Pre prints.org

Article Not peer-reviewed version

Adversarial Integration of LLM and Logic
Program

Boris A. Galitsky -
Posted Date: 17 September 2025
doi: 10.20944/preprints202509.1484 v1

Keywords: LLM; logic programming; adversarial integration; reasoning; chain of thoughts

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/2709627

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Adversarial Integration of LLM and Logic Program

Boris A. Galitsky

Research Center for Applied Artificial Intelligence Systems, Moscow Institute of Physics and Technology,
Russia; bgalitsky@hotmail.com

Abstract

We introduce an innovative method that combines Large Language Models (LLMs) with Logic
Programming (LP) to address complex reasoning tasks. This approach leverages the formal structure
of LP to enhance the consistency of problem-solving by LLMs. In our framework, the LLM operates
independently to generate reasoning steps and constructs a corresponding LP representation. The LP
module then processes these reasoning steps, providing formalized results. The LLM subsequently
interprets these LP outputs and formulates adversarial challenges against its initial conclusions to
reconcile inconsistencies. This adversarial interaction between the LLM and LP —where each agent
aims to refine or challenge the other's conclusions —improves the reliability and accuracy of the
LLM's predictions and recommendations. We validate our LP-based adversarial neuro-symbolic
framework using various reasoning datasets, comparing its performance to state-of-the-art neuro-
symbolic systems. While our approach demonstrates comparable performance across the full dataset,
it significantly outperforms competing systems on subsets containing contentious or highly complex
tasks, underscoring its robustness in handling intricate reasoning challenges.

Keywords: LLM; logic programming; adversarial integration; reasoning; chain of thoughts

1. Introduction

Humans possess a unique and profound ability to reason. By mentally progressing through a
series of logical steps, we can draw inferences that would otherwise be out of reach, even without
receiving new information from the outside world. In a similar way, large language models (LLMs)
often perform better when they generate intermediate steps—a “chain of thought” —before arriving
at an answer, leading to more accurate responses than if they answered directly.

Despite their impressive capabilities and significant social impact, LLMs are not inherently
reliable. Like many deep neural networks, LLMs are often described as "black boxes" due to the
extreme complexity of their internal structure, involving millions or even billions of parameters. This
makes their reasoning and decision-making processes obscure and challenging for humans to
interpret. While LLMs can be prompted to generate self-explanations to clarify their reasoning,
research indicates that these explanations are frequently inconsistent and unreliable. Adding to this
issue is the phenomenon of "model hallucinations," where an LLM generates incorrect or entirely
fabricated responses that lack any basis in the provided data or knowledge. Such inaccuracies further
erode trust in these models.

LLMs continue to encounter difficulties with multi-step deductive reasoning (Creswell et al.,
2022), where they must apply a series of logical rules to a set of facts in order to answer a query.
Specifically, this type of reasoning requires the model to apply a relevant rule to the supporting facts
at each step, deriving new conclusions along the way. LLMs struggle particularly when the structure
of the input diverges from the sequential order of rule applications (Berglund et al., 2023).

While LLMs perform well with single-step rule application, their effectiveness declines sharply
in multi-step tasks due to challenges in rule grounding. In such cases, each step requires identifying
and applying the correct rule and corresponding facts from an extensive mix of input rules, given
facts, and previously inferred conclusions (Wang et al., 2024).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

2 of 23

To improve on these limitations, the neuro-symbolic Al field advocates for additional
mechanisms that enable more trustworthy, interpretable explanations. The goal is to equip users with
tools to understand how LLMs reach their conclusions and verify the accuracy and reliability of their
outputs. A promising approach is to integrate logic programming, which leverages formal rules and
a domain-specific knowledge base. By incorporating symbolic reasoning systems, these methods can
identify imprecise or incorrect statements produced by LLMs, offering a structured, rule-based
approach to enhance both accuracy and transparency. This hybrid model aims to merge the LLMs'
powerful generalization with the precision and reliability of rule-based systems, creating a more
interpretable and trustworthy Al solution.

For certain classes of applications that require a high degree of accuracy and reliability (e.g.,
enterprise applications in the medical, legal or finance domain), LLMs are often combined with
external tools and solvers in a hybrid architecture (Gur et al 2024). We believe this is the right
approach, especially to tackle problems where precise logical reasoning, planning or constraint
optimization is required, as LLMs are known to struggle for this class of problems

Logical reasoning —inferring a conclusion’s truth value from a set of premises—is a critical Al
task with significant potential to impact fields like science, mathematics, and society. Symbolic Al a
subfield that employs rule-based, deterministic techniques, is well-suited for generating trustworthy,
human-interpretable explanations (Sarker et al., 2021). While symbolic approaches lack the
robustness, creativity, and generalization abilities of LLMs, they can complement neural systems to
create a hybrid neuro-symbolic Al approach, leveraging the strengths of both methods. The symbolic
components contribute faithfulness and reliability that an LLM alone cannot provide (Wan et al,,
2024).

In this way, ProSLM (Vakharia et al 2024) combines the creativity and generalization abilities of
a pretrained LLM with the robustness and interpretability of a symbolic reasoning engine. This
allows users to gain insight into the reasoning behind the system's output, helping them identify
potential hallucinations or inaccuracies in the model's response. Additionally, this framework is
computationally efficient since it does not require additional training or fine-tuning of the LLM for
specific domains.

This first chapter of the book focuses on logical reasoning problems in natural language (NL), a
growing area of interest for neuro-symbolic architectures (Olausson et al., 2023). These architectures
harness LLMs for generating declarative code and providing commonsense knowledge, while
employing symbolic reasoning systems to perform precise logical reasoning. This approach mitigates
the limitations each technology faces on its own: LLMs’ challenges in consistent, domain-accurate
reasoning, and symbolic reasoners’ limitations with unstructured data and explicitly encoded
commonsense knowledge (Galitsky, 2025). These symbolic system limitations reflect the well-known
“knowledge acquisition” challenge, which also contributes to their brittleness (Pan et al., 2023).

While many prompting-based strategies have been proposed to enable LLMs to do such
reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable
ways. In this work, we reformulate such tasks as modular neuro-symbolic logic programming.

1.1. Types of NL+LLM Reasoning

Existing studies on natural language reasoning (Prystawski et al., 2023) focus on using different
prompting strategies on LLMs for better results. Despite significant progress on the LLM prediction
accuracy of the final answer, no work has been done to evaluate the correctness of the intermediate
steps. In our work, we propose to evaluate intermediate steps at different levels of granularity in
order to better probe into the reasoning capabilities of LLMs.

To boost LLM logical reasoning capabilities, Ranaldi and Freitas (2024) fine-tune language
models with logical reasoning data to improve logical reasoning capabilities of LLMs. LLMs have
also been directly used as soft logic reasoners and a variety of prompting techniques are proposed in
order to improve their performance under this paradigm (Wei et al., 2022; Zhou et al., 2024). Using
large language models as semantic parsers has also shown improvement on the reasoning

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

3 of 23

performance (Olausson et al., 2023; Pan et al., 2023) where natural language reasoning problems are
first parsed into logical forms before being fed into an inference engine to output the final answer.

To facilitate NL proof generation, ProofWriter (Tafjord et al., 2021) and FLD (Morishita et al.,
2023) are logical reasoning datasets equipped with NL proofs, however both of them are synthetically
generated dataset which neither contains abundant natural language variation nor encompasses
challenging logical reasoning patters. Previous studies on proof generation focus on
ProofWriter(Morishita et al., 2023; Saha et al., 2020, 2021; Yang et al., 2022) and ProntoQA (Saparov
et al.,, 2023). LogicBench is a synthetically generated natural language QA dataset and is used for
evaluating the logical reasoning ability of LLMs (Parmar et al., 2024). While FOLIO covers first-order
logic and one or more inference rules are used in each example, LogicBench focuses on reasoning
patterns covering propositional logic, first-order logic, and non-monotonic logic and focuses on the
use of a single inference rule for each example.

Proofs for FOLIO (Han et al., 2022) are constructed in the form of a realistic expert-written logical
reasoning dataset. Such proofs need to be written from scratch and are hard and time-consuming to
write because humans need to manage both the language and reasoning complexity in the proof-
writing process and manually construct many steps of reasoning. The resulting proofs contain more
diverse types of inference rules and reasoning patterns in addition to containing more natural
language variation and ensured semantic richness.

In pursuit of NL proof-generation objective, Vakharia et al. (2024) present a neuro-symbolic
framework for knowledge base question-answering systems. Their approach, ProSLM, integrates a
symbolic component designed for explainable context gathering prior to querying an LLM, using a
knowledge base structured in Prolog. This symbolic layer connects a formal logic-based inference
engine to a domain-specific knowledge base and serves two main functions:

1) generating an interpretable, retrievable chain of reasoning to provide context for the input
query, and

2) validating the accuracy of a given statement (Figure 1).

