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Abstract 

The transition towards sustainable and low-carbon energy systems highlights the crucial role of 
buildings, microgrids, and local communities as pivotal actors in enhancing resilience and achieving 
decarbonization targets. The application of artificial intelligence (AI) is of paramount importance, as 
it enables accurate prediction, adaptive control, and optimization of distributed resources. This 
review surveys recent advances in AI applications for transactive energy (TE) and dynamic energy 
management (DEM), emphasizing their integration with building automation, microgrid 
coordination, and community energy exchanges. It also considers the emerging role of life cycle–
based methods, such as life cycle assessment (LCA) and life cycle cost (LCC), in extending operational 
intelligence to long-term environmental and economic objectives. The analysis is grounded in a 
curated set of 97 publications identified through structured queries and thematic filtering. The 
findings indicate substantial advancement in methodological approaches, notably reinforcement 
learning (RL), hybrid model predictive control, federated and edge AI, and digital twin applications. 
However, the study also uncovers shortcomings in sustainability integration and interoperability. 
The paper contributes by consolidating fragmented research and proposing a multi-layered AI 
framework that aligns short-term performance with long-term resilience and sustainability.  

Keywords: transactive energy; artificial intelligence; reinforcement learning; demand side 
management; energy efficiency; microgrid; energy communities; energy management 
 

1. Introduction 

The accelerating transition towards sustainable and resilient energy systems is profoundly 
reshaping the design and operation of buildings, communities and distributed infrastructures. In the 
context of the ongoing transformations within the energy sector, particularly with regard to power 
grids, the significance of local microgrids is increasing [1,2]. This phenomenon can be primarily 
attributed to the increasing adoption of renewable energy sources (RES), particularly their integration 
within the infrastructure of residential properties, commercial buildings, building complexes, and 
local communities. Recent advancements in distributed renewable generation, energy storage, and 
digital infrastructures present significant opportunities to enhance efficiency, flexibility, and 
resilience [3,4]. Concurrently, these advancements introduce unprecedented complexities, thereby 
necessitating intelligent coordination across diverse spatial scales. In consequence, advanced control 
methodologies and algorithms have become increasingly significant in the organization of energy 
systems and their efficient utilization [5,6]. Therefore, the advent of Artificial intelligence (AI) has 
been identified as a pivotal catalyst for this transformation, providing data-driven instruments for 
forecasting, optimization, and adaptive decision-making that extend from individual devices to 
entire energy communities [7,8]. This progress results from the emergence of dynamic energy 
management procedures in recent years, as well as the increased involvement of prosumers 
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(individuals and communities) in transactive processes. These procedures require effective, dynamic 
responses to changes in tariffs, as well as demand and supply levels in local microgrids and the 
external energy supply system. 

In this context, two complementary paradigms have gained particular prominence. The first is 
transactive energy (TE), which facilitates decentralized, market-based coordination, thereby enabling 
prosumers and microgrids to trade energy and services according to dynamic value signals [9–11]. 
The second is dynamic energy management (DEM), which focuses on real-time optimization of 
distributed resources, combining forecasting, control algorithms, and reinforcement learning for 
adaptive coordination. Recent advancements in automation and communication technologies have 
served to reinforce both of these paradigms [12–14]. However, a significant proportion of research in 
this field continues to priorities short-term operational objectives over long-term sustainability. In 
this area, the author has analyzed development directions and identified new organizational 
concepts for prosumer microgrids, in the context of the ability to support demand-side management 
(DSM) functions through standard building automation and control systems (BACS), aligning with 
ongoing research and engineering development [15–17]. The advent of sophisticated data processing 
methodologies and the integration of cloud-based solutions for analysis in subsequent years has 
guided the research and application trajectory towards ascertaining the viability of organizing energy 
management systems in homes and buildings using deep reinforcement learning (DRL) [7,18,19]. In 
parallel, research and analysis on the effective use of tools to support the functional optimization of 
BACS are being conducted, with a view to improving energy performance and increasing the level 
of building readiness for smart grid solutions, particularly in the context of RES and energy storage 
integration [20–24]. 

Furthermore, beyond operational and market-oriented approaches, a third and less developed 
but increasingly critical dimension concerns the integration of life cycle–based methods—such as life 
cycle assessment (LCA) and life cycle cost (LCC)—with AI-enabled energy management. 
Traditionally treated as separate instruments of sustainability evaluation, LCA and LCC are now 
being progressively linked to digital twins, predictive analytics, and building automation [25–28]. 
This integration offers the possibility of extending the scope of TE and DEM frameworks, so that 
optimization encompasses not only short-term efficiency but also long-term environmental and 
economic performance. Embedding carbon footprint, embodied energy, and cost factors into energy 
management is essential if buildings and energy communities are to align with broader 
decarbonization trajectories and resilience targets [29–35]. In addition, emerging research has started 
to extend the discussion of local microgrids toward more constrained and self-sufficient 
infrastructures, including Closed Ecological Systems (CES). Although this area remains peripheral in 
comparison with mainstream building and community applications, CES concepts—developed for 
space missions or isolated habitats—offer a unique testbed for studying how AI-driven energy 
management, automation, and life-cycle integration can operate under extreme sustainability 
requirements. Insights from such research may in turn enrich the development of terrestrial 
microgrids and energy communities, especially in contexts demanding high levels of autonomy and 
resilience [32–35]. 

Taken together, the convergence of these domains defines the central scope of this review. Yet, 
despite substantial progress in each area, the literature remains fragmented, with methodological 
advances often developed in isolation and with limited transferability across domains. Overcoming 
this fragmentation is a prerequisite for moving beyond incremental efficiency gains toward effective 
DEM as well as systemic sustainability transitions in buildings and energy communities.  

In light of the aforementioned background, the present paper aims to verify several interrelated 
theses:  

• AI methods should evolve from isolated predictors and controllers toward layered frameworks 
that combine perception, control, and market coordination;  
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• Lifecycle and sustainability dimensions remain insufficiently embedded in these frameworks, 
especially transactive processes, resulting in a structural gap between operational efficiency and 
long-term resilience; 

• Emerging application domains, such as CES, while not central to this review, offer valuable 
opportunities to stress-test building and microgrid concepts under extreme resource constraints.  

Accordingly, the objectives of this review are threefold: (i) to synthesize the state of the art in AI 
applications for TE and DEM across buildings, microgrids, and communities; (ii) to examine the 
extent and manner in which life cycle–based approaches are being integrated into AI-driven energy 
management; and (iii) to identify research gaps and propose a conceptual framework that connects 
short-term operational intelligence with long-term sustainability. By consolidating these 
perspectives, the paper aims to provide both a comprehensive synthesis of the extant literature and 
a forward-looking research agenda for sustainable buildings, more effective TE processes and energy 
communities.  

The rest of the paper is organized as follows. The Section 2 provides a comprehensive overview 
of the methodology and systematic elements that were applied in the process of searching and 
screening the literature. The primary outcomes of the review are outlined in Section 3, encompassing 
transactive energy, dynamic energy management, AI methodologies, and complementary life-cycle 
perspectives. Section 4 provides a critical discussion, situating the findings within broader 
methodological and conceptual debates and outlining a multi-layered framework for AI-driven 
sustainable energy systems. The final Section 5 highlights the original contributions of the paper, 
identifies research gaps, and suggests future directions for research. 

2. Materials and Methods 

To address the research objectives outlined in the Introduction, a structured procedure for 
literature identification and selection was adopted. Although this review paper follows the structure 
of a classical narrative review (IMRAD format), the process incorporated systematic review elements 
such as transparent queries, multi-stage filtering, and explicit inclusion/exclusion criteria, ensuring 
both rigor and thematic flexibility.  

2.1. Literature Search Approach and Queries  

A structured literature search was carried out in the Web of Science Core Collection (WoS) and 
Scopus, which were selected for their extensive coverage of high-impact journals and conference 
proceedings (e.g., IEEE, ACM, Elsevier conferences). The time frame under review was limited to 
2015–2025, reflecting the period of rapid development of AI applications in energy systems. The 
database queries were conducted between 18 and 23 August 2025. The focus of the study was on 
research addressing AI-driven approaches to energy management in buildings and microgrids, 
including sustainability perspectives.  

The scope of this review was captured by four thematic areas. Queries were constructed in WoS 
using the Topic Search (TS) field (title, abstract, keywords), and equivalent TITLE-ABS-KEY queries 
were used in Scopus.  

1. AI + Transactive/Peer-to-Peer Energy  
WoS example: TS=("artificial intelligence" OR "machine learning" OR "deep learning" OR 
"reinforcement learning" OR AI) AND TS=("transactive energy" OR "peer-to-peer energy" OR "P2P 
energy") AND PY=2015-2025;  

2. AI + Smart Local Energy Systems / Microgrids  
WoS example: TS=("artificial intelligence" OR "machine learning" OR "deep learning" OR 
"reinforcement learning" OR AI) AND TS=("local energy system" OR "smart local energy system" 
OR "smart microgrid") AND PY=2015-2025;  

3. AI + Life Cycle Assessment / Life Cycle Cost + Buildings  
WoS example: TS=("artificial intelligence" OR "machine learning" OR "deep learning" OR 
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"reinforcement learning" OR AI) AND TS=("life cycle assessment" OR "life cycle cost" OR "LCA" 
OR "LCC") AND TS=("building" OR "buildings") AND PY=2015-2025 

4. AI + Sustainable / Smart / Green Buildings and Energy Performance  
WoS example: TS=("artificial intelligence" OR "machine learning" OR "deep learning"  
OR "reinforcement learning" OR AI) AND TS=("sustainable building" OR "building energy 
performance") AND PY=2015-2025.  

