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Abstract

Background: Drug-drug interactions (DDIs) represent a critical challenge in pharmacoepidemiology.
There are frequent instances of patients being prescribed multiple medications concurrently. Certain
combinations of two or more drugs can be contraindicated owing to their potential to lead to adverse
clinical outcomes. This leads to backfiring of the well-intentioned prescription. Moreover, prediction
tasks associated with DDI outcomes continue to represent a field with a strong potential for
improvements, largely because of the absence of efficient modernistic approaches as well as reliable,
comprehensive datasets. Objective: This study aims to explore a forward-looking paradigm, based
on artificial intelligence, for predicting the outcomes of DDIs. Towards this aim, we use cutting-edge
advances in natural language processing and graph-based learning architectures to render a capable
model. Conceptual Design: The proposed framework employs an unsupervised learning approach
that integrates both cross-attention and self-attention mechanisms. The system first represents drug
entities as embeddings, aggregates them using attention-based pooling, and models their interactions
through graph attention networks. Cross-attention is then incorporated to refine pairwise
representations before outcome classification. The architectural paradigm presents a welcome
opportunity for validation after rigorous experimentation which simulates its efficacy for the
intended task. Contribution: This paper presents a proof-of-concept study for unsupervised
prediction of drug-drug interaction impacts. It integrates cross-attention with self-attention and
suggests a novel direction for improving the classification of interaction severity in the absence of
large-scale labeled datasets. Conclusion: The work introduces a methodological innovation that
demonstrates potential for improving DDI outcome prediction. It highlights a promising avenue for
future research and simulation while advancing the reliability of Al-driven systems in
pharmacoepidemiology.

Keywords: graph attention networks; cross attention; large language models; aggregational pooling;
drug-drug interactions

Introduction

With the aging global population, the prevalence of chronic conditions such as hypertension,
diabetes, and cardiovascular disease has surged [1]. Such matters exceedingly necessitate long-term,
multi-drug regimens for patients [2]. The pharmaceutical landscape has expanded, where novel small
molecules, biologics, and combination therapies have been introduced. Many of such molecules
interact in manners such that the interaction profiles are not yet fully understood. Adverse drug
reactions related to DDIs have taken the centerstage as a leading cause of hospital admissions and
healthcare costs [3]. This showcases the need for predictive frameworks in this area. Inter-individual
variability, which is driven by genetic polymorphisms, organ function, lifestyle factors, and
concomitant therapies, complicates the clinical picture. This demonstrates that DDI evaluation has to
move beyond population averages [4]. The integration of real-world evidence from electronic health
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records, pharmacovigilance databases, and post-marketing surveillance has therefore become key in
complementing established pharmacoepidemiological methods [5]. This demands both innovative
analytical techniques and comprehensive datasets capable of capturing the multifaceted nature of
DDlIs before any discussion of computational modeling or graph-based learning approaches.

Drug-Drug Interactions — Importance of Study in Pharmacology

The concurrent use of multiple medications has become an unavoidable reality in modern
healthcare. We are witnessing a rise in polypharmacy, where patients are prescribed multiple drugs
at a time to manage more than one chronic or acute conditions simultaneously [6]. In such a backdrop,
the likelihood of DDIs increases substantially [7]. For drug developers and prescribers,
understanding DDIs is critical because such interactions can directly influence clinical efficacy and
safety, and therefore patients’ health and lives [8]. Investigating and predicting these interactions
helps ensure that therapeutic regimens remain both effective and safe for the patient population.

DDIs occur when the pharmacological activity (pharmacokinetics) of one drug in the human
body is altered by the presence of another. If present, these alterations can either enhance or diminish
the clinical effect. They can also increase the risk of toxicity [9-10]. The mechanism of DDIs frequently
involves interference with enzymes and transporters that regulate drug absorption, metabolism, and
excretion [11]. Changes in systemic drug concentrations occur when metabolic pathways are
inhibited or induced. Inhibition slows drug breakdown and raises concentration while induction
accelerates metabolism and lowers concentrations. Since most investigational drugs are characterized
by a defined therapeutic window, minor shifts in systemic concentration can push a drug outside its
range effectivity and safety [12]. This makes the study of DDIs indispensable in both drug
development and clinical practice.

DDIs are broadly categorized into pharmacokinetic and pharmacodynamic interactions [13].
Pharmacokinetic DDIs occur when one drug alters the concentration of another by affecting
absorption, distribution, metabolism, or excretion of another drug [14]. For example, inhibition of
cytochrome P450 enzymes can elevate plasma levels of co-administered drugs and increase toxicity
risk, as seen when ketoconazole inhibits CYP3A4 and raises statin concentrations, predisposing
patients to muscle toxicity. Conversely, induction of enzymes may lower drug concentrations and
reduce efficacy, as occurs when rifampin induces CYP3A4 and accelerates metabolism of oral
contraceptives, leading to contraceptive failure.

Pharmacodynamic drug-drug interactions arise when two drugs act on the same or related
targets, producing synergistic, antagonistic, additive, or potentiating effects. Such interactions can
heighten therapeutic outcomes or amplify adverse effects [10]. For instance, if SSRIs like fluoxetine
and sertraline are taken with NSAIDs like ibuprofen and naproxen, it impairs platelet function and
raises the risk of gastrointestinal bleeding since both are anticoagulants, although prescribed for
different purposes. Both forms of interactions underline why DDIs must be evaluated thoroughly.

Pharmacoepidemiologists must aim to better predict and manage DDIs. To do so, they classify
drugs as objects (substrates) and precipitants (perpetrators). Substrates are affected by other drugs,
while precipitants influence the behavior of co-administered drugs through inhibition and induction
mechanisms. The strength of inhibition or induction is categorized as weak, moderate, or strong. Such
studies ease the determination of the clinical consequences of DDIs [15]. Importantly, a single drug
may simultaneously act as both object and precipitant depending on the metabolic and transporter
systems involved [16]. This intricacy begs a comprehensive assessment framework for DDIs
throughout drug development.

