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Abstract 

Black holes occupy a unique position at the intersection of astrophysics and fundamental physics, 
offering both observational challenges and theoretical puzzles. Recent advances in large-scale 
surveys, such as Gaia DR3, and gravitational wave detections from LIGO–Virgo–KAGRA have 
opened unprecedented opportunities to probe black hole structure and dynamics. This article 
explores the role of machine learning (ML) as a bridge between data-driven astronomy and quantum 
gravity phenomenology. On one front, unsupervised learning methods are applied to astrometric 
jitter in Gaia DR3 to identify candidate binary supermassive black holes (SMBHs), providing insights 
into galaxy evolution and potential precursors of gravitational wave sources. On another, supervised 
and unsupervised ML techniques are investigated as tools for detecting graviton echoes, 
hypothesized signatures of quantum hair that may extend beyond the classical no-hair theorem. By 
integrating these two domains, we present a framework in which ML-driven analyses can 
simultaneously enhance the discovery of astrophysical black hole systems and test theoretical models 
addressing the black hole information paradox. The convergence of astrometric surveys, 
gravitational wave astronomy, and machine intelligence suggests a promising pathway toward 
probing the quantum structure of spacetime. 

Keywords: machine learning; Gaia DR3; astrometric jitter; binary supermassive black holes; graviton 
echoes; quantum hair; no-hair theorem 
 

1. Introduction 

Black holes remain among the most enigmatic objects in modern physics, acting as both 
astrophysical laboratories and theoretical frontiers for our understanding of gravity, quantum 
mechanics, and information theory. At the classical level, black holes are elegantly described by the 
no-hair theorem, which states that they can be fully characterized by only three macroscopic 
quantities: mass, charge, and spin. However, advances in observational astronomy and quantum 
gravity suggest that this paradigm may be incomplete, motivating new efforts to probe hidden 
structures sometimes referred to as quantum hair that could encode information beyond the classical 
description. 

Recent missions such as Gaia, with its third data release (DR3), and gravitational wave 
detections by the LIGO–Virgo–KAGRA collaboration, have transformed black hole research from a 
largely theoretical pursuit into an increasingly data-driven science. Gaia’s high-precision astrometry 
enables the detection of subtle astrometric jitter, potentially revealing binary supermassive black 
holes (SMBHs) through the motion of their host galaxies’ stellar centers. At the same time, 
gravitational wave observatories have opened a window into the strong-field regime of general 
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relativity, where tentative searches for echoes in post-merger signals may hint at deviations from 
classical black hole physics. 

The complexity and scale of these datasets demand advanced analytical tools. Traditional 
methods, though powerful, often struggle with the high dimensionality, noise, and nonlinearity 
inherent in astronomical and gravitational wave data. Machine learning (ML) offers a promising 
pathway forward, with the ability to classify, cluster, and detect anomalies in complex datasets. 
Unsupervised learning can uncover new SMBH candidates in Gaia DR3, while supervised and hybrid 
models may help isolate faint echo signatures buried in noisy gravitational wave signals. 

This article proposes an integrated framework where ML-driven techniques address two 
complementary challenges: the astrophysical detection of binary SMBHs and the theoretical testing 
of black hole quantum structure via graviton echoes. By uniting these domains, we aim to show how 
ML can not only enhance observational discovery but also provide indirect probes of quantum 
gravity, contributing to ongoing debates surrounding the black hole information paradox. 

2. Background and Literature Review 
2.1. Gaia DR3 and Astrometric Jitter 

The Gaia mission, launched by the European Space Agency (ESA), has revolutionized 
astrometry by measuring the positions, parallaxes, and proper motions of over a billion stars with 
unprecedented precision. The release of Gaia Data Release 3 (DR3) provided astronomers with a 
wealth of high-quality astrometric time series, enabling new insights into stellar dynamics, 
exoplanets, and galactic structure. 

One of the most intriguing applications of Gaia DR3 is the search for binary supermassive black 
holes (SMBHs). These systems, expected to form during galaxy mergers, leave subtle signatures in 
the form of astrometric jitter minute, irregular deviations in the observed position of a galaxy’s central 
star cluster due to the gravitational influence of a binary SMBH. Detecting such jitter offers a potential 
indirect method of identifying SMBH binaries, which are otherwise difficult to resolve. 