2.2. Initial Identification  

The database search yielded a total of 2,101 records (715 from WoS, 1,386 from Scopus). The 
distribution of the thematic areas is presented in Table 1.  

Table 1. Initial search results (2015–2025, according to the defined queries). 

Set of 
Records Thematic Area  Web of Science Scopus Total 

1 AI + Transactive/Peer-to-Peer Energy 189 322 511 

2 AI + Smart Local Energy Systems / 
Microgrids 

53 122 175 

3 
AI + Life Cycle Assessment / Life Cycle 

Cost  
+ Buildings 

149 211 360 

4 
AI + Sustainable / Smart / Green 

Buildings  
and Energy Performance 

324 713 1,055 

Total  715 1,386 2,101 

2.3. Screening and Eligibility  

The records were processed through a multi-stage filtering procedure, carried out on the basis 
of abstracts and keywords.  

• Stage 1 – Basic merging: Publications were retained only if they were present in both databases 
(WoS and Scopus), included a valid DOI, and had complete metadata (e.g., authorship 
information). This step reduced the dataset to 614 publications;  

• Stage 2 – Thematic filtering: Abstracts and keywords were screened for explicit relevance to 
energy management in buildings, leaving 306 publications; 

• Stage 3 – Content-based filtering: Works outside the technical scope of this review were 
excluded, such as purely economic market models, forecasting without EMS/building context, 
or sustainability assessments without AI. 

The rationale for the adopted inclusion and exclusion criteria is summarized in Table 2, while 
the numerical results of each selection stage are shown in Table 3.  

Table 2. Inclusion and exclusion criteria applied in the literature screening. 

Criterion Included if…  Excluded if…  

Source quality Record indexed in WoS or Scopus,  
with complete metadata and DOI. 

Record without DOI, missing 
authors,  

or incomplete metadata. 

Topical scope 

Explicit mention of energy 
management  

in buildings (including Heating, 
Ventilation, Air Condition (HVAC), 

lighting,  
microgrids, Energy Management 

Focus exclusively on unrelated 
domains (e.g., mobility, large-

scale  
grid operations). 
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Systems, Demand Side Response 
(EMS/DSR), building performance). 

AI relevance 

AI techniques explicitly applied 
(Machine Learning - ML, Deep 
Learning - DL, Reinforcement 

Learning - RL, etc.) to energy-related 
functions in buildings or local 

microgrids. 

No AI component,  
or purely conceptual  

without technical application. 

Application domain 

EMS, DSM, DSR, predictive control,  
optimization, building energy 

performance,  
sustainability with AI. 

Purely economic/market 
models  

(auctions, bidding, trading)  
without EMS/control aspects. 

Forecasting role 
Forecasting integrated into EMS, 

DSM/DSR,  
or microgrid operation. 

Standalone forecasting 
(photovoltaic - PV, wind, price) 
without EMS/control context. 

Sustainability assessment 
AI applied to LCA/LCC in connection 

with building energy management. 

LCA/LCC without AI or 
without EMS/building 

application. 

Table 3. Multi-stage selection and reduction of publications. 

Stage Set 1 Set 2 Set 3 Set 4 Total % of 
Previous 

% of 
Start 

Initial identification 
(WoS + Scopus) 

511 175 360 1,055 2,101 100% 100% 

After merging  
(both databases, 

DOI, completeness) 
173 48 100 293 614 29.2% 29.2% 

After thematic 
filtering (EMS in 

buildings) 
119 29 41 117 306 49.8% 14.6% 

After content-based 
filtering (final set) 

29 23 1 106 159 52.0% 7.6% 

Following the filtration process, a total of 159 publications were retained for further analysis. 
This corpus forms the foundation for the ensuing analysis, which is structured in accordance with 
the IMRAD review format. Rather than relying on quantitative meta-analysis, the analysis places 
emphasis on thematic synthesis and critical discussion.  

2.4. Special Consideration for Set 3 of Records Related to LCA/LCC and Buildings 

It is noteworthy that Set 3, which integrated AI with LCA and LCC in the context of buildings, 
underwent the most substantial reduction during the filtration process. Initially, 41 publications were 
retained following thematic screening (see Table 3), however, subsequent to the final content-based 
filtering stage, only one publication remained. The majority of works addressed sustainability or life 
cycle analysis without explicit integration with AI-driven energy management. 

Despite this reduction, the topic of LCA/LCC was recognized as being highly relevant to the 
objectives of this review. As emphasized in the Introduction, long-term sustainability and life cycle 
performance are pivotal dimensions of building energy systems, and there is an increasing demand 
for AI-based methodologies to optimize decision-making in this field. While the majority of the 
retrieved works did not meet the strict inclusion criteria, they provide valuable insights into the 
current research directions at the interface of LCA/LCC and building energy performance. Therefore, 
Set 3 was selected to a separate qualitative analysis before the final filtering. The rationale for this 
exception is twofold:  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 September 2025 doi:10.20944/preprints202509.1438.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 32 

 

1. Research perspective – to capture the state of the art in LCA/LCC for buildings and to 
understand how these methods are currently applied in relation to energy management, even if 
not always explicitly AI-driven; 

2. Original contribution – to highlight a gap and research opportunity where AI techniques can 
complement and extend traditional LCA/LCC approaches, particularly by enabling dynamic, 
predictive, and data-driven assessments in building energy systems. 

This methodological exception ensures that the review not only synthesizes the literature that 
strictly fits the predefined criteria, but also identifies areas of emerging research need, reinforcing the 
originality of the contribution.  

3. Results 

This section reports the outcomes of the literature analysis, building on the research background 
outlined in Section 1 and the search and filtering strategy described in Section 2. Following a 
thorough review of the initial pool of 159 relevant publications, it was determined that full-text access 
was available for 144 works. A further 15 publications could not be examined in depth due to 
restricted availability. After a detailed full-text screening and evaluation of the content, 78 
publications from this core set were selected for in-depth synthesis. In parallel, a complementary 
LCA/LCC Set 3 comprising 41 publications was also considered. There 38 full texts were accessible, 
and 19 were ultimately included after content analysis. When considered as a whole, these two 
groups form a consolidated corpus of 97 publications, which provides the empirical foundation for 
the results presented in the following subsections. 

3.1. General Overview of the Reviewed Publications  

The initial, roughly reviewed corpus encompasses 144 publications originating from a diverse 
set of publishers, with a clear dominance of large scientific outlets in the energy and sustainability 
domains. The majority of these publications were published by Elsevier (approximately 40%) 
followed by IEEE and MDPI (each with a share of approximately 20%). The remaining sample 
includes contributions from Springer, Wiley, Taylor & Francis, Frontiers, SAGE, Oxford University 
Press, AIP, and selected conference proceedings such as IBPSA and ACM. This distribution is 
indicative of two prevailing factors. Firstly, it reflects the central role of specialized energy and 
building journals (e.g., Applied Energy, Energy and Buildings, Journal of Building Engineering, 
Energies, Sustainability) in the field. Secondly, it demonstrates the increasing visibility of AI-focused 
work in broader interdisciplinary venues. The literature under review here covers a wide spectrum 
of research on AI applied to energy management in buildings, microgrids, and local energy systems. 
Despite this variety, the majority of contributions converge on operational aspects of prediction and 
control, particularly short-term demand, price, and renewable output forecasting, as well as real-time 
optimization of distributed resources.  

A number of comprehensive review papers delineate the state of the art and provide 
methodological baselines for subsequent studies. The following works provide a classification of ML, 
DL, and RL techniques in relation to building energy management and microgrid control. This 
establishes a methodological framework for more specialized investigations [3,36,37]. Such 
contributions underscore the accelerated methodological evolution from conventional regression and 
statistical models towards advanced learning-based approaches.  

Within this landscape, two thematic clusters are most prominent. Initially, research on TE has 
focused on peer-to-peer and community-based exchange mechanisms, hierarchical market 
structures, and agent-based bidding strategies. A number of representative studies propose the use 
of bilevel market formulations in order to ensure fairness. They also propose the design of DRL agents 
for electric vehicles in transactive charging, and the development of reduced-order load models for 
bidding strategies. In addition to these topics, advanced coordination methods such as deterministic 
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policy gradients have been investigated [38–40]. These contributions collectively motivate the more 
detailed assessment of TE research presented in Subsection 3.2.  

Secondly, DEM emerges as a parallel line of inquiry, addressing near-real-time coordination of 
distributed energy resources, storage, and flexible loads under uncertainty. Research in this area often 
combines forecasting with optimization, with ML being employed for online control, edge-AI 
approaches being used for localized prediction, and digital twins being utilized for scenario-based 
demand estimation in evolving grid contexts [36,41,42]. These contributions establish the basis for 
Subsection 3.3.  

Finally, a transversal current across TE and DEM relates to the methodological diversity of AI 
approaches. Classical ML methods remain widely utilized for tasks such as anomaly detection and 
short-term load prediction, while DL) models are increasingly employed for sequential data and 
feature extraction. Multi-agent RL has emerged as the predominant paradigm for decision-making 
in decentralized environments. A body of research, including both systematic reviews and 
methodological papers, has recently emerged to provide a more detailed and consolidated overview 
of this evolution. This research clarifies both the potential and the limitations of current AI 
applications [43–45]. The insights from these works provide a direct rationale for Section 3.4, which 
synthesizes AI methods and techniques across TE and DEM.  