The evaluation of DDIs begins in the nonclinical phase. Early investigations can reveal the
interaction potential of drug metabolites that may act as precipitants. Detection of metabolic and
transporter-based liabilities early helps researchers anticipate risks before clinical testing [17]. Clinical
DDI studies help confirm the extent and significance of DDIs within the human body. Prospective
studies may be conducted as standalone trials in healthy volunteers or nested within patient studies.
Clinical studies can be used to investigate interactions with commonly co-administered medications

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1581.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 September 2025 d0i:10.20944/preprints202509.1581.v1

3 of 21

to reflect real-world therapeutic use. With the growing use of biologics, therapeutic proteins must
also be assessed for interaction risks. This is in consideration of their unique clearance pathways and
common use in polytherapy settings. These expanded considerations highlight the breadth of DDI
evaluation required for comprehensive pharmacological safety [18].

Physiologically-based = pharmacokinetic =~ (PBPK) modeling uses physiological and
pharmacokinetic data to predict drug-drug interactions in virtual populations, guiding dose
adjustments, informing trial design, and sometimes reducing the need for clinical studies [19].
Computational modeling represents a major advancement in reducing trial burden while improving
predictive accuracy. The need is to characterize DDIs thoroughly. This helps developers and
clinicians safeguard the therapeutic promise of new drugs as well as the wellbeing of patients relying
on compound medication regimens [20].

The application of advanced computational and modeling techniques to DDI datasets is
decidedly critical in modern pharmacology. In the modern landscape, tools such as machine learning
and large-scale pharmacoepidemiologic analyses must be used by researchers to identify and predict
interactions more accurately and efficiently than traditional methods alone. This aids in exploring
multi-drug regimens and accounting for patient-specific factors. It also helps in simulating virtual
populations that include vulnerable groups. The application of such techniques enhances our ability
to anticipate clinically significant DDIs and optimize dosing strategies. This lowers our reliance on
extensive clinical trials and improves patient safety and therapeutic outcomes when polypharmacy
is on an upward trend [21].

Many-to-Many Associations: Issues and Solutions

Many-to-many datasets are datasets in which entities in one set can be associated with multiple
entities in another set, and vice versa [22]. Formally, if we have two sets, A and B, a many-to-many
relationship exists when:

Va € A, 3by, by, ..., by, € B such that a is related to multiple b;

Vb € B, 3a,,ay, ..., ay € A such that b is related to multiple a;

In such datasets, an item can appear multiple times in one column as paired with different items
in the other column. In contrast, in one-to-one datasets, each item in one column corresponds to
exactly one item in the other column [Jackson, D.; Wang, M. Modeling the Many-to-Many
Relationship Using Multi-Valued Foreign Keys. Issues Inf. Syst. 2005, 6.]. Moreover, in one-to-many
datasets, an item in one set can relate to multiple items in the other, but not vice versa. In such cases,
standard supervised learning techniques like regression combined with appropriate feature
encoding, such as one-hot encoding for categorical variables, can yield excellent results [23].

In this paper, we discuss working with many-to-many associations (such as a dataset of students
and the classes they take) in the backdrop of one-to-one associations. These two represent the simplest
and most complex extremes of data relationships [24]. Here, we try to highlight how the two contrast
in complexity, methodological requirements, and challenges. We omit the case of one-to-many
relationships, which conceptually falls between the two and may complicate and obscure the clarity
of the analysis.

Applying predictive analytics on datasets where the mapping between elements is many-to-
many, rather than one-to-one, is comparatively complex. There is an inherent ambiguity of
relationships in such datasets. A single entity is connected to multiple counterparts, each with
different meanings and effects [25]. In DDI datasets, one drug may interact with dozens of others, but
the severity, mechanism, and clinical relevance of those interactions varies widely. In social networks,
a single user may follow many others. However, the depth and quality of each connection differ a
lot. Thus, it becomes difficult for models to decide which relationships are most important for a given
prediction [26]. This, in turn, increases the risk of over-generalization [27].

Redundancy and imbalance are two phenomena which may also occur in such datasets where
entities appear in multiple records [28]. The dataset can potentially contain repeated information.
Moreover, a few entities dominate data distribution [29]. In DDI datasets, commonly prescribed
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drugs such as aspirin shows the possibility to exist in thousands of interaction records. However, a
rare cancer drug appears in only a handful of records [30-31]. In transportation networks, large cities
like New York appear in countless shortest-path calculations. On the contrary, small towns show up
far less often [32]. It skews the model toward learning frequent cases well, albeit weakening its
performance on rare, but equally important, entities. It becomes essential to balance the contribution
of frequent and rare entities. This avoids biased outcomes [33].

Context dependence implies the shift in the meaning of an entity depending on which
counterpart it is paired with [34]. A city node in a shortest-path dataset has different roles depending
on which two endpoints are chosen for a path, as an intermediate hub for one route, or as a
destination in another. Similarly, a patient in a healthcare dataset may have different clinical
significance that depends on the comorbidities they are paired with in an analysis. A model must
generate contextualized embeddings that adapt dynamically to specific pairings rather than relying
on static representations [35]. There is complexity in representation as well. Just concatenating two
feature vectors cannot absolutely capture the information resident in many-to-many interactions.
Advanced methods like attention mechanisms, pooling strategies, and graph neural networks
(GNNss), have to be used to aggregate information over multiple relationships [36].

Many-to-many datasets can grow combinatorially large. If there are n entities in such a dataset,
the number of possible pairs is %n(n — 1). This is true even though only a small fraction of those

combinations might be observed in practice [37]. For example, in e-commerce recommendation
systems, millions of users and products create billions of potential user-item interactions. However,
only a small portion is recorded. This leads to computational and storage challenges. It burdens the
model when it endeavors to infer unseen relationships from limited training examples.

As stated previously, many-to-many datasets are by nature incomplete. Not all possible
combinations appear in the training set. A robust model must therefore be able to perform zero-shot
generalization. It should predict interactions between entities that have never co-occurred [38]. For
instance, in transportation planning, predicting the shortest path between cities not yet directly
observed in historical travel data is essential. Predicting protein—protein interactions between
proteins never studied previously needs a good capacity for generalization.

In datasets like tweet-image pairs, each text corresponds to exactly one image, and vice versa. In
such cases, classification is a relatively straightforward process. We fuse the vector representations
of corresponding elements where each element has a unique counterpart [39]. We can use
multifarious methodologies such as cross attention, concatenation, and projection, which can be
performed pairwise. There is no ambiguity that arises in matching embeddings [40].

However, in a dataset consisting of distances between two points, for example, we have columns
like (Point;, Point;, Distanceij). In such a dataset, a point can appear in multiple rows in either column.
A single Pointi may have multiple distances to different Pointj points. Similarly, a single Pointj may
be linked to multiple Pointi points. This creates a one-to-many or many-to-many relationship. Fusion
isnot trivial because embeddings from one column cannot be directly paired with a single embedding
from the other [41].