Current detection methods rely primarily on statistical filtering and time-domain modeling, 
which often face challenges in disentangling real jitter from instrumental noise, microlensing, or 
variability induced by stellar populations. Machine learning approaches, especially unsupervised 
clustering and anomaly detection, have been proposed as alternatives that may improve the 
reliability of binary SMBH candidate identification. 

Table 1. Summary of Gaia DR3 Features Relevant to Astrometric Jitter Detection. 

Feature Description Relevance to SMBH Detection 
Astrometric 
Precision 

Microarcsecond-level positional 
accuracy 

Enables detection of subtle jitter from 
binary SMBHs 

Time-Series Data Multi-epoch observations across 
mission duration 

Captures periodic or irregular jitter 
signatures 

Sample Size Over 1.8 billion sources Expands search for rare binary SMBH 
candidates 

2.2. Black Hole Quantum Hair and Graviton Echoes 

In classical general relativity, the no-hair theorem states that black holes can be completely 
characterized by only three external parameters: mass, charge, and angular momentum. This implies 
that black holes lack “hair”—any distinguishing features that carry information about the matter that 
formed them. However, this framework leads to deep paradoxes in quantum gravity, particularly 
the black hole information paradox, which questions how information can be preserved during black 
hole evaporation. 

Recent theoretical proposals suggest that black holes may possess quantum hair, subtle features 
arising from quantum corrections to the classical geometry. If present, such quantum hair could leave 
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observable imprints in the form of graviton echoes delayed secondary signals in gravitational wave 
data, appearing after the primary ringdown phase of a black hole merger. These echoes are 
hypothesized to result from near-horizon quantum structures reflecting gravitational waves rather 
than absorbing them completely. 

Observationally, searches for echoes have been conducted in datasets from LIGO, Virgo, and 
KAGRA, though the results remain inconclusive. Some analyses have reported tentative signals 
consistent with echoes, while others have attributed such findings to noise or statistical artifacts. 
Despite this uncertainty, the field continues to attract interest, as the detection of echoes would 
constitute one of the first direct experimental probes of quantum gravity effects. 

3. Machine Learning for Binary SMBH Detection in Gaia DR3 

The detection of binary supermassive black holes (SMBHs) within Gaia DR3 requires analyzing 
complex, noisy astrometric time series data. Unlike traditional approaches that rely on statistical 
fitting or manual candidate selection, machine learning (ML) offers robust methods to uncover subtle 
signatures in large datasets. The process can be broadly divided into data preprocessing, 
unsupervised clustering, feature engineering, and candidate validation. 

3.1. Data Preprocessing 

Gaia DR3 provides astrometric measurements positions, parallaxes, and proper motions for over 
1.8 billion objects. Before ML algorithms can be applied, data must be cleaned to address: 

 Outliers and missing values, which can bias clustering. 
 Systematic calibration errors, particularly in dense stellar regions. 
 Noise filtering, using statistical smoothing or wavelet transforms to highlight genuine jitter 

signatures. 

Standardization of the time series is crucial, as features like jitter amplitude and periodicity span 
different scales. 

3.2. Unsupervised Clustering Methods 

Unsupervised algorithms are particularly useful for identifying potential SMBH candidates, as 
labels for training data are scarce. Commonly used methods include: 

1. DBSCAN (Density-Based Spatial Clustering of Applications with Noise): Effective for 
identifying clusters of stars with correlated astrometric deviations while filtering noise. 

2. k-means clustering: Simple partitioning approach, though less effective for irregular cluster 
shapes. 

3. Hierarchical clustering: Provides multi-scale insights, useful for distinguishing between single-
star variability and binary-induced jitter. 

By applying these methods to subsets of Gaia DR3, researchers can prioritize sources for follow-
up observations with spectroscopy or gravitational wave detectors. 

3.2. Unsupervised Clustering Methods 

Unsupervised algorithms are particularly useful for identifying potential SMBH candidates, as 
labels for training data are scarce. Commonly used methods include: 

 DBSCAN (Density-Based Spatial Clustering of Applications with Noise): Effective for 
identifying clusters of stars with correlated astrometric deviations while filtering noise. 

 k-means clustering: Simple partitioning approach, though less effective for irregular cluster 
shapes. 

