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Abstract

The transition towards sustainable and low-carbon energy systems highlights the crucial role of
buildings, microgrids, and local communities as pivotal actors in enhancing resilience and achieving
decarbonization targets. The application of artificial intelligence (Al) is of paramount importance, as
it enables accurate prediction, adaptive control, and optimization of distributed resources. This
review surveys recent advances in Al applications for transactive energy (TE) and dynamic energy
management (DEM), emphasizing their integration with building automation, microgrid
coordination, and community energy exchanges. It also considers the emerging role of life cycle—
based methods, such as life cycle assessment (LCA) and life cycle cost (LCC), in extending operational
intelligence to long-term environmental and economic objectives. The analysis is grounded in a
curated set of 97 publications identified through structured queries and thematic filtering. The
findings indicate substantial advancement in methodological approaches, notably reinforcement
learning (RL), hybrid model predictive control, federated and edge Al, and digital twin applications.
However, the study also uncovers shortcomings in sustainability integration and interoperability.
The paper contributes by consolidating fragmented research and proposing a multi-layered Al
framework that aligns short-term performance with long-term resilience and sustainability.

Keywords: transactive energy; artificial intelligence; reinforcement learning; demand side
management; energy efficiency; microgrid; energy communities; energy management

1. Introduction

The accelerating transition towards sustainable and resilient energy systems is profoundly
reshaping the design and operation of buildings, communities and distributed infrastructures. In the
context of the ongoing transformations within the energy sector, particularly with regard to power
grids, the significance of local microgrids is increasing [1,2]. This phenomenon can be primarily
attributed to the increasing adoption of renewable energy sources (RES), particularly their integration
within the infrastructure of residential properties, commercial buildings, building complexes, and
local communities. Recent advancements in distributed renewable generation, energy storage, and
digital infrastructures present significant opportunities to enhance efficiency, flexibility, and
resilience [3,4]. Concurrently, these advancements introduce unprecedented complexities, thereby
necessitating intelligent coordination across diverse spatial scales. In consequence, advanced control
methodologies and algorithms have become increasingly significant in the organization of energy
systems and their efficient utilization [5,6]. Therefore, the advent of Artificial intelligence (Al) has
been identified as a pivotal catalyst for this transformation, providing data-driven instruments for
forecasting, optimization, and adaptive decision-making that extend from individual devices to
entire energy communities [7,8]. This progress results from the emergence of dynamic energy
management procedures in recent years, as well as the increased involvement of prosumers
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(individuals and communities) in transactive processes. These procedures require effective, dynamic
responses to changes in tariffs, as well as demand and supply levels in local microgrids and the
external energy supply system.

In this context, two complementary paradigms have gained particular prominence. The first is
transactive energy (TE), which facilitates decentralized, market-based coordination, thereby enabling
prosumers and microgrids to trade energy and services according to dynamic value signals [9-11].
The second is dynamic energy management (DEM), which focuses on real-time optimization of
distributed resources, combining forecasting, control algorithms, and reinforcement learning for
adaptive coordination. Recent advancements in automation and communication technologies have
served to reinforce both of these paradigms [12-14]. However, a significant proportion of research in
this field continues to priorities short-term operational objectives over long-term sustainability. In
this area, the author has analyzed development directions and identified new organizational
concepts for prosumer microgrids, in the context of the ability to support demand-side management
(DSM) functions through standard building automation and control systems (BACS), aligning with
ongoing research and engineering development [15-17]. The advent of sophisticated data processing
methodologies and the integration of cloud-based solutions for analysis in subsequent years has
guided the research and application trajectory towards ascertaining the viability of organizing energy
management systems in homes and buildings using deep reinforcement learning (DRL) [7,18,19]. In
parallel, research and analysis on the effective use of tools to support the functional optimization of
BACS are being conducted, with a view to improving energy performance and increasing the level
of building readiness for smart grid solutions, particularly in the context of RES and energy storage
integration [20-24].

Furthermore, beyond operational and market-oriented approaches, a third and less developed
but increasingly critical dimension concerns the integration of life cycle-based methods—such as life
cycle assessment (LCA) and life cycle cost (LCC)—with Al-enabled energy management.
Traditionally treated as separate instruments of sustainability evaluation, LCA and LCC are now
being progressively linked to digital twins, predictive analytics, and building automation [25-28].
This integration offers the possibility of extending the scope of TE and DEM frameworks, so that
optimization encompasses not only short-term efficiency but also long-term environmental and
economic performance. Embedding carbon footprint, embodied energy, and cost factors into energy
management is essential if buildings and energy communities are to align with broader
decarbonization trajectories and resilience targets [29-35]. In addition, emerging research has started
to extend the discussion of local microgrids toward more constrained and self-sufficient
infrastructures, including Closed Ecological Systems (CES). Although this area remains peripheral in
comparison with mainstream building and community applications, CES concepts—developed for
space missions or isolated habitats—offer a unique testbed for studying how Al-driven energy
management, automation, and life-cycle integration can operate under extreme sustainability
requirements. Insights from such research may in turn enrich the development of terrestrial
microgrids and energy communities, especially in contexts demanding high levels of autonomy and
resilience [32-35].

Taken together, the convergence of these domains defines the central scope of this review. Yet,
despite substantial progress in each area, the literature remains fragmented, with methodological
advances often developed in isolation and with limited transferability across domains. Overcoming
this fragmentation is a prerequisite for moving beyond incremental efficiency gains toward effective
DEM as well as systemic sustainability transitions in buildings and energy communities.

In light of the aforementioned background, the present paper aims to verify several interrelated
theses:

¢ Al methods should evolve from isolated predictors and controllers toward layered frameworks
that combine perception, control, and market coordination;
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e Lifecycle and sustainability dimensions remain insufficiently embedded in these frameworks,
especially transactive processes, resulting in a structural gap between operational efficiency and
long-term resilience;

¢  Emerging application domains, such as CES, while not central to this review, offer valuable
opportunities to stress-test building and microgrid concepts under extreme resource constraints.

Accordingly, the objectives of this review are threefold: (i) to synthesize the state of the art in Al
applications for TE and DEM across buildings, microgrids, and communities; (ii) to examine the
extent and manner in which life cycle-based approaches are being integrated into Al-driven energy
management; and (iii) to identify research gaps and propose a conceptual framework that connects
short-term operational intelligence with long-term sustainability. By consolidating these
perspectives, the paper aims to provide both a comprehensive synthesis of the extant literature and
a forward-looking research agenda for sustainable buildings, more effective TE processes and energy
communities.

The rest of the paper is organized as follows. The Section 2 provides a comprehensive overview
of the methodology and systematic elements that were applied in the process of searching and
screening the literature. The primary outcomes of the review are outlined in Section 3, encompassing
transactive energy, dynamic energy management, Al methodologies, and complementary life-cycle
perspectives. Section 4 provides a critical discussion, situating the findings within broader
methodological and conceptual debates and outlining a multi-layered framework for Al-driven
sustainable energy systems. The final Section 5 highlights the original contributions of the paper,
identifies research gaps, and suggests future directions for research.

2. Materials and Methods

To address the research objectives outlined in the Introduction, a structured procedure for
literature identification and selection was adopted. Although this review paper follows the structure
of a classical narrative review (IMRAD format), the process incorporated systematic review elements
such as transparent queries, multi-stage filtering, and explicit inclusion/exclusion criteria, ensuring
both rigor and thematic flexibility.

2.1. Literature Search Approach and Queries

A structured literature search was carried out in the Web of Science Core Collection (WoS) and
Scopus, which were selected for their extensive coverage of high-impact journals and conference
proceedings (e.g., IEEE, ACM, Elsevier conferences). The time frame under review was limited to
2015-2025, reflecting the period of rapid development of Al applications in energy systems. The
database queries were conducted between 18 and 23 August 2025. The focus of the study was on
research addressing Al-driven approaches to energy management in buildings and microgrids,
including sustainability perspectives.

The scope of this review was captured by four thematic areas. Queries were constructed in WoS
using the Topic Search (TS) field (title, abstract, keywords), and equivalent TITLE-ABS-KEY queries
were used in Scopus.

1. Al + Transactive/Peer-to-Peer Energy
WoS example: TS=("artificial intelligence” OR "machine learning" OR "deep learning" OR
"reinforcement learning” OR AI) AND TS=("transactive energy" OR "peer-to-peer energy" OR "P2P
energy") AND PY=2015-2025;

2. Al+Smart Local Energy Systems / Microgrids
WoS example: TS=("artificial intelligence" OR "machine learning" OR "deep learning" OR
"reinforcement learning" OR AI) AND TS=("local energy system" OR "smart local energy system"
OR "smart microgrid") AND PY=2015-2025;

3. Al + Life Cycle Assessment / Life Cycle Cost + Buildings
WoS example: TS=("artificial intelligence” OR "machine learning" OR "deep learning” OR

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1438.v1

4 of 32

"reinforcement learning” OR AI) AND TS=("life cycle assessment” OR "life cycle cost” OR "LCA"
OR "LCC") AND TS=("building" OR "buildings") AND PY=2015-2025

4. Al +Sustainable / Smart / Green Buildings and Energy Performance
WoS example: TS=("artificial intelligence" OR "machine learning"” OR "deep learning"
OR 'reinforcement learning" OR Al) AND TS=("sustainable building" OR "building energy
performance") AND PY=2015-2025.

2.2. Initial Identification

The database search yielded a total of 2,101 records (715 from WoS, 1,386 from Scopus). The
distribution of the thematic areas is presented in Table 1.

Table 1. Initial search results (2015-2025, according to the defined queries).

Set of Thematic Area Web of Science Scopus Total
Records
1 Al + Transactive/Peer-to-Peer Energy 189 322 511
5 Al + Smart LoFal En?rgy Systems / 53 129 175
Microgrids
Al + Life Cycle Assessment / Life Cycle
3 Cost 149 211 360
+ Buildings
Al + Sustainable / Smart / Green
4 Buildings 324 713 1,055
and Energy Performance
Total 715 1,386 2,101

2.3. Screening and Eligibility

The records were processed through a multi-stage filtering procedure, carried out on the basis
of abstracts and keywords.

e  Stage 1 - Basic merging: Publications were retained only if they were present in both databases
(WoS and Scopus), included a valid DOI, and had complete metadata (e.g., authorship
information). This step reduced the dataset to 614 publications;

e  Stage 2 — Thematic filtering: Abstracts and keywords were screened for explicit relevance to
energy management in buildings, leaving 306 publications;

e Stage 3 - Content-based filtering: Works outside the technical scope of this review were
excluded, such as purely economic market models, forecasting without EMS/building context,
or sustainability assessments without AL

The rationale for the adopted inclusion and exclusion criteria is summarized in Table 2, while
the numerical results of each selection stage are shown in Table 3.

Table 2. Inclusion and exclusion criteria applied in the literature screening.

Criterion Included if... Excluded if...
Record without DOI, missing
authors,
or incomplete metadata.

Record indexed in WoS or Scopus,

Source quality with complete metadata and DOL

Explicit mention of energy Focus exclusively on unrelated
management domains (e.g., mobility, large-
Topical scope in buildings (including Heating, scale
Ventilation, Air Condition (HVAC), grid operations).
lighting,

microgrids, Energy Management
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Systems, Demand Side Response
(EMS/DSR), building performance).
Al techniques explicitly applied
(Machine Learning - ML, Deep
Learning - DL, Reinforcement

No Al component,
or purely conceptual
without technical application.

Al rel
relevance Learning - RL, etc.) to energy-related

functions in buildings or local

microgrids.
EMS, DSM, DSR, predictive control, Purely economic/market
Application domain optimization, building energy ' m.ode'ls .
performance, (auctions, bidding, trading)
sustainability with AL without EMS/control aspects.
Forecasting integrated into EMS, Standalone forecasting
Forecasting role DSM/DSR, (photovoltaic - PV, wind, price)
or microgrid operation. without EMS/control context.
LCA/L ithout AI
o Al applied to LCA/LCC in connection C, [LCC wi outATor
Sustainability assessment _ oy without EMS/building
with building energy management. .
application.
Table 3. Multi-stage selection and reduction of publications.
% of % of
Stage Set1 Set 2 Set 3 Set 4 Total o f) oo
Previous Start
Initial identification 5, | 175 30 1055 2101 100% 100%
(WoS + Scopus)
After merging
(both databases, 173 48 100 293 614 29.2% 29.2%
DOJ, completeness)
After thematic
filtering (EMS in 119 29 41 117 306 49.8% 14.6%
buildings)
Aft tent-based
or COWENTIAREE 09 23 1 106 159 52.0% 7.6%

filtering (final set)

Following the filtration process, a total of 159 publications were retained for further analysis.
This corpus forms the foundation for the ensuing analysis, which is structured in accordance with
the IMRAD review format. Rather than relying on quantitative meta-analysis, the analysis places
emphasis on thematic synthesis and critical discussion.

2.4. Special Consideration for Set 3 of Records Related to LCA/LCC and Buildings

It is noteworthy that Set 3, which integrated Al with LCA and LCC in the context of buildings,
underwent the most substantial reduction during the filtration process. Initially, 41 publications were
retained following thematic screening (see Table 3), however, subsequent to the final content-based
filtering stage, only one publication remained. The majority of works addressed sustainability or life
cycle analysis without explicit integration with Al-driven energy management.