3.2. Research on Transactive Energy  

Research in the field of TE has evolved rapidly in recent years, reflecting the growing importance 
of decentralized coordination in smart local energy systems. The reviewed publications address TE 
from a variety of perspectives, ranging from conceptual market designs to device-level 
implementations and AI-based optimization methods. 

3.2.1. Concepts and Market Designs  

Across the corpus of literature, TE is framed as a set of control-and-market mechanisms for 
value-based coordination among distributed actors (prosumers, DER aggregators, distributed system 
operators - DSOs) operating at feeder/community scale. Three design families have been identified 
as the most dominant: (i) the coordination of communities and markets with bilevel or hierarchical 
optimization; (ii) peer-to-peer (P2P) and community energy sharing; and (iii) agent-based 
transactional control embedded in local markets. Gholizadeh et al. [39] propose a fair-optimal bilevel 
TE architecture for a community of microgrids that incorporates user discomfort, demand-response 
rebound, and voltage/current constraints This work represents an early example of equity-aware 
market design in distribution networks. Building on this line of research, Amasyali et al. [46] 
proposed a distributed, game-theoretic transactional control model. In this model, the DSO iteratively 
adjusts price vectors while load aggregators respond with modeled demand. This process yields 
privacy-preserving convergence without system-wide data sharing. P2P/community trading is 
treated via agent-based evaluation frameworks that blend modified diagonalization with RL and 
define explicit performance indices to compare billing and mid-market mechanisms across pricing 
regimes [47]. In complement to these studies, Yu et al. [48] simulated a residential community under 
a TE bidding scheme with model predictive control via mixed-integer linear programming 
(MPC/MILP) coordination, quantifying demand, import, and cost savings, and surfacing design 
choices for bidding rules and device-level control. Taking the specified aspects into consideration, it 
is evident that TE research has evolved from conceptual market constructs toward applied 
community demonstrations, thus paving the way for practical implementations.  

3.2.2. Implementations in Microgrids and Local Energy Systems 

The operationalization of TE is achieved through the implementation of domain-specific 
transactive controllers for flexible loads and DERs. For instance, Liu et al. [38] automated transactive 
HVAC control with RL inside the Transactive Energy Simulation Platform (TESP) developed by 
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Pacific Northwest National Laboratory, thus overcoming the limitations of continuous-state control 
granularity and heterogeneity that had previously hindered the deployment of Q-learning. 
Furthermore, Sharma et al. [40] formulate an EV bid-based agent using recurrent Proximal Policy 
Optimization (PPO) algorithm under a partially observable Markov decision process (POMDP), 
demonstrating policy convergence on real price data and articulating how customer goals/constraints 
can be encoded in TE system bids. At the intersection of market physics, reduced-order aggregate 
models of bidding loads (e.g., thermostatic populations) facilitate the co-simulation with power-
system solvers like framework for network co-simulation, thereby integrating TE market dynamics 
with feeder constraints [49]. Evidence from the extant literature clearly indicates a shift in focus from 
high-level market coordination toward device-level integration and grid-constrained operation. 

3.2.3. AI methods for TE Coordination and Trading  

According to the relevant technical literature in these fields, AI fulfils two coupled roles: (i) 
policy learning for agents participating in TE markets; and (ii) prediction/estimation to feed market 
clearing and control. Multi-agent RL is the prevailing paradigm for policy learning in market 
interactions and dispatch under uncertainty; examples include transactive EV bidding with PPO [40] 
and hybrid learning for multi-microgrid energy sharing with prosumer buildings [50]. The 
exploration of federated/distributed learning aims to align privacy constraints with price formation 
and to couple consensus+innovations optimization with learned surrogates at the edge. This is 
indicative of scalable, privacy-respecting TE implementations [51]. As demonstrated in the 
foundational reviews of microgrid EMS with ESS, TE is contextualized as one strand within broader 
game-theoretic, agent-based, and robust optimization approaches to local markets [3]. These insights 
indicate that AI is no longer merely a supplementary instrument; rather, it has evolved into a pivotal 
facilitator in shaping the design and scalability of TE systems. 

3.2.4. Evaluation Criteria: Welfare, Fairness, and Grid Constraints  

A key aspect of TE research pertains to the evaluation of system performance. Whilst a 
significant proportion of studies to date have concentrated on economic efficiency and welfare gains, 
recent works have expanded the scope to include fairness, user comfort, and technical feasibility 
under grid constraints. For instance, the bilevel community TE scheme developed by Gholizadeh et 
al. [39] jointly minimizes energy expenditure and user dissatisfaction whilst enforcing feeder 
operating limits through a semi-centralized fair restriction on net export one day ahead. In a similar 
way, P2P evaluation frameworks introduced by Zhou et al. define replicable performance indices 
that allow systematic benchmarking of different trading models across price environments [47]. 
These contributions demonstrate that TE research is gradually transitioning from narrow, cost-driven 
optimization towards a more comprehensive consideration of socio-technical criteria, including 
equity, comfort, and operational reliability.  

3.2.5. Evaluation Criteria: Welfare, Fairness, and Grid Constraints  

Alongside the work on evaluation criteria, another research strand is focusing on the robustness 
of TE systems and the platforms that enable their operation. Cybersecurity emerges as a key concern, 
with studies highlighting the importance of anomaly detection and adversarial behavior in 
transactional infrastructures. This is an essential complement to market design and agent learning 
[52]. Furthermore, robustness is also a concern for the modelling and execution environment. Liu et 
al. [38] emphasize the necessity of RL for HVAC agents in addressing continuous-state control and 
heterogeneous device responses to ensure reliable convergence in real deployments. They also 
highlight the challenges of scalability and robustness. Moreover, it is demonstrated that DRL can 
overcome the limitations of classical Q-learning by handling continuous state spaces and 
heterogeneous device responses. The TESP-based experiments also emphasize the need for simplified 
state representations and carefully designed reward structures to maintain scalability and robustness 
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as the number of participating HVAC agents increases. In a similar way, reduced-order modelling of 
aggregated bidding loads is proposed not only as a means to enable tractable integration with power-
system solvers, but also as a pathway to ensure stability and resilience of TE mechanisms under 
cyber-physical uncertainties [49]. These developments suggest that considerations of integrity, 
security and robustness are being integrated into TE research, despite the continued emphasis on 
short-term operational horizons. 

3.2.6. Identified Gaps and Future Directions  

Notwithstanding considerable advancement in the domains of short-horizon market clearing, 
agent learning, and community-scale demonstrations, the preponderance of TE studies continues to 
be concentrated on optimizing operational episodes (minutes-to-day-ahead) and proximate welfare 
under fixed tariffs and asset portfolios. The long-term ramifications, encompassing such domains as 
asset deterioration, collaborative investment configuration, distribution-level reliability across 
seasons and years, and life-cycle sustainability, are predominantly addressed through the delineation 
of future research agendas. As Yu et al. [48] explicitly note, objectives such as the reduction of 
greenhouse gases are regarded as extensions rather than core targets of current implementations, 
thereby underscoring the limited integration of environmental criteria. In their paper, Mutluri and 
Saxena [1] go further, identifying the absence of strategic planning and long-term resilience 
mechanisms as a structural gap in TE research. Their analysis demonstrates that while blockchain 
and AI facilitate secure and adaptive trading, they do not inherently address issues of infrastructure 
investment or system-wide sustainability. This suggests that the vast majority of TE studies place a 
strong emphasis on short-term operational mechanisms. In contrast, long-term economic and 
environmental implications are addressed only infrequently and are generally relegated to future 
research.  

3.3. Research on Dynamic Energy Management  

While TE (discussed in Subsection 3.2) emphasizes market-based coordination and value 
exchange among distributed actors, research on DEM focuses on operational intelligence: how 
distributed, flexible resources (loads, storage, DERs) are sensed, predicted, coordinated, and 
controlled in real time. While the focus of TE is on the actors involved in trade and the rules that 
govern it, DEM concerns on the system's reaction and adaptation to conditions that vary over time. 
Across the reviewed literature, DEM emerges as the second major pillar of local energy systems 
research, spanning microgrid-scale EMS, building/home EMS, and cross-cutting methods that fuse 
forecasting with control.  

3.3.1. Scope and Reference DEM Architectures 

Research on DEM consistently emphasizes reference architectures that connect fast device-level 
actuation with supervisory scheduling and learning. Early frameworks, including DEMs [12], 
demonstrated the capacity of adaptive dynamic programming to facilitate continuous optimization 
of microgrid resources in the presence of uncertainty. In a similar way, Shakir and Biletskiy [53] 
proposed a home-oriented EMS that integrates sensors, forecasting, and DER scheduling under 
comfort constraints. Additionally, a substantial body of literature has emerged that converges on the 
role of AI, Internet of Things (IoT), and edge computing as the technological substrate of modern 
DEM [54], while system-level analyses highlight the evolution of microgrids from AC and DC setups 
to hybrid and multi-energy forms, with energy storage systems at their core [3]. In a continuation of 
this line of enquiry, Mutluri and Saxena [1] explore the concept of networked microgrids (NMGs) as 
exemplars for resilience and scalability, typically characterized by a hierarchical primary–secondary–
tertiary control structure. Exploration of multi-agent EMS, in which distributed agents coordinate 
DERs, storage, and flexible loads, is a complementary field of research. Such systems are increasingly 
applied not only in buildings but also in sectoral contexts, such as greenhouse management [55].  
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3.3.2. DSM/DSR and Flexible Asset Coordination with RL  

A substantial body of research has emerged from these architectures, addressing DSM/DSR 
mechanisms and the real-time coordination of flexible assets. In this context, RL emerges as the 
predominant paradigm. Iqbal and Mehran [56] demonstrated that model-free RL can minimize 
operating costs in microgrids with renewables and storage under uncertainty. Building up on this, 
Dridi et al. [57] compared classical Q-learning with deep recurrent agents, demonstrating the latter's 
superiority in environments where partial observability and temporally correlated events are 
prevalent, such as in EMS operation. Furthermore, Darshi et al. [58] proposed a decentralized EMS 
in which multiple RL controllers operate across asset clusters, thus alleviating communication 
bottlenecks while maintaining near-optimality using unique framework of the model-free Q-learning 
algorithm. In order to consolidate these advances, Arwa and Folly [36] proceeded to review RL 
techniques for power control, mapping families such as Q-learning, deep deterministic policy 
gradient (DDPG), PPO, and hierarchical RL to DEM tasks, and underlining the growing need for safe 
RL and constrained formulations in practical deployments. When evaluated collectively, these works 
demonstrate a discernible progression from early tabular RL to deep and distributed agents, thus 
illustrating how DSM/DSR evolved into the crux of DEM research. 