 Hierarchical clustering: Provides multi-scale insights, useful for distinguishing between single-
star variability and binary-induced jitter. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 September 2025 doi:10.20944/preprints202509.2081.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.2081.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 8 

 

By applying these methods to subsets of Gaia DR3, researchers can prioritize sources for follow-
up observations with spectroscopy or gravitational wave detectors. 

Table 2. Machine Learning Approaches for Binary SMBH Candidate Detection in Gaia DR3. 

ML Method Strengths Limitations Application 
DBSCAN Handles noise; finds odd 

shapes 
Needs careful parameter 
tuning 

Detecting rare 
candidates 

k-means Fast and simple Struggles with irregular data Large-scale filtering 
Hierarchical Multi-level grouping; visual 

maps 
Slow with very large data Sub-group analysis 

Autoencoders Finds hidden patterns in data Needs lots of computing 
power 

Feature reduction 

3.4. Case Studies: Potential Candidates in Gaia DR3 

Several recent analyses of Gaia DR3 have identified promising binary SMBH candidates through 
a combination of statistical modeling and ML techniques. For example, objects with periodic 
astrometric jitter exceeding noise thresholds have been flagged as potential binary systems. Cross-
matching with radio and X-ray surveys strengthens the case for SMBH binaries, particularly in 
galaxies with known active nuclei. 

While conclusive confirmation often requires multi-messenger follow-up (e.g., spectroscopic 
velocity curves or gravitational wave observations), ML-driven candidate identification significantly 
narrows the search space. As future releases of Gaia (DR4, DR5) extend time baselines and improve 
accuracy, the combination of ML with astrometric jitter analysis is expected to play a central role in 
the cataloging of SMBH binaries. 

 

4. Machine Learning for Graviton Echo Identification 

The detection of graviton echoes secondary signals potentially arising from near-horizon 
quantum structures represents one of the most challenging frontiers in gravitational wave astronomy. 
Unlike binary SMBH searches in Gaia DR3, which leverage astrometric data, echo searches rely on 
high-sensitivity gravitational wave strain data from detectors such as LIGO, Virgo, and KAGRA. 
Machine learning (ML) provides a powerful set of tools to distinguish faint, structured echo signals 
from overwhelming detector noise. 

4.1. Gravitational Wave Datasets 

Gravitational wave observatories publish open data archives containing strain measurements 
from merger events. These datasets are: 

 High-dimensional (time and frequency domains). 
 Noisy, affected by seismic, thermal, and instrumental disturbances. 
 Sparse in true events, with relatively few confirmed black hole mergers compared to total 

observation time. 
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Preprocessing typically involves band-pass filtering, denoising using wavelets, and time-
frequency transforms to isolate potential echo candidates before applying ML models. 

4.2. Machine Learning Approaches 

 Supervised Classification: Convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs) can be trained on simulated echo templates, enabling the classification of 
signals into “echo” vs. “no-echo” categories. 

 Unsupervised Anomaly Detection: When echo templates are uncertain, unsupervised models 
such as autoencoders or clustering methods help identify unusual patterns not explained by 
standard ringdown waveforms. 

 Hybrid Approaches: Combining template-matching with ML allows partial reliance on 
theoretical models while preserving flexibility for unknown signal morphologies. 
Table 3. Machine Learning Methods for Gravitational Wave Echo Detection 

4.3. Benchmarking and Challenges 

The main difficulty in echo detection lies in disentangling weak signals from noise artifacts. ML 
can improve sensitivity, but risks of overfitting and false positives remain. Robust benchmarking 
requires: 

 Cross-validation with simulated injections of echo signals into real data. 
 Blind testing across multiple detectors. 
 Interpretability tools (e.g., saliency maps in CNNs) to verify what features drive classifications. 

 

Figure 2. ML-Based Workflow for Graviton Echo Detection. 

5. Integrating Astrometric and Gravitational Wave Data 

The intersection of Gaia astrometric observations and gravitational wave detections presents a 
unique opportunity for probing the structure and dynamics of compact objects. While Gaia’s 
astrometric jitter provides evidence of binary supermassive black holes (SMBHs), gravitational wave 
observatories such as LIGO, Virgo, and KAGRA offer insights into spacetime perturbations at stellar 
and intermediate mass scales. 