Despite this reduction, the topic of LCA/LCC was recognized as being highly relevant to the
objectives of this review. As emphasized in the Introduction, long-term sustainability and life cycle
performance are pivotal dimensions of building energy systems, and there is an increasing demand
for Al-based methodologies to optimize decision-making in this field. While the majority of the
retrieved works did not meet the strict inclusion criteria, they provide valuable insights into the
current research directions at the interface of LCA/LCC and building energy performance. Therefore,
Set 3 was selected to a separate qualitative analysis before the final filtering. The rationale for this
exception is twofold:
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1. Research perspective — to capture the state of the art in LCA/LCC for buildings and to
understand how these methods are currently applied in relation to energy management, even if
not always explicitly Al-driven;

2. Original contribution — to highlight a gap and research opportunity where Al techniques can
complement and extend traditional LCA/LCC approaches, particularly by enabling dynamic,
predictive, and data-driven assessments in building energy systems.

This methodological exception ensures that the review not only synthesizes the literature that
strictly fits the predefined criteria, but also identifies areas of emerging research need, reinforcing the
originality of the contribution.

3. Results

This section reports the outcomes of the literature analysis, building on the research background
outlined in Section 1 and the search and filtering strategy described in Section 2. Following a
thorough review of the initial pool of 159 relevant publications, it was determined that full-text access
was available for 144 works. A further 15 publications could not be examined in depth due to
restricted availability. After a detailed full-text screening and evaluation of the content, 78
publications from this core set were selected for in-depth synthesis. In parallel, a complementary
LCA/LCC Set 3 comprising 41 publications was also considered. There 38 full texts were accessible,
and 19 were ultimately included after content analysis. When considered as a whole, these two
groups form a consolidated corpus of 97 publications, which provides the empirical foundation for
the results presented in the following subsections.

3.1. General Overview of the Reviewed Publications

The initial, roughly reviewed corpus encompasses 144 publications originating from a diverse
set of publishers, with a clear dominance of large scientific outlets in the energy and sustainability
domains. The majority of these publications were published by Elsevier (approximately 40%)
followed by IEEE and MDPI (each with a share of approximately 20%). The remaining sample
includes contributions from Springer, Wiley, Taylor & Francis, Frontiers, SAGE, Oxford University
Press, AIP, and selected conference proceedings such as IBPSA and ACM. This distribution is
indicative of two prevailing factors. Firstly, it reflects the central role of specialized energy and
building journals (e.g., Applied Energy, Energy and Buildings, Journal of Building Engineering,
Energies, Sustainability) in the field. Secondly, it demonstrates the increasing visibility of Al-focused
work in broader interdisciplinary venues. The literature under review here covers a wide spectrum
of research on Al applied to energy management in buildings, microgrids, and local energy systems.
Despite this variety, the majority of contributions converge on operational aspects of prediction and
control, particularly short-term demand, price, and renewable output forecasting, as well as real-time
optimization of distributed resources.

A number of comprehensive review papers delineate the state of the art and provide
methodological baselines for subsequent studies. The following works provide a classification of ML,
DL, and RL techniques in relation to building energy management and microgrid control. This
establishes a methodological framework for more specialized investigations [3,36,37]. Such
contributions underscore the accelerated methodological evolution from conventional regression and
statistical models towards advanced learning-based approaches.

Within this landscape, two thematic clusters are most prominent. Initially, research on TE has
focused on peer-to-peer and community-based exchange mechanisms, hierarchical market
structures, and agent-based bidding strategies. A number of representative studies propose the use
of bilevel market formulations in order to ensure fairness. They also propose the design of DRL agents
for electric vehicles in transactive charging, and the development of reduced-order load models for
bidding strategies. In addition to these topics, advanced coordination methods such as deterministic
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policy gradients have been investigated [38-40]. These contributions collectively motivate the more
detailed assessment of TE research presented in Subsection 3.2.

Secondly, DEM emerges as a parallel line of inquiry, addressing near-real-time coordination of
distributed energy resources, storage, and flexible loads under uncertainty. Research in this area often
combines forecasting with optimization, with ML being employed for online control, edge-Al
approaches being used for localized prediction, and digital twins being utilized for scenario-based
demand estimation in evolving grid contexts [36,41,42]. These contributions establish the basis for
Subsection 3.3.

Finally, a transversal current across TE and DEM relates to the methodological diversity of Al
approaches. Classical ML methods remain widely utilized for tasks such as anomaly detection and
short-term load prediction, while DL) models are increasingly employed for sequential data and
feature extraction. Multi-agent RL has emerged as the predominant paradigm for decision-making
in decentralized environments. A body of research, including both systematic reviews and
methodological papers, has recently emerged to provide a more detailed and consolidated overview
of this evolution. This research clarifies both the potential and the limitations of current Al
applications [43-45]. The insights from these works provide a direct rationale for Section 3.4, which
synthesizes Al methods and techniques across TE and DEM.

3.2. Research on Transactive Energy

Research in the field of TE has evolved rapidly in recent years, reflecting the growing importance
of decentralized coordination in smart local energy systems. The reviewed publications address TE
from a variety of perspectives, ranging from conceptual market designs to device-level
implementations and Al-based optimization methods.

3.2.1. Concepts and Market Designs

Across the corpus of literature, TE is framed as a set of control-and-market mechanisms for
value-based coordination among distributed actors (prosumers, DER aggregators, distributed system
operators - DSOs) operating at feeder/community scale. Three design families have been identified
as the most dominant: (i) the coordination of communities and markets with bilevel or hierarchical
optimization; (ii) peer-to-peer (P2P) and community energy sharing; and (iii) agent-based
transactional control embedded in local markets. Gholizadeh et al. [39] propose a fair-optimal bilevel
TE architecture for a community of microgrids that incorporates user discomfort, demand-response
rebound, and voltage/current constraints This work represents an early example of equity-aware
market design in distribution networks. Building on this line of research, Amasyali et al. [46]
proposed a distributed, game-theoretic transactional control model. In this model, the DSO iteratively
adjusts price vectors while load aggregators respond with modeled demand. This process yields
privacy-preserving convergence without system-wide data sharing. P2P/community trading is
treated via agent-based evaluation frameworks that blend modified diagonalization with RL and
define explicit performance indices to compare billing and mid-market mechanisms across pricing
regimes [47]. In complement to these studies, Yu et al. [48] simulated a residential community under
a TE bidding scheme with model predictive control via mixed-integer linear programming
(MPC/MILP) coordination, quantifying demand, import, and cost savings, and surfacing design
choices for bidding rules and device-level control. Taking the specified aspects into consideration, it
is evident that TE research has evolved from conceptual market constructs toward applied
community demonstrations, thus paving the way for practical implementations.

3.2.2. Implementations in Microgrids and Local Energy Systems

The operationalization of TE is achieved through the implementation of domain-specific
transactive controllers for flexible loads and DERs. For instance, Liu et al. [38] automated transactive
HVAC control with RL inside the Transactive Energy Simulation Platform (TESP) developed by
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Pacific Northwest National Laboratory, thus overcoming the limitations of continuous-state control
granularity and heterogeneity that had previously hindered the deployment of Q-learning.
Furthermore, Sharma et al. [40] formulate an EV bid-based agent using recurrent Proximal Policy
Optimization (PPO) algorithm under a partially observable Markov decision process (POMDP),
demonstrating policy convergence on real price data and articulating how customer goals/constraints
can be encoded in TE system bids. At the intersection of market physics, reduced-order aggregate
models of bidding loads (e.g., thermostatic populations) facilitate the co-simulation with power-
system solvers like framework for network co-simulation, thereby integrating TE market dynamics
with feeder constraints [49]. Evidence from the extant literature clearly indicates a shift in focus from
high-level market coordination toward device-level integration and grid-constrained operation.

3.2.3. Al methods for TE Coordination and Trading

According to the relevant technical literature in these fields, Al fulfils two coupled roles: (i)
policy learning for agents participating in TE markets; and (ii) prediction/estimation to feed market
clearing and control. Multi-agent RL is the prevailing paradigm for policy learning in market
interactions and dispatch under uncertainty; examples include transactive EV bidding with PPO [40]
and hybrid learning for multi-microgrid energy sharing with prosumer buildings [50]. The
exploration of federated/distributed learning aims to align privacy constraints with price formation
and to couple consensustinnovations optimization with learned surrogates at the edge. This is
indicative of scalable, privacy-respecting TE implementations [51]. As demonstrated in the
foundational reviews of microgrid EMS with ESS, TE is contextualized as one strand within broader
game-theoretic, agent-based, and robust optimization approaches to local markets [3]. These insights
indicate that Al is no longer merely a supplementary instrument; rather, it has evolved into a pivotal
facilitator in shaping the design and scalability of TE systems.

3.2.4. Evaluation Criteria: Welfare, Fairness, and Grid Constraints

A key aspect of TE research pertains to the evaluation of system performance. Whilst a
significant proportion of studies to date have concentrated on economic efficiency and welfare gains,
recent works have expanded the scope to include fairness, user comfort, and technical feasibility
under grid constraints. For instance, the bilevel community TE scheme developed by Gholizadeh et
al. [39] jointly minimizes energy expenditure and user dissatisfaction whilst enforcing feeder
operating limits through a semi-centralized fair restriction on net export one day ahead. In a similar
way, P2P evaluation frameworks introduced by Zhou et al. define replicable performance indices
that allow systematic benchmarking of different trading models across price environments [47].
These contributions demonstrate that TE research is gradually transitioning from narrow, cost-driven
optimization towards a more comprehensive consideration of socio-technical criteria, including
equity, comfort, and operational reliability.

3.2.5. Evaluation Criteria: Welfare, Fairness, and Grid Constraints

Alongside the work on evaluation criteria, another research strand is focusing on the robustness
of TE systems and the platforms that enable their operation. Cybersecurity emerges as a key concern,
with studies highlighting the importance of anomaly detection and adversarial behavior in
transactional infrastructures. This is an essential complement to market design and agent learning
[52]. Furthermore, robustness is also a concern for the modelling and execution environment. Liu et
al. [38] emphasize the necessity of RL for HVAC agents in addressing continuous-state control and
heterogeneous device responses to ensure reliable convergence in real deployments. They also
highlight the challenges of scalability and robustness. Moreover, it is demonstrated that DRL can
overcome the limitations of classical Q-learning by handling continuous state spaces and
heterogeneous device responses. The TESP-based experiments also emphasize the need for simplified
state representations and carefully designed reward structures to maintain scalability and robustness
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as the number of participating HVAC agents increases. In a similar way, reduced-order modelling of
aggregated bidding loads is proposed not only as a means to enable tractable integration with power-
system solvers, but also as a pathway to ensure stability and resilience of TE mechanisms under
cyber-physical uncertainties [49]. These developments suggest that considerations of integrity,
security and robustness are being integrated into TE research, despite the continued emphasis on
short-term operational horizons.

3.2.6. Identified Gaps and Future Directions

Notwithstanding considerable advancement in the domains of short-horizon market clearing,
agent learning, and community-scale demonstrations, the preponderance of TE studies continues to
be concentrated on optimizing operational episodes (minutes-to-day-ahead) and proximate welfare
under fixed tariffs and asset portfolios. The long-term ramifications, encompassing such domains as
asset deterioration, collaborative investment configuration, distribution-level reliability across
seasons and years, and life-cycle sustainability, are predominantly addressed through the delineation
of future research agendas. As Yu et al. [48] explicitly note, objectives such as the reduction of
greenhouse gases are regarded as extensions rather than core targets of current implementations,
thereby underscoring the limited integration of environmental criteria. In their paper, Mutluri and
Saxena [1] go further, identifying the absence of strategic planning and long-term resilience
mechanisms as a structural gap in TE research. Their analysis demonstrates that while blockchain
and Al facilitate secure and adaptive trading, they do not inherently address issues of infrastructure
investment or system-wide sustainability. This suggests that the vast majority of TE studies place a
strong emphasis on short-term operational mechanisms. In contrast, long-term economic and
environmental implications are addressed only infrequently and are generally relegated to future
research.

3.3. Research on Dynamic Energy Management

While TE (discussed in Subsection 3.2) emphasizes market-based coordination and value
exchange among distributed actors, research on DEM focuses on operational intelligence: how
distributed, flexible resources (loads, storage, DERs) are sensed, predicted, coordinated, and
controlled in real time. While the focus of TE is on the actors involved in trade and the rules that
govern it, DEM concerns on the system's reaction and adaptation to conditions that vary over time.
Across the reviewed literature, DEM emerges as the second major pillar of local energy systems
research, spanning microgrid-scale EMS, building/home EMS, and cross-cutting methods that fuse
forecasting with control.

