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Abstract

Major depressive disorder (MDD) is diagnosed twice as frequently in women compared to men. A
disruption in brain circuits involved in emotion regulation may induce symptoms associated with
MDD. Increasing evidence also indicates changes in activity within emotion regulation networks
upon exposure to female gonadal hormones. Increased levels of stress reactivity in combination with
low levels of protective female gonadal hormones may increase the risk for the development of MDD.
GABAergic interneurons, some of which are ensheathed by perineuronal nets (PNNs), may facilitate
alterations in the dynamics of neuronal networks in MDD. Microglia, which are the brain’s immune
cells, are modulated by exposure to female gonadal hormones and glucocorticoids. Increased levels
of stress reactivity, in combination with low levels of protective female gonadal hormones, may
facilitate the aberrant modulation of GABAergic connections and the degradation of PNNs by
microglia, leading to the disruption of emotion regulation circuits and the experience of psychiatric
symptoms.

Keywords: major depressive disorder; microglia; GABAergic system; HPA axis; female gonadal
hormones

1. Introduction

According to the World Health Organization (WHO), major depressive disorder (MDD) is
predicted to be the disorder associated with the largest disease burden by 2030 [1]. MDD also has
significant economic impacts, increasing cases of workplace absenteeism, decreased productivity and
unemployment [2]. By increasing the risk for death by suicide, cardiovascular diseases or stroke,
depression is linked to a 20-fold increase in the risk of mortality, indicating the pressing need for
practical treatment approaches [2].

The diagnosis of MDD requires the experience of at least one depressive episode[3]. According
to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), a major
depressive episode is defined by the presence of at least five symptoms within a period of 2 weeks.
The core symptoms include either a depressed mood or anhedonia (loss of interest or pleasure) [4].
The secondary symptoms include changes in weight or appetite, sleeping difficulties, psychomotor
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retardation or agitation, loss of energy, reduced ability to think or concentrate, experiencing feelings
of worthlessness or excessive guilt, and feelings of suicidality [4]. In addition to these emotional
changes, evidence suggests that cognitive abilities are also disrupted in depression [5].

A variety of different mechanisms and theories have been proposed to account for the depressive
symptomatology in MDD [3]. The development of depressive pathophysiology is frequently
preceded by the experience of adverse life experiences associated with high levels of psychological
stress, inducing disruptions in the physiological stress response [6,7]. Further, it was found that a
mouse model of depression, caused by chronic stress exposure, presents increased circulation of
proinflammatory cytokines together with functional and structural alterations of microglia, the
brain’s resident immune cells, indicating a role for immune-related mechanisms in MDD [8-10].
Treatment approaches targeting mechanisms implicated in neuroplasticity, such as the rapid-acting
antidepressant ketamine, also reduce symptoms in those diagnosed with treatment-resistant MDD
[11]. Neuroplasticity refers to the brain’s ability to reorganize its neuronal connections through the
remodeling of synaptic connections in response to external stimuli [11]. These findings indicate the
modulatory effect of stimulating neuroplasticity on MDD [11].

Several pharmacological treatment approaches have shown promising results in targeting the
aforementioned systems. For example, selective serotonin-reuptake inhibitors (SSRIs) lead to a
reduction in symptoms as demonstrated by randomized control trials (RCT) and meta-analyses in
patients with MDD [12]. Cell culture studies further reveal that SSRI administration induces a
decrease in the release of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-c)
and nitric oxide (NO), by microglia following an immune challenge, modeled using the inflammogen
lipopolysaccharide (LPS) [13]. These findings indicate that SSRIs may exert their anti-inflammatory
effects through the modulation of microglia functioning [12,13]. Further, the rapid-acting
antidepressant ketamine exerts its antidepressant effects by facilitating neuroplasticity through an
increased release of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) [14].
However, over half of all patients with MDD do not experience improvements despite receiving
treatment with at least two different pharmacological approaches, therefore, meeting criteria for
treatment-resistant depression [15].

The profile of symptoms expressed by patients with MDD is highly heterogeneous, varying
significantly between patient groups [16]. Contributing to the unexplained variability in symptom
representation, many clinical and preclinical studies in medical research only include male subjects
or combine both sexes, covering up potential sex-specific effects [17]. The insufficient investigation
and reporting of sex differences, by employing a research design or statistical testing that does not
sufficiently reflect actual sex differences, or the reporting of sex differences only in some cases, may
lead to a misrepresentation of sex differences [17]. MDD is diagnosed about twice as frequently in
women compared to men [18]. Depression as experienced by men is predominantly reflected in
externalizing behavioural symptoms such as increased levels of aggression or risk-taking behaviours,
substance abuse, and increased levels of activity [19,20]. By contrast, depression in women is more
frequently experienced in the form of mood changes, such as reduced interest and anhedonia,
metabolic and physiological disruptions, including changes in weight and appetite, disruptions in
sleep, and fatigue [21]. These findings indicate that different neurobiological mechanisms may
underlie these differences in symptoms observed between sexes, prompting the need to investigate
sex-specific mechanisms implicated in the pathophysiology of MDD [21].

To provide more targeted treatment approaches, a better understanding of sex-specific factors,
such as monthly fluctuations across the menstrual cycle, and their influence on the mechanisms
implicated in depression, is urgently needed. Therefore, in this review, we explore the impact of
female gonadal hormone fluctuations and of specific female gonadal hormones on the emotion
regulation networks at global network and microcircuit levels. Further, we highlight how gonadal
hormone fluctuations and increases in stress reactivity in females could synergistically facilitate the
development of psychiatric disorders. Microglia are critically implicated in the modulation of
neuronal networks during development and in adulthood [22]. Further, the brain-resident immune
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cells are modulated by exposure to female gonadal hormones and glucocorticoids, the primary stress
hormones in the body [23,24]. Therefore, the role of microglia, linking exposure to glucocorticoids,
and withdrawal of female gonadal hormones and maladaptive restructuring of neuronal circuits, in
the context of emotion regulation circuits, is specifically discussed. Finally, we present the conclusion
that we draw from the summarized findings and present future perspectives outlining possibilities
for closing the research gap concerning the potentially critical role of microglia in the modulation of
emotion regulation circuits in MDD.