In such cases, aggregation is needed. Multiple embeddings need to be aggregated as they
correspond to the same entity before fusion [42]. For example, suppose Point A appears in three
distances (A—B, A—C, A—D). We can compute embeddings for each pair and then aggregate
embeddings for A (mean, sum, attention-weighted sum) to represent Point A’s relational context.
This is similar to node embeddings in graphs, where each node’s embedding is influenced by its
neighbors [43].

Not just graph-based mechanisms, but attention-based approaches are naturally suited for this.
We begin by treating each entity as a query (Q). We then consider all entities connected to it as keys
(K) and values (V) [44]. We may then compute contextualized embeddings for each entity based on
all its occurrences, as shown in the following equation:

Embeddingpoim_ = Attention(Q = Point;, K = {neighbors},V = {neighbors})
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This allows dynamic weighting of each occurrence, rather than naive averaging.

Furthermore, such data is best represented in the form of graphs. In our example, nodes can be
points and edges can be the distances between the points. This is called graph-based learning. GNN5s
are constructed to naturally aggregate information from multiple neighbors. Node embeddings can
be produced and then pairwise distances and shortest paths can be computed. Hence, other
downstream tasks can be performed with relative ease. In this context, table 1 encapsulates the key
differences between one-to-one and many-to-many data mappings.

Table 1. Comparison of One-to-One and Many-to-Many Data Mappings Across Fusion Complexity,
Aggregation Needs, Suitable Methods, and Ambiguity.

Feature One-to-One Mapping Many-to-Many Mapping
Fusion Complexity Low High
Need for Aggregation No Yes
Suitable Methods Pairwise concatenation /attention Attention over neighbors, graph embeddings
Ambiguity None Present (multiple matches per entity)

As a DDI dataset is a strong example of many-to-many datasets, analyzing it using advanced
computational methods requires capturing context-dependent relationships accurately. Approaches
such as attention mechanisms, graph-based embeddings, and physiologically informed modeling,
allow for contextualized representations and robust predictions even in sparse and unseen
combinations. Applying such techniques can provide a framework for addressing the unique issues
present in many-to-many interactions in various areas.

Why Graph Attention Networks?

Graph Attention Networks (GATs) are a type of GNN that improve upon standard graph
learning through the assignment of dynamic and learnable weights to edges during message passing.
They are unique because unlike traditional GNNs and plain aggregation methods, GATs do not treat
all neighbors equally. They allow each node to selectively attend to its neighbors. This enables the
model to emphasize more relevant connections while down-weighting less significant ones. This
process vastly improves node representation efficiency [45].

In case of DDI datasets, GATs help assign different attention weights to each interaction. This
encapsulates the relative importance of each drug-drug pair in context. It enables the network to
handle complex interaction patterns that static embedding and naive concatenation methods struggle
to model effectively [46]. GATs are able to generate context-dependent representations. The clinical
impact of a DDI often depends on patient comorbidities, dosage, co-administered medications, etc
[47]. GATs dynamically compute embeddings based on neighboring nodes. GATs produce
contextualized representations that effectively reflect these dependencies without treating all
interactions uniformly are conventional methods do.

DDI datasets are also often sparse. They may also contain many rare and unseen drug pairs.
GATs use the graph structure to propagate information from well-connected nodes to less-connected
ones. This advances the ability to generalize to new and unfamiliar interactions. The attention
mechanism in GATs provides the scope for interpretability. The attention coefficients specify which
interactions contribute most to predictions. GATs combine expressive power with contextualized,
weighted aggregation. This makes them well-suited for modeling the heterogeneous relationships in
DDI datasets [48].

Literature Review

In case of predicting DDIs, traditional rule-based decision support mechanisms in medicine have
performed mediocrely in terms of scalability, specificity, and context sensitivity [49]. In this regard,
there has been a wave of intelligent computational techniques applied in this area. Many of these
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approaches seek to predict interactions, to classify their polarity, to explain underlying mechanisms,
and to incorporate real-world patient data into decision support. An examination of recent research
gives us an insight into how newfangled architectures and domain-adapted strategies are reshaping
DDI detection and risk management.

Transformer-based models have been at the forefront of DDI classification. Gheorghita et al.
(2025) fine-tuned BiomedBERT with low-rank adaptation (LoRA) and incorporated pseudo-labeling
to build a lightweight classifier capable of distinguishing synergistic from antagonistic interactions.
Their approach highlights how polarity-aware predictions in case of DDIs can better inform clinical
decision support system (CDSS) deployment [50-51]. Hakim and Ngom (2025) introduced PolyLLM
[52]. PolyLLM uses large language model (LLM) encoders such as ChemBERTa and GPT to process
SMILES representations of drugs [53]. They pair these embeddings separately with a GNN and a
multilayer perceptron (MLP) model. PolyLLM achieved competitive performance in predicting
polypharmacy-related side effects. The studies illustrate how large-scale language models can be
used to find fine-grained insights in drug interaction mechanisms.

Das et al. (2025) developed GAINET [54]. GAINET is an attention-enhanced GNN that integrates
molecular graph structures and highlights informative substructures. According to the authors, it
achieves high discriminative power with AUC values reaching nearly 0.95. Deng et al. (2025)
introduced MAVGAE [55]. It is a multimodal variational graph autoencoder framework that
specifically captures asymmetric interactions where the order of drug administration influences
outcomes. This framework fuses heterogeneous biomedical data to improve predictive accuracy in
large-scale datasets. Tan et al. (2023) proposed HAG-DDI [56]. It is a graph attention network that
treats interactions as nodes and uses semantic-level attention to depict mechanism-specific features
and mitigate data sparsity (particularly for novel drugs). These studies reinforce the hypothesis that
graph architectures, accentuated with attention. can help not only with binary interaction prediction
but also with mechanism-aware and direction-sensitive modeling.

Nguyen et al. (2025) proposed a reinforcement learning approach that operates over knowledge
graphs. They called their approach Hetionet. Their framework enables a learning agent to traverse
multi-hop biomedical relationships. It produces path-based explanations for predicted DDIs [57].
Dou et al. (2024) developed the Shennong-Agent [58]. It is a multi-agent LLM framework for
pharmaceutical care tasks that includes DDI risk analysis. Their system exemplifies how LLM-based
agents can autonomously handle complex medication safety scenarios.