3.3.1. Scope and Reference DEM Architectures

Research on DEM consistently emphasizes reference architectures that connect fast device-level
actuation with supervisory scheduling and learning. Early frameworks, including DEMs [12],
demonstrated the capacity of adaptive dynamic programming to facilitate continuous optimization
of microgrid resources in the presence of uncertainty. In a similar way, Shakir and Biletskiy [53]
proposed a home-oriented EMS that integrates sensors, forecasting, and DER scheduling under
comfort constraints. Additionally, a substantial body of literature has emerged that converges on the
role of Al, Internet of Things (IoT), and edge computing as the technological substrate of modern
DEM [54], while system-level analyses highlight the evolution of microgrids from AC and DC setups
to hybrid and multi-energy forms, with energy storage systems at their core [3]. In a continuation of
this line of enquiry, Mutluri and Saxena [1] explore the concept of networked microgrids (NMGs) as
exemplars for resilience and scalability, typically characterized by a hierarchical primary-secondary—
tertiary control structure. Exploration of multi-agent EMS, in which distributed agents coordinate
DEREs, storage, and flexible loads, is a complementary field of research. Such systems are increasingly
applied not only in buildings but also in sectoral contexts, such as greenhouse management [55].
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3.3.2. DSM/DSR and Flexible Asset Coordination with RL

A substantial body of research has emerged from these architectures, addressing DSM/DSR
mechanisms and the real-time coordination of flexible assets. In this context, RL emerges as the
predominant paradigm. Igbal and Mehran [56] demonstrated that model-free RL can minimize
operating costs in microgrids with renewables and storage under uncertainty. Building up on this,
Dridi et al. [57] compared classical Q-learning with deep recurrent agents, demonstrating the latter's
superiority in environments where partial observability and temporally correlated events are
prevalent, such as in EMS operation. Furthermore, Darshi et al. [58] proposed a decentralized EMS
in which multiple RL controllers operate across asset clusters, thus alleviating communication
bottlenecks while maintaining near-optimality using unique framework of the model-free Q-learning
algorithm. In order to consolidate these advances, Arwa and Folly [36] proceeded to review RL
techniques for power control, mapping families such as Q-learning, deep deterministic policy
gradient (DDPG), PPO, and hierarchical RL to DEM tasks, and underlining the growing need for safe
RL and constrained formulations in practical deployments. When evaluated collectively, these works
demonstrate a discernible progression from early tabular RL to deep and distributed agents, thus
illustrating how DSM/DSR evolved into the crux of DEM research.

3.3.3. Forecast-Informed Control Loops

In order to enhance these control routines further, DEM is increasingly integrating forecasting
as an embedded component of the loop. Lv et al. [4]1] implemented edge-based recurrent neural
network (RNN) forecasters that predict short-term load and power locally, reducing latency and
cloud dependency while supporting real-time scheduling. Concurrently, Bayer et al. [42] utilized
digital twin simulations to generate demand trajectories and subject DEM policies to stress testing
under scenarios such as high EV penetration. In addition, Sadrian Zadeh et al. [59] advanced
supervised-learning approaches for IoT-driven state estimation, improving observability and
enabling robust closed-loop control. At the distribution edge, Peiris et al. [60] employed ML profiling
techniques to distinguish PV and EV load signatures, providing actionable features for flexibility
allocation. These findings signify a transition from policy learning in isolation to the integration of
predict—-decide—act loops, where forecasts become inseparable from control.

3.3.4. Control Strategies Beyond Pure RL: MPC, Hybrid and Physics-Informed Tracks

In addition to RL, MPC remains a cornerstone of DEM, particularly in the context of buildings
and community-scale applications. Chen et al. [61] proposed a data-driven robust MPC that
constructs uncertainty sets for weather and occupancy forecasts using clustering and density
estimation, embedding them in tractable robust optimization to jointly manage HVAC, geothermal,
PV, and storage assets. The authors demonstrate how forecast error distributions can be directly
transformed into robust comfort—cost trade-offs. In addition, a review of the literature on Digital
Twins (DTs) and ML has highlighted that the operational value of MPC is contingent on the
calibration of workflows, the interoperability of co-simulation frameworks, and the maintenance of
lifecycle models. The paper [62] identified a lack of standardization as a significant impediment to
the broader adoption of these practices. At the applied level, Aruta et al. [63] demonstrated that
artificial neural network (ANN) assisted MPC in a monitored nearly-zero-energy building could
reduce computation times while preserving comfort objectives. This was achieved by combining a
nonlinear autoregressive with eXogenous inputs model surrogate with MPC linearization and
achieving measurable savings compared with fixed setpoint baselines.

At the methodological frontier, Ma, et al. [64] mapped four pathways for physics-informed
machine learning (PIML) - inputs, loss functions, architectures, and ensembles — and demonstrated
how regularization constraints can be encoded into loss functions to enhance interpretability and
generalization of building energy models. This line of work positions PIML as a means of generating
interpretable surrogates inside predictive controllers. Within this trajectory, Qi et al. [65] proposed
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an advanced MPC scheme that integrates ANN based forecasting with metaheuristic optimization,
demonstrating measurable cost reductions compared to rule-based control. The study incorporates
event-triggered mechanisms to mitigate the heavy computational burden of traditional time-
triggered MPC, achieving reductions in solve frequency of up to 80% while preserving comfort. What
is very important, in situating their contribution, the authors explicitly frame their work within a
broader research line, considering other research. First, Lee et al. [66] demonstrated that ANN-
enhanced MPC exhibits superior performance to rule-based HVAC scheduling in commercial
buildings, achieving reduced energy consumption while maintaining indoor quality. Second, Du et
al. [67] developed an adaptive setpoint MPC that enhances temperature control across multiple
building zones under uncertain loads. Third, Carli et al. [68] integrated the Fanger PMV index into
MPC cost functions, balancing thermal comfort against consumption in Italian office buildings.
Finally, Yang et al. [69] pioneered event-triggered MPC formulations that reduce computation
frequency while maintaining stability and comfort. Collectively, these works highlight a steady
maturation of MPC approaches towards more computationally efficient, comfort-aware, and scalable
control strategies, directly inform the methodology of Qi et al. [65].

As further reviews demonstrate that MPC experimentation has been an ongoing process. In their
research, Renganayagalu [62], in addition to Aruta et al. [63], have examined over a decade of
HVAC/MPC implementations, meticulously documenting co-simulation methodologies and field
pilots. They also highlight ongoing challenges, including modelling complexity, non-standard BMS
interfaces, and integration expenditures. A district-scale review expands this trajectory, showing how
hybrid MPC combines grey-box RC (Resistance-Capacitance) models with ANN or RNN predictors
to balance accuracy and tractability, achieving heating savings of 15-28% in field tests [70]. Beyond
the domain of buildings, hybrid predictive-control ideas have been extended to multi-carrier
microgrids, where MPC coordinates electrolyze, batteries, and thermal storage in PV-hydrogen
communities, thereby bridging physical constraints with market-coupled objectives [71].

Broader evaluations of advanced building controls have emphasized the convergence of MPC
with Model-Based Control (MBC) alternatives, occupant-centric objectives, anomaly detection, and
digital twin integration. These evaluations have also underscored the necessity for scalable
frameworks that can be deployed across portfolios [72]. The evolution of DEM control has undergone
a transition from standalone MPC to hybrid and physics-informed pipelines, indicating a trajectory
where adaptability, safety and computational efficiency converge. In this context, MPC is no longer
regarded as an alternative to RL, but rather as a complementary pillar.

3.4. Al methods and Techniques Applied Across TE and DEM

This subsection delineates the Al methodologies and instruments utilized in the prior analyzed
TE and DEM applications. In contrast to the emphasis on functional mechanisms of dynamic
management in Subsection 3.3, this subsection focuses on specific algorithmic families, ranging from
classical machine learning to RL, multi-agent and hybrid approaches, as well as federated, edge and
digital twin-based frameworks. The following subsubsections present these methods according to
their functional layers, highlighting both dominant operational applications and emerging directions.

3.4.1. Perception and Prediction Layer: From Classical ML to Edge-Al and DT

In DEM and TE, short-term load and price forecasting as well as state estimation are the primary
focus, realized by algorithms such as Random Forest (RF), Support Vector Machine (SVM), and
Extreme Learning Machine (ELM), alongside deep learning methods (Long-Short Term Memory and
Gated Recurrent Unit - LSTM/GRU, occasionally Convolutional Neural Network - CNN; with
hybrids appearing in more recent works). Concurrently, methodologies for prosumer pattern
recognition (e.g., PV/EV profiles) and occupancy detection in buildings are being developed
[41,42,60,73]. To illustrate this point, consider the use of a DT in the simulation of future demand
states, a technique that has been demonstrated to support planning and operational strategies [42].
Similarly, the utilization of edge-Al has been shown to minimize latency and communication costs
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in local forecasts [41]. In the context of local smart energy systems, the PV/EV signature classification
process is undertaken utilizing measurement data [60]. Conversely, within the domain of buildings,
vision-based detection and localization of occupants [73] is employed, alongside the utilization of
drone-assisted thermal imaging in conjunction with DL support audits and the calibration of control
systems [74]. The research trajectory is evidently shifting from a "model-centric" to a "data &
deployment-centric" paradigm: edge learning for rapid local inference [41], federated forecasting
without data centralization [51], and in buildings—DT+AI as a living model that integrates IoT
sensors, simulation, and machine learning for predictive control, calibration, and explainable
analytics [62,75,76]. Overall, perception- and prediction-oriented methods continue to prioritize
short-term horizons and operational accuracy, with an increasing focus on federated and edge
implementations. However, the integration of life-cycle assessment and closed-loop deployment
remains in its infancy, resulting in a significant gap between accurate forecasting and strategic
decision-making.

3.4.2. Decision-Making and Control Layer (DEM — Oriented)

RL has become the central mechanism in EMS/HEMS control, progressing from simple Q-tables
to advanced actor—critic and policy optimization algorithms. Arwa and Folly [36] identify the
transition from conventional Q-learning to PPO and Trust Region Policy Optimization (TRPO),
emphasizing the growing role of transfer learning and prioritized experience replay. Concrete studies
applied DDPG and Soft Actor-Critic (SAC) for demand-side resource aggregation [77], compared
Deep Q-Network (DQN) versus RNN/LSTM in EMS environments [57], and employed DRL in IoT-
microgrid settings [78]. There is an increasing tendency for RL to be coupled with MPC/MILP or
metaheuristics, a development which facilitates faster online optimization and mitigates the so-called
"curse of dimensionality" [2]. The evolution of research progresses from Q-learning and fitted Q-
iteration, through DQN and A2C/A3C (Advantage Actor-Critic / Asynchronous Advantage Actor-
Critic), toward PPO/TRPO suited for continuous and uncertain environments; in parallel, transfer
learning emerges as a means of accelerating adaptation across tasks and domains [36]. The field of
RL has evolved from the initial conception of algorithms to the development of hybrid actor—critic
and MPC-enhanced controllers, thereby markedly enhancing the adaptability of EMS. Nevertheless,
scalability, sample efficiency and safe deployment remain open challenges, particularly in microgrids
with diverse and uncertain operating conditions.

3.4.3. Market-Level Coordination Layer (TE — Oriented)

In the field of TE, the primary challenge pertains to the coordination of multiple agents and the
adherence to market regulations. Notable advances include Bayesian-MARL (Multiagent
Reinforcement Learning) resilient to communication failures [79], game-theoretic transactional
control within hierarchical architectures [46] and bilevel optimization with fairness components in
communities of microgrids [39]. In order to scale bidding mechanisms, reduced-order models were
introduced [49]. Additionally, the range of use cases extends from EV agents [40] to HVAC
transactional control [38]. The emerging research landscape thus combines on employing MARL with
PPO/TRPO and transfer learning under high-dimensional uncertainty with federated optimization
for distributed trading and coordination, enhanced through edge-Al for real-time forecast-to-
decision integration. Multi-agent and game-theoretic Al methods are central to enabling fair and
efficient energy trading. While promising frameworks such as MARL, bilevel optimization, and
federated markets are emerging, their robustness under imperfect communication and their transfer
to real-world pilots are still limited, especially in community-scale and CES-like environments.

3.4.4. Distributed and Secure Al Frameworks: From FL to Hybrid Optimization and DT

Recent advances demonstrate a clear convergence of Al techniques into distributed and secure
frameworks that integrate federated and edge learning, hybrid optimization strategies, and DT-
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driven analytics. Collectively, these approaches address the key challenges of scalability, privacy,
and cybersecurity that were identified in TE and DEM applications, while at the same time elevating
Al from isolated predictors and controllers to embedded, system-level capabilities.

Federated learning (FL) preserves data locality while enabling collaborative model training
among dispersed actors. Adaptive FL has been proven to enhance multi-horizon load forecasting and
anomaly detection in community buildings [80], while clustering-enhanced FL facilitates short-term
prediction and distributed optimization in heterogeneous households [51]. Concurrently, privacy-
preserving loT-blockchain architectures for P2P trading integrate distributed machine learning with
integrity control and auditability [81]. In terms of deployment, edge-Al has been evidenced to reduce
inference latency and communication overhead [41,54]. This is illustrated by microgrid EMS
integrating Al, IoT, and edge-based forecasting. Analogous concepts are also applicable to building-
scale BMS, wherein edge computing is interwoven with DT and blockchain for lifecycle management
[82]. Complementary these studies further emphasize the importance of access control and minimal
data exposure in Al-enabled control systems [83].