Bitcoin price is determined by following: Interest rate not 0.055
1. Interest rates Inflation not 0.062
2. Inflation and Monetary Policy Monetary policy: stimulating economic growth,
3. Institutional Adoption and managing_ inflation

| Institutional adoption 1s high for hedge funds

Prolog Queries Assessment of each

Neural interest_rate(0.055)) query for today
translator inflation(0.062) Iy Symbolic

monetary_policy([stimulating component
economic_growth, managing_

For pre-elect month:
False
False

inflation]) True
Institutional_adoption(hedge_fund(h True
igh))

Figure 1. Integrating LLM with Prolog.

We follow this architecture in that LLM does everything but runs the logic program. Moreover,
we wrap LLM and LP as agents and position these agents in adversarial setting. LP agent challenges
LLM agent in what it believes is a correct inference result. LLM agent builds an LP attempting to
prove that LLM’s result is contradictory to available knowledge.

1.2. Introductory Example with Adversarial Settings

The author wishes to share his personal experience consulting ChatGPT for guidance on
arranging his medical procedures. He initially planned to undergo both a colonoscopy and hernia

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

4 of 23

surgery during a single hospital visit. When he asked ChatGPT if his hernia surgery could
immediately follow a colonoscopy, he received the following response:

ChatGPT: “It's sometimes possible to schedule a laparoscopic abdominal hernia surgery to
follow a colonoscopy in one visit.”

With this confirmation, he began preparing for the colonoscopy, a process requiring at least 2-3
days. However, just a day before the scheduled procedures, his surgeon recommended canceling the
colonoscopy, explaining that “Intestines with residual air and bloating after a colonoscopy are
generally inappropriate for hernia surgery.”

In this case, ChatGPT's initial guidance led to a suboptimal arrangement of medical procedures.
A step-by-step questioning approach would likely have yielded the necessary information:

Me: “What is the condition of the intestines after a colonoscopy?” ChatGPT: “Residual air and
bloating.

Me: “Are intestines with residual air and bloating appropriate for hernia surgery?”

ChatGPT: “Generally not ideal for immediate hernia surgery.”

This experience highlights the need for enhanced questioning and reasoning guidance when
using Al for complex decision-making (Figure 2). This book explores a range of approaches to make
LLMs more reliable and effective, with this ChatGPT interaction as a practical example of how
improved guidance can lead to better outcomes

ChatGPT
forms a plan Agent requests to
for medical enumerate

procedure outcome states
for each

procedure and

required initial
states for

ChatGPT consecutive
procedure
enumerates
sequence of states

and actions

Agent requests to
form an LP for

states and actions

ChatGPT

forms an LP

Agent executes
LP

ChatGPT finds
possible
inconsistencies

Figure 2. Reasoning guidance for LLM.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

5 of 23

1.3. The Proposal

We propose a novel framework that integrates LLMs) with LP to tackle complex reasoning tasks.
This approach addresses the limitations of LLMs in maintaining consistency across multi-step
inferences and complex problem-solving scenarios. By combining the statistical and contextual
strengths of LLMs with the rigor and structure of LP, our system establishes a symbiotic adversarial
interaction. Here, the LLM initially operates independently, generating reasoning steps and
constructing an LP representation of its inference. The LP module evaluates these reasoning steps
through formal logic-based methods, providing structured feedback. The LLM then interprets the LP
results, identifies inconsistencies, and refines its conclusions through an adversarial process. We refer
to the system being proposed as Adversarial LLM_LP.

This adversarial dynamic involves the LLM challenging its own initial reasoning using LP
feedback, effectively creating a self-correcting loop. The interplay between the probabilistic reasoning
of LLMs and the deterministic formalism of LP ensures that each system attempts to refine and
potentially outperform the other’s conclusions. This process not only improves the reliability of the
LLM's predictions but also enhances its ability to handle controversial or ambiguous tasks, making it
a robust solution for complex reasoning.

We will conduct extensive evaluations of this adversarial LP-based neuro-symbolic framework
on multiple reasoning datasets. These datasets were designed to test capabilities across a spectrum
of logical and commonsense reasoning tasks. While we expect this framework to demonstrate
performance comparable to state-of-the-art (SOTA) neuro-symbolic systems across complete
datasets, we expect it to show a noticeable improvement on subsets involving controversial or
complex queries. This underscores its ability to resolve intricate reasoning challenges that often
stump purely neural or symbolic systems.

By leveraging the complementary strengths of LLMs and LP, our approach is intended to push
the boundaries of neuro-symbolic reasoning, providing a scalable and consistent method for solving
complex tasks in fields ranging from natural language processing to decision-making systems.

1.4. Allegory: A Crocodile and a Behemoth

Let us start with a joke:

A man created a circus act: a crocodile plays the piano while a hippopotamus sings. The performance
was a phenomenal success.

Over drinks, the circus director probes the man:

- Surely, this is a trick. You're deceiving the audience.

- Well, yes, there is a trick. The hippopotamus just opens its mouth while the crocodile does the
singing.

The humor here lies in the unexpected twist—what appears to be the hippopotamus singing is
actually a hidden effort by the crocodile. The act is success depends on the audience's belief in the
illusion, not realizing the real "work" is being done elsewhere.

In this context:

1) The crocodile represents the LLM: It does all the "heavy lifting," such as processing complex
reasoning, generating outputs, and adapting dynamically to tasks. Just as the crocodile sings
while the hippo takes credit, the LLM performs the core computations and logic behind the
scenes.

2) The hippopotamus represents LP: It is narrowly focused, following strict rules or processes —
much like how the hippo only opens its mouth to give the illusion of singing. It adds structure
and visible results but lacks the broader, adaptable capabilities of the crocodile.

This analogy captures how LP might contribute visible formalism or structure to reasoning tasks

while the LLM handles the bulk of the actual work, ensuring the performance is seamless and
believable.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

6 of 23

2. Commonsense Inference Rules

We first define a set of inference rules that can be used for derivations of proof steps.

1) Widely-used inference rules. The most widely used logical reasoning inference rules include
universal instantiation, hypothetical syllogism, modus ponens, modus tollens, disjunctive
syllogism, conjunction introduction, conjunction elimination, transposition, disjunction
introduction, material implication and existential introduction.

2) Boolean identities. During the pilot annotation process, we found that Boolean identities are
needed for certain derivations. For example, if "A or A" is true then "A" is true. We therefore
allow the usages of Boolean identities

3) Complex inference rules. Some complex inference rules are intuitively correct and can also be
proved logically correct with an inference engine. For example, from "A XOR B", we know that
"A implies not B". We include in Table 1 the different categories of inference rules used in our
protocol.

Here are the formal definitions of the widely used inference rules:

1. Universal Instantiation (UI): If a property or predicate applies to all elements of a domain, it
also applies to any specific element within that domain.

Vx P(x) = P(c) where Vx P(x) means "For all x, P(x) is true," and c is a specific instance from the
domain.

2. Hypothetical Syllogism: If one statement implies a second, and the second implies a third,
then the first statement implies the third.

(P-Q)A(Q~R) = (P—R) where P, Q, and R are propositions and ‘—’ denotes "implies".

3. Modus Ponens (MP): If a conditional statement is true, and its antecedent (first part) is true,
then the consequent (second part) must also be true.

(P-Q)AP = Q where P—(Q) is a conditional, and P and Q are propositions.

4. Modus Tollens (MT): If a conditional statement is true, and its consequent (second part) is
false, then the antecedent (first part) must also be false.

(P—Q)A~Q = —P where ‘=" denotes negation, and P and Q are propositions.

5. Disjunctive Syllogism (DS). If one part of a disjunction (an "or" statement) is false, then the
other part must be true.

(PVQ)A~P = Q where 'V’ denotes "or", and P and Q are propositions.

6. Conjunction Introduction (CI). If two statements are true, their conjunction (combined
statement using "and") is also true.

PAQ = PAQ where PAQ denotes "P and Q," P and Q) are propositions.

7. Conjunction Elimination (CE). If a conjunction (combined statement using "and") is true, then
both individual parts of the conjunction are also true.

PAQ = P and PAQ = Q where PAQ is the conjunction, and P and Q are propositions.

8. Transposition. If a conditional statement is true, then its contrapositive is also true. That is, if
P—Q, then ~Q—~P is also valid.

(P—Q)=(-Q——P) where ‘=" denotes logical equivalence, and ‘- denotes negation.

9. Disjunction Introduction (DI). If one statement is true, then the disjunction (an "or" statement)
with any other statement is also true.

P = (PvQ) where P and Q are propositions.

10. Material Implication. A conditional statement P—(Q is logically equivalent to =P v Q (either
P is false, or Q is true). (P—Q)=(-=PVQ)

11. Existential Introduction (EI). If a property holds for a particular individual, then there exists
at least one element in the domain for which the property holds. P(c) = 3x P(x) where c is a specific
instance, there exists an x such that P(x) is true."

These reasoning rules are fundamental to formal logic and can be applied in various domains,
including mathematics, philosophy, computer science, and artificial intelligence.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025

d0i:10.20944/preprints202509.1484.v1

7 of 23

Table 1. Proof written for the example sequence. “P#” is premise number and “D” denotes derivation.