3.3.3. Forecast-Informed Control Loops  

In order to enhance these control routines further, DEM is increasingly integrating forecasting 
as an embedded component of the loop. Lv et al. [41] implemented edge-based recurrent neural 
network (RNN) forecasters that predict short-term load and power locally, reducing latency and 
cloud dependency while supporting real-time scheduling. Concurrently, Bayer et al. [42] utilized 
digital twin simulations to generate demand trajectories and subject DEM policies to stress testing 
under scenarios such as high EV penetration. In addition, Sadrian Zadeh et al. [59] advanced 
supervised-learning approaches for IoT-driven state estimation, improving observability and 
enabling robust closed-loop control. At the distribution edge, Peiris et al. [60] employed ML profiling 
techniques to distinguish PV and EV load signatures, providing actionable features for flexibility 
allocation. These findings signify a transition from policy learning in isolation to the integration of 
predict–decide–act loops, where forecasts become inseparable from control.  

3.3.4. Control Strategies Beyond Pure RL: MPC, Hybrid and Physics-Informed Tracks  

In addition to RL, MPC remains a cornerstone of DEM, particularly in the context of buildings 
and community-scale applications. Chen et al. [61] proposed a data-driven robust MPC that 
constructs uncertainty sets for weather and occupancy forecasts using clustering and density 
estimation, embedding them in tractable robust optimization to jointly manage HVAC, geothermal, 
PV, and storage assets. The authors demonstrate how forecast error distributions can be directly 
transformed into robust comfort–cost trade-offs. In addition, a review of the literature on Digital 
Twins (DTs) and ML has highlighted that the operational value of MPC is contingent on the 
calibration of workflows, the interoperability of co-simulation frameworks, and the maintenance of 
lifecycle models. The paper [62] identified a lack of standardization as a significant impediment to 
the broader adoption of these practices. At the applied level, Aruta et al. [63] demonstrated that 
artificial neural network (ANN) assisted MPC in a monitored nearly-zero-energy building could 
reduce computation times while preserving comfort objectives. This was achieved by combining a 
nonlinear autoregressive with eXogenous inputs model surrogate with MPC linearization and 
achieving measurable savings compared with fixed setpoint baselines.  

At the methodological frontier, Ma, et al. [64] mapped four pathways for physics-informed 
machine learning (PIML) – inputs, loss functions, architectures, and ensembles – and demonstrated 
how regularization constraints can be encoded into loss functions to enhance interpretability and 
generalization of building energy models. This line of work positions PIML as a means of generating 
interpretable surrogates inside predictive controllers. Within this trajectory, Qi et al. [65] proposed 
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an advanced MPC scheme that integrates ANN based forecasting with metaheuristic optimization, 
demonstrating measurable cost reductions compared to rule-based control. The study incorporates 
event-triggered mechanisms to mitigate the heavy computational burden of traditional time-
triggered MPC, achieving reductions in solve frequency of up to 80% while preserving comfort. What 
is very important, in situating their contribution, the authors explicitly frame their work within a 
broader research line, considering other research. First, Lee et al. [66] demonstrated that ANN-
enhanced MPC exhibits superior performance to rule-based HVAC scheduling in commercial 
buildings, achieving reduced energy consumption while maintaining indoor quality. Second, Du et 
al. [67] developed an adaptive setpoint MPC that enhances temperature control across multiple 
building zones under uncertain loads. Third, Carli et al. [68] integrated the Fanger PMV index into 
MPC cost functions, balancing thermal comfort against consumption in Italian office buildings. 
Finally, Yang et al. [69] pioneered event-triggered MPC formulations that reduce computation 
frequency while maintaining stability and comfort. Collectively, these works highlight a steady 
maturation of MPC approaches towards more computationally efficient, comfort-aware, and scalable 
control strategies, directly inform the methodology of Qi et al. [65].  

As further reviews demonstrate that MPC experimentation has been an ongoing process. In their 
research, Renganayagalu [62], in addition to Aruta et al. [63], have examined over a decade of 
HVAC/MPC implementations, meticulously documenting co-simulation methodologies and field 
pilots. They also highlight ongoing challenges, including modelling complexity, non-standard BMS 
interfaces, and integration expenditures. A district-scale review expands this trajectory, showing how 
hybrid MPC combines grey-box RC (Resistance-Capacitance) models with ANN or RNN predictors 
to balance accuracy and tractability, achieving heating savings of 15–28% in field tests [70]. Beyond 
the domain of buildings, hybrid predictive-control ideas have been extended to multi-carrier 
microgrids, where MPC coordinates electrolyze, batteries, and thermal storage in PV–hydrogen 
communities, thereby bridging physical constraints with market-coupled objectives [71].  

Broader evaluations of advanced building controls have emphasized the convergence of MPC 
with Model-Based Control (MBC) alternatives, occupant-centric objectives, anomaly detection, and 
digital twin integration. These evaluations have also underscored the necessity for scalable 
frameworks that can be deployed across portfolios [72]. The evolution of DEM control has undergone 
a transition from standalone MPC to hybrid and physics-informed pipelines, indicating a trajectory 
where adaptability, safety and computational efficiency converge. In this context, MPC is no longer 
regarded as an alternative to RL, but rather as a complementary pillar.  

3.4. AI methods and Techniques Applied Across TE and DEM  

This subsection delineates the AI methodologies and instruments utilized in the prior analyzed 
TE and DEM applications. In contrast to the emphasis on functional mechanisms of dynamic 
management in Subsection 3.3, this subsection focuses on specific algorithmic families, ranging from 
classical machine learning to RL, multi-agent and hybrid approaches, as well as federated, edge and 
digital twin–based frameworks. The following subsubsections present these methods according to 
their functional layers, highlighting both dominant operational applications and emerging directions.  

3.4.1. Perception and Prediction Layer: From Classical ML to Edge-AI and DT  

In DEM and TE, short-term load and price forecasting as well as state estimation are the primary 
focus, realized by algorithms such as Random Forest (RF), Support Vector Machine (SVM), and 
Extreme Learning Machine (ELM), alongside deep learning methods (Long-Short Term Memory and 
Gated Recurrent Unit - LSTM/GRU, occasionally Convolutional Neural Network - CNN; with 
hybrids appearing in more recent works). Concurrently, methodologies for prosumer pattern 
recognition (e.g., PV/EV profiles) and occupancy detection in buildings are being developed 
[41,42,60,73]. To illustrate this point, consider the use of a DT in the simulation of future demand 
states, a technique that has been demonstrated to support planning and operational strategies [42]. 
Similarly, the utilization of edge-AI has been shown to minimize latency and communication costs 
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in local forecasts [41]. In the context of local smart energy systems, the PV/EV signature classification 
process is undertaken utilizing measurement data [60]. Conversely, within the domain of buildings, 
vision-based detection and localization of occupants [73] is employed, alongside the utilization of 
drone-assisted thermal imaging in conjunction with DL support audits and the calibration of control 
systems [74]. The research trajectory is evidently shifting from a "model-centric" to a "data & 
deployment-centric" paradigm: edge learning for rapid local inference [41], federated forecasting 
without data centralization [51], and in buildings—DT+AI as a living model that integrates IoT 
sensors, simulation, and machine learning for predictive control, calibration, and explainable 
analytics [62,75,76]. Overall, perception- and prediction-oriented methods continue to prioritize 
short-term horizons and operational accuracy, with an increasing focus on federated and edge 
implementations. However, the integration of life-cycle assessment and closed-loop deployment 
remains in its infancy, resulting in a significant gap between accurate forecasting and strategic 
decision-making.  

3.4.2. Decision-Making and Control Layer (DEM – Oriented)  

RL has become the central mechanism in EMS/HEMS control, progressing from simple Q-tables 
to advanced actor–critic and policy optimization algorithms. Arwa and Folly [36] identify the 
transition from conventional Q-learning to PPO and Trust Region Policy Optimization (TRPO), 
emphasizing the growing role of transfer learning and prioritized experience replay. Concrete studies 
applied DDPG and Soft Actor-Critic (SAC) for demand-side resource aggregation [77], compared 
Deep Q-Network (DQN) versus RNN/LSTM in EMS environments [57], and employed DRL in IoT-
microgrid settings [78]. There is an increasing tendency for RL to be coupled with MPC/MILP or 
metaheuristics, a development which facilitates faster online optimization and mitigates the so-called 
"curse of dimensionality" [2]. The evolution of research progresses from Q-learning and fitted Q-
iteration, through DQN and A2C/A3C (Advantage Actor-Critic / Asynchronous Advantage Actor-
Critic), toward PPO/TRPO suited for continuous and uncertain environments; in parallel, transfer 
learning emerges as a means of accelerating adaptation across tasks and domains [36]. The field of 
RL has evolved from the initial conception of algorithms to the development of hybrid actor–critic 
and MPC-enhanced controllers, thereby markedly enhancing the adaptability of EMS. Nevertheless, 
scalability, sample efficiency and safe deployment remain open challenges, particularly in microgrids 
with diverse and uncertain operating conditions.  