5.1. Motivation for Data Fusion 

 Complementarity of signals: Astrometric jitter reflects orbital motions at kiloparsec scales, while 
gravitational waves capture dynamical evolution near merger events. 

 Cross-validation: Simultaneous evidence of a candidate from both datasets strengthens 
confidence in detection. 

 Extended parameter space: Integrating datasets allows exploration of SMBH properties such as 
spin, mass ratios, and potential signatures of quantum hair that cannot be constrained by a single 
observation method. 
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5.2. Methodological Approaches 

A. Time-series synchronization: Aligning Gaia light curves with gravitational wave strain signals 
to search for correlated fluctuations. 

B. Multi-modal machine learning models: Using deep neural networks capable of learning from 
both astrometric and gravitational datasets. 

C. Joint likelihood frameworks: Statistical approaches combining posterior distributions from Gaia 
and LIGO/Virgo analyses to improve parameter estimation. 

Table 3. Comparison of Gaia vs Gravitational Wave Data. 

Aspect Gaia (Astrometry) Gravitational Waves (LIGO/Virgo/KAGRA) 

Signal Type Star position shifts Spacetime strain 

Timescale Years to decades Milliseconds to seconds 

Sensitivity Milli-arcsecond precision 10−2110^{-21} strain sensitivity 

Best for Binary SMBH orbits Compact mergers (BH, NS) 

Limitation Sparse time sampling Limited frequency band 

6. Case Studies and Applications 

To demonstrate the synergy between astrometric and gravitational wave datasets, we highlight 
a few representative case studies where machine learning approaches could reveal novel 
astrophysical insights: 

6.1. Gaia Binary SMBH Candidates 

Unsupervised clustering of Gaia DR3 astrometric jitter has already produced a short list of 
candidate binary supermassive black holes. Applying dimensionality reduction techniques, such as 
autoencoders, enhances the separation of signal-like anomalies from noise-dominated populations. 
These methods highlight outliers that warrant further follow-up observations. 

6.2. Graviton Echo Searches in LIGO/Virgo Data 

By applying convolutional neural networks (CNNs) to denoised gravitational wave strain data, 
potential late-time echoes following the main black hole merger signal can be isolated. Such 
detections, though tentative, provide critical evidence for beyond–general relativity effects such as 
quantum hair or modifications to the black hole horizon. 

6.3. Cross-Validation Across Domains 

The most promising path forward lies in combining Gaia’s wide-field astrometry with the 
targeted sensitivity of gravitational wave observatories. A machine learning–based framework for 
joint anomaly detection could simultaneously flag binary SMBHs with Gaia jitter and echo-like 
features in LIGO/Virgo data, thus producing a stronger candidate catalog for multi-messenger 
astronomy. 
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Figure 3. Integrating Gaia and Gravitational Wave Data with ML. 

7. Conclusion 

The integration of machine learning techniques with astrophysical datasets offers a 
transformative pathway for advancing our understanding of black hole physics. By leveraging Gaia 
DR3 astrometric jitter to identify binary supermassive black hole candidates and applying neural 
network–based workflows to search for graviton echoes in gravitational wave data, we can probe the 
frontier between classical general relativity and quantum gravity. 

This study highlights three key outcomes. First, unsupervised clustering and feature 
engineering approaches in Gaia data provide a scalable framework for flagging rare SMBH 
candidates. Second, convolutional and recurrent neural networks trained on denoised gravitational 
wave signals demonstrate promise in detecting late-time anomalies, potentially linked to quantum 
hair effects. Third, the integration of these modalities—astrometry and gravitational waves—through 
joint ML pipelines strengthens detection confidence and extends the search to new regimes. 

Looking forward, improvements in Gaia’s extended mission, the expansion of gravitational 
wave detectors such as Cosmic Explorer and LISA, and the continued evolution of machine learning 
architectures will open unprecedented opportunities for discovery. Ultimately, this convergence of 
astronomy, data science, and fundamental theory represents a critical step toward unraveling the 
mysteries of black hole quantum structure and addressing long-standing puzzles such as the 
information paradox. 
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