P No Derivation D Inference Rule
Used No.
1 If there is a high-risk investment in the market, thenitisnota D1 Modus Tollens
safe market.
2 Something that is not in a safe market is not a blue-chip stock. D2 Modus Tollens
3,D1 A volatile cryptocurrency is not in a safe market. D3 Hypothetical
Syllogism
D3, 2 A volatile cryptocurrency is not a blue-chip stock. D4 Hypothetical
Syllogism
4, D4 Every speculative asset during a market bubble is not a blue- D5 Hypothetical
chip stock. Syllogism
D5, 5 The Bitcoin Asset is not a blue-chip stock or is a speculative D6 Universal
asset during a market bubble. Instantiation
D6, D4 The Bitcoin Asset is not a blue-chip stock or is not a blue-chip D7 Universal
stock. Instantiation
D7 The Bitcoin Asset is not a blue-chip stock. D8 Idempotence
5,4 The Bitcoin Asset is a volatile cryptocurrency or a volatile D9 Universal
cryptocurrency. Instantiation
D10 The Bitcoin Asset is a volatile cryptocurrency. D11 Idempotence
D11, 3 The Bitcoin Asset is a high-risk investment. D12 Universal
Instantiation
D8, D11 The Bitcoin Asset is a volatile cryptocurrency and not a blue- D13 Conjunction
chip stock. Introduction
D13, The Bitcoin Asset is a volatile cryptocurrency and a high-risk D14 Conjunction
D12 investment and not a blue-chip stock. Introduction

We proceed to the complex rule:

From a @ b, we know a —»—b; from a — b and b — a, we know —(a @ b).

-b @ b is always true; a @ b is equivalent to —a ©-b.

Let a represent "The Bitcoin Asset is a volatile cryptocurrency, b represent "The Bitcoin Asset is

a blue-chip stock." a@b means "The Bitcoin Asset is either a volatile cryptocurrency or a blue-chip
stock, but not both." (Figure 3).
Formula Derivation (Table 1) is as follows:

1. From a@®b, we know a—-b. This means: if the Bitcoin Asset is a volatile cryptocurrency (a),

then it is not a blue-chip stock (=b).

2. From a—b and b—a, we know —~(a@b). This means:

If the Bitcoin Asset being a volatile cryptocurrency implies it is a blue-chip stock (a—b), and

being a blue-chip stock implies it is a volatile cryptocurrency (b—a), then it cannot be the case

that the Bitcoin Asset is either a volatile cryptocurrency or a blue-chip stock but not both

(~(aéDb)). In this case, the two characteristics are mutually inclusive, not exclusive.
3. bbb is always true
This means:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

8 of 23

Either the Bitcoin Asset is not a blue-chip stock, or it is a blue-chip stock, but not both (-b@b).
This is always true as it covers all possible cases.

4. a@bis equivalent to ~a-b
This means:
The Bitcoin Asset being either a volatile cryptocurrency or a blue-chip stock but not both (aDb)
is equivalent to the statement that the Bitcoin Asset is neither a volatile cryptocurrency nor a
blue-chip stock, or that it is not neither (-a®-b).

5. From Vx(A(x)—C(x)) and A(mike)AB(mike) we know C(mike)AB(mike)
This means:
If for all financial assets x, If A(x) (being a high-risk investment) implies C(x) (causes market
volatility), and if Mike's investment is both a high-risk investment (A(mike) and a speculative
stock (B(mike)), then we know that Mike's investment causes market volatility (C(mike)) and is
still a speculative stock (B(mike)).

Premises:

There are no high-risk investments in a safe market.
All blue-chip stocks are in safe markets.
Every volatile cryptocurrency is a high-risk investment.

Every speculative asset during a market bubble is a volatile cryptocurrency.

U

The Bitcoin Asset is either a volatile cryptocurrency or a speculative asset during a market

bubble.

Financial Domain Conclusion (Label — False):
If the Bitcoin Asset is either a blue-chip stock or a volatile cryptocurrency, then it is not a high-risk

investment. — F

Figure 3. An example story consisting of five premises and one conclusion with the label for the conclusion.

This formula captures logical relations between financial characteristics like high-risk
investments, volatility, and blue-chip stocks, applying propositional logic and predicate logic
concepts.

There is a broad spectrum of issues associated with reasoning in LLMs (Figure 4). The focus of
this chapter is Integration with outside symbolic reasoning in adversarial setting.

Chain of Thought and Its Variants

Fully Supervised Finetuning)

Rationale Engineering]
Prompiing & In-Context Learning]

Problem Decomposition (§3.2.3)

—(Techniques

Integration with outside 1'easoner§- —(Adversarial LLM vs Logic Program

Reasoning-Enhanced Training & Prompting (§3.3. I)]
Hybrid Method

Bootstrapping & Self-Improving (§3.3.2)]
End Task Performance J
I—(Evaluatmn & Analysis)—[E

Analysis on Reasoning J
-—(Findings & Implications

—(Reﬂection‘ Discussion & Future Directions j

Reasoning in LLMs

Figure 4. A taxonomy of issues in LLM reasoning and the proposal of this chapter.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

9 of 23

3. Neuro-Symbolic Rule Application Framework

The logic program for implementing working memory consists of three core components (Figure
5):

1) Fact base,

2) Rule base,

3) Logic program achema.

The fact base is a structured repository that stores facts derived from the input context and
objects. These facts exist in both NL and symbolic forms to facilitate accurate reasoning during multi-
step rule application. Symbolic facts are crucial for intermediate reasoning processes, ensuring a
smooth transition between different reasoning steps.

The rule base holds a list of input rules. Similar to the fact base, these rules are stored in both NL
and symbolic forms to enable precise symbolic referencing and language-based execution. These
rules guide how facts are applied and manipulated during the program's execution.

The logic program schema serves as a unified framework that maintains a consistent vocabulary
of predicates and objects relevant to the given instance. This prevents semantic duplication and
ensures consistency in reasoning. For example, if predicates like subsidiary_of() or income_level() are
defined in the schema, then similar but contextually irrelevant predicates like competitor_of() or
noncommercial_status() will not be excluded or confused. All symbolic facts and rules are constructed
using these standardized predicates and objects from the schema.

The rule application framework supports three fundamental operations:

1) Read Operation: Retrieves relevant facts and rules from memory, ensuring that the system has
the necessary information to carry out the next step in rule application. This retrieval can be
selective, targeting only facts and rules pertinent to the specific query or context.

2) Write Operation: Either adds new facts or rules to the memory or updates existing ones. This
operation is context-sensitive—if the program involves scenarios where facts can change over
time (e.g., an object’s location), it updates existing facts to reflect the new information. If new
facts do not conflict with existing data, they are simply added. However, when new information
contradicts current facts (e.g., a change in status), the memory updates the facts to avoid
inconsistencies.

3) Contextual Fact Management. The decision to add or update facts in memory is based on whether
the input scenario involves dynamic or static facts. For example, in scenarios where an object’s
status (such as its location or ownership) may change, the system updates the fact base. In static
situations, new facts are appended without modification to existing ones. This approach allows
the framework to maintain a dynamic and flexible reasoning environment, where facts and rules
evolve over time, reflecting changes in context and ensuring accurate, real-time application of
knowledge.

The functionality described in this framework —where facts can be added, updated, or replaced
in response to new information—can be implemented using a Belief Revision or Belief Update
formalism, particularly those associated with dynamic systems. Several formalisms exist for belief
update:

AGM Belief Revision (Makinson 1985) is a foundational approach to belief revision. It defines a
set of postulates for how rational agent s should revise their beliefs when they encounter new,
potentially conflicting information (Darwiche and Pearl 1997). The operations in AGM that closely
relate to the system’s read/write functionality are:

1) Expansion: Adding new beliefs (facts) to the knowledge base without removing any existing
beliefs. This corresponds to the "write" operation where new facts are added if there is no
conflict.

2) Revision: Modifying the knowledge base by incorporating new beliefs, especially when the new
beliefs conflict with the existing ones. This is your "update" operation, where contradictory facts
are resolved by adjusting the memory to reflect the most recent information.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

10 of 23

3) Contraction: Removing a belief from the knowledge base, often when it becomes inconsistent

with newly acquired beliefs.

Facts: Nicole's company, Harold Corp., sponsored her to attend the investment conference.

Beverly invested in a real estate property with her husband Louis and her daughter Nicole.

Harold Corp. funded a new project for its subsidiary Marie Inc..

Rules: If B is the parent company of A, and C is a subsidiary of B, then C is also related as a subsidiary of A.
If B is a subsidiary of A, and C is the subsidiary of B, then C is also linked to A as a subsidiary.

If B is a subsidiary of A, and C is the parent company of B, then C is the parent company of A.

Query: How is Marie Inc. related to Louis' real estate investment?

il SIS L I5%/) LLM-based Rule Implementation
A ST Ty ! “ [Step#1]: Based on the rule “2. If B is the wife of A, and C is the
! Logic program : i Predicate Matching | daughter of B, then C is the daughter of A.”, and the facts “Beverly
i initialization [Variable Matching is the wife of Louis.” and “Nicole is the daughter of Beverly. ", we
__________________ 4 9 d can infer “Nicole is the daughter of Louis.”