3.4.3. Market-Level Coordination Layer (TE – Oriented)  

In the field of TE, the primary challenge pertains to the coordination of multiple agents and the 
adherence to market regulations. Notable advances include Bayesian-MARL (Multiagent 
Reinforcement Learning) resilient to communication failures [79], game-theoretic transactional 
control within hierarchical architectures [46] and bilevel optimization with fairness components in 
communities of microgrids [39]. In order to scale bidding mechanisms, reduced-order models were 
introduced [49]. Additionally, the range of use cases extends from EV agents [40] to HVAC 
transactional control [38]. The emerging research landscape thus combines on employing MARL with 
PPO/TRPO and transfer learning under high-dimensional uncertainty with federated optimization 
for distributed trading and coordination, enhanced through edge-AI for real-time forecast-to-
decision integration. Multi-agent and game-theoretic AI methods are central to enabling fair and 
efficient energy trading. While promising frameworks such as MARL, bilevel optimization, and 
federated markets are emerging, their robustness under imperfect communication and their transfer 
to real-world pilots are still limited, especially in community-scale and CES-like environments.  

3.4.4. Distributed and Secure AI Frameworks: From FL to Hybrid Optimization and DT  

Recent advances demonstrate a clear convergence of AI techniques into distributed and secure 
frameworks that integrate federated and edge learning, hybrid optimization strategies, and DT-
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driven analytics. Collectively, these approaches address the key challenges of scalability, privacy, 
and cybersecurity that were identified in TE and DEM applications, while at the same time elevating 
AI from isolated predictors and controllers to embedded, system-level capabilities.  

Federated learning (FL) preserves data locality while enabling collaborative model training 
among dispersed actors. Adaptive FL has been proven to enhance multi-horizon load forecasting and 
anomaly detection in community buildings [80], while clustering-enhanced FL facilitates short-term 
prediction and distributed optimization in heterogeneous households [51]. Concurrently, privacy-
preserving IoT–blockchain architectures for P2P trading integrate distributed machine learning with 
integrity control and auditability [81]. In terms of deployment, edge-AI has been evidenced to reduce 
inference latency and communication overhead [41,54]. This is illustrated by microgrid EMS 
integrating AI, IoT, and edge-based forecasting. Analogous concepts are also applicable to building-
scale BMS, wherein edge computing is interwoven with DT and blockchain for lifecycle management 
[82]. Complementary these studies further emphasize the importance of access control and minimal 
data exposure in AI-enabled control systems [83].  

In addition to considerations of privacy, cybersecurity has become a critical domain for AI in 
TE/DEM. In the context of cyber-physical power systems, the employment of Intrusion Detection 
System (IDS)/ML pipelines by frameworks has seen a marked increase. This development is 
indicative of a counterstrategy aimed at the mitigation of false-data injection, denial-of-service, and 
cascading failures within such systems [84]. It is important to note that related research directions 
include TE-oriented cyber-physical analytics [52] and FL-based intrusion detection in industrial and 
IoT environments [85]. At the microgrid level, autoencoder-based anomaly detection enables 
unsupervised and lightweight monitoring suitable for edge deployment [86], while operator-focused 
virtualized training platforms reinforce human-in-the-loop resilience for operational technology for 
smart grid systems [87,88]. In addition to the identification of defects, the "FMEA 2.0" methodology 
extends the application of ML to the assessment of risk and the establishment of priorities in smart 
microgrids [89]. Collectively it is underscored a shift towards an AI-centric approach to cybersecurity, 
wherein the utilization of federated sensing, model sharing, and cyber-range testbeds becomes 
pivotal for the protection of energy infrastructures. 

AI is increasingly being used as a tool to accelerate optimization processes by embedding 
learning surrogates into classical methods. The utilization of neural networks and Gaussian processes 
as proxies for electro-thermal storage and network models facilitates accelerated co-optimization of 
ancillary services [3]. The integration of mathematical programming and heuristics has been 
demonstrated to enhance responsiveness, as evidenced by the combination of RL+MPC/MILP and 
the utilization of metaheuristic-assisted EMS [2]. These approaches include deep RL applied to 
demand-side resource aggregation [77] and agent-based online learning supporting EV power flow 
coordination in microgrids [90]. At the building and microgrid scale, hybrid DL–metaheuristic 
frameworks (e.g., bi-directional LSTM/capsule network – CapsNet with hybrid gazelle and seagull 
optimization algorithm - HGSOA) have been shown to improve forecasting and DSM scheduling, 
while LSTM+Genetic Algorithm (GA) is used in HEMS to co-schedule flexible loads with renewables 
[53,91]. Decentralized EMS designs further combine robust and convex programming with 
distributed intelligence to strengthen resilience and scalability [58]. These developments illustrate the 
emergence of integrated optimization pipelines, in which MPC and heuristic solvers are 
systematically augmented with ML surrogates and RL policies to achieve scalable, near-real-time 
decision support.  

In closing, it is important to acknowledge the pivotal role that DT-driven AI has come to play in 
contemporary TE/DEM ecosystems. DT frameworks integrate BIM, IoT telemetry, simulation 
models, Bayesian calibration, and XAI, thereby enabling real-time benchmarking, predictive control, 
and what-if exploration of pricing and flexibility scenarios [62,75,76]. At urban and portfolio scales, 
Distributed Ledger Technology (DLT), Blockchain, and BMS stacks provide traceable, cross-lifecycle 
dataflows that support secure model management and auditing [82,91]. In conjunction with these 
architectures, PIML integrates governing equations and domain constraints directly into learning 
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pipelines, thereby enhancing extrapolation capabilities, reliability, and operational safety – qualities 
that are of particular importance in critical energy infrastructures [64].  

Collectively, these strands demonstrate the evolution of AI into holistic frameworks that 
integrate distributed learning, cybersecurity, optimization, and DT/PIML. Rather than being used as 
isolated forecasting or control tools, AI methods are increasingly employed as embedded layers that 
safeguard efficiency, privacy, resilience, and transparency across TE and DEM ecosystems. The cross-
cutting Table 4 provides additional contextual information regarding these methods, illustrating their 
application across a range of structures, including buildings, microgrids, energy communities, and 
CES.  

Table 4. Cross-cutting overview of AI methods and applications across TE, DEM, buildings, microgrids, energy 
communities, and CES. 

AI Method 
TE  

(Trading,  
Markets) 

DEM  
(DSM/DSR, 

Control) 

Buildings 
(BEMS/HEMS) 

Microgrids Energy  
Communities 

Closed  
Ecological  
Systems 

Classical ML 
(SVM, RF, K-

Nearest 
Neighbors - kNN, 
Extreme Learning 
Machine - ELM) 

Price & 
demand 

forecasting; 
bidding 
profiles 

[49,92,93] 

Load 
prediction, 

Non-
Intrusive 

Load 
Monitoring 

(NILM), 
anomaly 
detection 
[60,94–97] 

Energy Use Intensity 
(EUI)  

benchmarking,  
HVAC  

classification 
[48,93,95,97] 

DER pattern 
recognition, 

energy 
quantification 

methods 
[60,93] 

Local 
demand/supp
ly modeling 

[50,53] 

Resource 
forecasting  
and pattern 
recognition  

for life-
support loops 

[1,55] 

Deep Learning 
(LSTM, GRU, 

CNN, Regional 
CNN, 

Autoencoders) 

Short-term 
price 

signals, 
prosumer  
response  
[98–100] 

HVAC load 
prediction, 
IAQ/IEQ  
modeling 

[41,42,61,74,9
1] 

Occupancy  
detection,  

CO₂ prediction, drone 
thermal imagery 

[61,73,74,80] 

Recurrent  
EMS 

controllers 
[41,57] 

Net demand 
forecast,  

VPP 
integration 
[48,51,80] 

Prediction of 
environment
al variables  

(temperature, 
humidity, 

CO₂) in 
greenhouses 

and space  
habitats 
[55,72] 

Reinforcement 
Learning  
(Q, DQN, 

A2C/A3C, PPO, 
DDPG, SAC) 

Transactive 
bidding,  

EV 
scheduling 
[40,46,77] 

LowEx 
control, EMS 
with storage 
[2,56,78,101] 

Smart HVAC dynamic 
control,  

comfort-aware policies 
[61] 

Adaptive 
EMS, 

ancillary  
services 

[36,77,78,90,10
2] 

MARL for  
distributed 

DR and 
pricing  

coordination 
[46,51,79] 

Adaptive  
control of 

life-support  
subsystems, 

water/air  
recycling  

optimization 
[55,103] 

Multi-Agent AI  
& Game Theory 

Cooperative 
/competitiv

e market  
negotiation, 

fairness 
[39,46,79,81] 

Hierarchical 
DSM/DSR  

coordination 
[58,104] 

Occupant  
centric decision and 
behavior prediction 

[105] 