2. The Role of Emotion Regulation Networks in MDD

Using connectivity analyses following functional magnetic resonance imaging (fMRI), it was
found that MDD is associated with disruptions in the neurocircuits implicated in emotion regulation
[25,26]. Dysfunctional activation has been reported in a network consisting of limbic structures,
including the amygdala, anterior cingulate cortex (ACC), hippocampus, hypothalamus, basal
ganglia, and different components of the prefrontal cortex (PFC) [27]. Emotional regulation is
facilitated through top-down control of the PFC over limbic structures [28]. The limbic system, the
phylogenetically older brain region, is implicated in the generation of bottom-up, affective responses
in response to external stimuli [29]. Evidence derived from studies employing functional and
structural imaging indicates increased activity in bottom-up, emotion generating brain regions in
depression. In contrast, inhibition by top-down prefrontal areas is disrupted [30,31].

2.1. Role of Limbic System Disruptions in MDD

In patients with MDD, the experience of psychosocial stress was found to be associated with
increased amygdala activation, as assessed by fMRI [30]. The amygdala is considered the fear center
of the brain, with lesions in this region inducing deficits in emotional processing and a loss of fear
response in animal models [32]. Depressive symptomatology is associated with increased activity of
limbic structures in response to negatively emotionally valenced stimuli. For example, results from
fMRI studies indicate increased amygdala activity in response to negatively valenced stimuli,
reflecting an attentional bias toward negatively valenced stimuli in depression [33]. During the
encoding of novel information, increased amygdala response in depressed patients was also found
to be coupled to increased hippocampal activity, potentially reflecting a bias toward negatively
valenced information in the recall and formation of memories|[34].

2.2. The Role of PFC Disruptions in Depression

Evidence indicates a critical role of the ventromedial (vim)PFC in emotional regulation through
a downregulation of the amygdala. The vmPFC comprises parts of the ACC-[35]. The vimPFC serves
as a central hub in the brain’s emotion regulation network, integrating affective inputs from limbic
and sensory regions, and higher-order cognitive information from PFC regions [35]. The ACC is also
implicated in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis, with findings
indicating, for example, an association between a volumetric decrease in the rostral portion of the
ACC and levels of salivary cortisol and early childhood abuse [36]. Glucocorticoids, secreted as the
final step of HPA axis activation, bind to mineralocorticoid receptors (MRs) and glucocorticoid
receptors (GRs) located in the ACC, thus facilitating a downregulation of HPA activity [37,38]. The
modulation of HPA activity through these negative feedback mechanisms is facilitated by projections
from the ACC to relay stations such as the bed nucleus of the stria terminals (BNST) and amygdala,
projecting to corticotropin-releasing (CRH) in the hypothalamus[37,38].

Clinical findings suggest a role of the vmPFC in modulating the capacity for emotion regulation
[39]. Employing fMRI, it was found that, participants after having experienced acute stress, as a result
of exposure to the Trier Social Stress Test (TSST), displayed increased levels of activity in the vmPFC,
in response to highly emotionally valenced images[39]. Further, findings revealed that increased
levels of coupled functional connectivity between the amygdala and vmmPFC after acute stress were
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associated with a smaller increase in levels of anxiety as a result of stress exposure[39]. Based on these
findings, the authors concluded that the vmPFC was implicated in emotion regulation after stress
exposure by modulating amygdala activity[39]. In addition, the ventrolateral (vl)PFC is involved in
the modulation of emotional responses through its action on the vmPFC. In particular, the application
of transcranial magnetic current stimulation (TMS) over the vIPFC reduced the experience of negative
emotionality through a downregulation of vmPFC activity, thus facilitating downregulation of
amygdala activity [40]. In line with these findings, reduced activity in the right inferior frontal gyrus
(IFG), a sub-component of the vIPFC, was found in patients with MDD when they were instructed to
downregulate their negative emotional reactions[41].

Moreover, evidence indicates that the dorsolateral (dl)PFC is critically implicated in the capacity
for emotion regulation through its mutual connections with ventral PFC regions. The dIPFC is
implicated in modulating attentional focus [42]. Studies further reveal a lateralization in function[42].
The left dIPFC is implicated in retaining specific task goals in working memory during cognitive
tasks, enabling the focus on task-relevant information, while task irrelevant information are
ignored[42]. In contrast, the right dIPFC is implicated in the redirecting of behavioural responses
following the appearance of a distracting stimulus[42]. Through mutual connections between the
vIPFC and the dIPFC, the dIPFC receives input from emotion generating regions, and facilitates the
selection of behavioural responses appropriate to the stressor [43]. In the context of emotion
regulation tasks, it was found that increased levels of functional coupling between vIPFC and dIPFC
activity, through their modulatory effect on amygdala activity, are associated with a heightened
capacity for cognitive reappraisal [43]. Cognitive reappraisal is described as an emotion regulation
strategy including the re-interpretation of negatively valenced stimuli, resulting in the increased
experience of positive emotions[43]. Based on their findings, the authors concluded that while the
dIPFC maintains multiple options for response strategies in working memory, the vIPFC is
implicated in the selection of the most appropriate response strategy[43]. Therefore, findings suggest
a critical role for the dIPFC in emotion regulation networks through mutual interactions with regions
such as the VIPFC and top-down modulation of amygdala activity.