Bischof et al. (2025) assessed ChatGPT against established CDSSs in thirty polypharmacy cases.
The general-purpose LLM frequently missed clinically important DDISs, particularly QTc-prolonging
combinations, and displayed inconsistency. This finding highlights the gap between raw generative
Al and domain-tuned systems. It stresses the necessity of domain adaptation and structured
knowledge integration which is better achieved through graph-based architectures in case of DDIs
[59].

Xiao et al. (2025) proposed a model in area of diabetes treatment and termed DUMS (Diabetes
Universal Medication Schedule) system [60]. It is a CDSS that encodes more than 12,000 DDI rules
alongside personalized scheduling and self-management functions for diabetes patients. Evaluations
showed DUMS outperforming GPT-4 in accuracy and safety, with pharmacist refinements yielding
the most reliable outputs. Yilmaz et al. (2023) and Akyon et al. (2023) developed similar systems for
geriatric and nursing home populations. In a series of papers, they incorporated potentially
inappropriate medication (PIM) criteria with drug-drug and drug-disease interactions. These tools
achieved dramatic reductions in detection time (over sixty-fold faster than manual review) and
facilitated safer prescribing at the point of care [61-62]. Shirazibeheshti et al. (2023) added an
unsupervised learning dimension to DDI modeling. They combined weighted DDI risk scores with
mean-shift clustering. This was done to stratify high-risk patient groups over large EHR datasets.
Such strategies outrival others in the spheres of immediate deployability and population-level
monitoring [63].
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Lagumdzija-Kulenovic and Kulenovic (2022) proposed PM-TOM. This is an optimization
framework integrating various drug databases. The paper aims to minimize drug and gene
interactions when augmenting polypharmacy regimens with COVID-19 therapies. The authors’
findings showcased the necessity of systematic optimization before adding high-risk antivirals [64].
Silva et al. (2021) demonstrated pharmacogenomics-aware platforms that integrate approximately
ninety single nucleotide polymorphisms, CYP2D6 copy-number variation, and pharmacokinetic data
with Al-based monitoring of DDIs. This proof-of-concept highlights the potential of combining weak
clinical signals with genetic data to predict interaction risks in chronic disease management [65].

Table 2. Literature Review Table.

Year Title Authors Brief summary
Fine-Tuning BiomedBERT with
LoRA and Pseudo-Labeling for =~ Gheorghita I-F; Bocanet

Lightweight, polarity-aware DDI classifier

2025 st ¢ istic) desiened f
Accurate Drug-Drug Interactions V-I; Iantovics LB .(.synergls '€ VS antagonis 1.C) esighe or.
o efficient CDSS deployment with robust logging.
Classification
GAINET: Enhancing drug-d
interactionn rzgicéginsntl}i Ouruf Das B; Dagdogen HA;  Attention-enhanced GNN predicts DDIs with
2025 P & Kaya MO; Akgul MS;  strong metrics (AUC ~0.95) and interpretable

graph neural networks and attention
mechanisms
Chat GPT vs. Clinical Decision Bischof T; al Jalali V;  In 30 polypharmacy cases, ChatGPT missed
2025 Support Systems in the Analysis of Zeitlinger M; Stemer G; many clinically relevant pDDIs (esp. QTc risks)
Drug-Drug Interactions Schoergenhofer C; et al. and was inconsistent vs established CDSSs.
Towards Explainable Polypharmacy Nguyen T-G-B; Le M-C; RL agent navigates a biomedical KG to predict
2025 Risk Warnings Using Reinforcement Nguyen V-K; Can D-C; DDIs with path-based explanations; promising
Learning on Knowledge Graphs Le H-Q; et al. ablations, needs clinical validation.
MAVGAE: a multimodal framework
for predicting asymmetric drug-  Deng Z; Xu J; Feng Y;

Das R; et al. substructure highlights.

Predicts asymmetric (order-dependent) DDIs

2025 drug interactions based on Dong L; Zhang Y by fusing heterogeneous data; shows high
L accuracy on large datasets.
variational graph autoencoder
Encodes drug SMILES with LLMs (e.g.,
ChemBERTa, GPT) and combines pair
PolyLLM: polypharmacy side effect embeddings for side-effect prediction using
2025 prediction via LLM-based SMILES =~ Hakim S; Ngom A MLP/GNN. ChemBERTa + GNN performs best.

encodings Demonstrates structure-only inputs can be
highly effective when other entities (proteins,
cell lines) aren’t available.
Cloud-based system with 475 diabetes meds,
Smart Pharmaceutical Monitoring 684 constraints, and 12,351 DDI rules generates
System With Personalized

personalized schedules and self-management
2025 Medication Schedules and Self- plans. Expert ratings show DUMS > GPT-4 for
Management Programs for Patients accuracy/safety; pharmacist-refined outputs
With Diabetes (DUMS) were best. Supports dosing times, education,
diet, and lifestyle guidance.
Multi-agent LLM framework with multimodal
inputs that segments and executes pharmacy-
Autc?nomous Pharmaceutical Care Dou Y; Deng Z; Xing T; care tasks via reasoning, retrieval, and web
2024 with Large Language Models .
Xiao J; Peng S
(Shennong-Agent)

XiaoJ; LiM; CaiR; ...
Zhang J; Cheng S

tools. Expert evaluations indicate performance
surpasses baseline LLMs; capabilities further
improved with RLHF. Targets med safety
issues like polypharmacy-related risks.
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Enhancing Primary Care for Nursing Yilmaz T; Ceyhan $;

Evaluated nursing home regimens with a
rational drug-use assistant: 89.9% had risky
DDIs; 20.2% had contraindicated DDIs. The