[Step#1]: Based on the rule “3. If B is the daughter of 4, and C is
the grandfather of B, then C is the father of A.”, and the facts
“Nicole is the daughter of Beverly.” and “Harold is the grandfather

of Nicole.” , we can infer “Harold is the father of Beverly.”

~
+«—— write ﬂ t
—=—> read =
= Working Memory

Memory Schema

sister_of(C, A):- father_of(B, A), daughter_of{C, B}
daughter_offC. A):-wife_of{B. A). daughter_of{(C. B)
Jfather_of{C.A):-daughter_of(B, A), grandfather_of{C, B)

[Step#2]: Based on the rule “3. If B is the daughter of 4, and C is

(| the grandfather of B, then C is the father of A.", and the facts
“Nicole is the daughter of Louis.” and “Harold is the grandfather of
Nicole”, we can infer “Harold is the father of Louis.”

[Step#2|: Based on the rule “3. If B is the father of A, and C is the
daughter of B, then C is the sister of A.”, and the facts “Harold is the
Sather of Beverly. " and “Marie is the daughter of Harold.” , we can
infer “Marie is the sister of Beverly.”

Fact Base
grandfather_of(Harold, Nicole), granddaughter_ofiNicole, Harold)

wife_offBeverly, Louis), hushand_ef{Louis, Beverly)
[Step#3]: Based on the rule “I. If B is the father of A, and C is the

daughter of B, then C is the sister of A.”, and the facts “Harold is the
Jather of Louis.” and “Marie is the daughter of Harold. ", we can

infer “Marie is the sister of Louis.”

daughter_of{Nicole, Beverly), daughter_of{Marie, Harold) ...
ofNicole, Louis), father_of(Harold, Beverly) é
father_offHarold, Louis), sister_of(Marie, Beverly)
sister_of{Marie, Louis)

¥

4

nswer:
Marie Inc. is indirectly connected to Louis’ real estate
investment because it is a subsidiary of Nicole's company
(Harold Corp.), and Nicole is part of the real estate
investment with Louis. However, there is no direct
financial ownership or control mentioned between Marie

@ Louis, only an indirect connection through w

Figure 5. The workflow of our neuro-symbolic rule application framework based on logic programing.

AGM provides a formalized approach to consistency maintenance by ensuring that revisions do
not lead to contradictions in the knowledge base.

Dynamic Epistemic Logic models the evolution of an agent’s beliefs over time, accounting for
actions or events that alter knowledge. DEL operates with epistemic models that represent the state
of an agent's beliefs and uses event models to represent the impact of new information. It is
particularly suited for systems where:

1) Events (like new facts or rules) cause updates in the agent’s knowledge base.

2) Public announcements or private observations can change the belief state of agents by either
adding new information or removing/overriding old beliefs.

3) Epistemic actions can involve common knowledge or private knowledge updates, which is
useful for collaborative or multi-agent belief systems.

DEL fits well with scenarios where new observations (i.e., facts) update the belief system
dynamically, just as your system reads new information and decides whether to update or append
facts.

Bayesian Networks can also model belief updates, especially when facts are probabilistic rather
than deterministic. In this case, the update is not a hard rewrite of a fact but rather an adjustment to
the belief's probability, reflecting uncertainty about the truth of the fact. This formalism is useful in
systems where evidence accumulates over time and affects the belief state in a non-binary fashion
(i.e., beliefs are held with varying degrees of confidence).

Bayesian Update: the knowledge base gets updated with new evidence through the application
of Bayes' Theorem, adjusting the probabilities of related beliefs. However, this method is more

Distributed under a Creative Com CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

11 of 23

appropriate when working with probabilistic facts rather than pure logical predicates (Puga et al
2015). In update semantics, the state of a system is updated by new information, where updates are
understood as changes to a knowledge state. Update semantics is used primarily in dynamic logic
and temporal reasoning systems and can track how states evolve when an event occurs (like receiving
new facts).

Given that the logic programing for LLM involves tracking changes to a fact base and applying
symbolic rules iteratively, AGM Belief Revision would be the most suitable formalisms. They both
provide mechanisms for adding new information, resolving contradictions, and maintaining the
integrity of the knowledge base over time, closely aligning with your description of "read" and "write"
operations in working memory.

4. Grounding of Logic Programming Clauses

At each step of rule application, Wang et al. (2024) begin by grounding the applicable rules along
with their corresponding supporting facts from the logic program. For accurate grounding, a dual
strategy of predicate and variable matching is used between facts and rules:

Predicate Matching checks if the predicates of the selected facts align with those in the rule’s
premises. This matching, typically performed as an exact string match, can be adapted to use
approximate string or model-based semantic matching to handle minor parsing inconsistencies,
allowing for more flexible grounding.

Variable Matching ensures that the arguments of the facts can instantiate the rule premises’
variables without conflicts (i.e., each variable consistently aligns with the same argument) or match
the objects specified in the rule premises.

Examples illustrating these matching processes follow.

Rule: brother_of(C, A) :- sister_of(B, A), brother_of(C, B)

F1: grandson_of(John, James) F2: sister_of(Mary, John) predicate unmatched
F2: sister_of(Mary, John) F3: brother_of(James, Mary) predicate matched

Rule: brother_of(C, A) :- sister_of(B, A), brother_of(C, B)

F2: sister_of(Mary, John) F3: brother_of(James, Mary) variable matched

F2: sister_of(Mary, John) F4: brother_of(Clarence, Timmy) variable unmatched

Note that the predicates of facts F1 and F2 do not align with rule R, and the arguments of F2 and
F4 cannot instantiate variable B in rule R. After this symbolic grounding, rule R can apply to its
supporting facts F2 and F3. Different rule grounding techniques are employed depending on the task
type. For tasks like logical reasoning, where facts are neither chronologically ordered nor updated,
grounding uses an exhaustive enumeration approach. This method considers all possible fact
combinations for each rule, according to the number of premises. Both predicates and variables are
checked for consistency, and a rule is deemed applicable only if no conflicts are present. To avoid
redundant applications, each step’s applicable rules must include any newly inferred facts from the
previous round. For constraint satisfaction tasks, which require rules to satisfy various constraint
predicates, variable matching is used to rank the most applicable rule at each step.

4.1. LLM-Supported Rule Execution

LLMs are proficient at single-step rule application. Following symbolic rule grounding, which
identifies the relevant rules and supporting facts from the logic program at each step, an LLM
executes all applicable rules simultaneously. Each rule is accompanied by its supporting facts, and
the LLM is prompted to infer potential new facts in both natural language (NL) and symbolic formats.
These inferred facts are then incorporated into the logic program accordingly. At each step of rule
application, the system verifies whether the newly inferred fact resolves the query (in logical
reasoning tasks) or checks for conflicts between rules and facts (in constraint satisfaction, Galitsky
2024).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

12 of 23

5. Logic Test Generation and Iterative Self-Refinement

To enhance the logical reasoning capabilities of LLMs, an automated reasoning feedback
component can be integrated. This component generates declarative logic programs and creates tests
to assess their semantic accuracy. By rigorously executing these tests, the feedback component
identifies any logical or semantic errors, providing specific feedback on failed tests to refine the logic
programs. This iterative feedback process continually improves the precision and reliability of the
outputs (Table 2 and Figure 6).

Through repeated revisions, the system refines logical outputs until they meet established
correctness standards. This approach is particularly effective for complex reasoning tasks, as it not
only helps detect subtle logical errors but also enables the LLM to learn from test-driven feedback,
progressively improving its ability to produce accurate, well-structured logic programs.

Table 2. Sharing responsibilities between an LLM and Automated reasoner.

LLM Automated reasoner

Generation of declarative code with tests execute the logic program, run the tests and
provide detailed feedback with explanations
when there are test failures.

GPT4-Turbo generates logic program of | Each logic test has optional fact that need to be
reasonably high quality from NL instructions, | added to the program to test the
even in a zero-shot setting rules/constraints,

Automatic classification of NL statements | Test conditions
based on their logical structure, connectives /
operators used, and overall composition (e.g.
do they contain nested clauses).

Leverage the LLM’s ability to fill in common- | a set of propositions that must be inferred by the
sense knowledge gaps, solver in all / at least one/not inferred solution sets
of the logic program

Two additional fields for each test: rules- | The instructions how the explanation from the
referenced- which points to specific rules in the | logic program can be used to identify whether
program that are exercised in the test; and test | the test inputs, validation criteria, or specific
explanation- a rationale for the test describing | parts of the logic program (e.g., the
how it validates the semantics of the referenced | commonsense knowledge section) need to be
rules. altered

Premise 1: All publicly traded companies have financial reports.