3. The Influence of Fluctuations in Female Gonadal Hormones on Emotion
Regulation Networks

3.1. Hormonal Fluctuations Along the Menstrual Cycle

Evidence indicates that exposure to gonadal hormones throughout the menstrual cycle
influences the activity of key brain regions implicated in emotion regulation [44,45]. Hormonal
fluctuations associated with the menstrual cycle facilitate the monthly ovulation process, which is
characterized by the ovarian release of a follicle into the fallopian tube, where it can undergo
fertilization [46]. Ovulation occurs due to a rapid increase in luteinizing hormone (LH) [47]. If
fertilization does not occur, the corpus luteum forms from the ruptured unfertilized follicle, marking
the beginning of the luteal phase[48]. The corpus luteum secretes high levels of progesterone [47].
Subsequently, a surge in both estrogen and progesterone levels occurs, reaching a peak in the mid-
luteal phase, followed by a sudden decline in the late luteal phase, facilitating menstruation onset
[47].

3.2. Influence of Hormonal Fluctuations Along the Menstrual Cycle on Hippocampal Structure and Function

Magnetic resonance imaging (MRI) and fMRI studies conducted in healthy women of
reproductive age revealed alterations in hippocampal structural characteristics and functional
connectivity throughout the menstrual cycle [44,49]. Specifically, findings revealed an increase in
hippocampal volume in phases of the menstrual cycle associated with high levels of estrogen [44,49].
Women of reproductive age were exposed to structural and functional MRI, cognitive testing, and
the collection of blood samples for the assessment of progesterone and estrogen during four sessions
along their menstrual cycle. A bilateral increase in hippocampal volume was detected in the late
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follicular phase, characterized by heightened levels of estrogen, compared to the early follicular
phase [49]. Functional brain activity was also assessed during the performance of cognitive tasks by
exposing women of reproductive age to fMRI throughout their menstrual cycle. Findings revealed
increased levels of hippocampal gray matter volume during the late follicular phase [49]. Heightened
levels of gray matter volume in the hippocampus were positively correlated with estrogen levels
during the late follicular phase[49] (Figure 1). Moreover, increased levels of estrogen during the late
follicular phase were associated with increased connectivity of the hippocampus with prefrontal and
temporal regions [49]. By contrast, in the late luteal phase, characterized by low levels of estrogen,
hippocampal connectivity with prefrontal regions was reduced [49]. Additionally, it was found that
this increased functional coupling between the hippocampus and prefrontal regions during high-
estrogen phases of the menstrual cycle was associated with increased performance on tasks assessing
memory functioning [44].

| FOLLICULARPHASE —>"> LUTEALPHASE >

Progesterone
Hormone
Levels Estrogen

dIPFC dIPFC ﬁ
VIPFC VIPFC
/v vmPFC /. vmPFC
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Figure 1. Emotion regulation network across stages of the menstrual cycle. During the late follicular phase,
characterized by heightened levels of estrogen and low levels of progesterone hippocampal activity is increased,
while amygdala activity is decreased, During the luteal phase, characterized by high levels of progesterone,
dIPFC activity is increased.

3.3. Influence of Hormonal Fluctuations Along the Menstrual Cycle on Amygdala Structure and Function

In women of the reproductive age, using MRI, an increase in gray matter volume in the dorsal
part of the left amygdala was detected in the luteal phase of the menstrual cycle, characterized by a
dip in estrogen levels, compared to the late follicular phase, characterized by heightened levels of
estrogen [50]. Additionally, these volumetric increases in gray matter volume were linked to
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increased levels of negative mood following exposure to negatively valenced stimuli [50]. The results
provided evidence for a positive correlation between amygdala volumetric increase and heightened
levels of stress-induced negative emotionality in the luteal phase [50]. Similarly, in a different study
employing fMR], it was found that increased levels of amygdala activity in response to negatively
valenced, or arousing stimuli during the early follicular phase, were associated with low levels of
both estrogen and progesterone [51]. Therefore, together, these findings suggest that low levels of
female gonadal hormones are associated with increased amygdala gray matter volume and
functional activity [50,51] (Figure 1).

3.4. Influence of Hormonal Fluctuations Along the Menstrual Cycle on dIPFC Structure and Function

Applying fMRI during cognitive testing, dIPFC activation was further shown to vary along the
menstrual cycle (Figure 1). Using fMRI, activity across different brain regions was assessed while the
participants, women of reproductive age, performed cognitive testing using spatial navigation and
verbal fluency tasks [44]. Further connectivity analyses were conducted to evaluate network
alterations across the menstrual cycle stages [44]. It was found that during the luteal phase,
characterized by heightened levels of progesterone and lower levels of estrogen, the right dIPFC
displayed heightened levels of activation as assessed using fMRI across tasks [44]. As the authors
found decreased levels of hippocampal activation in the luteal phase, without significant alterations
in task performance, increased right dIPFC activation was hypothesized to serve as a compensatory
mechanism that reduces negative effects of the decreased hippocampal activation on performance in
the verbal fluency test [44]. Additionally, no effect of progesterone on activity in the left dIPFC was
found [44]. Activity in the left dIPFC is considered to mainly facilitate performance in cognitive tests
[44]. Similarly, in a study employing fMRI in adolescent girls, it was shown that increased levels of
17p-estradiol were associated with heightened activity in both the left and right dIPFC during an
emotion regulation task[52]. Specifically, findings revealed an association between dIPFC activity and
17p-estradiol levels in the condition requiring the active down-regulation of negative emotions in
response to negatively valenced stimuli[52]. In contrast, no association between dIPFC activity and
17B-estradiol levels was found in the condition requiring participants to passively view images[52].
Thus, studies implicate the modulatory role of estrogen on dIPFC functioning, facilitating an
increased capacity for emotion regulation[44,52].