2023  Home Patients with an Al-Aided R assistant reduced polypharmacy and projected
Ak H; Yil TE L .
Rational Drug Use Web Assistant yon $H; Yilmaz a 9.1% monthly cost reduction; interaction
detection time dropped from 2278 s to 33.8 s
(~60x faster).
On 300,000 records, computed weighted
icholi i DDI risk h
Automated Detection of Patients at ~ Shirazibeheshti A; anticho [nergie anfi TS seores, then used
High Risk of Polypharmac Ettefaghian A; mean-shift clustering to flag high-risk groups.
2023 . . . YP . Y . ’ Found scores are largely uncorrelated and
including Anticholinergic and Khanizadeh F; ...; . . .
Sedative Medications Radwan T: Luca C outliers often high on only one metric—both
’ should be considered to avoid misses.
Integrated into a live management system.
Built a comprehensive tool covering 430
Al-supported web application for common geriatric drugs, integrating six PIM
iteria plus drug-d d drug-di
reducing polypharmacy side effects Akyon SH; Akyon FC; | LTI - Ak Rt
2023 and suboorting rational drue use in Yilmaz TE interactions. Achieved 75.3% PIM coverage and
PP eria%t;ric atients & cut detection time from 2278 s to 33.8 s (~60x).
8 P Publicly available (fastrational.com) to support
rational prescribing.
Treats interactions as nodes and connects them
A novel drug-drug interactions if they share a drug; trains on small
2023 rediction method based on a eraph Tan X; Fan S; Duan K; subnetworks with semantic-level attention to
P grap .., S5unP; Ma Z capture mechanism differences. Achieves F1 =

attention network (HAG-DDI)

0.952 and mitigates data sparsity/bias for new
drugs. Code released for reproducibility.

2022

Minimization of the Drug and Gene
Interactions in Polypharmacy
Therapies Augmented with COVID-
19 Medications

Lagumdzija-Kulenovic
A; Kulenovic A

Uses PM-TOM to optimize polypharmacy
regimens when adding dexamethasone,
remdesivir, or colchicine. On Harvard PGP
EMR + DrugBank/CTD, adding these drugs
markedly increases drug/gene interactions in
partially optimized regimens, but far less in
fully optimized ones. Recommends rigorous
optimization before adding high-interaction
COVID meds.

2021

Implementation of
pharmacogenomics and artificial = Silva P; Jacobs D; Kriak
intelligence tools for chronic disease J; ...; Neal G; Ramos K
management in primary care setting

Describes a primary care platform combining
weak clinical signals with PGx (~90 SNPs +
CYP2D6 CNV) and PK to monitor drug-gene
and drug-drug interactions. Validated via a
virtual patient case; proposes a regional
outcomes registry. Demonstrates feasibility of
PGx-informed, proactive medication
management CDS.

Reviewing these studies enabled us to propose a methodology that classifies DDIs by combining
graph-based methods, attention, and unsupervised learning. This integrated approach amalgamates
the structural advantages provided by graph representations, the feature-weighting capability of
attention, the pattern discovery strength of unsupervised clustering, and the predictive robustness of
representation learning. These elements create a framework that is both scalable and adaptable to
various biomedical datasets pertaining to DDIs.

Methods
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Our methodology for classification of DDIs can be broken into a series of steps. The proposed
pipeline is fully label-free and maps any drug pair (d;, dj) to (a) calibrated probabilities over an ordinal
four-way partition {no interaction noted or unknown interaction, minor, moderate, contraindicated}
and (b) a continuous severity score rij. It combines intra-drug refinement, pairwise cross-attention, an
edge-aware graph attention network (EGAT), multiple self-supervised objectives, a data-driven
scalar severity proxy (ri), ordered mixture modeling, and unsupervised calibration.

Notation and setup

d;, d;: two drugs (items)

SR

gp(*): frozen drug encoder (e.g., pretrained molecular, text, or multimodal featurizer)

z; = gp(dy), z; = gp (d]-): encoder outputs (token-level or flat vectors)

o o

x;, x;: self-refined drug vectors after Step 1
h;: node (drug) state after EGAT
e;j: edge (pair) state

s+ final pair embedding

=@ oo

Attn(+): multi-head attention; LayerNorm(-): Layer Normalization

—-

@ : concatenation; O :elementwise product; |-|: elementwise absolute value

| - |:1, norm; |- |g: Frobenius norm

—

k. o(-): sigmoid; softmax(-): softmax over last dimension

Augmentations

We use three label-free augmentations:

(i) random channel dropout/masking,
(ii) noise/perturbation in latent space, and
(iii) paired-latent interpolation (PLI), an interaction-preserving interpolation between two

augmented views of the same pair’s latent representations.

Steps

1. Intra-drug self-attention (structure refinement)

For each drug, we obtain frozen encoder outputs and refine them. If token-level embeddings are
available (such as atoms or substructures), we apply a lightweight Transformer block and pool to a
fixed-size vector. We begin with initial encoding:

z; = gp(dy)
—(D)

In equation 1, a frozen drug encoder gp, such as a pretrained molecular, or a text embedding
model, maps the drug d; to its initial embedding vector z;.

Then we undertake attention refinement:

7, = MSA(LayerNorm(zi)) +z;
-2

In equation 2, we take the initial embedding, normalize it using LayerNorm, pass it through
multi-head self-attention (MSA), then add a residual connection back to the original z;. This lets the
embedding capture contextual dependencies while keeping stability.

Next, we undertake feedforward refinement:

Z, = MLP(LayerNorm(Z,)) + 2,
-(3)
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In this way, the refined embedding goes through a feedforward network (MLP) after
normalization, again with a residual connection. This step increases representational capacity and
non-linearity.

Then, we undertake pooling:

x; = Pool(Z,)
-4

In this manner, we pool the token-level representation into a single self-refined drug vector xi.
This is the vector that represents drug for the downstream task.

We perform the same operations for the other drug in the pair. If only flat vectors are available,
we use a channel-mixer:

X; = MiXCI'(Zi)' Xj = MiXCI’(Zj)

The mixer re-weights and transforms the channels (dimensions) of each flat drug vector. It lets
the model reshape, rescale, and nonlinearly transform each drug vector.
x = Mixer(z) = W, o(Wyz + by) + b,
where W1, W2 are weight matrices, b1, bz are biases, and o is a non-linear activation such as ReLU.
2. Pairwise cross-attention (partner conditioning)
Here, we condition each drug on its partner via bidirectional cross-attention and aggregate
symmetrically to ensure pair-order invariance:

J?i = Attn(Q = xi,K = x]-,V = x])
55} = Attn(Q = Xj,K = xi,V = xi)

- )
Equation 5 establishes bidirectional cross-attention. In this, each drug representation is updated
using information from the other drug.
Next, we undertake symmetric refinement:

1
xS = E(xi + %)
1
(o) _ o
X = 5 (x]- + x]-)

- (6)

In symmetric refinement, each drug’s embedding is combined with its cross-attention-refined

version. The factor of § averages and keeps the scale stable and prevents one part (original or
(©

refined) from dominating. The resulting vectors x; and xj(c) are context-aware drug embeddings
that are enriched with mutual influence.

