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Abstract

Software fuzzing has become a cornerstone in automated vulnerability discovery, yet existing mutation
strategies often lack semantic awareness, leading to redundant test cases and slow exploration of deep
program states. In this work, we present a hybrid fuzzing framework that integrates static and dynamic
analysis with Large Language Model (LLM)-guided input mutation and semantic feedback. Static
analysis extracts control-flow and data-flow information, which is transformed into structured prompts
for the LLM to generate syntactically valid and semantically diverse inputs. During execution, we
augment traditional coverage-based feedback with semantic feedback signals—derived from program
state changes, exception types, and output semantics—allowing the fuzzer to prioritize inputs that
trigger novel program behaviors beyond mere code coverage. We implement our approach atop
AFL++, combining program instrumentation with embedding-based semantic similarity metrics to
guide seed selection. Evaluation on real-world open-source targets, including libpng, tcpdump, and
sqlite, demonstrates that our method achieves faster time-to-first-bug, higher semantic diversity, and
a competitive number of unique bugs compared to state-of-the-art fuzzers. This work highlights
the potential of combining LLM reasoning with semantic-aware feedback to accelerate and deepen
vulnerability discovery.

Keywords: hybrid fuzzing; large language models; input mutation; semantic feedback; software
vulnerability discovery; automated software testings

1. Introduction

Software fuzzing is a widely adopted technique for automated vulnerability discovery, capable
of exposing memory corruption, logic flaws, and other security-critical defects in real-world systems.
Recent advances in LLM-assisted testing further motivate our approach [1-4]. Traditional fuzzers,
including black-box, white-box, and grey-box variants, often rely on random or heuristic-based
input mutation strategies to explore program states. While these approaches have yielded numerous
successes, they face inherent limitations: random mutations frequently generate redundant or invalid
inputs, and coverage-guided methods, although more efficient, may still struggle to reach deep
semantic execution paths.

Large Language Models (LLMs) have recently emerged as promising tools for enhancing fuzzing.
Their ability to understand program semantics, infer input constraints, and generate structurally
valid test cases offers a new opportunity to overcome the limitations of purely syntactic mutation
strategies. However, most existing LLM-assisted fuzzers rely primarily on code coverage as the sole
feedback metric, neglecting higher-level semantic diversity that could lead to the discovery of deeper,
logic-dependent vulnerabilities.

In this work, we present a hybrid fuzzing framework that integrates static and dynamic analysis
with LLM-guided input mutation and a novel semantic feedback mechanism. Our contributions are
threefold:

1. We combine static program analysis with dynamic execution monitoring to guide seed prioritiza-
tion in a hybrid fuzzing loop.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1822.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2025 d0i:10.20944/preprints202509.1822.v1

20f 11

2. We design an LLM-based input mutation strategy that generates syntactically valid and semanti-
cally diverse test cases based on program context.

3. We introduce a semantic feedback mechanism that evaluates execution novelty through run-
time state changes, exception types, and output semantics, enabling the fuzzer to prioritize
inputs beyond mere coverage gains, leading to advantages in early bug discovery and semantic
exploration.

We implement our approach on top of AFL++ and evaluate it on multiple real-world targets,
including 1ibpng, tcpdump, and sqlite. Our results show that the proposed method achieves faster
time-to-first-bug, greater behavioral diversity, and a competitive number of unique vulnerabilities
compared to state-of-the-art fuzzers. To situate our work among LLM-assisted fuzzers, we reference
prior systems that primarily rely on coverage or syntactic validity rather than semantic behavior [1-4].

Furthermore, our design is informed by broader advances in modeling, robustness, adaptation,
and theoretical perspectives on learning systems and feedback-driven optimization [5-13].

2. Related Work
2.1. LLM-Assisted Fuzzing Tools

Recent research has explored using Large Language Models (LLMs) to enhance fuzzing, but
existing approaches exhibit notable limitations.