In addition to considerations of privacy, cybersecurity has become a critical domain for Al in
TE/DEM. In the context of cyber-physical power systems, the employment of Intrusion Detection
System (IDS)/ML pipelines by frameworks has seen a marked increase. This development is
indicative of a counterstrategy aimed at the mitigation of false-data injection, denial-of-service, and
cascading failures within such systems [84]. It is important to note that related research directions
include TE-oriented cyber-physical analytics [52] and FL-based intrusion detection in industrial and
IoT environments [85]. At the microgrid level, autoencoder-based anomaly detection enables
unsupervised and lightweight monitoring suitable for edge deployment [86], while operator-focused
virtualized training platforms reinforce human-in-the-loop resilience for operational technology for
smart grid systems [87,88]. In addition to the identification of defects, the "FMEA 2.0" methodology
extends the application of ML to the assessment of risk and the establishment of priorities in smart
microgrids [89]. Collectively it is underscored a shift towards an Al-centric approach to cybersecurity,
wherein the utilization of federated sensing, model sharing, and cyber-range testbeds becomes
pivotal for the protection of energy infrastructures.

Al is increasingly being used as a tool to accelerate optimization processes by embedding
learning surrogates into classical methods. The utilization of neural networks and Gaussian processes
as proxies for electro-thermal storage and network models facilitates accelerated co-optimization of
ancillary services [3]. The integration of mathematical programming and heuristics has been
demonstrated to enhance responsiveness, as evidenced by the combination of RL+MPC/MILP and
the utilization of metaheuristic-assisted EMS [2]. These approaches include deep RL applied to
demand-side resource aggregation [77] and agent-based online learning supporting EV power flow
coordination in microgrids [90]. At the building and microgrid scale, hybrid DL-metaheuristic
frameworks (e.g., bi-directional LSTM/capsule network — CapsNet with hybrid gazelle and seagull
optimization algorithm - HGSOA) have been shown to improve forecasting and DSM scheduling,
while LSTM+Genetic Algorithm (GA) is used in HEMS to co-schedule flexible loads with renewables
[53,91]. Decentralized EMS designs further combine robust and convex programming with
distributed intelligence to strengthen resilience and scalability [58]. These developments illustrate the
emergence of integrated optimization pipelines, in which MPC and heuristic solvers are
systematically augmented with ML surrogates and RL policies to achieve scalable, near-real-time
decision support.

In closing, it is important to acknowledge the pivotal role that DT-driven Al has come to play in
contemporary TE/DEM ecosystems. DT frameworks integrate BIM, IoT telemetry, simulation
models, Bayesian calibration, and XAl thereby enabling real-time benchmarking, predictive control,
and what-if exploration of pricing and flexibility scenarios [62,75,76]. At urban and portfolio scales,
Distributed Ledger Technology (DLT), Blockchain, and BMS stacks provide traceable, cross-lifecycle
dataflows that support secure model management and auditing [82,91]. In conjunction with these
architectures, PIML integrates governing equations and domain constraints directly into learning
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pipelines, thereby enhancing extrapolation capabilities, reliability, and operational safety — qualities
that are of particular importance in critical energy infrastructures [64].

Collectively, these strands demonstrate the evolution of Al into holistic frameworks that
integrate distributed learning, cybersecurity, optimization, and DT/PIML. Rather than being used as
isolated forecasting or control tools, Al methods are increasingly employed as embedded layers that
safeguard efficiency, privacy, resilience, and transparency across TE and DEM ecosystems. The cross-
cutting Table 4 provides additional contextual information regarding these methods, illustrating their
application across a range of structures, including buildings, microgrids, energy communities, and
CES.

Table 4. Cross-cutting overview of Al methods and applications across TE, DEM, buildings, microgrids, energy

communities, and CES.

TE DEM Buildings Energy Closed
AT Meth Tradi DSM/DSR Mi i Ecological
ethod (Trading, (DSM/DSR, (BEMS/HEMS) icrogrids Communities Lc0lo8ica
Markets)  Control) Systems
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. . and pattern
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detection ’
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Reinforcement Transactive Adaptive MARL for  control of
. 1 LowEx  Smart HVAC dynamic EMS, distributed life-support
Learning bidding, .
(Q, DON BV control, EMS control, ancillary DR and subsystems,
. ¢ . with storage comfort-aware policies  services pricing water/air
A2C/A3C, PP hedul
C/ASC, PPO, scheduling |, 5 76 11 [61] [36,77,78,90,10 coordination  recycling
DDPG, SAC)  [40,46,77] L
2] [46,51,79] optimization
[55,103]
Federated
Cooperative Coordination MARL for Multi-agent
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Multi-Agent AI e market DSM/DSR  centric decisionand  microgrids, energy food—energy-
& Game Theory negotiation, coordination behavior prediction  resilience communities, water loops

fairness [58,104] [105] enhancement blockchain- in habitats
[39,46,79,81] [1,3,104]  based TE [55,106]
[51,80,81]
Surrogate  RL+MPC HEMS ANN/GP
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It is important to note that the inclusion of CES in Table 4 goes beyond the dominant scope of
the current literature. The field of CES represents an emerging domain where energy management,
life-support functions, and resource recycling are closely intertwined. However, this domain has
received only limited attention in academic research on Al for TE and DEM to date. Simultaneously,
technical domains associated with CES, including space habitat engineering, controlled environment
agriculture, and bioregenerative life-support systems, are undergoing rapid development, propelled
by industrial and space exploration initiatives. The proposed CES-related applications and potential
trajectories for Al algorithms presented in the table should therefore be understood as authorial
extensions based on analytical insights, informed by the SCOPUS Al-assisted mapping of the
reviewed literature. This framing positions CES as a promising frontier where methods already
explored in buildings, microgrids, and energy communities may find new and critical applications.

3.5. Complementary Al and Life Cycle Perspectives for Sustainable Buildings

This subsection addresses a complementary thematic area that extends the scope of the previous
analyses by incorporating LCA, LCC, and long-term sustainability considerations into the discussion
of artificial intelligence Al for building energy systems. As outlined in Section 2.4, this topic was
recognized as strategically relevant, since life cycle performance and sustainability are pivotal
dimensions of future energy communities and transactive microgrid models. Initially, 41 publications
were identified; however, only 38 full texts were accessible, with three publications being inaccessible
due to restricted licensing. Despite this limitation, the available studies provide valuable
complementary insights that enrich the overall review.

The underlying rationale for conducting a separate analysis of this particular set is twofold.
Firstly, from a research perspective, it facilitates the mapping of the state of the art in applying
LCA/LCC to buildings and community-scale energy management, even in cases where explicit Al
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integration is still emerging. Secondly, from the perspective of original contribution, it emphasizes
the research gap in which Al techniques have the capacity to complement and extend traditional life
cycle approaches by facilitating dynamic, predictive, and data-driven assessments that transcend
static evaluations. In this manner, the works under consideration herein initiate a space for reflection
on systemic and long-horizon approaches to Al in energy, providing a life cycle anchor to
complement the more operational focus observed in earlier subsections.

Whereas Section 3.4 concentrated on operational control and optimization mechanisms, the
perspectives introduced here shift the focus toward long-term decision frameworks, where Al and
life cycle methodologies intersect to guide sustainable pathways for buildings and energy
communities.

3.5.1. Al for Dynamic and Predictive LCA/LCC in Building Energy Systems

The transition from static life cycle tools to predictive approaches was initially examined in the
bibliometric mapping by Zheng and Yan [26], who highlighted the absence of integration between
LCA methods and digital/AI workflows. This discrepancy was addressed by Sharif and Hammad
[109], who utilized surrogate artificial neural networks ANNSs to approximate renovation LCA and
LCC and demonstrated the capacity of predictive models to inform energy management decisions
on a large scale. This approach was further elaborated by Amini Toosi et al. [110], who embedded
ML in Life Cycle Sustainability Assessment (LCSA) pipelines to capture sustainability trade-offs
more dynamically. As demonstrated by related surrogate models for hybrid HVAC/PV systems, Al
has been shown to balance operational flexibility with long-term embodied costs [111]. At the
community scale, Elomari et al. [112] applied ML with multi-objective optimization (MOO) and
multi-criteria decision-making (MCDM) to renewable energy communities, directly coupling
LCA/LCC with governance of local energy sharing. Abokersh et al. [113] strengthened this line of
enquiry by using an ANN and sensitivity analysis for robust optimization of solar district heating.
These studies collectively illustrate how predictive AI-LCA can act as a decision anchor for
transactive energy exchanges, where long-term life cycle costs and impacts shape short-term
microgrid transactions. Additional work on linking AI with embodied and operational emissions in
ventilation design [114] and optimization of office buildings under extreme climates [115] also points
to the growing integration of life cycle parameters into building performance modeling.

3.5.2. Retrofit and Building-Integrated PV: Al-Enabled Life-Cycle Optimization

The domains of retrofit and BIPV represent areas in which Al and life cycle integration converge
on the building-to-grid interface. Sharif et al. [116] were the first to utilize generative deep learning
building energy model using variational autoencoders to create retrofit scenarios for LCA/LCC
evaluation, thereby expanding the design option space for building owners. Imalka et al. [117] built
upon this by employing surrogate ANN models for building integrated photovoltaic (BIPV) design
optimization, where life cycle cost functions were treated as explicit objectives alongside energy
yield. Li et al. [118] furthered this research by developing an autonomous BIPV deployment
framework that integrates 3D capture, solar potential analysis, and LCC checks. It is important to
note that these methods have the potential to reduce both environmental and economic burdens.
Furthermore, they provide a framework for the integration of building-level assets into local
microgrids, with artificial intelligence (Al) ensuring that decisions regarding retrofitting and PV
systems are consistent with transactive energy strategies. This progression demonstrates the manner
in which Al-based life cycle approaches in retrofits and BIPV establish the technical and economic
basis for the integration of building prosumers within energy communities. Further contributions on
structural optimization using evolutionary algorithms and LCA and ensemble learning for
sustainable structural retrofitting discussed in [28] and [119] confirm that retrofit decisions
increasingly combine Al with life cycle perspectives.
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3.5.3. Community and District Energy Systems: Life-Cycle Anchors for Al-Driven Microgrids

At the community level, the most evident manifestation of Al-enhanced life cycle methods has
been in the context of renewable energy communities and district heating systems. Elomari et al. [112]
developed a MCDM framework integrating ML and LCA to support decision-making in renewable
energy communities. This framework enabled the optimization of complex systems and the effective
integration of predictive modelling with stakeholder governance. Abokersh et al. [113] advanced this
by embedding ANN with sensitivity analysis to assess uncertainty in solar district heating
optimization, ensuring that life cycle objectives are not compromised by operational variability. A
subsequent extension by Abokersh et al. [120] integrated ANN with MCDM for near-zero energy
building and passive energy building communities, showing how high renewable energy penetration
aligns with life cycle economic feasibility. The extant literature indicates an evolution of Al methods
from predictive assessment towards decision support for local market structures. The collective
evidence suggests that transactive energy in smart microgrids cannot be decoupled from life cycle
performance, as long-term costs and impacts shape the credibility of community-level exchanges and
market stability. More broadly, comparative assessments of building sustainability systems [121] and
policy-oriented reviews on Al for net-zero projects [31] further emphasize the role of life cycle
methods as decision anchors in energy communities.

3.5.4. Community and District Energy Systems: Life-Cycle Anchors for AI-Driven Microgrids

In order for Al-enabled LCA to underpin transactive energy and microgrid systems, reliable and
secure data infrastructures are essential. Danso et al. [122] investigated the integration building
information modelling (BIM) and LCA in construction practice, demonstrating that in the absence of
standardized procedures and awareness, automated life cycle workflows remain fragmented. At the
operational edge, Sun et al. [123] addressed the cyber-security dimension by proposing ML-
generated intrusion-specific rules for IDS, thus closing the "last-mile gap" between ML models and
real-world networks. This research emphasizes the necessity of safeguarding life cycle information
as it evolves into a valuable asset within the context of energy markets. However, the absence of
interoperability and security in Al-driven LCA renders it ill-equipped to provide reliable support for
transactive energy exchanges within local communities. Collectively, these studies underscore the
imperative for technical advances to be complemented by secure governance frameworks, thereby
facilitating trustworthy life cycle integration in smart microgrids. Additional perspectives from
studies on green building assessment using neural networks [124] and science-mapping reviews on
Al for sustainable buildings [31] reinforce the importance of knowledge structures and
interoperability in advancing life cycle-based governance.

4. Discussion

In this section, the author interprets the results presented in Section 3 by situating them within
a broader context of conceptual and methodological debates. The discussion emphasizes the
convergence of Al methods across different domains, the identification of the main research gaps,
and the potential for these insights to facilitate the development of integrated frameworks for
sustainable energy systems.

4.1. Integrative View on Al in TE, DEM, and Life-Cycle Perspectives

The existing literature, as reviewed in Section 3, demonstrates that artificial intelligence
contributes to smart local energy systems at multiple, interdependent levels. Rather than being
confined to isolated functions, Al applications can be grouped into a layered structure that links
perception and prediction, operational control, market coordination, and long-term sustainability.
This perspective is summarized in Figure 1, which illustrates the main layers and the information
flows that connect them.
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Sustainability & Life-Cycle Layer

Predictive LCA/LCC embedded in EMS
Retrofits & BIPV optimization
Community scale LCA/MCDM

CES resource loops & resilience

Sustainability constraints

Market & Coordination Layer
Multi-agent RL (MARL)
Game-theoretic transactional control

Bi-level optimization (fairness)
Blockchain integrated Al

Market-Control flexibility Long-term objectives

Decision & Control Layer

RL (methods: Q, DQN, PPO, DDPG, SAC)
MPC & hybrid MPC+ML

Physics-informed ML (PIML)
Metaheuristic-assisted EMS

Data / Information main flow

Price / tariff feedback

L Perception & Prediction Layer

Classical ML (SVM, RF, kNN, ELM)

DL (methods: LSTM, GRU, CNN, auto-encoders)
Edge / Federated Al

Digital Twin forecasting

Figure 1. Layered Al Framework for TE, DEM, and LCA/LCC.