3.5. Synergistic Effects of Hormonal Fluctuations and Stress Reactivity on Psychiatric Symptoms

Evidence suggests that fluctuations in gonadal hormones, associated with the menstrual cycle,
are related to the severity of mental health-related symptoms in women diagnosed with a psychiatric
disease [53]. Findings further suggest that a disruption in HPA axis functioning may be implicated
in the pathophysiology of premenstrual syndrome (PMS). PMS is characterized by the experience of
adverse emotional symptoms, including depression, inattentiveness, fatigue and increased perceived
stress during the late luteal phase of the menstrual cycle, which is characterized by a decline in
progesterone and estrogen levels [54]. Evidence indicates decreased levels of cortisol secretion in the
TSST in the context of PMS, and heightened baseline cortisol levels throughout the day, indicating
dysfunctional HPA activation in the affected women [55,56]. These findings may suggest that
hormonal fluctuations throughout the menstrual cycle and disruptions in HPA axis functioning may
induce synergistic effects leading to an increased susceptibility to the experience of psychiatric
symptoms.

4, HPA Axis

Evidence indicates that dysregulation of the physiological stress response is critically implicated
in the pathophysiology of depression. The development of mood-related disorders is frequently
preceded by the experience of stress-inducing life events, such as assault, loss of a loved one or
financial insecurities [57]. Additionally, in humans, studies indicate altered plasma levels of cortisol,
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the primary stress hormone, with inconsistencies between studies. While some studies suggest
increased levels of morning salivary cortisol in MDD [58,59], other studies indicate that cortisol
secretion appears inconsistent and irregular within groups of patients with MDD [60].

The HPA axis comprises a series of signalling steps that induce a physiological stress response
[61]. Activation of the HPA axis facilitates the neuroendocrine stress response, enabling the
restoration of homeostasis throughout the body [62]. The paraventricular nucleus (PVN) of the
hypothalamus receives projections from different structures in the central nervous system (CNS),
such as the amygdala, contributing to modulating the stress response [63]. From the PVN projecting
to the median eminence, a vascular structure connecting the hypothalamus with the pituitary gland,
corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are secreted [64—66]. The
release of CRH and AVP from the PVN stimulates corticotropes, a group of cells located in the
anterior pituitary, which are implicated in the production and secretion of adrenocorticotropic
hormones (ACTH) [67,68]. The release of ACTH from the anterior pituitary induces glucocorticoid
secretion from the adrenal glands [69,70].

Under normal conditions, glucocorticoids are released from the adrenal cortex in a pulsatile
manner along the circadian rhythm [61,71]. While acute activation of the HPA axis is beneficial, when
it becomes chronic, it can have deleterious effects throughout the body [61]. For example, chronically
elevated levels of glucocorticoids induce an increased proinflammatory response that contributes to
an increased risk of chronic disease conditions such as cancer, cardiovascular diseases, or
neurodegenerative diseases [72-74]. Chronic glucocorticoids are further associated with disruptions
in emotion regulation-associated regions such as the PFC and hippocampus, which are particularly
dense in GRs, in humans and in animal models[75-79].

4.1. HPA Axis Regqulation Through Harmful Feedback Mechanisms

Cortisol is implicated in a negative feedback mechanism at the level of the hypothalamus and
the anterior pituitary, thus inhibiting CRH and ACTH secretion [80]. These mechanisms induce the
regulation of cortisol release and the stress response through the binding to MRs and GRs [81,82].
Occupation of MRs occurs rapidly. As the binding of glucocorticoids to MRs is high already under
normal physiological conditions, glucocorticoid binding to GRs is relevant to HPA regulation under
acute and chronic stress [81,82]. However, under chronic stress exposure, linked to psychiatric
diseases such as depression, the excessive release of glucocorticoids induces glucocorticoid
insensitivity and decreased negative feedback on HPA axis functioning [81-83].

4.2. HPA Axis and Female Gonadal Hormones

Findings derived from preclinical research indicate a critical role of the emotion regulation
circuit, as outlined above, in the modulation of HPA activity [37,81-85]. Projections from the
hippocampus and PFC regions to the HPA axis are critically implicated in the inhibition of HPA axis
activation [86,87]. Through relay stations such as the BNST and neurons in the peri-PVN area, CRH
neurons in the PVN receive modulatory inputs from limbic and PFC regions, facilitating an inhibition
of the stress response [84-86]. Studies indicate that inhibitory neurons in the BNST may mediate the
inhibitory effects of projections from higher-order regions, such as the PFC and hippocampus [87].
Inhibitory projections from the BNST onto PVN neurons have been shown to exert an inhibitory effect
on PVN activity, thus decreasing HPA axis activity and glucocorticoid release. For example, evidence
indicates that excitatory projection neurons originating from the ventral hippocampus facilitate the
inhibition of CRH cells in the PVN, modulating HPA axis activity by synapsing on GABAergic
parvalbumin (PV)-positive (+) and glutamic acid decarboxylase (GAD)+ neurons in the BNST.
Tracing experiments in animal models also revealed that GABAergic neurons in the BNST and peri-
PVN integrate inputs from different brain areas implicated in the evaluation of stressors, projecting
both excitatory and inhibitory inputs into the PVN [84,85].

Evidence further indicates a modulatory role of the central nucleus of the amygdala (CeA) on
BNST neurons. Optogenetic studies conducted in animal models suggest a mutual connectivity
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between the CeA and BNST, with the BNST sending inhibitory output onto neurons in the amygdala
[88]. By sending inhibitory projections to the BNST, the CeA facilitates the removal of inhibitory
connections from the BNST to PVN neurons, thereby inducing increased levels of glucocorticoid
secretion upon HPA axis activity. Evidence further indicates that chronic stress modulates
modulatory inputs from the amygdala to PFC neurons [89]. Specifically, findings suggest that
exposure to chronic stress is associated with increased levels of glutamatergic release from the
basolateral amygdala (BLA) to the PFC [89]. Further, inhibitory connections from the BNST onto
neurons in the CeA have been shown to reduce fear response [88]. However, findings further indicate
a significant degree of heterogeneity in BNST nuclei and projections, with the stimulation of distinct
projections from the BLA to the BNST exerting either anxiogenic or anxiolytic effects depending on
the type of neuron [90].