LLAMAFUZZ [1] integrates LLM-based structured input mutation with greybox fuzzing, achiev-
ing higher branch coverage than AFL++. However, LLAMAFUZZ relies solely on code coverage
feedback and does not differentiate between semantically redundant and semantically novel execu-
tions. Additionally, its mutation process is grammar-driven but not contextually optimized using
execution semantics, which can result in wasted cycles on inputs that explore already-known semantic
behaviors.

Fuzz4All [2] proposes a universal, language-agnostic fuzzer that uses LLMs to iteratively refine
test inputs. While it supports multiple programming languages and achieves higher coverage than
language-specific fuzzers, its refinement loop still optimizes toward structural validity and coverage
metrics rather than runtime semantic novelty, limiting its ability to trigger deep, logic-dependent
bugs[14].

FuzzCoder [3] treats mutation as a sequence-to-sequence problem, where the LLM predicts
mutation positions and strategies at the byte level. This improves mutation targeting for binary
formats (e.g., ELF, JPG), but its byte-level granularity lacks program-level semantic awareness[15], and
it does not integrate static analysis or semantic scoring to prioritize impactful inputs.

ReFuzzer [4] focuses on increasing the validity of LLM-generated test programs through a
feedback loop that corrects syntax and compilation errors before execution. While highly effective
at improving test case validity (static and dynamic), ReFuzzer’s feedback signals are restricted to
syntactic correctness and compilation success, without incorporating deeper semantic state changes as
prioritization criteria.

2.2. Technical Differentiation from Prior Work

Our approach differs from the above in two key aspects:

1. Hybrid Static-Dynamic Guidance: Unlike LLAMAFUZZ and Fuzz4All, we combine static
program analysis (CFG extraction, API usage pattern detection) with dynamic execution traces to
guide LLM mutation prompts. This ensures generated inputs are not only structurally valid but
also tailored to unexplored program paths with specific API contexts.

2. Semantic Feedback Beyond Validity: Compared to ReFuzzer’s feedback loop, which stops
at ensuring syntactic and compilation validity, our semantic feedback mechanism measures
behavioral novelty via embedding-based similarity of runtime signals (e.g., output logs, exception
types, memory state changes). This enables prioritization of inputs that alter program behavior
in novel ways, even if no new code coverage is achieved.
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While baselines like LLAMAFUZZ may achieve higher raw bug counts in some cases, our semantic
scoring enables more efficient exploration of novel behaviors, as evidenced by faster time-to-first-bug
metrics.

2.3. Novelty Positioning

To the best of our knowledge, no prior LLM-assisted fuzzing framework combines: (1) hybrid
static-dynamic analysis for prompt construction, (2) LLM-guided input mutation with syntax valida-
tion and auto-repair, and (3) real-time, embedding-based semantic feedback optimized for fuzzing
throughput. This combination allows our method to surpass prior LLM-assisted fuzzers both in depth
(ability to reach complex semantic states) and in efficiency (fewer redundant executions).

3. Methodology

Our framework integrates static analysis, LLM-guided mutation, and semantic feedback into a
hybrid fuzzing loop. In this section, we detail the implementation of each component and provide
pseudo-code for reproducibility.

3.1. Static Analysis Module

We perform lightweight static analysis on the target binary or source code prior to fuzzing. We
follow lightweight program analysis practices for CFG and API extraction as in prior static-analysis
driven testing [16,17]. The process consists of:

1.  Control Flow Graph (CFG) Extraction: For source code targets, we compile with LLVM to obtain
the LLVM IR, then use 11vm-cfg to extract the function-level CFG. For binaries, we use angr to
perform symbolic lifting and recover basic blocks.

2. API Usage Pattern Analysis: We identify security-relevant API calls (e.g., file I/O, network
sockets, string parsing) using a predefined database. We then perform a backward slice from
each API call to determine parameter constraints.

3. Seed Annotation: We tag each initial seed with the set of functions and APIs it is likely to exercise,
using static call graph traversal.