As illustrated in Figure 1, the lower layers supply the data and predictions essential for higher-
level decision-making. Successive layers then translate this information into control actions, market
interactions and long-term planning. It is important to note that the framework is not purely
hierarchical; feedback loops are evident, for example when sustainability objectives impose
constraints on operational strategies, or when market signals influence the scope and accuracy of
prediction models. The bidirectional link between control and market layers is of particular
relevance, as it indicates that operational flexibility and trading mechanisms must evolve in parallel.
This is an area where existing studies remain fragmented. In a similar manner, the downward arrows
from sustainability to market and control emphasize the challenge of embedding long-term
objectives, such as resilience or life-cycle costs, into short-term optimization. These interactions
indicate the presence of research gaps and establish the foundation for the subsequent discussion in
Section 4.2, where methodological challenges and structural limitations are examined in greater
detail. In this manner, the layered perspective emphasizes the significance of integration: The
potential of Al in energy systems is not achieved through the utilization of individual algorithms;
rather, it is realized through the coordination of these algorithms across different functional horizons.
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4.2. Conceptual Gaps and Methodological Challenges

While Sections 3.2-3.5 documented substantial methodological progress in transactive energy,
dynamic energy management, and Al-enabled life-cycle integration, a closer synthesis reveals
recurring blind spots and unresolved challenges. These limitations are not confined to a single
research stream but emerge across multiple thematic areas, suggesting structural constraints in the
current research landscape. In order to provide a structured overview, the main gaps and challenges
identified in the reviewed literature are summarized in Table 5.

Table 5. Research gaps and methodological challenges in Al-driven TE, DEM, and LCA/LCC integration.

Observed Focus in

Area . Identified Gap / Challenge = Future Direction
Literature
Extend TE £ k
Weak coupling with grid xen TAEWOrEs
s with multi-horizon
. reliability, seasonal e
Short-term market clearing N optimization, Al-
. . variability,
Transactive (minutes—day-ahead), and lone-term investment enhanced

Energy (TE) MARL-based bidding, 5 resilience metrics,

decisions; resilience under
cyber-physical uncertainty
underexplored [39,40,52]

bilevel fairness models and integration

of environmental

objectives
ffc'alablhtil Iilrjd setiml:lﬂe . Development
¢ 102227 ((i)e o r;ﬁers:; V€% of standardized DEM
Dvnamic Ener RL-based demand response, in hetero zne?:)us real platforms combining
K/[am ementgy hybrid MPC for HVAC ‘foﬂ | robust
5 and microgrids, . RL/MPC hybrids
(DEM) systems largely missing; . .
edge-Al forecasts . o . with edge computing
interoperability with legacy
and safe RL
BMS .
formulations

limited [56-58,61,62]

. Move towards multi-
Fragmentation across

methods; lay?red
limited explainability and Al architectures
Strong innovation in RL, DL, P ty that integrate
Al trust; ;
. federated/edge Al . .. perception,
Methodologies . . lack of integration into
emerging DT applications lavered control, market,
, yered, and sustainability
interoperable frameworks with explainabilit
[36,41,62,64,76] p athabliilty
by-design
Embed predictive
Lack of dynamic, predictive LCA/LCC
LCA coupled to EMS; in EMS workflows;
. Surrogate models minimal integration with couple Al-based control
Life-Cycle . ; .

. for retrofit/BIPV, operational with
Integration . . . .
(LCA/LCO) conceptual links control; uncertainty embodied/operational

to community energy treatment impact models;
and data standardization improve

weak [26,109-112,114,118] interoperability
of data and signals

. Limited research Use CES as a frontier
Cross-domain s . s
(Buildings Building EMS well studied;  on transferability across testbed to stress-test Al
N
. '8 microgrids emerging; scales for resilience,
Microgrids — .
CES) CES nearly absent and domains; closed-loop resource
no holistic studies linking management,
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building-level Al with CES-  and long-horizon

like sustainability
survival-critical contexts
[1,55,72,75]
Advance privacy by-
design

Limited robustness against
adversarial attacks;
weak integration

Al in EMS/TE;

Early works on federated validate adversarial

Cybersecurity learning, of cvbersecurit robustness in pilots;
& Privacy blockchain, IDS for oy Y integrate Al-based
i . into control loops; . .
microgrids , . intrusion
privacy preserved mainly detection
in lab-scale pilots [52,82-85] .

with control
frameworks

The synthesis presented in Table 1 indicates a persistent focus on short-term optimization tasks
within studies, with long-term performance and sustainability objectives receiving limited
consideration. In the field of transactive energy, research has historically placed significant emphasis
on market-clearing efficiency and agent-based bidding. However, the extent to which distribution-
level reliability and environmental criteria are integrated remains limited. In the context of dynamic
energy management, the efficacy of RL and hybrid MPC has been demonstrated in simulation
studies. However, concerns regarding scalability, safe deployment, and interoperability with existing
building management systems persist. Advances in methodology are similarly dispersed; a variety
of Al methodologies — including deep learning, federated learning and digital twins — are utilized in
isolation, without the presence of a unifying framework that would facilitate the comparison of these
methodologies across a range of applications. Life-cycle integration is a particularly
underrepresented field, with only a few studies to date attempting to embed predictive LCA/LCC
into EMS workflows. It is widely acknowledged that cybersecurity and privacy-preserving
mechanisms are of paramount importance. However, their implementation remains confined to
laboratory-scale demonstrations, with inadequate validation under real-world conditions. These
observations indicate the necessity for research that moves beyond isolated algorithmic innovations
towards systemic approaches integrating operational intelligence, market coordination,
sustainability, and resilience.

4.3. Cross-Domain Insights: From Buildings to Microgrids to CES

The discussion of research gaps in Section 4.2 emphasized that many challenges — such as limited
scalability, weak integration of sustainability objectives, and fragmented methodological approaches
— are not confined to a single application area. However, as the scope of analysis is expanded to
encompass different domains, these characteristics become more evident. Building on these insights
and on the findings of Section 3, it becomes evident that Al methods evolve along a continuum that
spans building-level management, community-scale microgrids, and, as an emerging frontier CES.
As illustrated in Figure 2, the complexity of systems and the required time horizons increase in a
step-like manner when moving from operational building control, through community coordination,
to survival-critical environments.
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System complexity
(building/local - Microgrid/Community - CES/isolated)

-term forecasting

\ 4

Time horizon
(shortterm -- mediumterm -- long term)

Figure 2. Conceptual continuum of Al applications from buildings to microgrids and then CES, along increasing

system complexity and time horizons.

As presented in Figure 2, the building domain continues to be the most mature, with Al methods
predominantly employed for short-term operational tasks such as forecasting, comfort management,
and anomaly detection. At the microgrid or community level, these same approaches must be
adapted to coordinate heterogeneous actors and distributed resources, introducing additional
uncertainty and the need for negotiation mechanisms. Extending this logic to CES, however, results
in the escalation of challenges: It is imperative that Al is not only capable of managing energy, but
also integrating life-support and recycling functions, where reliability and resilience are critical. The
diagonal trajectory delineated in the figure serves to emphasize two key concepts: firstly, the
transferability of methods and, secondly, the progressive amplification of challenges. It is evident
that algorithms which are effective in controlled building environments are likely to confront issues
of scalability and robustness in communities. These issues assume an existential dimension in the
context of CES. This framing positions cross-domain transfer not simply as a matter of applying
existing tools in new settings, but as a research agenda that demands rethinking integration,
resilience, and long-term sustainability across scales.

4.4. Towards a Multi-Layered Al Framework for Sustainable Energy Systems

The synthesis of gaps in Section 4.2 highlighted that existing research on Al for energy systems
remains fragmented, with methodological advances often confined to isolated domains. In order to
address these limitations, the author of this review proposes a multi-layered framework that
integrates Al applications across four complementary layers: perception and prediction, control and
optimization, market coordination, and sustainability anchoring. The framework is not intended to
provide a static taxonomy, but rather to facilitate connections between current research trends and
emerging requirements. The value of this approach lies in the alignment of short-term operational
intelligence with long-term resilience, thereby establishing a connection between immediate
efficiency gains and sustainability objectives. The core components of this framework, along with
their links to current literature and proposed extensions, are outlined in Table 6.
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Table 6. Proposed multi-layered Al framework for sustainable energy systems, contrasting literature trends with

suggested extensions.

Proposed Extensions

L T in Li
ayer rends Observed in Literature (Framework Contribution)

Widespread use of ML/DL for short- Develop unified, scalable pipelines

t
. . erm. . combining edge/federated Al and
Perception forecasting (loads, prices, anomalies); diital twins for real-time. privacy-
& Prediction early adoption of edge and federated & . P y
preserving,
approaches;

d explainabl dicti
DT mostly at experimental stage and explamnable prediction

Ad bust RL/MP
RL and MPC-hybrids show strong vanee robus /MPC
potential formulations
th builtin safetv i 1
Control but remain validated mainly in with built-in safety, 1nterope'rab1 ity
... . . . standards, and deployment in real-
& Optimization simulations; limited safety guarantees world
and poor ilots at building and communit
interoperability with legacy BMS P & Y
scales
Establish integrated control-market
MARL, game-theoretic models, and architectures that embed fairness,
Market blockchain used in conceptual or lab- resilience, and transparency, enabling
& Coordination scale TE studies; DEM-TE coupling still deployment
fragmented in energy communities

and scalable TE platforms
Embed predictive LCA/LCC
in EMS workflows;
couple Al-based control
with embodied/operational
impact models;
improve interoperability
of data and signals

Very limited works
Sustainability embedding LCA/LCC into EMS;
& Life-Cycle mostly conceptual or surrogate models
without operational integration

As presented in Table 6, the framework is conceived as open and flexible, allowing for
adaptation as technologies, standards, and application domains evolve. The review's scope aligns
with its primary focus on energy microgrids, predominantly electrical in nature, and the constrained
infrastructures of building systems. Moreover, the objective is to stimulate a comprehensive scientific
and engineering discourse across diverse sectors. This includes contexts that are increasingly visible
in research and industry debates: crewed space missions and isolated space habitats, where Al must
manage energy together with life-support and recycling loops; as well as terrestrial islanded energy
networks that integrate dispersed renewable energy sources. By organizing Al contributions in this
manner, the framework underscores that building, community, and CES applications should be
viewed as interlinked rather than separate research tracks. For researchers, it identifies avenues for
exploration that have been under-explored, including predictive LCA integration and cross-layer
architectures. The text provides a comprehensive overview of the expectations for engineers and
practitioners, including robust control methods, transparent trading systems, and Al-enabled
sustainability assessment. It is evident that the framework offers a conceptual synthesis of the field
and a forward-looking agenda for sustainable energy systems.

The analyses presented in this section demonstrate that there has been substantial progress in
the field of AI for energy systems, however this progress is inconsistent and shows clear
opportunities for integration across functional layers and domains. The proposed multi-layered
framework and the cross-domain perspective provide a foundation for outlining future research and
practical directions, which are further elaborated in the concluding section.
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5. Conclusions

This review has examined the application of Al to TE, dynamic energy management, and life-
cycle—oriented approaches within smart local energy systems. The study analyzed 97 publications,
highlighting both methodological advances and persistent gaps. The results demonstrate that, while
forecasting, RL, and market-based coordination are becoming increasingly sophisticated in the
domains of building and microgrids [41,56], their integration with long-term sustainability objectives
remains limited [26,118].

The original contribution of this review lies in two perspectives. Firstly, a multi-layered Al
framework is proposed that integrates perception, control, market, and sustainability layers. This
addresses the fragmentation of current research and positions Al as a systemic enabler of sustainable
infrastructures. The framework is designed to be open and flexible, with the capacity to evolve in
response to new technologies, standards, and domains. Secondly, a cross-domain perspective is
introduced. Al methods that have been validated in buildings and microgrids have the potential to
inform critical CES, where energy must be co-managed with life-support and recycling loops [55].
Collectively, these contributions provide a roadmap for researchers and practitioners. The
aforementioned framework is also directly related to sustainable buildings and energy communities.
The buildings themselves constitute the entry point, where perception and prediction methods are
most established [56,61]. The control and optimization layer is extended to microgrids and
communities, where coordination among distributed assets becomes essential. The market layer
facilitates participation in transactive energy systems, ensuring fairness and transparency [39,52]. The
sustainability layer establishes a connection between both domains and life-cycle metrics, as well as
resilience. In this manner, the framework provides a foundation for the transition from intelligent
buildings to adaptive communities, and further to CES under extreme constraints.

On the basis of the results and analyses provided in this paper, it is suggested that future
research should be advanced in four directions. Methodologically, towards interoperable and
explainable Al stacks, the combination of edge and federated learning with robust RL and MPC
hybrids [62]. At the system level, there is a necessity for stronger integration of market and control,
especially in energy communities [39]. At the strategic level, the objective is to embed predictive LCA
and resilience into EMS workflows [114]. At the frontier, CES provide a testbed for Al under extreme
constraints, relevant to both space habitats and terrestrial islanded networks [72].