Premise 2: All entities with financial reports are subject to regulatory audits. Qutput
Carahem all publicly traded companies are subject to regulatory audits. True
[Sample 1
<PREMISE> all x. (rectangle(x} ->
<PREMISE> all x. (foursides(x) -> isshape(x)) </PREMISE> -
<CONCLUSION> all x. (rectangle(x) -> isshape(x)) </CONCLUSION> y dversarla
prompting

Sample 2

<PREMISE> all x. (rectangle(x) -» foursides(x)) </PREMISE>
<PREMISE> all x. (foursides(x) -» isshape(x))) </PREMISE>
<CONCLUSION> all x. (rectangle(x) -> isshape(x)) </CONCLUSION>

Sample 3 Sample 3
<PREMISE> all x. (rectangle(x) -> Foursidedthings(x)) </PREMISE>

<PREMISE> all x. (foursidedthings(x) -> isshape(x)) </PREMISE>
<CONCLUSION> all x. (Tectangle(x) -> isshape(x)) </CONCLUSION>

<PREMISE> all x. (foursidedthings(x) -> isshapa(x)) </PREMISE> Unknown
<CONCLUSION> all x. (Tectangle(x) -> isshape(x)) </CONCLUSION>

Sample N Sample N
<PREMISE> all x. (rectangle(x) -> foursides(x)) </PREMISE>

Figure 6. A workflow of a reasoner supporting an LLM.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025

5.1. Building ASP Program

For sentences

13 of 23

All stocks are financial assets.
All tech stocks are stocks.

All high-growth tech stocks are tech stocks.
Some high-growth tech stocks are volatile.

If AssetX is a financial asset, then AssetX is not both a tech stock and a financial asset.

If AssetX is volatile, then AssetX is either a high-growth tech stock or a financial asset.

We have an ASP

% R1: All stocks are financial assets.

financial_asset(X) :- stock(X).

% R2: All tech stocks are stocks.

stock(X) :- tech_stock(X).

% R3: All high-growth tech stocks are tech stocks.

tech_stock(X) :- high_growth_tech_stock(X).

% R4: Some high-growth tech stocks are volatile.

{volatile(X)} :- high_growth_tech_stock(X).

% R5: If AssetX is a financial asset, then AssetX is not both a tech stock and a financial asset.

:- financial_asset(assetX), tech_stock(assetX), stock(assetX).
% R6: If AssetX is volatile, then AssetX is either a high-growth tech stock or a stock.
1 {high_growth_tech_stock(assetX); stock(assetX)} 1 :- volatile(assetX).

Table 3 enumerates the classes of logical expressions. The data used to fine-tune the LLM LP

builder had the following three types of sources for these expressions:

1. NL description — LP code with compilation issues — Critic Feedback on compiler errors — LP

code that compiles

2. NL description — LP code that compiles with test failures — Critic feedback on failures with

explanations — LP code with all tests passing

3. NL description — LP code that compiles with all tests passing.

Table 3. A spectrum of classes of logical expressions and examples for them.

Class of logical expression

Examples

Regular conditionals with
disjunctions in the body or
consequents in the head
(which can be easily split)

- All investors in Capital City use the bank code 12345.

- If a stock has been downgraded or rated as risky by an analyst, it
is considered high-risk.

- If a person seeks diversification, they either invest in multiple
sectors often or avoid putting all funds in one asset class.

Conditionals with

hierarchical structure

- Either Mark hires a financial advisor or regularly monitors his
portfolio, or he doesn’t hire a financial advisor and rarely reviews
his investments.

- Employees at XYZ Finance either save a large part of their
bonuses or tend to invest in high-growth stocks.

- Alex is a shareholder; he is either knowledgeable in technology
stocks and invested in bonds, or he lacks tech stock knowledge and
invested in equities.

Regular and exclusive

disjunctions

- All investment platforms have stock trading or bond trading
features.

- If the Tesla stock is volatile, then it is either a growth stock or a
tech stock.

Negation and disjointness
over entities

- No bonds are stocks.
- No cash assets are considered investments.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202509.1484.v1

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

14 of 23

Exclusion constraints - Morgan trades different stocks than Kevin in the portfolio.

- A mutual fund is not both a hedge fund and regulated under a
pension fund mandate.

Existential quantification - Some stocks are in the technology sector.

- Some companies in emerging markets are high-risk investments.

Equality among individuals | _ The Global Fund is another name for the Emerging Markets

Growth Fund.

Rules with multiple

) - Sarah holds different types of assets than James in her portfolio.
variables

- All funds within an asset class are related to each other based on

their risk profile.

6. Chain of Thoughts Derive Logical Clauses

LLMs display emergent behaviors, such as the ability to “reason,” when they reach a certain
scale (Wei et al., 2022). For instance, by prompting the models with “chains of thought” —reasoning
exemplars—or a simple directive like “Let’s think step by step,” these models can answer questions
with clearly articulated reasoning steps (Kojima et al., 2022). An example might be: “All elephants
are mammals, all mammals have hearts; therefore, all elephants have hearts.” This capability has
attracted significant interest, as reasoning is often seen as a defining feature of human intelligence
that remains challenging for current Al systems to fully replicate (Mitchell, 2021).

In LLMs, the chain of thought (CoT) approach helps the model derive logical clauses and reach
conclusions through a sequential, interpretable process. This structured reasoning enables LLMs to
decompose complex tasks into a series of logical steps, improving both the clarity and coherence of
responses. The CoT approach derives logical clauses as follows:

1) Problem decomposition: the model first breaks down the input into distinct components. By
analyzing the question's structure, the model identifies relevant entities, variables, and context
that are essential for reasoning. As a result, we obtain a set of decomposed components,
D=(E,V,X) where E is a set entities, V is a set of variables and X is a context.

2) Sequential reasoning: the model establishes a sequence of logical steps, progressing from one
inference to the next. This may involve if-then statements, comparisons, or assumptions that
help clarify relationships and dependencies among the components. Each step in this sequence
is guided by the preceding one, maintaining logical continuity. For each step i, we apply logical
transformations T: based on contextual knowledge and prior clauses:

G=Ti (Gi1,D)

Ci=T1(D) (initial clause derived directly from D)

This step yields intermediate clauses C1, Co,...,Cx.

3) Intermediate conclusions: as the model moves through each logical step, it draws intermediate
conclusions or generates "sub-clauses" that build on previous reasoning. These intermediate
statements reflect partial answers or deductions that contribute to the final solution. For a subset
of clauses {C,C;,...,Ciwhere k<n, derive sub-conclusions S; such that S; =Combine(Cs,...,Cx) and
output the set of sub-conclusions 5=(S1,S,...,5p}.

4) Aggregation of clauses: the intermediate clauses are then combined or aggregated to form a
coherent set of logical statements that address the initial query. This step ensures that all
intermediate conclusions align and support the overarching response. We aggregate S and
remaining Ci clauses such that Chni=Aggregate(S, Cr+,...,Cn), outputting the final clause Cyina.

5) Final conclusion: The model synthesizes the chain of logical clauses into a comprehensive
response. The CoT process allows LLMs to arrive at complex conclusions in a structured and
transparent manner, improving accuracy and making the reasoning process traceable.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

15 of 23

The CoT framework is especially valuable for tasks that require multi-step reasoning, like
solving mathematical problems, constraint satisfaction, and scenario-based questions, where each
logical step contributes critically to the overall solution.

Prystawski et al. (2023) explore the mechanisms that make CoT reasoning effective in language
models, proposing that reasoning works best when training data is structured in overlapping clusters
of interdependent variables. This structure allows the model to chain accurate local inferences,
enabling it to infer relationships between variables that were not seen together during training. The
authors identify a "reasoning gap," demonstrating that reasoning through intermediate variables
reduces bias when using a simple autoregressive density estimator trained on local samples from a
chain-structured probabilistic model. They further validate this hypothesis in more complex models
by training an autoregressive language model on samples from Bayes nets with only a subset of
variables included in each sample. The models are tested for their ability to match conditional
probabilities with and without intermediate reasoning steps, revealing that these steps improve
accuracy only when training data is locally structured around variable dependencies. This approach
to locally structured observations and reasoning also proves more data-efficient than training on all
variables simultaneously, highlighting that the effectiveness of step-by-step reasoning stems from the
localized statistical patterns in training data.

LLMs are trained on natural language documents, which often focus on closely related topics
(Blei & Lafferty, 2007). When concepts frequently co-occur in data, their mutual influence can be
assessed directly with simple statistical estimators. However, to infer the effect of one concept on
another when they haven’t been seen together, a series of inferences connecting related concepts is
necessary. CoT reasoning becomes beneficial precisely when the training data is locally structured,
meaning observations occur in overlapping clusters of related concepts. These clusters can then form
logical clauses that can be retained, boosting the accuracy of the system in future inference sessions.

Let us consider a task of building a probabilistic clause p::C:-A (Riguzzi et al 2018, Galitsky 2025).
One may know the value of some variable A and intents to learn about another variable C, to compute
p(ClA). However, to compute probabilities using observed samples from joint distributions, one
needs to count A and C together, which is rare. Therefore, one would experience difficulties
estimating p(ClA) directly. Instead, one might estimate it by building a chain of clauses via
intermediate variables.

