
et al,, 2017), and extending Bayesian EVT to a dynamic, state-dependent framework could sharpen
real-time risk monitoring. Moreover, while this paper has focused on Bitcoin, the methodology is
readily transferable to other cryptocurrencies, stablecoins, and even cross-asset contagion settings. A
Bayesian hierarchical structure could, for instance, pool information across assets to improve tail
estimation where data are sparse.

To conclude, this paper makes three contributions: it empirically confirms the heavy-tailed
nature of Bitcoin losses, it demonstrates the added value of Bayesian EVT for quantifying uncertainty
in risk measures, and it connects these results to regulatory debates over VaR versus ES. The evidence
suggests that Bayesian EVT is not merely a technical refinement but a necessary evolution in how we
understand and manage extreme financial risk.
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