Before this step, each drug had its own independent representation (xi and x;). After this step,
each drug embedding explicitly incorporates information from the other drug. This makes them
sensitive to potential DDlIs.

3. Edge initialization

© _ © @ .. © [, ©
e = MLP([x; + X, x Ox, |, — X; [
=)
This helps initialize a symmetric edge (pair) descriptor that encapsulates additive, interactional,

and difference terms between the context-aware drug embeddings.
4. Graph construction
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We construct a graph G = (V, E) over drugs, with nodes V carrying features xi and edges E for
observed drug pairs. We add a sparse set of virtual kNN edges for connectivity. These virtual edges
are masked from positive sets during contrastive training.

We then run L layers of edge-aware multi-head graph attention. Attention logits depend jointly
on node and edge states:

a;; « LeakyReLU(a" [Wh; @ Wh; @ U, e;;]), Z a;j = 1,where j € N (i)
j

—(8)
In equation 8, hi is the node embedding inside the GAT. When xi is fed into the graph module,
it gets linearly transformed to node embeddings and participates in message passing and attention
over neighbors. W is a learnable linear transformation applied to the nodes. ej is the edge (pairwise)
embedding between drugiandj. Ueisalearnable linear transformation applied to the edge features.
Using concatenation, Wh; € Wh; @ U, e;; combines both node features and edge features into a
single vector for attention computation. a’ applies a learnable weight vector a to the concatenated
features. LeakyReLU (') introduces non-linearity and enables small gradients for negative values. The
sum };a;; =1 guarantees that the attention coefficients are normalized. This is usually done
through a softmax function. j € N (i) implies that only nodes connected to i are considered.
Now, the following operation is performed to update every node:
hi < |lheads Z a;; (Whj + U, e;))
JEN (@)

-©)

In equation 9, [|peaqs denotes concatenation over multiple attention heads, while the sum ¥ o;;
aggregates messages from all neighbors weighted by attention coefficients combining neighbor node
features and edge features. Wh; + U, e;; is the message passed from node j to node i. It combines
node j's features with the features of the edge connecting i and j.

Each drug’s embedding is updated with the information from all its neighbors (interacting
drugs). It is weighted by relevance and enriched with edge information. Therefore, each drug
embedding now becomes context-aware and reflects the drug as well as its interactions with its
neighbors.

For edges, the following operation is performed:

el']' «— eij + yMLP([hl @ hj @ eij])
- (10)

Here, v is a small residual weight. It is also termed as a scaling factor which controls the update
magnitude. This step residually updates the edge embedding eij by incorporating the current node
embeddings hi and hj and the previous edge features. The concatenation h; @ h; @ e;; signifies a
combined representation of the interaction between two nodes and their connecting edge

In this way, we can now form the symmetric pair embedding si. This embedding is invariant to
swapping i and j, and is given by:

sij = MLP([ h; + hj, h; Q Ry, |h; — By, €5 ])

- (11

This equation defines how the final pair embedding sj is constructed by combining multiple
relational signals between two drugs i and j. First, the node representations hi and h;j are aggregated
through three complementary operations. These operations include their elementwise sum hi+ h;,
their elementwise product hi © h;, and their absolute difference |hi - hjl. These encapsulate additive
similarity, multiplicative interactions, and dissimilarity, respectively. This provides a richer
representation of how the two drugs relate. The learned edge embedding ei, which encodes prior
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relational information and graph-level refinements, is concatenated with these three components, to
further contextualize the embedding. The concatenated vector is then passed through an MLP. This
MLP nonlinearly combines and compresses the features into a single embedding si.

5. Label-free training

We employ three complementary self-supervised losses on mini-batches of augmented views
produced by masking, dropout, noise, and PLL

5.1. Pairwise contrastive (InfoNCE) loss [66]

For each observed pair, let (s, 3;;) be two views of the same pair; negatives are other pairs in-
batch and a memory bank. Using cosine-normalized embeddings and temperature t:

exp (sim(sij, §ij)/‘[)

Y en exp(sim(s;j, s)/T)

Lcon == z lOg
@i
-(12)

This equation defines a contrastive learning objective for DDI pair embeddings. For each
observed drug pair (ij), we consider two views of it: s;; and §;;. These come from different
augmentations. The goal is to make their embeddings close to each other. Other drug pairs (k,[) in
the batch serve as negative samples. The model should push s;; away from these samples. Sim is a
function to calculate similarity, which usually is cosine similarity. Temperature 7 is a scaling
function that smooths the softmax distribution. Smaller the temperature, more the model focuses on
the highest similarity pairs. The numerator measures the similarity of the positive pair (s}, 5;;). The
denominator normalizes this against the similarities with all other pairs (s;}, s, ). Taking the log and
summing over all observed pairs encourages the model to maximize similarity for true positives
while minimizing it for negatives.

5.2. Masked prediction (denoising)

We randomly mask channels of xi, xj, and ej and reconstruct masked channels from graph
context and the partner using the following equation:

Lok = Zlﬁ” (masked) — v;; (masked)| + BKL! - (gij [ Bern(po))
@@
-(13)

This is a masked reconstruction loss applied to DDI embeddings. From the embeddings xi and
xj, (drug-level) and eij (edge-level), some channels (features) are randomly masked. The model is then
asked to reconstruct the missing values. This forces it to learn redundancy and contextual
dependencies in lieu of memorizing direct values. v;; is the true concatenated vector of drug i, drug
j, and their interaction embedding. ?;; is the model’s reconstruction of that vector after masking. §;;
are Bernoulli gates, the model's predicted mask distribution (which channels are
masked/unmasked). Bern(p,) is a Bernoulli prior with masking probability p,. The loss compares
reconstructed vs. ground truth on the masked channels only, using squared error. This causes the
model to fill in missing information using graph context (neighbors, relationships) and the partner
drug representation. The KL divergence is aimed to guarantee that the model’s masking behavior
does not drift away from the intended random distribution. The weight £ controls how much
importance this regularization has relative to reconstruction.