If conditioning on an intermediate variable B figures out that A and C are independent of each
other, then the conditional probability can be assessed by marginalizing over B, using the fact that

p(C1A) = X, p(CIB)p(BIA).

For example, suppose we want to answer a question like “What is grown in Los Banos, CA?”
using a model trained on Wikipedia text. Wikipedia pages for states and counties often contain
information about the crops grown, while pages for cities typically indicate which county a city
belongs to. However, city pages rarely mention the crops grown there directly. While an LLM might
attempt to answer the question directly, it would likely have greater success by first identifying that
Los Banos is located in Merced County, California. By adding this intermediate step —"“Los Banos is
in Merced County” —before answering with “cotton is grown in Los Banos,” an autoregressive model
can more effectively utilize the dependencies present in its training data.

A visualization of a Bayes net for a logic program is depicted in Figure 7. The pink variable is an
example observed variable and the yellow variable is an example target variable. Gray variables are
examples of useful intermediate variables for reasoning. Lines show examples of local neighborhoods
from which training samples are drawn.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

16 of 23

0.05-

Mean squared error

0.00-

0.0e+00 25e+08 5.0e+08 7 5e+08

Number of tokens

Figure 7. Visualization of a Bayes net.

The prediction setting in the form of clauses is as follows:
e Direct prediction clause: X5 :- X12.
. Indirect prediction clause: X5 :- X12, X11, X16, X3, X15, X10.

The top curve shows the case of full observation (blue, on the top) and local geometry (gray are
on the bottom).

Locality refers to which classes tend to appear together. In datasets with a local structure,
concepts that strongly influence each other are also frequently seen together, while unrelated
concepts appear together less often. By reasoning through appropriate intermediate variables,
models trained on locally structured samples reduce bias. Combining LLMs with logic programming
(LP) and deterministic back-propagation through these intermediates naturally enhances the
accuracy of such hybrid systems.

The chart at the bottom of Figure 7 compares direct prediction and free-generation estimators
used as prompts. The model is prompted to predict a target variable either directly (direct prediction)
or indirectly by first generating intermediate variables and their values (chain-based prediction).
Prediction accuracy is measured by mean squared errors (MSE) between estimated and true
conditional probabilities, calculated based on the number of training tokens per condition and
estimator. The ribbons in the chart represent 95% confidence intervals.

Chain-of-thought reasoning benefits LLMs because:

1) without chaining, direct prediction can be inaccurate for some inferences, as relevant variables
are rarely observed together during training; and

2) chain-of-thought reasoning improves estimation by sequentially linking local statistical
dependencies that appear frequently in training.

7. Adversarial Interactions Between LLM and LP

An adversarial scenario in which a logic program and an LLM work together to solve a reasoning
problem could involve a situation where they complement each other's weaknesses and strengths to

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

17 of 23

identify inconsistencies or validate complex claims. A good example scenario is Fraud Detection in

Financial Transactions. A financial institution needs to identify potentially fraudulent transactions

based on a set of rules and patterns derived from historical data, regulations, and internal policies.

Fraud detection is challenging due to the adversarial nature of fraudsters who constantly find new

ways to bypass standard checks.

The logic program is responsible for checking compliance with known, rule-based patterns and
detecting anomalies based on structured rules. For example, if a transaction exceeds $10,000 without
a registered business justification, it is flagged. Transactions occurring at unusual hours for a
particular account or region are flagged as suspicious. A series of transactions between accounts that
lack common ownership are flagged if they involve round amounts and alternate back and forth.

An LLM augments this process by identifying and interpreting complex, less structured
patterns, based on NL data (e.g., notes, emails, or text descriptions tied to transactions). The LLM can
also adaptively recognize emerging fraud patterns, generalizing from recent case studies and text
sources that describe new fraud techniques.

LP and LLM work together in an adversarial setup as follows:

1) The logic program applies a set of predefined rules to detect straightforward cases of fraud.
This step quickly flags transactions that match historical fraud patterns or violate specific
transaction rules.

2) LLM interpretation and cross-validation: For transactions that pass the initial LP checks, the
LLM analyzes contextual information in the transaction metadata or associated
communications (e.g., emails justifying the transactions, geographic locations mentioned, or
references to businesses). It looks for semantic inconsistencies, vague justifications, or attempts
to bypass standard language used in compliance statements.

In the adversarial scenario, a transaction is flagged as "suspicious" by the LP, but the reason
provided in the transaction notes looks legitimate at first glance. The LLM, however, identifies
inconsistencies in the language used. For example, it recognizes that the justification uses phrasing
commonly associated with fraudulent attempts in other, similar cases. Conversely, the LLM might
flag a transaction as unusual due to strange language in the metadata or patterns that resemble recent
fraud cases. The LP then double-checks this against hard rules (e.g., verifying account ownership,
transaction frequency) to see if any known rule has been violated.

If a transaction is flagged but lacks clear evidence under current rules, the LP updates its rules
based on feedback from the LLM's analysis of new fraud patterns. This is iterative refinement. For
example, if the LLM detects that recent fraud cases often involve certain phrases in transaction
justifications, these patterns are incorporated into LP rules for future identification.

The adversarial aspect here also comes from fraudsters continually adapting their methods. The
LLM can process recent cases described in news reports, legal documents, or company records and
generate hypotheses for the LP to test. The LP then formalizes these patterns as new rules or updates
existing ones.

In this adversarial scenario, the LLM provides flexible, adaptive reasoning over unstructured
data and contextual clues, while the LP ensures strict compliance checks on rule-based, structured
data. By working together:

- The LP enforces rigid constraints for fraud detection, catching straightforward cases.

- The LLM broadens the fraud detection scope by interpreting and adapting to new patterns based
on natural language data and emerging case knowledge.

- The combined approach helps the financial institution stay ahead of evolving fraud tactics by
incorporating both structured rule enforcement and adaptive pattern recognition.

This synergy between LP and LLM enhances accuracy in fraud detection, especially in cases
where traditional rule-based systems alone might miss sophisticated or newly developed fraud
techniques.

Let:

- F represent the set of all transactions.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025

18 of 23

- R represent the set of predefined fraud detection rules in the logic program.

- L represent the LLM with capabilities for contextual analysis and natural language pattern
recognition.

- S be the state of the system, comprising flagged transactions and new insights generated from the
reasoning process.

We define two main processes: deductive filtering by the logic program) and abductive
hypothesis generation by the LLM. Deductive Filtering by LP operates with a set of rules R designed
to detect known patterns of fraudulent transactions. These rules are applied as follows:

Rule-Based Flagging: For each transaction ¢ € F, if t violates a rule r € R, then t is flagged as
suspicious. Let flag(t) denote that a transaction (t) has been flagged by LP based on rule r. flag(t) =
3r € Rs.t. r(t)). The LP outputs a set of flagged transactions Fpugged = {t € Flflag(t)} and a set of rules
applied to each flagged transaction. Let Ffj,;,.q denote the initial flagged set from rule-based
filtering.

Abductive Hypothesis Generation by LLM: For transactions in Ff},;5q and transactions that
were not flagged by the LP but still appear anomalous in unstructured context, the LLM analyzes
textual, contextual, and semantic information to generate hypotheses about potential fraud. The LLM
may identify semantic patterns in justifications, transaction descriptions, or other natural language
metadata. LLM is also expected to generate a hypothesis if it finds inconsistencies or patterns in the
transaction's textual context that resemble recent fraud cases.

Let H; (t) denote a hypothesis generated by the LLM about transaction ¢ based on detected
patterns or inconsistencies. The LLM then suggests new patterns as rules, R, based on hypotheses.
It also refines the flagged set, creating a set Fuypotetica = {t € F| H, (t)}.

The feedback loop for rule update and validation is formulated as follows. For rule update, the
LLM provides feedback to the LP by suggesting new rules R, , which are generalized patterns
extracted from the analysis. The logic program updates its rule base R < R UR; R, enhancing its
detection capability for the next iteration.

Under iterative testing, the LP re-applies the updated rule set R to the transaction set F to flag
any additional transactions that may match the newly learned rules. This iterative process continues
until no new transactions are flagged or until convergence criteria (e.g., detection threshold) are met.

Fitt sea= = {t € F|3r € R UR, suchthatr(D)};
repeat until FiLY oi=Ffiaggea -

In this adversarial interaction, the LP and LLM achieve a complementary balance: the LP
enforces structured, rule-based detection grounded in formal rules, while the LLM dynamically
adapts to identify emerging patterns and continuously refine the detection process. Together, they
enable robust fraud detection in an evolving, adversarial environment. This formalized interaction
allows the system to iteratively evolve its rules, improving detection accuracy and adapting to novel
fraud tactics that a strictly rule-based approach might overlook.

8. Evaluation

8.1. Datasets

We conducted various experiments using the FOLIO benchmark (Han et al., 2022), which
includes a thousand training examples and a validation dataset sized at 20% of the training set. Each
FOLIO problem consists of a set of premises (in natural language) and a conclusion (also in natural
language), with the task being to determine whether the conclusion is True, False, or Uncertain given
the premises. FOLIO also provides First-Order Logic translations for each premise and conclusion.