Coordination 
in networked 
microgrids,  
resilience  

enhancement 
[1,3,104] 

Federated 
MARL for 
transactive 

energy 
communities, 
blockchain-

based TE 
[51,80,81] 

Multi-agent  
control of 

food–energy–
water loops 
in habitats 

[55,106] 

Hybrid AI  
(MPC+ML, 

Metaheuristics+
ML, Surrogates) 

Surrogate 
MILP/MIN

LP for 
bidding  

optimizatio
n [3,102,107] 

RL+MPC  
and 

RL+MILP  
for EMS  

responsivene
ss [2,77,102] 

HEMS  
scheduling with 
LSTM+GA; DSM  

via 
BLSTM/CapsNet+HGS

OA [53,91] 

ANN/GP  
surrogates for 

ESS and  
multi-energy 
scheduling 
[3,58,102] 

Consensus + 
FL for 

distributed 
optimization 

[51,58] 

MPC+RL for 
CES climate 

/energy  
management 

[72,75] 
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Federated  
& Edge AI 

FL-assisted 
distributed 
trading and 
coordinatio
n [51,58,100] 

Edge-AI for 
real-time 

EMS [41,54] 

Adaptive FL  
for building 
forecasting;  

privacy-by-design 
automation [80,83] 

Edge-enabled 
EMS with IoT 

integration 
[51,54] 

FL-assisted  
aggregation  

and 
consensus 
building 
[51,58,80] 

Edge/federate
d AI to 

preserve 
privacy  

and 
autonomy in 
CES habitats 

[75,82] 

Digital Twins  
& Blockchain  

Integration 

DT-enabled 
TE 

forecasting, 
auditing, 

blockchain-
secured 
trades 
[81,82] 

DT+AI for 
EMS and 
predictive 
resilience 
[2,62,76] 

BIM/IoT+DT for 
performance gap 

reduction [62,75,76] 

DT 
/Blockchain 

/Building 
Management 
System (BMS) 
for microgrids 

[82,108] 

DT 
frameworks 
for resilience 
in NMGs and 

TECs [1,58] 

DTs of  
bioregenerati

ve CES 
habitats 

[64,72,75] 

Physics-Informed 
& Interpretable 

ML (PIML, 
Explainable AI - 

XAI) 

Trust 
metrics, 

explainable 
bidding and 
optimizatio

n [64] 

PIML for 
EMS stability 

and 
reliability 

[64] 

Bayesian calibration,  
explainability  

in building  
energy management 

DTs [62,76] 

XAI-based 
anomaly  

detection and 
IDS in MGs 

[2,86] 

Explainability 
in federated 

trading  
optimization 

[9,76] 

PIML/XAI for 
lifecycle  

resilience in 
CES habitats 

[64,83] 

Cybersecurity  
& Risk  

Aware AI 

Blockchain-
secured TE 

markets  
and EV  

transactive 
flows 

[2,40,81] 

IDS with ML 
frameworks 

for EMS;  
homomorphi
c encryption 
for anomaly 

detection  
[2,52,84–86] 

Risk-aware ML in 
building  

automation [83,89] 

FMEA 2.0 for 
MG risk  

assessment;  
operator  

cyber-range 
training [87–

89] 

Cybersecurity 
in federated 
TE and IoT  

environments 
[51,85,87,88] 

Predictive 
anomaly  
detection  
and ML-

based 
maintenance 
in CES loops 

[64,82] 

It is important to note that the inclusion of CES in Table 4 goes beyond the dominant scope of 
the current literature. The field of CES represents an emerging domain where energy management, 
life-support functions, and resource recycling are closely intertwined. However, this domain has 
received only limited attention in academic research on AI for TE and DEM to date. Simultaneously, 
technical domains associated with CES, including space habitat engineering, controlled environment 
agriculture, and bioregenerative life-support systems, are undergoing rapid development, propelled 
by industrial and space exploration initiatives. The proposed CES-related applications and potential 
trajectories for AI algorithms presented in the table should therefore be understood as authorial 
extensions based on analytical insights, informed by the SCOPUS AI-assisted mapping of the 
reviewed literature. This framing positions CES as a promising frontier where methods already 
explored in buildings, microgrids, and energy communities may find new and critical applications.  

3.5. Complementary AI and Life Cycle Perspectives for Sustainable Buildings 

This subsection addresses a complementary thematic area that extends the scope of the previous 
analyses by incorporating LCA, LCC, and long-term sustainability considerations into the discussion 
of artificial intelligence AI for building energy systems. As outlined in Section 2.4, this topic was 
recognized as strategically relevant, since life cycle performance and sustainability are pivotal 
dimensions of future energy communities and transactive microgrid models. Initially, 41 publications 
were identified; however, only 38 full texts were accessible, with three publications being inaccessible 
due to restricted licensing. Despite this limitation, the available studies provide valuable 
complementary insights that enrich the overall review. 

The underlying rationale for conducting a separate analysis of this particular set is twofold. 
Firstly, from a research perspective, it facilitates the mapping of the state of the art in applying 
LCA/LCC to buildings and community-scale energy management, even in cases where explicit AI 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 September 2025 doi:10.20944/preprints202509.1438.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1438.v1
http://creativecommons.org/licenses/by/4.0/


 16 of 32 

 

integration is still emerging. Secondly, from the perspective of original contribution, it emphasizes 
the research gap in which AI techniques have the capacity to complement and extend traditional life 
cycle approaches by facilitating dynamic, predictive, and data-driven assessments that transcend 
static evaluations. In this manner, the works under consideration herein initiate a space for reflection 
on systemic and long-horizon approaches to AI in energy, providing a life cycle anchor to 
complement the more operational focus observed in earlier subsections. 

Whereas Section 3.4 concentrated on operational control and optimization mechanisms, the 
perspectives introduced here shift the focus toward long-term decision frameworks, where AI and 
life cycle methodologies intersect to guide sustainable pathways for buildings and energy 
communities.  

3.5.1. AI for Dynamic and Predictive LCA/LCC in Building Energy Systems 

The transition from static life cycle tools to predictive approaches was initially examined in the 
bibliometric mapping by Zheng and Yan [26], who highlighted the absence of integration between 
LCA methods and digital/AI workflows. This discrepancy was addressed by Sharif and Hammad 
[109], who utilized surrogate artificial neural networks ANNs to approximate renovation LCA and 
LCC and demonstrated the capacity of predictive models to inform energy management decisions 
on a large scale. This approach was further elaborated by Amini Toosi et al. [110], who embedded 
ML in Life Cycle Sustainability Assessment (LCSA) pipelines to capture sustainability trade-offs 
more dynamically. As demonstrated by related surrogate models for hybrid HVAC/PV systems, AI 
has been shown to balance operational flexibility with long-term embodied costs [111]. At the 
community scale, Elomari et al. [112] applied ML with multi-objective optimization (MOO) and 
multi-criteria decision-making (MCDM) to renewable energy communities, directly coupling 
LCA/LCC with governance of local energy sharing. Abokersh et al. [113] strengthened this line of 
enquiry by using an ANN and sensitivity analysis for robust optimization of solar district heating. 
These studies collectively illustrate how predictive AI-LCA can act as a decision anchor for 
transactive energy exchanges, where long-term life cycle costs and impacts shape short-term 
microgrid transactions. Additional work on linking AI with embodied and operational emissions in 
ventilation design [114] and optimization of office buildings under extreme climates [115] also points 
to the growing integration of life cycle parameters into building performance modeling.  

3.5.2. Retrofit and Building-Integrated PV: AI-Enabled Life-Cycle Optimization 

The domains of retrofit and BIPV represent areas in which AI and life cycle integration converge 
on the building-to-grid interface. Sharif et al. [116] were the first to utilize generative deep learning 
building energy model using variational autoencoders to create retrofit scenarios for LCA/LCC 
evaluation, thereby expanding the design option space for building owners. Imalka et al. [117] built 
upon this by employing surrogate ANN models for building integrated photovoltaic (BIPV) design 
optimization, where life cycle cost functions were treated as explicit objectives alongside energy 
yield. Li et al. [118] furthered this research by developing an autonomous BIPV deployment 
framework that integrates 3D capture, solar potential analysis, and LCC checks. It is important to 
note that these methods have the potential to reduce both environmental and economic burdens. 
Furthermore, they provide a framework for the integration of building-level assets into local 
microgrids, with artificial intelligence (AI) ensuring that decisions regarding retrofitting and PV 
systems are consistent with transactive energy strategies. This progression demonstrates the manner 
in which AI-based life cycle approaches in retrofits and BIPV establish the technical and economic 
basis for the integration of building prosumers within energy communities. Further contributions on 
structural optimization using evolutionary algorithms and LCA and ensemble learning for 
sustainable structural retrofitting discussed in [28] and [119] confirm that retrofit decisions 
increasingly combine AI with life cycle perspectives. 
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3.5.3. Community and District Energy Systems: Life-Cycle Anchors for AI-Driven Microgrids  

At the community level, the most evident manifestation of AI-enhanced life cycle methods has 
been in the context of renewable energy communities and district heating systems. Elomari et al. [112] 
developed a MCDM framework integrating ML and LCA to support decision-making in renewable 
energy communities. This framework enabled the optimization of complex systems and the effective 
integration of predictive modelling with stakeholder governance. Abokersh et al. [113] advanced this 
by embedding ANN with sensitivity analysis to assess uncertainty in solar district heating 
optimization, ensuring that life cycle objectives are not compromised by operational variability. A 
subsequent extension by Abokersh et al. [120] integrated ANN with MCDM for near-zero energy 
building and passive energy building communities, showing how high renewable energy penetration 
aligns with life cycle economic feasibility. The extant literature indicates an evolution of AI methods 
from predictive assessment towards decision support for local market structures. The collective 
evidence suggests that transactive energy in smart microgrids cannot be decoupled from life cycle 
performance, as long-term costs and impacts shape the credibility of community-level exchanges and 
market stability. More broadly, comparative assessments of building sustainability systems [121] and 
policy-oriented reviews on AI for net-zero projects [31] further emphasize the role of life cycle 
methods as decision anchors in energy communities. 