5.3. Graph mutual information [67]

Through equation 14, we maximize mutual information between global graph summaries and
local node/edge embeddings using corrupted graphs as negatives:

Ly = — Z [logo (q;(si,-)TllJ(g)) +log (1 ~o <¢(§u)T¢ @)>]
@n
- (14)
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The purpose of this loss is to align local embeddings of drug pairs s;; with a global summary
of the graph (g), while contrasting them with corrupted (or negative) samples. Applying this, the
model aims to learn representations that capture both local interactions and the overall structure of
the drug-drug interaction graph. s;; are the local embeddings (pairwise embeddings) for each drug
pair. §;; are negative local embeddings which come from a corrupted version of the graph, such as
shuffled edges or perturbed nodes. They serve as negative samples. (g) is a readout vector that
represents the entire graph and is obtained by pooling node and edge embeddings. ¢ and i are
functions of learnable projections. They map local and global embeddings into a shared space where
their mutual information can be estimated. ¢ (sigmoid) converts similarity scores to probabilities
between 0 and 1. The equation encourages positive pairs (true local embeddings and global
summary) to have high similarity while pushing corrupted pairs apart from them. The sum over all
pairs (i,j) is applied so that local embeddings are informative about the global graph structure. This
improves the model’s understanding of DDIs in context. Such a loss function helps the model
encapsulate dependency patterns across the graph, which includes similar drugs interacting with
similar partners. The model becomes robust to noise and better distinguishes true DDIs from
spurious associations. Corrupted embeddings aid the model in avoiding trivial solutions.

Table 3 summarizes the self-supervised losses.

Table 3. Summary of the self-supervised objectives in the proposed framework.

Loss Niche (Where it fits) Function (What it enforces)
Contrastive loss Applied to drug pair emqudmgs Encourages ‘cons1s.tent repyesentatlons of posnlve
after encoding and fusion. (true) pairs while pushing apart negatives.
Masked Applied to hidden node/edge Trains the model to reconstruct masked features,
prediction loss attributes within the graph. improving robustness and capturing local detail.

Applied between local pair
representations and global graph
summary.

Mutual
information loss

Maximizes shared information, ensuring that pair
embeddings remain aligned with global context.

6. Label-free severity score

We compute a scalar severity proxy rij for each drug-drug pair (ij) without using labels. Its
components are as follows:

6.1. Cross-attention intensity (us):

1
ul.]. = E(|AttnMapl_)]|p + |AttnMap]_)l|F)

The cross-attention intensity between drugs i and j is calculated as one-half times the sum of the
Frobenius norms of the attention map from drug i to drug j and the attention map from drug j to drug
i. It measures the strength of mutual attention between the two drugs across the attention heads. A
high value would indicate that the model focuses strongly on this pair.

6.2. Edge-aware Graph Attention Network (EGAT) edge salience (a;):

_ (€3]
Q;j = meany peads &;j

EGAT edge salience between drugs i and j is calculated as the average attention weight assigned
to the edge across all attention heads in a given layer. It highlights the edges that are consistently
important in the graph.

6.3. Interaction nonlinearity (by):

bij = Sij - MLPadd([h’i @ hj])

The interaction nonlinearity between drugs i and j is obtained by taking the pair-specific
embedding of the two drugs and subtracting the additive baseline predicted by a multilayer
perceptron applied to the concatenation of their individual embeddings. It condenses in itself the
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non-additive effect of the pair beyond the simple combination of individual node embeddings. Large
deviations indicate a strong, specific interaction effect.
6.4. Graph anomaly (qj):

qij = €ij — MeaNgen)un(j) €ik

The graph anomaly score between drugs i and j is computed by taking the edge representation
of their connection and subtracting the average edge representation of all neighboring connections
around drug i and drug j. It measures how much the edge embedding deviates from neighboring
edges in the graph. It highlights unusual and exceptional interactions in the local graph context.

6.5. Aggregation

4
Ty = P(Z Wi, Zl(1m)> z® =, 2@ =aq, 29 = ||b||, 2 = ||q||
m=1

- (15)

In equation 15, the final severity score for a drug—drug pair is obtained. The equation combines
the four features that have been discussed: cross-attention intensity, EGAT edge salience, interaction
nonlinearity, and graph anomaly. Each of these features is first scaled into the range between zero
and one using median/interquartile range normalization (that is also called robust scaling). This
enables the model to be resilient against outliers. Then, non-negative weights are assigned to the four
features and summed together. These weights are learned automatically, without requiring any
labeled data. The weighted sum, after normalization, becomes the final severity score.

7. Ordinal 4-component clustering on the severity axis

7.1. We fit a 1D four-component Gaussian mixture on rj with ordered means to induce the
ordinal partition. Let k € {1,2,3,4} denote clusters or classes. The mixture is:

4

p0) = Y m N(r | of), k€ {1234)

k=1
- (16)

We fit a one-dimensional Gaussian mixture model with four components on the set of severity
scores. The means of these Gaussian components are ordered so that they can be mapped to ordinal
categories of interaction severity. Each component corresponds to one of the classes, no interaction
or unknown interaction, minor interaction, moderate interaction, and contraindicated interaction.
This way, the continuous severity scores are translated into clinically meaningful categories through
the probabilistic mixture model.

7.2. The ordered means are reinforced by reparameterization as follows:

Wy =m, p =m+e®, ug = +e?, p, = p; +e

- (17)

Reparameterization is used to enforce an ordering of the Gaussian mixture component means.
We define each subsequent mean as the previous mean plus a positive offset. Therefore, the means
increase monotonically. This lets the Gaussian components correspond naturally to increasing levels
of severity, that is, no interaction, minor, moderate, and contraindicated. Hence, the ordinal structure
of the categories is preserved in the model.

7.3. Responsibilities (soft assignments) are:

T[kN(Tij | kaci)
Yom N(r; |l wof)

ﬂij(k) =

- (18)
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The responsibilities portray soft assignments of a drug-drug pair’s severity score to each
Gaussian component. For a given component, its responsibility is the probability that the score
belongs to that component. It is computed as the component’s weighted Gaussian density divided
by the sum of all four weighted Gaussian densities. This produces a normalized set of probabilities
across the four clusters for each pair.

We map the ordered means to classes: L1 = no interaction noted or unknown interaction, i =
minor, p3 = moderate, p4 = contraindicated.