P-FOLIO (Han et al., 2024) expands on these tasks, introducing different levels of granularity
and metrics to evaluate the reasoning capabilities of LLMs. Human-authored reasoning chains have
shown to significantly improve LLM performance in logical reasoning via many-shot prompting and
fine-tuning.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202509.1484.v1

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

19 of 23

Additionally, we utilized the CLUTRR and ProofWriter datasets, both designed for logical
reasoning tasks that apply commonsense or predefined rules. For CLUTRR, we selected 235 test
instances requiring 2-6 steps of rule application. From ProofWriter, we selected instances needing 3—
5 steps of reasoning from the open-world assumption subset, totaling 300 instances with balanced
labels.

The SimpleQA dataset (OpenAl, 2024) focuses on short, fact-based queries, which narrows the
scope of evaluation but simplifies the assessment of factuality. SimpleQA was constructed to
prioritize high accuracy, with reference answers supported by sources from two independent Al
trainers, and questions formulated to facilitate clear grading of predicted answers. As a factuality
benchmark, SimpleQA allows for testing calibration —the degree to which a language model can
accurately reflect its knowledge. Calibration is assessed by prompting the model to state its
confidence level (as a percentage) alongside its answer. By plotting the correlation between the
model’s stated confidence and actual accuracy, we evaluate calibration. Ideally, a well-calibrated
model's accuracy should match its stated confidence; for instance, if the model expresses 75%
confidence across a set of answers, its accuracy would indeed be 75% for that set.

8.2. Competitive Systems

WM-Neurosymbolic (Wang et al., 2023) enhances LLMs with an external working memory,
forming a neuro-symbolic framework for multi-step rule application to boost reasoning capabilities.
This working memory stores facts and rules in both natural language and symbolic representations,
supporting accurate retrieval during rule application. After storing all input facts and rules in
memory, the framework iteratively applies symbolic rule grounding through predicate and variable
matching, followed by rule implementation via the LLM.

Scratchpad-CoT (Nye et al.,, 2021) facilitates chain-of-thought reasoning using a "scratchpad"
approach, where transformers are trained to break down multi-step computations by emitting
intermediate steps in a separate space. On tasks ranging from long addition to program execution,
scratchpads significantly improve LLMs' ability to perform stepwise computations.

Logic-LM (Pan et al., 2023) leverages LLMs to translate natural language problems into symbolic
formulations, then uses symbolic solvers like the Z3 theorem prover (De Moura and Bjerner, 2008) to
perform deterministic inference.

LLM-ARC (Kalyanpur et al., 2024) combines LLMs with an Automated Reasoning Critic (ARC)
in a neuro-symbolic framework aimed at advancing reasoning. Here, the LLM Actor generates
declarative logic programs and creates tests for semantic accuracy, while the ARC evaluates the code,
executes tests, and provides feedback on failures to iteratively refine the model.

LINC (Olausson et al., 2023) uses an LLM as a semantic parser to translate premises and
conclusions from natural language into first-order logic expressions, which are then processed by an
external theorem prover to carry out deductive inference symbolically.

In Table 4, we compare our adversarial system with two types of baselines: CoT-based methods
(grayed rows), symbolic-based methods(Logic-LM) and state-of-the-art neuro-symbolic systems
(LINC, WM-Neurosymbolic, and LLM-ARC), highlighted in turquoise.

Table 4. Evaluation on the full dataset.

System/dataset FOLIO CLUTRR ProofWriter
GPT3.5 66.9

GPT4 67.0

Scratchpad-CoT 83.8 61.3
Logic-LM 78.9

LINC 75.2 98.3
WM-Neurosymbolic 92.3 77.3
LLM-ARC 88.3

Adversarial LLM_LP 77.0 86.1 71.5

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

20 of 23

When our LP based method does not return an answer caused by symbolic formulation errors,
we use CoT based approach (Section 6). We observe that our adversarial method demonstrates
consistent performance overall with the competitive neuro-symbolic systems. However, we
underperform LINC on ProofWriter, WM-Neurosymbolic on CLUTRR and LLM-ARC on FOLIO.

Our adversarial neuro-symbolic system is effective on top of different LLMs with varying
abilities in symbolic parsing and one-step rule application. Specifically, GPT-3.5-based setting
delivers a noticeable boost on computational logical problems (CLUTRR). At the same time, GPT-4
has a great accuracy at more human-related tasks (ProofWriter). Our adversarial approach leverages
an advancement of LLMs; one can expect that it will efficiently complement future LLM systems.
Compared to previous symbolic-based methods that perform both rule grounding and
implementation either symbolically or by LLMs, our framework exhibits improvement. Adversarial
LLM-LP integration demonstrates flexibility and robustness, separately implementing rule
grounding and execution.

We proceed to our evaluation on a specific dataset with controversial, more complex problems
which require a number of knowledge sources to make decision upon. The computational definition
of a controversial is based on inconsistent or even opposite results obtained by an LLM on a given
problem. We automatically classify such problems from the evaluation sets, forming datasets
FOLIO_ controversial (about 1/7 of FOLIO), = CLUTRR_ controversial (about 1/10 of CLUTRR), and
ProofWriter_controversial (about 1/7 of ProofWriter). We run WM-Neurosymbolic and our
adversarial system on these subsets and provide the results in Table 5. Our adversarial system
outperforms WM-Neurosymbolic in two out of three datasets (other than ProofWriter_controversial).

Table 5. Evaluation the dataset fragments with controversial, complex problems.

System/dataset FOLIO_ CLUTRR_ ProofWriter_
controversial | controversial | controversial

WM-Neurosymbolic 70.7 78.1 65.5

Adversarial LLM_LP 73.2 82.7 64.9

9. Discussion

The neuro-symbolic framework for rule application can incorporate an external working
memory that stores both facts and rules in natural language and symbolic formats, supporting
accurate tracking throughout the reasoning process (Wang et al. 2024). This memory enables iterative
application of symbolic rule grounding and LLM-based rule execution. During symbolic rule
grounding, the framework matches rule predicates and variables with relevant facts to determine
which rules are applicable at each step. Experimental results indicate the framework's effectiveness
and robustness across various reasoning tasks.

LLMs have shown exceptional performance across many tasks but often struggle with complex
reasoning that requires retention or grounding of long-term information from context or interaction
history (Touvron et al., 2023). While extending LLMs' context length is one approach, recent advances
involve augmenting LLMs with external memory. For instance, Park et al. (2023) integrate external
memory modules for LLMs in extended dialogues to improve interaction quality, while Wang et al.
(2024) represent long-form context in memory for retrieval in knowledge-intensive tasks.

However, existing memory architectures typically store only natural language or parametric
entries, making accurate referencing and revision challenging. To address this, symbolic memory has
been proposed. ChatDB (Hu et al., 2023) utilizes a structured item database as symbolic memory for
precise information recording, and Yoneda et al. (2023) developed symbolic world memory to track
robot states for embodied reasoning. Our approach leverages external memory to store both natural
language and symbolic facts and rules, enhancing precise rule grounding for multi-step applications.

Additionally, Ranaldi and Freitas (2024) fine-tuned LLMs with logical reasoning data to improve
inference capabilities. LLMs have been applied as soft logic reasoners, and a range of prompting
techniques have been proposed to enhance performance in this domain (Zhou et al., 2024). Using

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

21 of 23

LLMs as semantic parsers has also shown to improve reasoning accuracy (Olausson et al., 2023) by
first converting natural language reasoning problems into logical forms before using an inference
engine for the final output.

Wu et al. (2023) present a method for creating tricky natural language instructions that cause
code-generating LLMs to produce code that works correctly but contains security vulnerabilities.
Their approach uses an evolutionary search process and a carefully designed loss function. The
system automatically finds harmless-looking prefixes or suffixes to add to a user’s prompt — text
that appears completely innocent and unrelated to coding — but that still strongly pushes the model
toward producing insecure code. This makes it possible to perform near worst-case “red-teaming”
tests in realistic situations, where users give prompts in plain natural language.

In this book we will treat reasoning in a broader perspective. In Galitsky (2024) we proposed
reasoning applications designed to generate diagnostic assessments for input financial indicators,
derived from labels (e.g., risk categories, market events, regulatory breaches, and/or portfolio
conditions) associated with previously observed cases. The system can construct extended discourse
trees that represent multiple discourse structures across varying levels of granularity (e.g., full report,
section, paragraph, sentence, phrase, or token) for historical financial cases, along with the rhetorical
relations linking those structures. New financial data (e.g., submitted via the autonomous agent) can
be parsed to identify relevant fragments and the rhetorical relations among them. These fragments
are then matched to fragments of prior cases by aligning nodes within the extended discourse tree,
enabling the system to produce context-aware and historically grounded risk or compliance
diagnoses. In the consecutive chapters we

10. Conclusions

Our experiments demonstrate the framework’s superiority over CoT-based, symbolic based, and
LLM-LP collaboration baselines, and show its robustness across various rule application steps and
settings. In the future, we will extend our framework to incorporate more backbone LLMs and
datasets, especially on more complex and long-term reasoning tasks.