The subsequent stage of the framework's implementation should be its operationalization in
real-world pilots across buildings, communities, and CES. This will result in the transition of Al from
the stage of algorithmic innovation to its systematic implementation, thereby establishing a linkage
between short-term operational intelligence and long-term sustainability and resilience. The
realization of this vision necessitates a harmonized collaborative effort among research, industry and
policy domains. Moreover, it is crucial for the scientific community to encourage the advancement of
Al towards holistic frameworks that seamlessly integrate intelligence across various scales, domains
and temporal horizons.
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Abbreviations

The following abbreviations are used in this manuscript:

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic
AC Alternating Current

Al Artificial Intelligence

ANN Artificial Neural Network

BACS Building Automation and Control Systems
BIM Building Information Modelling
BIPV Building Integrated Photovoltaic
BMS Building Management System

CES Closed Ecological Systems

CNN Convolutional Neural Network

DC Direct Current

DDPG Deep Deterministic Policy Gradient
DEM Dynamic Energy Management
DERs Distributed Energy Resources

DL Deep Learning

DLT Distributed Ledger Technology

DRL Deep Reinforcement Learning

DSM Demand Side Management

DSO Distribution System Operator

DSR Demand Side Response

DT Digital Twin

ELM Extreme Learning Machine

EMS Energy Management Systems

EUI Energy Use Intensity

EV Electric Vehicle

FL Federated Learning

GA Genetic Algorithm

GRU Gated Recurrent Unit

HEMS Home Energy Management System
HGSOA Hybrid Gazelle and Seagull Optimization Algorithm
HVAC Heating, Ventilation, Air Condition
IDS Intrusion Detection System

IMRAD Introduction, Methods, Results and Discussion
IoT Internet of Things

kNN k-Nearest Neighbors

LCA Life Cycle Assessment

LCC Life Cycle Cost

LCSA Life Cycle Sustainability Assessment
LSTM Long-Short Term Memory

MARL Multiagent Reinforcement Learning
MBC Model Based Control

MCDM Multi-Criteria Decision-Making
MILP Mixed-Integer Linear Programming
ML Machine Learning

MOO Multi-Objective Optimization

MPC Model Predictive Control

NILM Non-Intrusive Load Monitoring
NMGs Networked Microgrids

pP2p Peer-to-peer

PIML Physics-Informed Machine Learning
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization

1Y% Photovoltaic

RES Renewable Energy Sources
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RF Random Forest

RL Reinforcement Learning

RNN Recurrent Neural Network

SVM Support Vector Machine

TE Transactive Energy

TESP Transactive Energy Simulation Platform
TRPO Trust Region Policy Optimization

WoS Web of Science

XAI Explainable Artificial Intelligence
References

1. Mutluri, R.B.; Saxena, D. A Comprehensive Overview and Future Prospectives of Networked Microgrids
for Emerging Power Systems. Smart Grids and Sustainable Energy 2024, 9, 45, doi:10.1007/s40866-024-00218-
0.

2. Arévalo, P.; Benavides, D.; Ochoa-Correa, D.; Rios, A.; Torres, D.; Villanueva-Machado, C.W. Smart
Microgrid Management and Optimization: A Systematic Review Towards the Proposal of Smart
Management Models. Algorithms 2025, 18, 429, doi:10.3390/a18070429.

3. Liu, X;; Zhao, T.; Deng, H.; Wang, P.; Liu, ].; Blaabjerg, F. Microgrid Energy Management with Energy
Storage Systems: A Review. CSEE Journal of Power and Energy Systems 2023, 9, 483-504,
doi:10.17775/CSEEJPES.2022.04290.

4. FElomari, Y.; Aspetakis, G.; Mateu, C.; Shobo, A.; Boer, D.; Marin-Genesca, M.; Wang, Q. A Hybrid Data-
Driven Co-Simulation Approach for Enhanced Integrations of Renewables and Thermal Storage in
Building District Energy Systems. Journal of Building Engineering 2025, 104, doi:10.1016/j.jobe.2025.112405.

5. Dhayalan, V.; Raman, R.; Kalaivani, N.; Shrirvastava, A.; Reddy, R.S.; Meenakshi, B. Smart Renewable
Energy Management Using Internet of Things and Reinforcement Learning. In Proceedings of the 2024 2nd
International Conference on Computer, Communication and Control (IC4); IEEE, February 8 2024; pp. 1-
5.

6.  Barbierato, L.; Salvatore Schiera, D.; Orlando, M.; Lanzini, A.; Pons, E.; Bottaccioli, L.; Patti, E. Facilitating
Smart Grids Integration Through a Hybrid Multi-Model Co-Simulation Framework. IEEE Access 2024, 12,
104878-104897, doi:10.1109/ACCESS.2024.3435336.

7. Khan, M.A,; Saleh, AM.; Waseem, M.; Sajjad, I.A. Artificial Intelligence Enabled Demand Response:
Prospects and Challenges in Smart Grid Environment. IEEE Access 2023, 11, 1477-1505,
doi:10.1109/ACCESS.2022.3231444.

8.  Al-Saadi, M.; Al-Greer, M.; Short, M. Reinforcement Learning-Based Intelligent Control Strategies for
Optimal Power Management in Advanced Power Distribution Systems: A Survey. Energies (Basel) 2023, 16,
1608, doi:10.3390/en16041608.

9. Caggiano, M.; Semeraro, C.; Abdelkareem, M.A.; Al-Alami, A.H.; Olabi, A.-G.; Dassisti, M. The Role of
Industry 5.0 in the Energy System: A Conceptual Framework. Energy Sources, Part A: Recovery, Utilization,
and Environmental Effects 2025, 47, 52-65, doi:10.1080/15567036.2025.2512991.

10. Rodrigues, S.D.; Garcia, V.J. Transactive Energy in Microgrid Communities: A Systematic Review.
Renewable and Sustainable Energy Reviews 2023, 171, 112999, doi:10.1016/j.rser.2022.112999.

11.  Chen, Y.; Yang, Y.; Xu, X. Towards Transactive Energy: An Analysis of Information-related Practical Issues.
Energy Conversion and Economics 2022, 3, 112-121, doi:10.1049/enc2.12057.

12.  Venayagamoorthy, G.K.; Sharma, R K.; Gautam, P.K.; Ahmadi, A. Dynamic Energy Management System
for a Smart Microgrid. IEEE Trans Neural Netw Learn Syst 2016, 27, 1643-1656,
doi:10.1109/TNNLS.2016.2514358.

13.  Arun, S.L; Selvan, M.P. Intelligent Residential Energy Management System for Dynamic Demand
Response in Smart Buildings. IEEE Syst | 2017, 1-12, doi:10.1109/JSYST.2017.2647759.

14. Sheng, R.; Mu, C,; Zhang, X.; Ding, Z.; Sun, C. Review of Home Energy Management Systems Based on
Deep Reinforcement Learning. In Proceedings of the Proceedings - 2023 38th Youth Academic Annual
Conference of Chinese Association of Automation, YAC 2023; Institute of Electrical and Electronics
Engineers Inc., 2023; pp. 1239-1244.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1438.v1

26 of 32

15. Ozadowicz, A. A New Concept of Active Demand Side Management for Energy Efficient Prosumer
Microgrids with Smart Building Technologies. Energies (Basel) 2017, 10, 1771, doi:10.3390/en10111771.

16. Shayeghi, H.; Shahryari, E.; Moradzadeh, M.; Siano, P. A Survey on Microgrid Energy Management
Considering Flexible Energy Sources. Energies (Basel) 2019, 12, 2156, doi:10.3390/en12112156.

17.  Afzal, M.; Huang, Q.; Amin, W.; Umer, K.; Raza, A.; Naeem, M. Blockchain Enabled Distributed Demand
Side Management in Community Energy System With Smart Homes. IEEE Access 2020, 8, 37428-37439,
doi:10.1109/ACCESS.2020.2975233.

18.  Amer, A.A.; Shaban, K,; Massoud, A.M. DRL-HEMS: Deep Reinforcement Learning Agent for Demand
Response in Home Energy Management Systems Considering Customers and Operators Perspectives.
IEEE Trans Smart Grid 2023, 14, 239-250, d0i:10.1109/TSG.2022.3198401.

19. Laton, D.; Grela, J.; Ozadowicz, A. Applications of Deep Reinforcement Learning for Home Energy
Management Systems: A Review. Energies (Basel) 2024, 17, 6420, doi:10.3390/en17246420.

20. Walczyk, G.; Ozadowicz, A. Moving Forward in Effective Deployment of the Smart Readiness Indicator
and the ISO 52120 Standard to Improve Energy Performance with Building Automation and Control
Systems. Energies (Basel) 2025, 18, 1241, d0i:10.3390/en18051241.

21. Samaras, P.; Stamatopoulos, E.; Arsenopoulos, A.; Sarmas, E.; Marinakis, E. Readiness to Adopt the Smart
Readiness Indicator Scheme Across Europe: A Multi-Criteria Decision Analysis Approach. In Proceedings
of the 2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv); IEEE, June
12 2024; pp. 268-273.

22. Calotd, R.; Bode, F.; Souliotis, M.; Croitoru, C.; Fokaides, P.A. Bridging the Gap: Discrepancies in Energy
Efficiency and Smart Readiness of Buildings. Energy Reports 2024, 12, 58865898,
doi:10.1016/j.egyr.2024.11.060.

23. Siddique, M.T.; Koukaras, P.; loannidis, D.; Tjortjis, C. SmartBuild RecSys: A Recommendation System
Based on the Smart Readiness Indicator for Energy Efficiency in Buildings. Algorithms 2023, 16,
d0i:10.3390/a16100482.

24. Miarzinger, T.; Osterreicher, D. Supporting the Smart Readiness Indicator— A Methodology to Integrate A
Quantitative Assessment of the Load Shifting Potential of Smart Buildings. Energies (Basel) 2019, 12, 1955,
d0i:10.3390/en12101955.

25. Lehmann, M.; Andreas, J.; Mai, T.L.; Kabitzsch, K. Towards a Comprehensive Life Cycle Approach of
Building Automation Systems. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial
Electronics (ISIE); IEEE, June 2017; pp. 1541-1547.

26. Zheng, L.; Yan, X. A Review of Buildings Dynamic Life Cycle Studies by Bibliometric Methods. Energy
Build 2025, 332, 115453, doi:10.1016/j.enbuild.2025.115453.

27. Vakalis, D.; Hellwig, R.T.; Schweiker, M.; Gauthier, S. Challenges and Opportunities of Internet-of-Things
in Occupant-Centric Building Operations: Towards a Life Cycle Assessment Framework. Curr Opin Environ
Sustain 2023, 65, 101383, doi:https://doi.org/10.1016/j.cosust.2023.101383.

28. Yavan, F.; Maalek, R.; Togan, V. Structural Optimization of Trusses in Building Information Modeling
(BIM) Projects Using Visual Programming, Evolutionary Algorithms, and Life Cycle Assessment (LCA)
Tools. Buildings 2024, 14, 1532, doi:10.3390/buildings14061532.

29. Rezaei, A.; Samadzadegan, B.; Rasoulian, H.; Ranjbar, S.; Abolhassani, S.S.; Sanei, A.; Eicker, U. A New
Modeling Approach for Low-Carbon District Energy System Planning. Energies (Basel) 2021, 14,
doi:10.3390/en14051383.

30. Chatzikonstantinidis, K.; Giama, E.; Fokaides, P.A.; Papadopoulos, A.M. Smart Readiness Indicator (SRI)
as a Decision-Making Tool for Low Carbon Buildings. Energies (Basel) 2024, 17, 1406,
doi:10.3390/en17061406.

31. Li, Y.; Antwi-Afari, M.F.; Anwer, S.; Mehmood, I.; Umer, W.; Mohandes, S.R.; Wuni, I.Y.; Abdul-Rahman,
M.; Li, H. Artificial Intelligence in Net-Zero Carbon Emissions for Sustainable Building Projects: A
Systematic ~ Literature = and  Science  Mapping  Review. Buildings 2024, 14, 2752,
doi:10.3390/buildings14092752.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1438.v1

27 of 32

32. Bazmohammadi, N.; Madary, A.; Vasquez, J.C.; Guerrero, ].M. New Horizons for Control and Energy
Management of Closed Ecological Systems: Insights and Future Trends. IEEE Industrial Electronics Magazine
2025, 19, 17-29, doi:10.1109/MIE.2024.3437341.

33. Ciurans, C.; Bazmohammadi, N.; Vasquez, J.C.; Dussap, G.; Guerrero, ].M.; Godia, F. Hierarchical Control
of Space Closed Ecosystems: Expanding Microgrid Concepts to Bioastronautics. IEEE Industrial Electronics
Magazine 2021, 15, 16-27, d0i:10.1109/MIE.2020.3026828.

34. Vermeulen, A.C.J.; Papic, A.; Nikolic, I; Brazier, F. Stoichiometric Model of a Fully Closed Bioregenerative
Life Support System for Autonomous Long-Duration Space Missions. Frontiers in Astronomy and Space
Sciences 2023, 10, doi:10.3389/fspas.2023.1198689.