In summary, evidence indicates that GABAergic neurons in the BNST facilitate inhibition of the
HPA axis’s activity by receiving excitatory inputs from several regions across the brain. Regions
implicated in the emotion regulation circuit in the brain, such as the PFC and hippocampus, are
involved in the regulation of the HPA axis by sending excitatory projections to inhibitory neurons
within relay stations such as the BNST.

5. GABAergic System

GABAergic neurons play a crucial role in regulating emotion regulation circuits in the brain, as
well as the HPA axis. Evidence indicates a role for key brain regions forming part of the emotion
regulation network in the brain, also displaying functional alterations across the menstrual cycle
(reviewed above, in Section 3), in the modulation of HPA axis activity.

In the brain, regulated network activity arises from the functioning of microcircuits consisting
of dense networks of inhibitory interneurons synapsing onto other inhibitory interneurons as well as
excitatory pyramidal neurons spanning across several brain areas [91]. Populations of interneurons,
consisting of PV+ or somatostatin (SST)+ interneurons, are critically implicated in the coordinated
activity of large populations of neurons [92]. The rhythmic activation of inhibitory neurons was
shown to create synchronized inhibition of excitatory pyramidal neurons [93]. In the PFC, fast-
spiking PV interneurons inhibit outputs by forming synapses at the soma or axonal regions located
in proximity to the soma. The rhythmic inhibition of projection neuron activity by PV interneuron
activity contributes to the generation of oscillatory rhythms such as gamma and theta waves, enabling
the extensive network coordination required for information processing [91,94,95]. By contrast, SST+
interneurons form inhibitory connections with other PV-expressing interneurons or dendritic
branches of projection neurons [96]. SST+ neurons facilitate phasic inhibition, contributing to the
modulation of networks through the gating of input signals onto specific projection neurons or the
inhibition of PV+ interneurons, which are involved in modulating the outputs of projection neurons
[96]. In line with the important role of inhibitory interneurons in information processing and network
functioning, excitation/inhibition imbalance resulting from dysfunctional interneuronal activity is
associated with neuropsychiatric diseases, causing, for example, disruptions in information
processing, as well as social dysfunction [97].—

While PV and SST expressing GABAergic interneurons are implicated in the coordination of
neural networks through the generation of oscillatory activity, a subtype of GABAergic neurons
expressing SST further forms long-range projections across brain regions [95,98]. In concert with
glutamatergic projection neurons, these GABAergic projection neurons contribute to the precise
temporal coordination across regions [98]. Evidence indicates a critical role for those long-range
GABAergic projection neurons in the transmission of oscillatory rhythms within a region and
communicated between regions [98]. Findings from preclinical studies reveal, for example, that long-
range GABAergic projection neurons are implicated in the precisely timed input of firing rhythms
across subregions of the hippocampus during sleep and wakefulness [98].
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5.1. GABAergic System and Female Gonadal Hormones

Female ovarian hormones, derived from progesterone and testosterone, such as
allopregnanolone and 17B-estradiol, were found to exert antidepressant and anxiolytic effects in
animal models by modulating the GABAergic system. GABA-A receptors vary depending on various
factors, such as psychological stress levels, throughout the ovarian cycle, and in psychiatric diseases,
as well as in states presenting hormonal alterations, such as the postpartum period or during
pregnancy [99,100]. Genetic ablation of this receptor was found to be related to depressive-like
behaviour in mice [101]. Additionally, treatment with 17B-estradiol in female ovariectomized rats
exposed to four weeks of chronic mild stress resulted in the upregulation of GABA-related messenger
(mRNAs) and GABA levels in the amygdala, the hippocampus and PFC, as well as decreased levels
of anxiety-like behaviours[102].

Gonadal hormones such as allopregnanolone and 17(3-estradiol exert mood-modulating effects,
for example, by acting as positive allosteric modulators (PAMs) or through the transcriptional
regulation of genes encoding subunits of the GABA-A receptor [103,104]. GABA is the main
inhibitory neurotransmitter in the brain, consisting of subunits surrounding pore-forming a chloride
(CL") ion gradient [105], with subunit composition and formation determining its functioning [106].
Evidence suggests that the presence of the d subunit in GABAergic neurons plays a critical role in
modifying the specific binding of gonadal hormones, including allopregnanolone, to exert mood-
related effects [107,108]. Allopregnanolone was shown to reduce symptoms in a rat model of
premenstrual depression, as assessed through performance in the forced swim test, by acting on the
0-GABA-A receptors in the hippocampus [108]. Further, exposure to 17(3-estradiol during
developmental periods has been shown to increase levels of extrasynaptic >-GABA-A receptors affect
GABAergic tone in rats and in vitro, using cultured neurons from the hippocampus[109,110].

Clinical studies further indicate a dynamic modulation of GABAergic activation by exposure to
female gonadal hormones across the menstrual cycle [111]. For example, findings using magnetic
resonance spectroscopy (MRS) revealed increased levels of GABAergic activity around ovulation in
the PFC of reproductive-age women not using any contraceptives [112]. Additionally, the exposure
to 17p-estradiol may facilitate the precise timing of GABAergic neuron firing, enabling the network
activation required for emotion regulation [113]. For example, administration of 17(3-estradiol in
women undergoing the early follicular phase, associated with low levels of estrogen and
progesterone, increases inhibitory activity within PFC regions. Network activation was measured
using resting-state(rs)fMRI while participants conducted an emotion regulation task [114]. Using
spectral dynamic causal modelling (spDCM) 17(3-estradiol administration was associated with
increased levels of inhibitory activity among PFC regions, specifically, the vIPFC and
dorsomedial(dm)PFC, and parietal cortex, and with an increased inhibition of emotion generating
regions, such as the amygdala [114]. Further, the increased levels of inhibitory activity within PFC
regions, and suppression of amygdala activity, were associated with an increased performance in the
emotion regulation task [114]. These studies indicate that 17p-estradiol may facilitate inhibitory
activity within frontal regions, thus facilitating the capacity to regulate negative emotions[115].