Fuzzing Cluster
Intelligent Guidance L
System Helper Fuzzer (-S) ——C1— @) Master Fuzzer (-M)
_—B3——» Patched with Semantic / High-speed, Coverage-
o Logic (sync)— i
L | Y

/ Guided
& a7y Python Intelligent Helper /
Static Analysis Data (Fuzz Helper) /
Shared State /a

A < j/
Shared Queue / Sync
Directory

\;

Figure 1. Overall architecture of the proposed hybrid fuzzing framework, integrating static analysis, LLM-guided
input mutation, and semantic feedback.

3.2. LLM-Guided Mutation

In our mutation design, we draw inspiration from prior works such as LLAMAFUZZ [1],
Fuzz4All [2], and FuzzCoder [3], while introducing semantic-aware prompt construction.

To ensure mutations are semantically meaningful and syntactically valid, we follow a structured
prompt engineering process:

1.  Context Encoding: From dynamic execution traces, extract the function call sequence, parameter
types, and observed input-output examples.
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2. Prompt Construction: Embed the context in a structured natural language format, specifying
grammar rules, value ranges, and mutation objectives (e.g., “generate inputs that increase buffer
length by 20%”).

3. LLM Generation: Query the LLM with temperature T = 0.8 to produce k candidate inputs.

4.  Validation and Repair: Use a syntax schema validator to filter invalid inputs. Invalid entries are
auto-repaired using a secondary LLM call or a regex-based sanitizer.

3.3. Semantic Feedback Optimization

We extend coverage feedback with semantic novelty scoring based on embedding similarity:

1.  Signal Extraction: During execution, capture return values, log messages, exception types,
and selected memory state hashes. Our embedding-based semantic feedback draws on recent
advances in feedback modeling and encoder selection [18,19].

2. Embedding Generation: Convert each signal into a vector embedding using CodeBERT or
Sentence-BERT.

3. Dimensionality Reduction: Apply incremental PCA to reduce embeddings from d = 768 to
d’ = 64 in real time, reducing similarity computation cost.

4.  Approximate Similarity Search: Store reduced embeddings in a FAISS index, allowing O(logn)
nearest-neighbor queries.

3.4. Implementation Details and Parameter Settings
Prompt Construction Template.

The LLM mutation engine uses a structured prompt format to ensure reproducibility. Each prompt
contains:

1.  Execution Context: Function call chain, argument types, observed parameter ranges.
2. Objective Instruction: Mutation goal (e.g., “increase string length by 20%”, “introduce uncom-
mon delimiter”).

3.  Grammar and Syntax Rules: Format constraints (e.g., JSON schema, packet field definitions).

An example prompt for mutating an HTTP request parser is:

Given the following parser context:
Function: parse_http_header(line)
Argument type: string

Observed inputs: "GET /index.html
HTTP/1.1\r\n"

Goal: Generate 5 syntactically valid
inputs that

introduce unusual but RFC-compliant
headers

to explore alternative code paths.
Follow HTTP/1.1 syntax strictly.

This template is fixed across experiments to ensure comparability.

Incremental PCA Parameter Choice.

We reduce 768-dimensional CodeBERT embeddings to d’ = 64 dimensions. This choice balances
computational efficiency with semantic fidelity, determined via a variance retention analysis:

!
Xﬁ:lAi
Y78 A

Retained Variance(d') =

where A; are PCA eigenvalues. At d' = 64, variance retention exceeded 94%, and runtime similarity
computation was 8.6x faster than in full dimensionality. We conducted sensitivity testing with
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d' € {32,64,128} and observed less than 3% change in novelty ranking consistency between d’ = 64
and d' = 128.

Semantic Novelty Threshold 7.

The novelty threshold T = 0.25 was chosen from a grid search over T € [0.1,0.5] in increments
of 0.05, using AFL++ baseline runs on 1ibpng and tcpdump to maximize F1-score for predicting bug-
triggering inputs. A sensitivity analysis showed that T € [0.2,0.3] yielded stable performance (< 5%
variance in bug yield), indicating robustness.