8. Calibrated four-class outputs

We apply temperature scaling to the responsibilities in the following manner:

(T) 1
m; (k) = softmax Tlog ;5 (K)
-(19)

Equation 19 depicts temperature scaling applied to the soft assignments of each drug pair to
different clusters. First, the initial probability m that a drug pair belongs to a specific cluster is taken.
Then, this probability is converted to a logarithmic scale and multiplied by the reciprocal of a
temperature factor T. When the temperature is greater than one, the resulting probabilities become
more uniform, which in turn spreads confidence across clusters. When the temperature is less than
one, the probabilities become sharper, which aims to emphasize the most likely cluster. Finally, the
scaled values are normalized so that they form a valid probability distribution across all clusters. This
procedure improves consistency of the assignments across different augmented views of the same
drug pair. It allows the model to manage uncertainty without using explicit labels.

We now select T by minimizing augmentation disagreement:

x _ ; (GRG0 5T || @
T* = arg min E[KL(p™ 1 ) + KL(pT 1l pP)]
-(20)

In equation 20, p and p are probabilities from two augmented views of the same pair. The
equation tells us how the optimal temperature is selected for scaling the soft assignments. We aim to
find the temperature value that minimizes the disagreement between two augmented views of the
same drug pair. For each candidate temperature, the model seeks to measure the difference between
the probability distributions produced by the two views. It then sums these differences in both
directions. This guarantees symmetry. The temperature that results in the smallest disagreement is
chosen as the optimal value.

The final hard label is given by:

= ()
kyj =arg max p; (k)

- (21

Through equation 21, the model selects the cluster with the highest probability as the definitive
label. It picks the most likely interaction severity category among four possible classes as it converts
the soft probabilities into a single and concrete classification for the drug pair.

The flowchart of the process is provided in Figure 1.
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Figure 1. Overview of the proposed framework for drug—drug interaction prediction.

Discussion

The proposed methodology outlines a framework for label-free, graph- and attention-based
prediction of DDI severity. While experimental validation remains a future step, the design choices
show the potential for several advantages. Potential advantages include the seamless ability to
encapsulate local as well as global relational patterns between drugs and the capacity to smoothly
integrate heterogeneous sources of information, and the promise of providing interpretable outputs.

The suggested model relies on intrinsic, label-free signals. This should make it adaptable to
datasets where annotated interactions are sparse or incomplete. The use of augmentation and mutual
information maximization encourages robustness against input variability. This insinuates that the
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model could maintain consistency across different representations of the same drug pairs. The
ordered Gaussian mixture approach targets to render an innate manner for translating continuous
severity scores into ordinal risk categories. This aligns computational outputs with clinical decision-
making needs. Such design elements portray a versatile and scalable approach that may inform wide
research applications in drug safety.

Further suggestions are described here. The training should alternate between two main steps,
similar in spirit to Expectation-Maximization (EM) algorithm. In the first step, analogous to the E-
step, the model should focus on updating the encoders and computing severity scores. Mini-batches
of drug pairs should be sampled, and for each pair, two augmented versions should be generated
using techniques such as masking, dropout, and perturbation-based inputs. These augmented inputs
should be fed through the encoder. This should be followed by application of cross-attention. The
output here should be sent to edge-aware graph attention layers, producing intermediate node and
edge representations. From these representations, four intrinsic, label-free signals, vis-a-vis cross-
attention intensity, edge salience, interaction nonlinearity, and graph anomaly, should be computed.
These can be combined into a scalar severity score for each pair. The model parameters should then
be updated through gradient descent to minimize an unsupervised contrastive loss. The model
should simultaneously adjust the weights assigned to each intrinsic signal. This it should do by
maximizing the mutual information between the severity scores of the original and augmented views.
A regularization can be applied to prevent trivial solutions.

In the second step, analogous to the M-step, the focus should shift to calibrating the severity
scores. The scalar scores from the first step can be used to fit a Gaussian mixture model with four
ordered components. These signify four levels of drug—drug interaction severity. The mixture fitting
should encourage the clusters to be consistently ordered from lowest to highest severity. Once the
mixture is fit, the soft cluster probabilities should be computed for each drug pair. Temperature
scaling should be applied to calibrate these probabilities across augmentations. This step should
ensure probabilistic consistency. It should convert the continuous severity scores into well-calibrated
and interpretable probability distributions over the four severity categories. The model should
gradually learn meaningful embeddings, severity scores, and calibrated interaction labels without
requiring any explicit supervised labels [68-69].

The proposed model can be extended to other types of DDI classifications, such as interaction
mechanism, interaction directionality, therapeutic outcome impact, and so on. This can be done by
adapting its label space, embeddings, and graph structure. More than just ordinal severity categories,
it can be allowed to accommodate multi-class or multi-label outputs which reflect different
interaction types. These include synergistic, antagonistic, and metabolic. Embeddings could be
enriched with pharmacokinetic, pharmacodynamic, and drug—protein network information. This can
help them encapsulate functional and mechanistic relationships.

Graph construction should be task-specific. Edges can represent relevant biochemical and
clinical relationships. This will ensure the attention and EGAT layers focus on pertinent interactions.
Appropriate loss functions, including multi-class, binary, and contrastive objectives, can be
incorporated depending on the classification goal. Label-free pretraining should be retained for
capturing relational patterns. This is particularly true for situations when labeled data are limited.
Temporal and contextual factors, such as dosing order and genetic variants, may be integrated for
context-dependent interactions. Explainability mechanisms like attention weights, edge salience, and
pair embeddings should be adapted to highlight task-relevant features.
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Conclusion

We present a versatile label-free framework for DDI prediction. It uses graph-based
representations, attention mechanisms, and unsupervised learning. It incorporates multiple intrinsic
signals and derives a severity score without relying on labeled data. The architecture demonstrates a
strong potential for generalization across diverse datasets. The framework is inherently adaptable.
This makes it suitable not only for ordinal severity classification but also for richer categorizations.
These include interaction mechanisms, clinical outcomes, and temporal and dose-dependent effects.

The model opens numerous avenues for rigorous research. Its architecture can be systematically
evaluated across large-scale pharmacological datasets and combined with pharmacogenomic and
real-world electronic health record data. It can then be benchmarked against existing CDSSs [70]. The
approach invites extension into multi-label, hierarchical, and probabilistic classification tasks. It
allows researchers to explore subtle drug interaction patterns that are clinically useful. Consequently,
our methodology provides a state-of-the-art, scalable, interpretable, and data-efficient pathway
toward more intelligent, generalizable, customizable, and reliable DDI prediction in research as well
as clinical settings.
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