6. Perineuronal Nets

Interneuronal functioning, integrity and connectivity is modulated by the presence of
perineuronal nets (PNNs). Interneurons, particularly PV+ interneurons, are frequently enwrapped
by PNNs, which modulate their firing rate and potential for rewiring [116,117]. PNNs are lattice-like
structures consisting of chondroitin sulphate proteoglycans (CSPGs), forming part of the extracellular
matrix, that enwrap the soma and proximal parts of neuronal dendrites [116]. Preclinical research
indicates that PNNs form around interneurons in an experience-dependent manner throughout
development, for example, in the visual cortex [118] .

PNNSs appear to be implicated in the regulation of interneuronal functioning, modulating their
excitability, and serving as a protective barrier, while simultaneously restricting their capacity for
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synaptic rewiring[119,120]. The ensheathment of interneurons by PNNs facilitates their protection
from damaging factors, such as high levels of oxidative stress[120]. In contrast, the removal of PNNs
was associated with increased levels of excitability of interneuronal cells in culture [117]. Further, a
reduction in PNN components, such as brevican, neurocan, tenascin-c and tenascin-, is implicated
in the reduced occurrence of PV[121]. PV is implicated in the absorption of calcium within the cell,
thereby facilitating the interneuronal capacity to fire rapidly in short intervals [122]. As a result, the
loss of PV resulting, for example, from the loss of protective PNNs, may interfere with their fast-
spiking properties, disrupting their capacity to precisely regulate the firing rates of other
interneurons or pyramidal neurons [122-124]. Disruption in the functioning of GABAergic
interneurons, resulting from a decline in PV expression, may modulate the excitatory/inhibitory
balance toward a higher level of excitation, potentially disrupting the interneuronal capacity to form
the precisely-timed neuronal oscillations critical for synchronized brain activity in emotion
regulation circuits [92,121].

6.1. Modulation of PNNs by Exposure to Female Gonadal Hormones

Findings indicate a sex difference in the expression of PNNs throughout postnatal development,
potentially suggesting a regulatory role of gonadal hormones on the regulation of PNN integrity. For
example, evidence indicates that the pace at which the development of PNNss proceeds differs in the
medial (m)PFC between male and female rats. It was found that, while in males the beginning of the
pubertal period did not modulate PNN density, in females the onset of puberty was associated with
a decline in PNN structures [125]. Later in development, starting around early adulthood, an increase
in PNN occurrence was detected in both males and females [125]. Puberty is a period marked by
strong hormonal fluctuations in women and the increased prevalence of mood-related disorders.
Together, these findings suggest that hormonal changes associated with pubertal transitions in
females may modulate the risk of development through the modulation of PNN functioning.

Additionally, evidence suggests that PNNs in the medial preoptic area (mPOA) are modulated
by female gonadal hormones. In animal models, throughout the reproductive cycle, alterations in
PNNs have been detected [126]. Additionally, it was found that interneurons enwrapped by PNN
components express estrogen receptor (ER)a and progesterone receptors, indicating a role for
hormonal modulation, further highlighting the role of female gonadal hormones in influencing PNN5s
[126].

6.2. The Role of Microglia in PNN Remodeling

Recent evidence reveals a critical role of microglia in the restructuring of PNNs [119].
Administration of the anti-depressant agent ketamine, as well as light flickering at 40 to 60Hz,
increased the presence of PNN fragments within microglia, indicating phagocytosis of PNN
components by microglia [119]. These findings suggest that different treatment approaches can
induce microglial functional alterations, facilitating the modulation of PNNs.

Together, these findings suggest a role for PNNs in modulating interneuronal integrity and
function, with the abnormal formation of PNNs potentially leading to a decline in interneuronal
numbers or disrupting their capacity for synaptic rewiring [119,120]. Furthermore, microglia are
implicated in the degradation of PNNs, which may be influenced by female gonadal hormones
[119,126].

7. Microglia

Microglia are regulated by even subtle changes in their micro-environment, adapting their
structure and function to maintain homeostasis in the CNS [127,128]. These brain-resident
macrophages constitute a highly dynamic group of cells with their fine processes continuously
scanning their surroundings, enabling the rapid response to signals, such as pathogens or factors
released by neurons and other glial cells [129]. Further, an adjustment in the density and distribution
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of the microglial population occurs in response to changes in homeostasis, such as upon stress, injury
or pathology, facilitating their capacity to quickly respond, notably by releasing trophic factors,
cytokines or through the process of phagocytosis [127,129,130].

7.1. Microglial Involvement in Neuroplasticity

Microglia were shown to be critically involved in the cellular and molecular mechanisms
underlying neuroplasticity, for example, by regulating neurogenesis and the formation, maturation
and elimination of synapses [131]. During development and in adulthood, microglia shape synaptic
connections in an experience-dependent manner [22,132]. The complement system, comprised of
over 30 proteins implicated in the innate immune response, is implicated in the tagging of less active
synapses for microglial removal [133,134]. In addition, microglia can facilitate activity and
experience-dependent synapse formation and synaptic rewiring through their release of
neurotrophic factors, such as BDNF [135,136]. Therefore, microglia are critically implicated in
maintaining CNS homeostasis, notably through experience-dependent shaping of neuronal networks
[22,136].