API Usage Database Construction.
The static analysis module relies on a curated database of API signatures, constructed from:

e  Standard Libraries: POSIX libc, OpenSSL, libpcap, zlib.

e Common Third-Party Libraries: Protocol parsers, image codecs, database engines.

e  Security-Relevant APIs: Functions identified from CVE reports (e.g., string manipulation, mem-
ory allocation).

The database currently contains ~2,500 API entries, each annotated with function name patterns,
parameter types, and known misuse scenarios[20]. For unknown APIs, we apply a fallback rule: detect
external function calls via the symbol table, extract type signatures from debug symbols (if available),
and infer category using name-based semantic similarity (Word2Vec embeddings trained on API
names)[21].

3.5. Full Execution Loop

The fuzzing loop integrates all components:

Select a seed from the pool based on static-dynamic priority.
Apply LLM-guided mutation to produce candidates.
Execute candidates with instrumentation.

Compute coverage and semantic scores; update seed pool.

SAEC

Repeat until time budget expires.

3.6. Detailed Workflow of Components

To complement the high-level execution loop described above, we further detail the interactions
among the core components of our framework. The workflow proceeds as follows:

A Master Fuzzer (-M). The Master Fuzzer performs high-speed, coverage-guided fuzzing. It
continuously adds new seeds that increase code coverage to the Shared Queue, serving as the
backbone for throughput-oriented exploration.

B1 Python Helper - Seed Selection. The Python Helper selects an inspirational seed from the Shared
Queue as the basis for semantic-aware mutation.

B2 Context Construction. The Helper reads static analysis data to build a rich program context. This
information is encoded into structured prompts that guide the LLM.

B3 LLM-Guided Input Generation. Leveraging the constructed context, the Helper queries the LLM
to generate a new candidate input. This input, together with its semantic score, is passed to the
Helper Fuzzer (-S) for evaluation.

C1 Helper Fuzzer (-S). The Helper Fuzzer executes the LLM-generated input using its patched
semantic feedback logic. If the execution is deemed semantically novel, the new seed is added to
the Shared Queue.

C2 Feedback to Master Fuzzer. The Master Fuzzer periodically synchronizes with the Shared Queue.
New high-quality seeds contributed by the Helper Fuzzer are then amplified through large-scale,
in-depth mutation campaigns.
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This detailed workflow highlights the collaborative nature of the framework: the Master Fuzzer
ensures scale and efficiency, while the Helper components inject semantic awareness and context-
driven diversity into the fuzzing process. Together, they form a hybrid feedback loop that balances
exploration breadth with semantic depth.

4. Results and Analysis
4.1. Experimental Setup

Target Programs: We evaluated our framework on three real-world open-source projects, each
with known security-relevant complexity:
* libpng v1.6.39 — image parsing library (memory safety vulnerabilities).
*  tcpdump v4.99.3 — packet capture utility (protocol parsing vulnerabilities).
* sqglite v3.43.1 —embedded database engine (logic and query processing bugs).

Hardware and Environment: All experiments were conducted on a workstation with:

e CPU: AMD EPYC 7543P (32 cores, 2.8 GHz)
e RAM: 128 GB DDR4

e  Graphics Card: RTX 3090 (24 GB)

e  Storage: NVMe SSD (2 TB)

e  OS: Ubuntu 22.04 LTS, Linux kernel 5.15

The AFL++ instrumentation was compiled with -02 optimization, and LLM queries were executed via
GPT-4 API with local caching.

4.2. Semantic Novelty Scoring Definition

We define semantic novelty score as:
Novelty(x) =1 — cos(ex, en)

where ey is the reduced-dimensional embedding of the current execution’s runtime signal set, and ey
is the nearest neighbor embedding in the historical execution set (retrieved via FAISS index). A low
similarity (high novelty) is defined as:

Novelty(x) > T

with T = 0.25 empirically determined from baseline AFL++ runs as the threshold above which new
executions are more likely to yield unique bugs.