35. Ozadowicz, A. Modeling and Simulation Tools for Smart Local Energy Systems: A Review with a Focus on
Emerging Closed Ecological Systems’ Application. Applied Sciences 2025, 15, 9219, d0i:10.3390/app15169219.

36. Arwa, E.O,; Folly, K.A. Reinforcement Learning Techniques for Optimal Power Control in Grid-Connected
Microgrids: A Comprehensive Review. IEEE Access 2020, 8, 208992-209007,
doi:10.1109/ACCESS.2020.3038735.

37. Zhou, X,;; Du, H; Xue, S.; Ma, Z. Recent Advances in Data Mining and Machine Learning for Enhanced
Building Energy Management. Energy 2024, 307, 132636, doi:10.1016/j.energy.2024.132636.

38. Liu, B.; Akcakaya, M.; Mcdermott, T.E. Automated Control of Transactive HVACs in Energy Distribution
Systems. IEEE Trans Smart Grid 2021, 12, 2462-2471, doi:10.1109/TSG.2020.3042498.

39. Gholizadeh, N.; Abedi, M.; Nafisi, H.; Marzband, M.; Loni, A.; Putrus, G.A. Fair-Optimal Bilevel
Transactive Energy Management for Community of Microgrids. IEEE Syst | 2022, 16, 2125-2135,
doi:10.1109/JSYST.2021.3066423.

40. Sharma, S.; Battula, S.; Singh, S.N. Transactive Electric Vehicle Agent: A Deep Reinforcement Learning
Approach. In Proceedings of the 2024 IEEE Power & Energy Society General Meeting (PESGM); IEEE, July
21 2024; pp. 1-5.

41. Lv, L; Wu, Z; Zhang, L.; Gupta, B.B.; Tian, Z. An Edge-Al Based Forecasting Approach for Improving
Smart Microgrid Efficiency. IEEE Trans Industr Inform 2022, 18, 7946-7954, doi:10.1109/T11.2022.3163137.

42. Bayer, D.R;; Haag, F.; Pruckner, M.; Hopf, K. Electricity Demand Forecasting in Future Grid States: A
Digital Twin-Based Simulation Study. In Proceedings of the 2024 9th International Conference on Smart
and Sustainable Technologies (SpliTech); IEEE, June 25 2024; pp. 1-6.

43. Park, S.; Cho, K.; Choi, M. A Sustainability Evaluation of Buildings: A Review on Sustainability Factors to
Move towards a Greener City Environment. Buildings 2024, 14, 446, doi:10.3390/buildings14020446.

44. Zhang, L.; Guo, J; Lin, P.; Tiong, R.L.K. Detecting Energy Consumption Anomalies with Dynamic
Adaptive Encoder-Decoder Deep Learning Networks. Renewable and Sustainable Energy Reviews 2025, 207,
114975, doi:10.1016/j.rser.2024.114975.

45. Yang, Y.; Duan, Q.; Samadi, F. A Systematic Review of Building Energy Performance Forecasting
Approaches. Renewable and Sustainable Energy Reviews 2025, 223, 116061, doi:10.1016/j.rser.2025.116061.

46. Amasyali, K.; Chen, Y.; Olama, M. A Data-Driven, Distributed Game-Theoretic Transactional Control
Approach  for Hierarchical Demand Response. I[EEE  Access 2022, 10, 72279-72289,
doi:10.1109/ACCESS.2022.3188642.

47. Zhou, Y.; Wu, J.; Long, C.; Cheng, M.; Zhang, C. Performance Evaluation of Peer-to-Peer Energy Sharing
Models. Energy Procedia 2017, 143, 817-822, doi:10.1016/j.egypro.2017.12.768.

48. Yu, D.; Brookson, A.; Fung, A.S.; Raahemifar, K.; Mohammadi, F. Transactive Control of a Residential
Community with Solar Photovoltaic and Battery Storage Systems. IOP Conf Ser Earth Environ Sci 2019, 238,
012051, doi:10.1088/1755-1315/238/1/012051.

49. Liu, B.; Akcakaya, M.; McDermott, T.E. Reduced Order Model of Transactive Bidding Loads. IEEE Trans
Smart Grid 2022, 13, 667-677, doi:10.1109/TSG.2021.3112510.

50. Sun, H,;Liu, N.; Tan, L.; Han, J. Data-driven Energy Sharing for Multi-microgrids with Building Prosumers:
A Hybrid Learning Approach. IET Renewable Power Generation 2025, 19, doi:10.1049/rpg2.12821.

51. Du, Y.; Mendes, N.; Rasouli, S.; Mohammadi, ].; Moura, P. Federated Learning Assisted Distributed Energy
Optimization. IET Renewable Power Generation 2024, 18, 2524-2538, d0i:10.1049/rpg2.13101.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1438.v1

28 of 32

52. Zhang, Y.; Krishnan, V.V.G,; Pj, J.; Kaur, K,; Srivastava, A.; Hahn, A.; Suresh, S. Cyber Physical Security
Analytics for Transactive Energy Systems. IEEE Trans Smart Grid 2020, 11, 931-941,
doi:10.1109/TSG.2019.2928168.

53. Shakir, M.; Biletskiy, Y. Smart Microgrid Architecture For Home Energy Management System. In
Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE); IEEE, October 10 2021;
pp. 808-813.

54. Nammouchi, A.; Aupke, P.; Kassler, A.; Theocharis, A.; Raffa, V.; Felice, M. Di Integration of Al IoT and
Edge-Computing for Smart Microgrid Energy Management. In Proceedings of the 2021 IEEE International
Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power
Systems Europe (EEEIC / 1&CPS Europe); IEEE, September 7 2021; pp. 1-6.

55. Nagarsheth, S.; Agbossou, K.; Henao, N.; Bendouma, M. The Advancements in Agricultural Greenhouse
Technologies: An Energy Management Perspective. Sustainability 2025, 17, 3407, doi:10.3390/su17083407.

56. Igbal, S.; Mehran, K. Reinforcement Learning Based Optimal Energy Management of A Microgrid. In
Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE); IEEE, October 9 2022;
pp- 1-8.

57. Dridi, A.; Boucetta, C.; Moungla, H.; Afifi, H. Deep Recurrent Learning versus Q-Learning for Energy
Management Systems in Next Generation Network. In Proceedings of the 2021 IEEE Global
Communications Conference (GLOBECOM); IEEE, December 2021; pp. 1-6.

58. Darshi, R.; Shamaghdari, S.; Jalali, A.; Arasteh, H. Decentralized Energy Management System for Smart
Microgrids Using Reinforcement Learning. IET Generation, Transmission & Distribution 2023, 17, 2142-2155,
doi:10.1049/gtd2.12796.

59. Sadrian Zadeh, D.; Moshiri, B.; Abedini, M.; Guerrero, ].M. Supervised Learning for More Accurate State
Estimation Fusion in IoT-Based Power Systems. Information Fusion 2023, 96, 1-15,
doi:10.1016/j.inffus.2023.03.001.

60. Peiris, V.; Awagan, G.; Jiang, J. A Machine Learning Approach for the Identification of Photovoltaic and
Electric Vehicle Profiles in a Smart Local Energy System. In Proceedings of the 2024 59th International
Universities Power Engineering Conference (UPEC); IEEE, September 2 2024; pp. 1-6.

61. Chen, W.-H.; Yang, S.; You, F. Thermal Comfort Control on Sustainable Building via Data-Driven Robust
Model Predictive Control. In Proceedings of the 2023 American Control Conference (ACC); IEEE, May 31
2023; pp. 591-596.

62. Renganayagalu, S.K.; Bodal, T.; Bryntesen, T.-R.; Kvalvik, P. Optimising Energy Performance of Buildings
through Digital Twins and Machine Learning: Lessons Learnt and Future Directions. In Proceedings of the
2024 4th International Conference on Applied Artificial Intelligence (ICAPAI); IEEE, April 16 2024; pp. 1-
6.

63. Aruta, G.; Ascione, F.; Bianco, N.; Mauro, G.M.; Vanoli, G.P. Optimizing Heating Operation via GA- and
ANN-Based Model Predictive Control: Concept for a Real Nearly-Zero Energy Building. Energy Build 2023,
292, 113139, doi:10.1016/j.enbuild.2023.113139.

64. Ma, Z,; Jiang, G.; Hu, Y.; Chen, ]. A Review of Physics-Informed Machine Learning for Building Energy
Modeling. Appl Energy 2025, 381, 125169, doi:10.1016/j.apenergy.2024.125169.

65. Qi, Z.; Zhou, N.; Feng, X.; Abdolhosseinzadeh, S. Optimizing Space Heating Efficiency in Sustainable
Building Design a Multi Criteria Decision Making Approach with Model Predictive Control. Sci Rep 2025,
15, 27743, d0i:10.1038/s41598-025-13325-4.

66. Lee, D.; Ooka, R.; Ikeda, S.; Choi, W.; Kwak, Y. Model Predictive Control of Building Energy Systems with
Thermal Energy Storage in Response to Occupancy Variations and Time-Variant Electricity Prices. Energy
Build 2020, 225, 110291, doi:10.1016/j.enbuild.2020.110291.

67. Du, Y.; Zhou, Z.; Zhao, ]. Multi-Regional Building Energy Efficiency Intelligent Regulation Strategy Based
on Multi-Objective Optimization and Model Predictive Control. | Clean Prod 2022, 349, 131264,
doi:10.1016/j.jclepro.2022.131264.

68. Carli, R;; Cavone, G.; Dotoli, M.; Epicoco, N.; Scarabaggio, P. Model Predictive Control for Thermal
Comfort Optimization in Building Energy Management Systems. In Proceedings of the 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC); IEEE, October 2019; pp. 2608-2613.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1438.v1

29 of 32

69. Yang, S.; Chen, W.; Wan, M.P. A Machine-Learning-Based Event-Triggered Model Predictive Control for
Building Energy Management. Build Environ 2023, 233, 110101, doi:10.1016/j.buildenv.2023.110101.

70. Sanchez-Zabala, V.F.; Gomez-Acebo, T. Building Energy Performance Metamodels for District Energy
Management Optimisation Platforms. Enerqy Conversion and Management: X 2024, 21, 100512,
doi:10.1016/j.ecmx.2023.100512.

71. Fernandez, F.]J.V.; Segura Manzano, F.; Anddjar Méarquez, ].M.; Calderéon Godoy, A.J. Extended Model
Predictive Controller to Develop Energy Management Systems in Renewable Source-Based Smart
Microgrids with Hydrogen as Backup. Theoretical Foundation and Case Study. Sustainability 2020, 12, 8969,
d0i:10.3390/su12218969.

72. Liu, J.; Chen, J. Applications and Trends of Machine Learning in Building Energy Optimization: A
Bibliometric Analysis. Buildings 2025, 15, 994, doi:10.3390/buildings15070994.

73. Hu, S;; Wang, P.; Hoare, C.; O'Donnell, J. Building Occupancy Detection and Localization Using CCTV
Camera and Deep Learning. IEEE Internet Things | 2023, 10, 597-608, doi:10.1109/JI0T.2022.3201877.

74. Challa, K;; AlHmoud, ILW.; Kamrul Islam, A K.M.; Graves, C.A.; Gokaraju, B. Comprehensive Energy
Efficiency Analysis in Buildings Using Drone Thermal Imagery, Real-Time Indoor Monitoring, and Deep
Learning Techniques. IEEE Access 2025, 13, 65094-65104, doi:10.1109/ACCESS.2025.3557804.

75.  Almadhor, A.; Alsubai, S.; Kryvinska, N.; Ghazouani, N.; Bouallegue, B.; Al Hejaili, A.; Sampedro, G.A. A
Synergistic Approach Using Digital Twins and Statistical Machine Learning for Intelligent Residential
Energy Modelling. Sci Rep 2025, 15, 26088, d0i:10.1038/s41598-025-09760-y.

76. Tahmasebinia, F.; Lin, L.; Wu, S.; Kang, Y.; Sepasgozar, S. Exploring the Benefits and Limitations of Digital
Twin Technology in Building Energy. Applied Sciences 2023, 13, 8814, d0i:10.3390/app13158814.

77. Zhou, L.; Zhou, Y.; Yi, Z; Shi, D.; Huang, Z. Optimizing Grid Services: A Deep Deterministic Policy
Gradient Approach for Demand-Side Resource Aggregation. In Proceedings of the 2024 IEEE PES
Innovative Smart Grid Technologies Europe (ISGT EUROPE); IEEE, October 14 2024; pp. 1-5.

78. Dridi, A.; Afifi, H.; Moungla, H.; Badosa, J]. A Novel Deep Reinforcement Approach for IIoT Microgrid
Energy Management Systems. IEEE Transactions on Green Communications and Networking 2022, 6, 148-159,
do0i:10.1109/TGCN.2021.3112043.

79. Zhou, H.; Aral, A,; Brandic, I.; Erol-Kantarci, M. Multiagent Bayesian Deep Reinforcement Learning for
Microgrid Energy Management Under Communication Failures. IEEE Internet Things | 2022, 9, 11685
11698, doi:10.1109/JI0T.2021.3131719.

80. Wang, R.; Yun, H,; Rayhana, R.; Bin, J.; Zhang, C.; Herrera, O.E.; Liu, Z.; Mérida, W. An Adaptive Federated
Learning System for Community Building Energy Load Forecasting and Anomaly Prediction. Energy Build
2023, 295, 113215, doi:10.1016/j.enbuild.2023.113215.