3.5.4. Community and District Energy Systems: Life-Cycle Anchors for AI-Driven Microgrids  

In order for AI-enabled LCA to underpin transactive energy and microgrid systems, reliable and 
secure data infrastructures are essential. Danso et al. [122] investigated the integration building 
information modelling (BIM) and LCA in construction practice, demonstrating that in the absence of 
standardized procedures and awareness, automated life cycle workflows remain fragmented. At the 
operational edge, Sun et al. [123] addressed the cyber-security dimension by proposing ML-
generated intrusion-specific rules for IDS, thus closing the "last-mile gap" between ML models and 
real-world networks. This research emphasizes the necessity of safeguarding life cycle information 
as it evolves into a valuable asset within the context of energy markets. However, the absence of 
interoperability and security in AI-driven LCA renders it ill-equipped to provide reliable support for 
transactive energy exchanges within local communities. Collectively, these studies underscore the 
imperative for technical advances to be complemented by secure governance frameworks, thereby 
facilitating trustworthy life cycle integration in smart microgrids. Additional perspectives from 
studies on green building assessment using neural networks [124] and science-mapping reviews on 
AI for sustainable buildings [31] reinforce the importance of knowledge structures and 
interoperability in advancing life cycle–based governance. 

4. Discussion 

In this section, the author interprets the results presented in Section 3 by situating them within 
a broader context of conceptual and methodological debates. The discussion emphasizes the 
convergence of AI methods across different domains, the identification of the main research gaps, 
and the potential for these insights to facilitate the development of integrated frameworks for 
sustainable energy systems. 

4.1. Integrative View on AI in TE, DEM, and Life-Cycle Perspectives  

The existing literature, as reviewed in Section 3, demonstrates that artificial intelligence 
contributes to smart local energy systems at multiple, interdependent levels. Rather than being 
confined to isolated functions, AI applications can be grouped into a layered structure that links 
perception and prediction, operational control, market coordination, and long-term sustainability. 
This perspective is summarized in Figure 1, which illustrates the main layers and the information 
flows that connect them. 
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Figure 1. Layered AI Framework for TE, DEM, and LCA/LCC. 

As illustrated in Figure 1, the lower layers supply the data and predictions essential for higher-
level decision-making. Successive layers then translate this information into control actions, market 
interactions and long-term planning. It is important to note that the framework is not purely 
hierarchical; feedback loops are evident, for example when sustainability objectives impose 
constraints on operational strategies, or when market signals influence the scope and accuracy of 
prediction models. The bidirectional link between control and market layers is of particular 
relevance, as it indicates that operational flexibility and trading mechanisms must evolve in parallel. 
This is an area where existing studies remain fragmented. In a similar manner, the downward arrows 
from sustainability to market and control emphasize the challenge of embedding long-term 
objectives, such as resilience or life-cycle costs, into short-term optimization. These interactions 
indicate the presence of research gaps and establish the foundation for the subsequent discussion in 
Section 4.2, where methodological challenges and structural limitations are examined in greater 
detail. In this manner, the layered perspective emphasizes the significance of integration: The 
potential of AI in energy systems is not achieved through the utilization of individual algorithms; 
rather, it is realized through the coordination of these algorithms across different functional horizons.  
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4.2. Conceptual Gaps and Methodological Challenges  

While Sections 3.2–3.5 documented substantial methodological progress in transactive energy, 
dynamic energy management, and AI-enabled life-cycle integration, a closer synthesis reveals 
recurring blind spots and unresolved challenges. These limitations are not confined to a single 
research stream but emerge across multiple thematic areas, suggesting structural constraints in the 
current research landscape. In order to provide a structured overview, the main gaps and challenges 
identified in the reviewed literature are summarized in Table 5. 

Table 5. Research gaps and methodological challenges in AI-driven TE, DEM, and LCA/LCC integration. 

Area Observed Focus in 
Literature 

Identified Gap / Challenge Future Direction 

Transactive 
Energy (TE) 

Short-term market clearing 
(minutes–day-ahead),  
MARL-based bidding,  
bilevel fairness models 

Weak coupling with grid  
reliability, seasonal 

variability,  
and long-term investment 
decisions; resilience under 
cyber-physical uncertainty 
underexplored [39,40,52] 

Extend TE frameworks 
with multi-horizon  
optimization, AI-

enhanced  
resilience metrics,  

and integration  
of environmental 

objectives 

Dynamic Energy 
Management 

(DEM) 

RL-based demand response, 
hybrid MPC for HVAC  

and microgrids,  
edge-AI forecasts 

Scalability and sample  
efficiency of RL not solved; 

safe deployment  
in heterogeneous real-

world  
systems largely missing;  

interoperability with legacy 
BMS  

limited [56–58,61,62] 

Development  
of standardized DEM  
platforms combining 

robust  
RL/MPC hybrids  

with edge computing  
and safe RL 

formulations 

AI 
Methodologies 

Strong innovation in RL, DL, 
federated/edge AI,  

emerging DT applications 

Fragmentation across 
methods;  

limited explainability and 
trust;  

lack of integration into 
layered,  

interoperable frameworks 
[36,41,62,64,76] 

Move towards multi-
layered  

AI architectures  
that integrate 
perception,  

control, market,  
and sustainability  
with explainability  

by-design 

Life-Cycle  
Integration 
(LCA/LCC) 

Surrogate models  
for retrofit/BIPV,  
conceptual links  

to community energy 

Lack of dynamic, predictive 
LCA coupled to EMS; 

minimal integration with 
operational  

control; uncertainty 
treatment  

and data standardization 
weak [26,109–112,114,118] 

Embed predictive 
LCA/LCC  

in EMS workflows;  
couple AI-based control 

with 
embodied/operational  

impact models;  
improve 

interoperability  
of data and signals  

Cross-domain 
(Buildings →  
Microgrids →  

CES) 

Building EMS well studied;  
microgrids emerging;  

CES nearly absent 

Limited research  
on transferability across 

scales  
and domains;  

no holistic studies linking  

Use CES as a frontier  
testbed to stress-test AI 

for resilience,  
closed-loop resource  

management,  
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building-level AI with CES-
like  

survival-critical contexts 
[1,55,72,75] 

and long-horizon  
sustainability 

Cybersecurity  
& Privacy 

Early works on federated 
learning,  

blockchain, IDS for 
microgrids 

Limited robustness against 
adversarial attacks;  

weak integration  
of cybersecurity  

into control loops;  
privacy preserved mainly  

in lab-scale pilots [52,82–85] 

Advance privacy by-
design  

AI in EMS/TE;  
validate adversarial  
robustness in pilots;  
integrate AI-based 

intrusion  
detection  

with control 
frameworks 

The synthesis presented in Table 1 indicates a persistent focus on short-term optimization tasks 
within studies, with long-term performance and sustainability objectives receiving limited 
consideration. In the field of transactive energy, research has historically placed significant emphasis 
on market-clearing efficiency and agent-based bidding. However, the extent to which distribution-
level reliability and environmental criteria are integrated remains limited. In the context of dynamic 
energy management, the efficacy of RL and hybrid MPC has been demonstrated in simulation 
studies. However, concerns regarding scalability, safe deployment, and interoperability with existing 
building management systems persist. Advances in methodology are similarly dispersed; a variety 
of AI methodologies – including deep learning, federated learning and digital twins – are utilized in 
isolation, without the presence of a unifying framework that would facilitate the comparison of these 
methodologies across a range of applications. Life-cycle integration is a particularly 
underrepresented field, with only a few studies to date attempting to embed predictive LCA/LCC 
into EMS workflows. It is widely acknowledged that cybersecurity and privacy-preserving 
mechanisms are of paramount importance. However, their implementation remains confined to 
laboratory-scale demonstrations, with inadequate validation under real-world conditions. These 
observations indicate the necessity for research that moves beyond isolated algorithmic innovations 
towards systemic approaches integrating operational intelligence, market coordination, 
sustainability, and resilience. 

4.3. Cross-Domain Insights: From Buildings to Microgrids to CES 

The discussion of research gaps in Section 4.2 emphasized that many challenges – such as limited 
scalability, weak integration of sustainability objectives, and fragmented methodological approaches 
– are not confined to a single application area. However, as the scope of analysis is expanded to 
encompass different domains, these characteristics become more evident. Building on these insights 
and on the findings of Section 3, it becomes evident that AI methods evolve along a continuum that 
spans building-level management, community-scale microgrids, and, as an emerging frontier CES. 
As illustrated in Figure 2, the complexity of systems and the required time horizons increase in a 
step-like manner when moving from operational building control, through community coordination, 
to survival-critical environments. 
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Figure 2. Conceptual continuum of AI applications from buildings to microgrids and then CES, along increasing 
system complexity and time horizons. 