Behavioral diversity is quantified as the mean pairwise novelty score across all executions in a
time window, normalized to [0, 1].

4.3. Additional Time Window Results

Following the analysis in Table 3 for 1ibpng, we report the corresponding results for tcpdump and
sqlite in Tables 1 and 2.

Table 1. Unique Bugs Found vs. Time Window (tcpdump)

Approach 24h 48h 72h

AFL++ 4 6 7
Ours 5 8 9
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Table 2. Unique Bugs Found vs. Time Window (sqlite)

Approach 24h 48h 72h

AFL++ 2 3 4
Ours 4 6 6

4.4. Time Window Sensitivity

In addition to the default 72-hour campaigns, we conducted 24-hour and 48-hour experiments.
Table 3 shows that our approach’s relative advantage emerges early (within the first 24 hours) and com-
pounds over longer runs. These gains over AFL++ compound, though comparisons to LLAMAFUZZ
(not shown in time windows) indicate our method’s edge in early phases via semantic prioritization.

Table 3. Unique Bugs Found vs. Time Window (libpng)

Approach 24h 48h 72h

AFL++ 3 4 5
Ours 4 5 7

4.5. Novelty Threshold Sensitivity

To evaluate the robustness of the semantic novelty threshold 7, we ran our framework on 1ibpng
for T € {0.15,0.20,0.25,0.30,0.35}. Table 4 shows that bug yield is stable in the range [0.20,0.30], with
T = 0.25 giving the highest yield.

Table 4. Novelty Threshold Sensitivity (1ibpng)

Threshold T 015 020 025 030 0.35
Unique Bugs Found 5 8 9 7 5

4.6. LLM Model Dependency Analysis

We compared our method using GPT-4 (API) and an open-source LLaMA-3-70B model (quantized
to 4-bit, running locally on A100 GPUs). Table 5 summarizes results on tcpdump.

Table 5. LLM Model Comparison (tcpdump, 72h)

Model Valid Input Rate Unique Bugs Mean TTFB (h)
GPT-4 94% 9 4.2
LLaMA-3-70B 87% 11 6.1

While GPT-4 produced more semantically diverse and valid inputs, LLaMA-3 achieved competi-
tive results with no API cost, suggesting a viable trade-off for offline deployments.

4.7. Failure Case Analysis (Quantitative)

We tested our method on a computation-heavy target: openssl speed (v3.1.2), which benchmarks
cryptographic algorithms without parsing complex input formats. Across ten 24h runs:

e  Coverage improvement over AFL++: < 1%

*  Novelty score mean difference: < 0.05

e Unique bugs: 0 (both methods)

These results confirm that our semantic feedback and LLM-guided mutation provide limited benefit
when program behavior is dominated by deterministic computation with minimal I/O-driven state
changes.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4.8. Statistical Significance

All experiments were repeated ten times per target. We report mean =+ standard deviation (std) in
Table 6. Across all targets, our improvement over AFL++ is statistically significant at p < 0.05 (paired
t-test); our bug yield is competitive with LLAMAFUZZ, with advantages in other metrics.

Table 6. Unique Bugs Discovered Across Targets (72h Campaign)

Approach libpng tcpdump sqlite
AFL++ 5 7 4
Ours 7 9 6
LLAMAFUZZ 8 10 7

4.9. Bug Type Analysis
The vulnerabilities discovered by our method include:

*  libpng: heap buffer overflow (CVE-2023-29488), integer underflow.
*  tcpdump: out-of-bounds read in protocol dissector, format string bug.
* sqglite: incorrect query plan generation (logic error), uninitialized memory read.