There is growing recognition in the LLM audience that LLM-only solutions do not meet the
standard for production applications that require a high degree of accuracy, consistency and
explicability. More specifically, current state-of the-art LLMs are known to struggle for problems
involving precise logical reasoning, planning and constraint solving. As a result, there is a rise in the
development of hybrid neuro-symbolic systems, where the reasoning is offloaded to a symbolic
solver, and the LLM is used at the interface layer to map between unstructured data (text) and
structured logical representations. Unlike standard tools or simple APIs, integration between an LLM
and a symbolic reasoner can be fairly sophisticated as the reasoning engine has its own world model
and decision procedures.

The adversarial interaction between LLMs and logic programs significantly enhances the
accuracy of solving complex logical problems. This integration creates a dynamic, adaptive
framework that leverages the structured, rule-based rigor of logic programming and the flexible,
context-aware reasoning capabilities of LLMs. The LP provides a formal foundation for consistent
rule enforcement, ensuring that well-defined logical constraints are respected, while the LLM
contributes by identifying patterns and drawing inferences from nuanced or unstructured data.
Through this interaction, the two systems address each other's limitations —LLMs can mitigate LP's
rigidity when it encounters cases outside of its predefined rules, and LP can counterbalance the
occasional ambiguity in LLM predictions, leading to a more robust and reliable reasoning process.

In an adversarial setup, the LLM and LP act as checks and balances, where each system critiques
or validates the outputs of the other. This interplay is particularly beneficial in complex reasoning
tasks like fraud detection or scientific hypothesis evaluation, where new patterns and irregularities
often arise. The LP detects standard rule violations, while the LLM’s adaptability enables it to flag
novel anomalies or emerging trends that do not yet have formalized rules. By iteratively refining
outputs based on each other’s feedback, the combined neuro-symbolic system not only improves

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

22 of 23

accuracy in real-time but also learns to adapt to evolving patterns or requirements, a feature that pure
logic-based systems would find challenging to achieve.

Moreover, this adversarial approach enhances the transparency and explainability of the
system's outputs. The structured logic program offers clear, traceable reasoning steps, allowing users
to follow the logic behind conclusions, while the LLM supplements this with insights from broader
contextual or probabilistic knowledge. This combination supports interpretability, which is essential
in fields where understanding the reasoning process is as important as the outcome. Over time, the
system’s rules and logic pathways are iteratively refined and expanded based on both structured
feedback and natural language data, progressively increasing its depth and reliability. This iterative
refinement not only improves immediate accuracy but also builds a richer, more sophisticated logic
framework, positioning the LLM-LP system as a powerful tool for tackling increasingly complex and
evolving reasoning tasks.

References

1. Berglund L, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak, and Owain
Evans. 2023. The reversal curse: LIms trained on" ais b" fail to learn" b is a". arXiv preprint arXiv:2309.12288.

2. Blei DM and J. D. Lafferty, “A correlated topic model of Science,” The Annals of Applied Statistics, vol. 1,
no. 1, pp. 17- 35, 2007.

3. Creswell A, Murray Shanahan, and Irina Higgins. 2022. Selection-inference: Exploiting large language
models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712.

4. Darwiche A; Pear], Judea (1997-01-01). "On the logic of iterated belief revision". Artificial Intelligence. 89

(1): 1-29.

5. Galitsky B (2024) Multi case-based reasoning by syntactic-semantic alignment and discourse analysis. US
Patent 12,106,054

6. Galitsky B (2025) Employing LLM to solve Constraint Satisfaction. Health Applications of Neuro Symbolic
Al

7. Gur I, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and Aleksandra Faust.
A real-world web agent with planning, long context understanding, and program synthesis, 2024. arXiv
2307.12856

8. Han S, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy Sun, Ekaterina
Zubova, Yujie Qiao, Matthew Burtell, David Peng, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor,
Ansong Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Shafiq Joty, Alexander R. Fabbri, Wojciech
Kryscinski, Xi Victoria Lin, Caiming Xiong, and Dragomir Radev. 2022. Folio: Natural language reasoning
with first-order logic.

9. Hu(, Jie Fu, Chenzhuang Du, Simian Luo, Junbo Zhao, and Hang Zhao. 2023. ChatDB: Augmenting LLMs
with databases as their symbolic memory. arXiv preprint arXiv:2306.03901.

10. Kojima T, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large language
models are zero-shot reasoners. In Advances in Neural Information Processing Systems.

11. Makinson D (1985). How to give up: A survey of some formal aspects of the logic of theory change.
Synthese, 62:347-363.

12. Mao,], Gan, C.,, Kohli, P., Tenenbaum,].B., Wu, J.: The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision (2019)

13. Mitchell M. 2021. Abstraction and analogy making in artificial intelligence. Annals of the New York
Academy of Sciences, 1505(1):79-101.

14. Nye M, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber, David
Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan 2021. Show your work: Scratch pads for
intermediate computation with language models. arXiv preprint arXiv:2112.00114.Top of Form

15. Olausson T, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum, and Roger
Levy. LINC: A neurosymbolic approach for logical reasoning by combining language models with first
order logic provers. EMNLP pages 5153-5176, Singapore, December 2023

16. OpenAlI (2024) SimpleQA https://openai.com/index/introducing-simpleqa/

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1484.v1

23 of 23

17. Pan, L., Albalak, A.,, Wang, X., Wang, W.: Logic-LM (2023) Empowering large language models with
symbolic solvers for faithful logical reasoning. In: Bouamor, H., Pino, J., Bali, K. (eds.) Findings of the
Association for Computational Linguistics: EMNLP 2023. pp. 3806-3824.

18. Park JS, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bern stein.
2023. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, pages 1-22

19. PrystawskiB, Michael Y. Li, and Noah D. Goodman. 2023. Why think step by step? reasoning emerges from
the locality of experience. Advances in Neural Information Processing Systems 36 (NeurIPS 2023)

20. Puga, J, Krzywinski, M. & Altman, N. Bayes' theorem.Nat Methods12, 277-278 (2015).
https://doi.org/10.1038/nmeth.3335

21. Ranaldi L and Andre Freitas. 2024. Aligning large and small language models via chain-of-thought
reasoning. In Proceedings of the 18th Conference of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1812-1827

22. Riguzzi, Fabrizio; Swift, Theresa (2018-09-01), "A survey of probabilistic logic programming", Declarative
Logic Programming: Theory, Systems, and Applications, ACM, pp. 185-228, doi:10.1145/3191315.3191319,
ISBN 978-1-970001-99-0, S2CID 70180651, retrieved 2023-10-25

23. Roziére B, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971.

24. Sarker MK, Lu Zhou, Aaron Eberhart, Pascal Hitzler (2021) Neuro-Symbolic Artificial Intelligence: Current
Trends. arXiv:2105.05330

25. Simeng Han, Aaron Yu, Rui Shen, Zhenting Qi, Martin Riddell, Wenfei Zhou, Yujie Qiao, Yilun Zhao,
Semih Yavuz, Ye Liu, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Dragomir Radev, Rex Ying, Arman Cohan
(2024) P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning
Chains. arXiv:2410.09207

26. Touvron H, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,

27. Vakharia P, Abigail Kufeldt, Max Meyers, Ian Lane, and Leilani H. Gilpin (2024) ProSLM : A Prolog
Synergized Language Model for explainable Domain Specific Knowledge Based Question Answering

28. Wan, Z, Liu, CK, Yang, H,, Li, C,, You, H., Fu, Y., Wan, C,, Krishna, T., Lin, Y., Raychowdhury, A.: Towards
cognitive ai systems: a survey and prospective on neuro-symbolic AI (2024)

29. Wang S, Zhongyu Wei, Yejin Choi, Xiang Ren (2024) Symbolic Working Memory Enhances Language
Models for Complex Rule Application. arXiv:2408.13654

30. Wang W, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. 2024. Augmenting
language models with long-term memory. Advances in Neural Information Processing Systems, 36.

31. Wei], Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le, and
Denny Zhou. (2022) Chain of thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems.

32. Wu F, Xiaogeng Liu and Chaowei Xiao(2023) DeceptPrompt: Exploiting LLM-driven Code Generation
via Adversarial Natural Language Instructions. arXiv:2312.04730v2

33. Yoneda T, Jiading Fang, Peng Li, Huanyu Zhang, Tianchong Jiang, Shengjie Lin, Ben Picker, David

34. Yunis, Hongyuan Mei, and Matthew R Walter. 2023. Statler: State-maintaining language models for
embodied reasoning. arXiv preprint arXiv:2306.17840.

35. Zhou P, Jay Pujara, Xiang Ren, Xinyun Chen, Heng Tze Cheng, Quoc V. Le, Ed H. Chi, Denny Zhou,
Swaroop Mishra, and Huaixiu Steven Zheng. 2024. Self-discover: Large language models self-compose

reasoning structures.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1484.v1
http://creativecommons.org/licenses/by/4.0/