As presented in Figure 2, the building domain continues to be the most mature, with AI methods 
predominantly employed for short-term operational tasks such as forecasting, comfort management, 
and anomaly detection. At the microgrid or community level, these same approaches must be 
adapted to coordinate heterogeneous actors and distributed resources, introducing additional 
uncertainty and the need for negotiation mechanisms. Extending this logic to CES, however, results 
in the escalation of challenges: It is imperative that AI is not only capable of managing energy, but 
also integrating life-support and recycling functions, where reliability and resilience are critical. The 
diagonal trajectory delineated in the figure serves to emphasize two key concepts: firstly, the 
transferability of methods and, secondly, the progressive amplification of challenges. It is evident 
that algorithms which are effective in controlled building environments are likely to confront issues 
of scalability and robustness in communities. These issues assume an existential dimension in the 
context of CES. This framing positions cross-domain transfer not simply as a matter of applying 
existing tools in new settings, but as a research agenda that demands rethinking integration, 
resilience, and long-term sustainability across scales. 

4.4. Towards a Multi-Layered AI Framework for Sustainable Energy Systems 

The synthesis of gaps in Section 4.2 highlighted that existing research on AI for energy systems 
remains fragmented, with methodological advances often confined to isolated domains. In order to 
address these limitations, the author of this review proposes a multi-layered framework that 
integrates AI applications across four complementary layers: perception and prediction, control and 
optimization, market coordination, and sustainability anchoring. The framework is not intended to 
provide a static taxonomy, but rather to facilitate connections between current research trends and 
emerging requirements. The value of this approach lies in the alignment of short-term operational 
intelligence with long-term resilience, thereby establishing a connection between immediate 
efficiency gains and sustainability objectives. The core components of this framework, along with 
their links to current literature and proposed extensions, are outlined in Table 6. 
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Table 6. Proposed multi-layered AI framework for sustainable energy systems, contrasting literature trends with 
suggested extensions. 

Layer Trends Observed in Literature Proposed Extensions  
(Framework Contribution) 

Perception  
& Prediction 

Widespread use of ML/DL for short-
term  

forecasting (loads, prices, anomalies);  
early adoption of edge and federated  

approaches;  
DT mostly at experimental stage 

Develop unified, scalable pipelines  
combining edge/federated AI and 

digital twins for real-time, privacy-
preserving,  

and explainable prediction 

Control  
& Optimization 

RL and MPC-hybrids show strong 
potential  

but remain validated mainly in 
simulations; limited safety guarantees 

and poor  
interoperability with legacy BMS 

Advance robust RL/MPC 
formulations  

with built-in safety, interoperability  
standards, and deployment in real-

world  
pilots at building and community 

scales 

Market  
& Coordination 

MARL, game-theoretic models, and 
blockchain used in conceptual or lab-

scale TE studies; DEM–TE coupling still 
fragmented 

Establish integrated control–market  
architectures that embed fairness, 

resilience, and transparency, enabling 
deployment  

in energy communities  
and scalable TE platforms 

Sustainability  
& Life-Cycle 

Very limited works  
embedding LCA/LCC into EMS;  

mostly conceptual or surrogate models  
without operational integration 

Embed predictive LCA/LCC  
in EMS workflows;  

couple AI-based control  
with embodied/operational  

impact models;  
improve interoperability  

of data and signals  

As presented in Table 6, the framework is conceived as open and flexible, allowing for 
adaptation as technologies, standards, and application domains evolve. The review's scope aligns 
with its primary focus on energy microgrids, predominantly electrical in nature, and the constrained 
infrastructures of building systems. Moreover, the objective is to stimulate a comprehensive scientific 
and engineering discourse across diverse sectors. This includes contexts that are increasingly visible 
in research and industry debates: crewed space missions and isolated space habitats, where AI must 
manage energy together with life-support and recycling loops; as well as terrestrial islanded energy 
networks that integrate dispersed renewable energy sources. By organizing AI contributions in this 
manner, the framework underscores that building, community, and CES applications should be 
viewed as interlinked rather than separate research tracks. For researchers, it identifies avenues for 
exploration that have been under-explored, including predictive LCA integration and cross-layer 
architectures. The text provides a comprehensive overview of the expectations for engineers and 
practitioners, including robust control methods, transparent trading systems, and AI-enabled 
sustainability assessment. It is evident that the framework offers a conceptual synthesis of the field 
and a forward-looking agenda for sustainable energy systems. 

The analyses presented in this section demonstrate that there has been substantial progress in 
the field of AI for energy systems, however this progress is inconsistent and shows clear 
opportunities for integration across functional layers and domains. The proposed multi-layered 
framework and the cross-domain perspective provide a foundation for outlining future research and 
practical directions, which are further elaborated in the concluding section. 
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5. Conclusions 

This review has examined the application of AI to TE, dynamic energy management, and life-
cycle–oriented approaches within smart local energy systems. The study analyzed 97 publications, 
highlighting both methodological advances and persistent gaps. The results demonstrate that, while 
forecasting, RL, and market-based coordination are becoming increasingly sophisticated in the 
domains of building and microgrids [41,56], their integration with long-term sustainability objectives 
remains limited [26,118].  

The original contribution of this review lies in two perspectives. Firstly, a multi-layered AI 
framework is proposed that integrates perception, control, market, and sustainability layers. This 
addresses the fragmentation of current research and positions AI as a systemic enabler of sustainable 
infrastructures. The framework is designed to be open and flexible, with the capacity to evolve in 
response to new technologies, standards, and domains. Secondly, a cross-domain perspective is 
introduced. AI methods that have been validated in buildings and microgrids have the potential to 
inform critical CES, where energy must be co-managed with life-support and recycling loops [55]. 
Collectively, these contributions provide a roadmap for researchers and practitioners. The 
aforementioned framework is also directly related to sustainable buildings and energy communities. 
The buildings themselves constitute the entry point, where perception and prediction methods are 
most established [56,61]. The control and optimization layer is extended to microgrids and 
communities, where coordination among distributed assets becomes essential. The market layer 
facilitates participation in transactive energy systems, ensuring fairness and transparency [39,52]. The 
sustainability layer establishes a connection between both domains and life-cycle metrics, as well as 
resilience. In this manner, the framework provides a foundation for the transition from intelligent 
buildings to adaptive communities, and further to CES under extreme constraints. 

On the basis of the results and analyses provided in this paper, it is suggested that future 
research should be advanced in four directions. Methodologically, towards interoperable and 
explainable AI stacks, the combination of edge and federated learning with robust RL and MPC 
hybrids [62]. At the system level, there is a necessity for stronger integration of market and control, 
especially in energy communities [39]. At the strategic level, the objective is to embed predictive LCA 
and resilience into EMS workflows [114]. At the frontier, CES provide a testbed for AI under extreme 
constraints, relevant to both space habitats and terrestrial islanded networks [72].  

The subsequent stage of the framework's implementation should be its operationalization in 
real-world pilots across buildings, communities, and CES. This will result in the transition of AI from 
the stage of algorithmic innovation to its systematic implementation, thereby establishing a linkage 
between short-term operational intelligence and long-term sustainability and resilience. The 
realization of this vision necessitates a harmonized collaborative effort among research, industry and 
policy domains. Moreover, it is crucial for the scientific community to encourage the advancement of 
AI towards holistic frameworks that seamlessly integrate intelligence across various scales, domains 
and temporal horizons. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

A2C Advantage Actor-Critic  
A3C Asynchronous Advantage Actor-Critic 
AC Alternating Current 
AI Artificial Intelligence  
ANN Artificial Neural Network 
BACS Building Automation and Control Systems 
BIM Building Information Modelling 
BIPV Building Integrated Photovoltaic 
BMS Building Management System 
CES Closed Ecological Systems 
CNN Convolutional Neural Network 
DC Direct Current 
DDPG Deep Deterministic Policy Gradient 
DEM  Dynamic Energy Management  
DERs Distributed Energy Resources  
DL Deep Learning  
DLT Distributed Ledger Technology  
DRL Deep Reinforcement Learning  
DSM Demand Side Management 
DSO Distribution System Operator 
DSR Demand Side Response 
DT Digital Twin 
ELM Extreme Learning Machine  
EMS Energy Management Systems 
EUI Energy Use Intensity 
EV Electric Vehicle 
FL Federated Learning  
GA Genetic Algorithm 
GRU Gated Recurrent Unit 
HEMS Home Energy Management System 
HGSOA Hybrid Gazelle and Seagull Optimization Algorithm 
HVAC Heating, Ventilation, Air Condition 
IDS Intrusion Detection System 
IMRAD Introduction, Methods, Results and Discussion 
IoT Internet of Things 
kNN k-Nearest Neighbors 
LCA Life Cycle Assessment 
LCC Life Cycle Cost 
LCSA Life Cycle Sustainability Assessment  
LSTM Long-Short Term Memory 
MARL Multiagent Reinforcement Learning 
MBC Model Based Control 
MCDM Multi-Criteria Decision-Making  
MILP Mixed-Integer Linear Programming 
ML Machine Learning  
MOO Multi-Objective Optimization  
MPC Model Predictive Control 
NILM Non-Intrusive Load Monitoring 
NMGs Networked Microgrids 
P2P Peer-to-peer 
PIML Physics-Informed Machine Learning  
POMDP Partially Observable Markov Decision Process  
PPO Proximal Policy Optimization  
PV Photovoltaic 
RES Renewable Energy Sources  
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RF Random Forest 
RL Reinforcement Learning  
RNN Recurrent Neural Network 
SVM Support Vector Machine  
TE Transactive Energy  
TESP Transactive Energy Simulation Platform 
TRPO Trust Region Policy Optimization 
WoS  Web of Science 
XAI Explainable Artificial Intelligence  
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