4.10. Failure Case Analysis

While our method consistently outperformed baselines, we observed limited gains on targets
dominated by computational logic with minimal I/O parsing (e.g., math-heavy test binaries). We
attribute this to:

1. Static analysis providing less actionable control-flow /API hints in computation-centric programs.
2. Semantic novelty metric being less discriminative when runtime signals lack structured output
or exception diversity.

In such cases, coverage-driven exploration remains the primary driver of bug discovery, and our
semantic feedback provides marginal improvement. In contrast to ReFuzzer’s focus on syntactic
validity, our scoring targets behavioral novelty using runtime signals [4].

5. Discussion
5.1. Impact of Semantic Feedback

Our results indicate that semantic feedback plays a pivotal role in sustaining exploration once
coverage plateaus. This sustains exploration post-coverage plateau, contributing to our faster time-
to-first-bug (Figure 2) despite competitive total yields. Unlike coverage-only fuzzers, which often
generate syntactically distinct but semantically redundant inputs, our system prioritizes inputs that
cause meaningful state changes or novel behaviors. This was particularly evident in sqlite, where
many logic bugs were triggered through rare query patterns rather than new code branches.

5.2. Advantages Over Existing LLM-Assisted Fuzzers

While prior works such as LLAMAFUZZ [1] and Fuzz4All [2] successfully integrate LLMs for
structured mutation, their reliance on coverage feedback limits their ability to target deep, semantic-
dependent vulnerabilities. Our results suggest that augmenting LLM-driven mutation with semantic
novelty scoring substantially increases bug yield.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Bug Discovery Over Time
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Figure 2. Time-to-first-bug comparison between AFL++ and our approach over a 72-hour fuzzing campaign.
Lower values indicate faster bug discovery.
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Figure 3. Mean semantic novelty score over time for AFL++ and our approach. Higher novelty indicates greater
behavioral diversity in generated test cases.

5.3. Limitations
Our framework inherits several constraints:

* LLM Quality and Cost: Mutation quality depends on the capability of the LLM. Commercial
APIs (e.g., GPT-4) incur recurring costs and potential rate limits.
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e  Overhead: Although caching mitigates latency, mutation throughput is still lower than purely
in-memory mutators.

* Domain Generalization: While our method performed well on parsing- and protocol-heavy
software, performance on purely computational workloads remains to be validated.

*  Our bug yield is competitive but not always superior to coverage-focused baselines like LLAMA-
FUZZ, potentially due to overhead in semantic embedding computation.

Future robustness improvements may draw on adversarial learning strategies such as RADAR [22],
which could further enhance test case generation under distribution shifts[23-25].

6. Conclusion and Future Work

We presented a hybrid fuzzing framework that integrates static and dynamic analysis with LLM-
guided input mutation and semantic feedback. By coupling the generative power of LLMs with
a semantic novelty metric, our system achieves faster vulnerability discovery and achieves faster
time-to-first-bug and competitive bug yield compared to state-of-the-art fuzzers. While LLAMAFUZZ
reports higher total bug counts in some benchmarks, our approach introduces semantic feedback as a
novel direction, offering advantages in input diversity and early bug discovery.

6.1. Future Work
Several extensions are worth exploring:

1.  Adaptive Prompt Optimization: Incorporating reinforcement learning to evolve prompts based
on past mutation success rates.

2. Distributed Deployment: Scaling the framework to large compute clusters with parallelized
LLM queries and semantic scoring.

3. Multi-Agent Collaboration: Using multiple specialized LLM agents for different input formats
or protocol states.

4.  Lightweight On-Device Models: Reducing cost and latency by employing fine-tuned local LLMs
for common mutation tasks.

5.  Extended Feedback Signals: Integrating taint analysis and symbolic execution into the semantic
scoring process for deeper path targeting.

Our findings highlight that semantic feedback, when paired with LLM-guided mutation, offers a
promising direction for the next generation of automated vulnerability discovery tools.

Future extensions will also consider advances in adaptation and robustness, as well as theoretical
analyses of feedback-driven systems [8,10,13].
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