7.2. Microglial Modulation Through Hormonal Exposure

Gonadal hormones, derived from cholesterol, can bind to microglial receptors [137]. Cell
culturing studies reveal the presence of all three of the main estrogen receptors, ERa, ERB, and G
protein—coupled estrogen receptor (GPER) on microglia [138]. Evidence indicates that 173-estradiol,
which is elevated in the follicular phase, promotes an anti-inflammatory response in microglia. For
example, administration of 17B-estradiol facilitated a reduction in the release of proinflammatory
cytokines in rat-derived microglial cells in primary cultures. The treatment of microglia with LPS
induced in the production of various inflammatory mediators, including inducible form of NO
synthase (iNOS), prostaglandin-E(2) (PGE(2)), and metalloproteinase (MMP)-9 [139]. By contrast,
17B-estradiol induced a significant reduction in these mediators[137].

7.3. Microglial Modulation by Glucocorticoids

Glucocorticoids are secreted as the final step of HPA axis activity, resulting from stress exposure
[140]. By binding to GRs and MRs located on the surface of microglial glucocorticoids induce
microglial morphological alterations and increased release of proinflammatory cytokines [24,141].

Additionally, findings revealing increased co-expression of the phagolysosomal marker CD68
with the microglia/macrophage marker Ibal suggest increased levels of phagocytosis in the
hypothalamus resulting from chronic stress exposure in animal models [142]. Glucocorticoid
exposure may prime microglia in their response to a subsequent pro-inflammatory stimuli, increasing
the release of proinflammatory cytokines in response to the second stimulus [143]. For example, it
was found that exposure to 10 days of glucocorticoid administration, in vivo, followed by the
extraction of microglia from the hippocampus and the administration of LPS in vitro, was associated
with an increased microglial secretion of pro-inflammatory markers such as TNFaq, IL-1f3, IL-6 and
NLRP3 by microglia [143]. Moreover, it was found that, exposure to high levels of glucocorticoids,
induced through exposure to chronic stress, are associated with microglial morphological changes
such as reduced levels of branching and an enlarged soma in the hypothalamus in an animal
model[131]. However, findings from animal models indicate a heterogenous effect of stress on
microglia depending on the region investigated, as well as the intensity and duration of the stressor
applied[144]. For example, 6 hours of restraint-induced stress across three consecutive days modified
microglial proliferative activity, labeled using the marker BrdU+, in a region dependent manner[144].
Significant changes in microglial proliferative activity were found in the hippocampus and
hypothalamus, with strongest increases in microglial proliferation detected in the hippocampus[144].
In contrast, findings revealed no alterations in microglial proliferative changes in the PFC[144].
Additionally, it was found that the stress exposure to three hours daily for three consecutive days
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modulated microglia morphological features in a highly region-dependent manner[145]. Findings
revealed that the presence of microglial morphological states, such as amoeboid-like, rod-like,
hypertrophic or ramified, differed across the investigated regions, which included the PFC, amygdala
and hippocampus[145]. Moreover, across these regions, stress exposure induced a shift in the
numbers of microglia belonging to the different states, with the number of microglia across states
differing between the regions after stress exposure[145]. Additionally, findings from a different study
further revealed that both the sex of the animal and the type of stressor applied determine the impact
of stress on microglial morphological features[146]. It was found that, at baseline, before exposing
the animals to any type of stressor, microglia morphological characteristics already differed between
the sexes[146]. Further, a strong shift in microglial morphological state, with microglia adopting a
more amoeboid-like shape after exposure to both acute and chronic stress, was observed in females
but not in males within the mPFC[146]. Moreover, the changes in microglial morphological
characteristics differed depending on the type of the stressor, with varying effects depending on the
duration of the stressor applied, the region investigated, and the sex of the animal [147].

In summary, findings reveal a complex relationship between the exposure to heightened levels
of glucocorticoids resulting from stress exposure and alterations in microglia. While the findings
derived from in vitro studies indicate a shift towards a more amoeboid and less ramified state, this
shift may differ depending on factors such as stressor type, investigated region, and sex of the animal
[144-147].

7.4. Microglial Role in the Shaping of Interneuronal Microcircuits

Evidence reveals that microglia are implicated in the pruning of inhibitory neuronal circuits
through different mechanisms. Studies indicate a mutual interaction between GABAergic neurons
and microglia, potentially determining pathological outcomes [148-150]. Microglia equipped with
GABA-B receptors play a critical role in the shaping of GABAergic neurocircuits [151]. This microglial
state was shown to be implicated in the refinement of inhibitory circuits during postnatal
development in mice [151]. This reshaping process was disrupted through the knockout of GABA-B
receptor in microglia, suggesting a mutual communication between GABAergic neurons and
microglia in this process[151]. Similarly, in adulthood, the presence of GABA-B receptors on
microglia was shown to be implicated in the communication of microglia with GABAergic
neurons[152]. Further evidence indicate a role of the C3/C3aR (complement component
3/complement component 3a receptor) pathway in microglia in this synaptic pruning of inhibitory
neurons[152,153]. Additionally, in a mouse model of ischemic stroke, microglia were shown to be
involved in the degradation of GABAergic synapses through the release of BDNF, exerting its effect
through the binding to the tropomyosin receptor kinase B (TrkB) receptor [154]. The degradation of
inhibitory synapses is reflected in morphological changes with microglia adopting an amoeboid-like
state, characterized by shortened processes and an enlarged soma [154,155]. Additionally, the
increased expression of cluster of differentiation 11b (CD11b), the increased secretion of
proinflammatory cytokines such as IL-1f3 and TNF-a by microglia was detected [154]. By contrast,
the release of proBDNF was implicated in the disruption of glutamatergic synapses through binding
of the p75"NTR receptor [154]. Therefore, several lines of evidence indicate the involvement of
microglia in the shaping of interneuronal circuits during development and in adulthood.