81. Gharehveran, S.S.; Shirini, K.; Khavar, S.C.; Mousavi, S.H.; Abdolahi, A. Deep Learning-Based Demand
Response for Short-Term Operation of Renewable-Based Microgrids. | Supercomput 2024, 80, 26002-26035,
doi:10.1007/s11227-024-06407-z.

82. Sadri, H. Al-Driven Integration of Digital Twins and Blockchain for Smart Building Management Systems:
A Multi-Stage  Empirical Study. Journal of Building Engineering 2025, 105, 112439,
doi:10.1016/j.jobe.2025.112439.

83. Um-e-Habiba; Ahmed, I; Asif, M.; Alhelou, H.H.; Khalid, M. A Review on Enhancing Energy Efficiency
and Adaptability through System Integration for Smart Buildings. Journal of Building Engineering 2024, 89,
109354, doi:10.1016/j.jobe.2024.109354.

84. Tooki, O.0.; Popoola, O.M. A Critical Review on Intelligent-Based Techniques for Detection and Mitigation
of Cyberthreats and Cascaded Failures in Cyber-Physical Power Systems. Renewable Energy Focus 2024, 51,
100628, doi:10.1016/j.ref.2024.100628.

85. Tahir, B.; Jolfaei, A.; Tariq, M. Experience-Driven Attack Design and Federated-Learning-Based Intrusion
Detection in Industry 4.0. IEEE Trans Industr Inform 2022, 18, 6398-6405, doi:10.1109/T11.2021.3133384.

86. Thulasiraman, P.; Hackett, M.; Musgrave, P.; Edmond, A.; Seville, ]. Anomaly Detection in a Smart
Microgrid System Using Cyber-Analytics: A Case Study. Energies (Basel) 2023, 16, 7151,
d0i:10.3390/en16207151.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1438.v1

30 of 32

87. Manbachi, M.; Hammami, M. Virtualized Experiential Learning Platform (VELP) for Smart Grids and
Operational Technology Cybersecurity. In Proceedings of the 2022 IEEE 2nd International Conference on
Intelligent Reality (ICIR); IEEE, December 2022; pp. 54-57.

88. Manbachi, M.; Nayak, J.;, Hammami, M.; Bucio, A.G. Virtualized Experiential Learning Platform for
Substation Automation and Industrial Control Cybersecurity. In Proceedings of the 2022 IEEE Electrical
Power and Energy Conference (EPEC); IEEE, December 5 2022; pp. 61-66.

89. Kadechkar, A.; Grigoryan, H. FMEA 2.0: Machine Learning Applications in Smart Microgrid Risk
Assessment. In Proceedings of the 2024 12th International Conference on Smart Grid (icSmartGrid); IEEE,
May 27 2024; pp. 629-635.

90. Amir, M.; Zaheeruddin; Haque, A.; Kurukuru, V.S.B.; Bakhsh, F.I.; Ahmad, A. Agent Based Online
Learning Approach for Power Flow Control of Electric Vehicle Fast Charging Station Integrated with Smart
Microgrid. IET Renewable Power Generation 2025, 19, doi:10.1049/rpg2.12508.

91. Singh, K.C.; Baskaran, S.; Marimuthu, P. Cost Analysis Using Hybrid Gazelle and Seagull Optimization for
Home Energy Management System. Electrical Engineering 2025, 107, 1441-1462, doi:10.1007/s00202-024-
02585-4.

92. Lu, Y.;Hao, N,; Li, X.; Alshahrani, M.Y. Al-Enabled Sports-System Peer-to-Peer Energy Exchange Network
for Remote Areas in the Digital Economy. Heliyon 2024, 10, €35890, doi:10.1016/j.heliyon.2024.e35890.

93. Wenninger, S.; Wiethe, C. Benchmarking Energy Quantification Methods to Predict Heating Energy
Performance of Residential Buildings in Germany. Business & Information Systems Engineering 2021, 63, 223~
242, d0i:10.1007/s12599-021-00691-2.

94. Yuan, X,; Han, P.; Duan, Y.; Alden, R.E.; Rallabandi, V; Ionel, D.M. Residential Electrical Load Monitoring
and Modeling — State of the Art and Future Trends for Smart Homes and Grids. Electric Power Components
and Systems 2020, 48, 1125-1143, do0i:10.1080/15325008.2020.1834019.

95. Deng, H.; Fannon, D.; Eckelman, M.]. Predictive Modeling for US Commercial Building Energy Use: A
Comparison of Existing Statistical and Machine Learning Algorithms Using CBECS Microdata. Energy
Build 2018, 163, 34-43, doi:10.1016/j.enbuild.2017.12.031.

96. Kim, Y.; Ahn, K,; Park, C. Issues of Application of Machine Learning Models for Virtual and Real-Life
Buildings. Sustainability 2016, 8, 543, doi:10.3390/su8060543.

97. Papadopoulos, S.; Kontokosta, C.E. Grading Buildings on Energy Performance Using City Benchmarking
Data. Appl Energy 2019, 233-234, 244-253, doi:10.1016/j.apenergy.2018.10.053.

98. Wang, J. A Hybrid Deep Learning and Clonal Selection Algorithm-Based Model for Commercial Building
Energy Consumption Prediction. Sci Prog 2024, 107, doi:10.1177/00368504241283360.

99. Liu, J; Zhang, Q.; Dong, Z; Li, X,; Li, G.; Xie, Y.; Li, K. Quantitative Evaluation of the Building Energy
Performance Based on  Short-Term Energy Predictions. Enerqy 2021, 223, 120065,
doi:10.1016/j.energy.2021.120065.

100. Srividhya, J.P.; Prabha, K.E.L.; Jaisiva, S.; Rajan, C.S.G. Power Quality Enhancement in Smart Microgrid
System Using Convolutional Neural Network Integrated with Interline Power Flow Controller. Electrical
Engineering 2024, 106, 6773-6796, d0i:10.1007/s00202-024-02399-4.

101. Yang, L.; Nagy, Z.; Goffin, P.; Schlueter, A. Reinforcement Learning for Optimal Control of Low Exergy
Buildings. Appl Energy 2015, 156, 577-586, d0i:10.1016/j.apenergy.2015.07.050.

102. Li, Y.; O'Neill, Z. An Innovative Fault Impact Analysis Framework for Enhancing Building Operations.
Energy Build 2019, 199, 311-331, doi:10.1016/j.enbuild.2019.07.011.

103. Rosa, A.C.; Mateu, C.; Haddad, A.; Boer, D. Data-Augmented Deep Learning Models for Assessing
Thermal Performance in Sustainable Building Materials. Journal of Sustainable Development of Energy, Water
and Environment Systems 2025, 13, 1-12, d0i:10.13044/j.sdewes.d13.0591.

104. Yang, J.; Xia, B. Application of Machine Learning Algorithms Based on Active Learning Strategies and
Interpretable Models for HVAC System Energy Consumption Prediction. Engineering Reports 2025, 7,
doi:10.1002/eng2.70255.

105. Hong, T.; Chen, C; Wang, Z.; Xu, X. Linking Human-Building Interactions in Shared Offices with
Personality Traits. Build Environ 2020, 170, 106602, doi:10.1016/j.buildenv.2019.106602.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1438.v1

31 of 32

106. Liu, H; Wu, Y,; Liu, W.; Xue, T.; Xu, J. A New Synthesized Framework of Artificial Neural Network-Based
Sensitivity Analysis for Building Energy Performance: A Case Study of Shanghai, China. Build Environ
2025, 283, 113290, doi:10.1016/j.buildenv.2025.113290.

107. Hemmatabady, H.; Welsch, B.; Formhals, J.; Sass, I. Al-Based Enviro-Economic Optimization of Solar-
Coupled and Standalone Geothermal Systems for Heating and Cooling. Appl Energy 2022, 311, 118652,
doi:10.1016/j.apenergy.2022.118652.

108. Alnaser, A.A.; Maxi, M.; Elmousalami, H. Al-Powered Digital Twins and Internet of Things for Smart Cities
and Sustainable Building Environment. Applied Sciences 2024, 14, 12056, doi:10.3390/app142412056.

109. Sharif, S.A.; Hammad, A. Developing Surrogate ANN for Selecting Near-Optimal Building Energy
Renovation Methods Considering Energy Consumption, LCC and LCA. Journal of Building Engineering
2019, 25, 100790, doi:10.1016/j.jobe.2019.100790.

110. Amini Toosi, H.; Del Pero, C.; Leonforte, F.; Lavagna, M.; Aste, N. Machine Learning for Performance
Prediction in Smart Buildings: Photovoltaic Self-Consumption and Life Cycle Cost Optimization. Appl
Energy 2023, 334, 120648, doi:10.1016/j.apenergy.2023.120648.

111. Yue, N.; Li, L.; Xu, C. Multi-Objective Optimization of a Hybrid PVT Assisted Ground Source and Air
Source Heat Pump System for Large Space Buildings Using Transient Metamodel. Energy 2025, 328, 136473,
doi:10.1016/j.energy.2025.136473.

112. Elomari, Y.; Mateu, C.; Marin-Genesca, M.; Boer, D. A Data-Driven Framework for Designing a Renewable
Energy Community Based on the Integration of Machine Learning Model with Life Cycle Assessment and
Life Cycle Cost Parameters. Appl Energy 2024, 358, 122619, doi:10.1016/j.apenergy.2024.122619.

113. Abokersh, M.H.; Vallés, M.; Cabeza, L.F.; Boer, D. A Framework for the Optimal Integration of Solar
Assisted District Heating in Different Urban Sized Communities: A Robust Machine Learning Approach
Incorporating Global Sensitivity Analysis. Appl Energy 2020, 267, 114903,
doi:10.1016/j.apenergy.2020.114903.

114. Liu, P.; Tennesen, J.; Caetano, L.; Bergsdal, H.; Justo Alonso, M.; Kind, R.; Georges, L.; Mathisen, H.M.
Optimizing Ventilation Systems Considering Operational and Embodied Emissions with Life Cycle Based
Method. Energy Build 2024, 325, 115040, doi:10.1016/j.enbuild.2024.115040.

115. Liu, Y.; Wang, W.; Huang, Y. Prediction and Optimization Analysis of the Performance of an Office
Building in an Extremely Hot and Cold Region. Sustainability 2024, 16, 4268, doi:10.3390/su16104268.

116. Sharif, S.A.; Hammad, A.; Eshraghi, P. Generation of Whole Building Renovation Scenarios Using
Variational Autoencoders. Energy Build 2021, 230, 110520, doi:10.1016/j.enbuild.2020.110520.

117. Tharushi Imalka, S.; Yang, R.J.; Zhao, Y. Machine Learning Driven Building Integrated Photovoltaic (BIPV)
Envelope Design Optimization. Energy Build 2024, 324, 114882, doi:10.1016/j.enbuild.2024.114882.

118. Li, Q.; Yang, G,; Bian, C.; Long, L.; Wang, X.; Gao, C.; Wong, C.L.; Huang, Y.; Zhao, B.; Chen, X; et al.
Autonomous Design Framework for Deploying Building Integrated Photovoltaics. Appl Energy 2025, 377,
124760, doi:10.1016/j.apenergy.2024.124760.

119. Vlasenko, T.; Hutsol, T.; Vlasovets, V.; Glowacki, S.; Nurek, T.; Horetska, I.; Kukharets, S.; Firman, Y.;
Bilovod, O. Ensemble Learning Based Sustainable Approach to Rebuilding Metal Structures Prediction. Sci
Rep 2025, 15, 1210, doi:10.1038/s41598-024-84996-8.

120. Abokersh, M.H.; Gangwar, S.; Spiekman, M.; Valles, M.; Jiménez, L.; Boer, D. Sustainability Insights on
Emerging Solar District Heating Technologies to Boost the Nearly Zero Energy Building Concept. Renew
Energy 2021, 180, 893-913, doi:10.1016/j.renene.2021.08.091.

121. Anyanya, D.; Paulillo, A.; Fiorini, S.; Lettieri, P. Evaluating Sustainable Building Assessment Systems: A
Comparative Analysis of GBRS and WBLCA. Front Built Environ 2025, 11, doi:10.3389/fbuil.2025.1550733.

122. Danso, A.K,; Edwards, D.J.; Adjei, E.K.; Adjei-Kumi, T.; Owusu-Manu, D.-G.; Fianoo, S.I.; Thwala, W.D.
Analysis of the Underlying Factors Affecting BIM-LCA Integration in the Ghanaian Construction Industry:
A Factor Analysis Approach. Construction Innovation 2024, doi:10.1108/CI-05-2024-0147.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 September 2025 d0i:10.20944/preprints202509.1438.v1

32 of 32

123. Sun, X.; Zhang, D.; Qin, H.; Tang, J. Bridging the Last-Mile Gap in Network Security via Generating
Intrusion-Specific Detection Patterns through Machine Learning. Security and Communication Networks
2022, 2022, 1-20, doi:10.1155/2022/3990386.

124. Huang, Y. The Technological Assessment of Green Buildings Using Artificial Neural Networks. Heliyon
2024, 10, e36400, doi:10.1016/j.heliyon.2024.e36400.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/