Additionally, studies indicate that interneuronal activity may directly modulate microglial
functioning, serving a protective role against the development of pathologies in some contexts. For
example, activation of the GABA-B receptor on human-derived microglia, obtained through cell
culturing, has been shown to reduce the release of IL-6 and IL-12p40 (interleukin-12 subunit beta)
following stimulation with LPS in vitro [156]. Together, these studies reveal a critical role of the
mutual interaction of microglia and the GABAergic system in guiding the shaping of GABAergic
microcircuits, which may potentially have larger implications for network functioning across the
brain modulated through female gonadal hormones.
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In summary, exposure to physiological levels of gonadal hormones may be associated with anti-
inflammatory effects on microglia. Therefore, the drop in gonadal hormones such as estrogen during
the luteal phase of the menstrual cycle, in combination with the exposure to increased levels of
glucocorticoids, may facilitate the increased release of proinflammatory cytokines and a shift in
microglial state leading to the remodeling of emotion regulation circuits leading to the increased
expression of psychiatric symptoms.

8. Conclusion and Future Perspectives

In conclusion, hormonal fluctuations across the menstrual cycle are associated with neuronal
network alterations across the brain. These network alterations are the result of the coordinated
activity of interneuron microcircuit facilitating the precise spatial firing of projection neurons and
oscillatory activity of large groups of neurons enabling the communication across brain regions.
Microglia may be critically implicated in the reshaping of these circuits, potentially, under
pathological conditions contributing to a disruption in emotion regulation networks. Microglia
functioning is modulated through their exposure to both glucocorticoids and female gonadal
hormones, while the increased modulation of microglia during phases associated with low levels of
female gonadal hormones may be associated with their detrimental modulation of intraneuronal
circuits. The excessive pruning of inhibitory synapses, may lead to a shift in excitation-inhibition
balance towards excitation, leading to dysregulated network activation.

In this review, the critical influence of female gonadal hormones on neurocircuits implicated in
MDD is discussed. The findings summarized stress the critical need to consider fluctuating levels of
female gonadal hormones for the development of novel treatment approaches for MDD. Microglia,
which are modulated by both stress hormones and female gonadal hormones, and involved in the
reshaping of neuronal circuits, and may perform this critical function in circuits implicated in
emotion regulation. However, the understanding of the role of microglia in the reshaping of neuronal
circuits across stages of the menstrual cycle and stages of differing levels of female gonadal hormones
is currently limited. Future studies should focus on closing this knowledge gap, investigating the
modulatory role of female gonadal hormones and increased levels of glucocorticoids on the
reshaping of neurocircuits by microglia across stages of the menstrual cycle. Employing different
imaging modalities in humans may facilitate a deeper understanding of this interaction of microglia
with neuronal networks and the modulatory effect by levels of female gonadal hormones. The
application of positron emission tomography (PET) using markers such as 18 kDa translocator
protein (TSPO) enables the imaging of microglia in humans in vivo [157]. Although this approach is
still lacking in specificity, new tracers are being developed, indicating that the combined use of PET
with MRI or fMRI may enable, in the future, the study of microglia in humans while simultaneously
taking into consideration functional and structural alterations[158]. Simultaneously, the using PET in
combination with MRS may enable researchers to investigate microglial remodeling of neurocircuits
in humans, while taking into account levels of GABAergic activity [159].

Abbreviation List
GABA gamma-aminobutyric acid
ACC anterior cingulate cortex
ACTH adrenocorticotropic hormones
AVP arginine vasopressin
BDNF brain-derived neurotrophic factor
BLA basolateral amygdala
BNST bed nucleus of the stria terminalis
C3/C3aR complement component 3/complement component 3a receptor
CD11b cluster of differentiation 11b
CeA central nucleus of the amygdala
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Cl- chloride ion

CNS central nervous system

CRH corticotropin-releasing hormone

CSPGs chondroitin sulphate proteoglycans

dIPFC dorsolateral PFC

dmPFC dorsomedial PFC

DSM-5 Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
ERa estrogen receptors alpha

ERB estrogen receptors beta

fMRI functional magnetic resonance imaging
GAD glutamic acid decarboxylase

GPER G protein—coupled estrogen receptor

GR glucocorticoid receptors

HPA hypothalamic pituitary adrenal axis

Ibal ionized calcium-binding adapter molecule 1

IL-12p40 interleukin 12p40
IL-12p40 interleukin-12 subunit beta

IL-1p interleukin-1 beta

IL-6 interleukin-6

iNOS NO synthase

LH luteinizing hormone

LPS lipopolysaccharide

MDD major depressive disorder

MMP-9 metalloproteinase-9

mPFC medial prefrontal cortex

mPOA medial preoptic area

MR mineralocorticoid receptors

MRI magnetic resonance imaging

MRS magnetic resonance spectroscopy
NLRP3 NOD-like receptor family pyrin domain containing 3
NO nitric oxide

P75"NTR  p75 neurotrophin receptor

PAM positive allosteric modulator

PANAS Positive and Negative Affect Schedule
PET positron emission tomography

PFC prefrontal cortex

PGE(2) prostaglandin-E(2)

PMS premenstrual syndrome

PNN perineuronal nets

PV parvalbumin

PVN paraventricular nucleus

RCT randomized control trials

rs-fMRI resting state functional magnetic imaging
rsFC resting state functional connectivity
rsfMRI resting state functional magnetic resonance imaging
spDCM spectral dynamic causal modelling
SSRIs selective serotonin reuptake inhibitors
SST somatostatin

T™MS transcranial magnetic stimulation
TNFa tumor necrosis factor alpha

TrkB tropomyosin receptor kinase B
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TSPO 18 kDa translocator protein

TSST Trier Social Stress Test

vIPFC ventrolateral prefrontal cortex

vmPFC ventromedial prefrontal cortex

WHO World Health Organization
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