Pre prints.org

Article Not peer-reviewed version

EPT Switching vs. Instruction Repair vs.
Instruction Emulation: A Performance
Comparison of Hyper-Breakpoint
Variants

Lukas Beierlieb * , Alexander Schmitz , Anas Karazon, Artur Leinweber , Christian Dietrich

Posted Date: 15 September 2025
doi: 10.20944/preprints202509.1115.v1

Keywords: virtual machine introspection; performance; benchmarking

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently
| available and citable. Preprints posted at Preprints.org appear in Web of
(=] Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4127921
https://sciprofiles.com/profile/4611213
https://sciprofiles.com/profile/4733428
https://sciprofiles.com/profile/4610804
https://sciprofiles.com/profile/4133918

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

EPT Switching vs. Instruction Repair vs. Instruction
Emulation: A Performance Comparison of
Hyper-Breakpoint Variants

2

Lukas Beierlieb *{0, Alexander Schmitz >(0, Anas Karazon 2(*, Artur Leinweber 2 and

Christian Dietrich 2

1
2

Cyberus Technology
Institute for Internet Security, Westphalian University of Applied Sciences
* Correspondence: lukas.beierlieb@cyberus-technology.de;

Abstract

Virtual Machine Introspection (VMI) is a powerful technology used to detect and analyze malicious
software inside Virtual Machines (VMs) from outside. Asynchronously accessing the VM’s memory
can be insufficient for efficiently monitoring what is happening inside of a VM. Active VMI introduces
breakpoints to intercept VM execution at relevant points. Especially for frequently visited breakpoints,
and even more so for production systems, it is crucial to keep their performance overhead as low as
possible. In this paper, we present an empirical study that compares the performance of four VMI
breakpoint implementation variants — EPT switching (SLAT view switching) with and without fast
single-stepping acceleration, instruction repair and instruction emulation - from two VMI applications
(DRAKVUEF, SmartVMI), with the XEN hypervisor, on 20 Intel Core i processors ranging from the 4th
to the 13th generation. Regarding the time required to process a breakpoint hit, we found that on all
platforms: instruction repair > EPT switching > EPT switching fast single-step > instruction emulation.
More modern processors such as the Intel Core i7 12700H and Intel Core i9 13900HX achieved median
breakpoint processing times as low as 15us.

Keywords: virtual machine introspection; performance; benchmarking

1. Introduction

Code introspection methods, such as software debugging, play a critical role in analyzing and
understanding program and system behavior. They enable the detection, diagnosis, and mitigation
of issues, e.g., security-related problems, or facilitate execution performance measurements. Virtual
Machine Introspection (VMI) encompasses techniques for monitoring, analyzing, and manipulating
the internal guest state of a VM from external environments such as the host system or other VMs.
Introspection tools realize these techniques by reading and, if necessary, changing the values of the
virtual CPU (vCPU) registers and data in the main memory of the monitored VM combined with its
semantic interpretation. Garfinkel and Rosenblum initially introduced VMI as a concept in 2003 [1].
VMI allows administrators and defenders to detect and analyze malicious activities within VMs, so
the security and forensic fields made practical use of VMI [1]. Hence, there is significant interest in
applications within the fast-growing cloud computing environment [2]. Dynamic malware analysis—
manually or highly automated in sandboxes—also make use of VMI-based tracing mechanisms [3,4].

VMlI-based intrusion detection or malware analysis systems have several advantages over kernel-
mode or user-mode methods that run on the same system (inside the same VM) that is to be monitored.
Two important aspects include i) isolation (sensor isolation from the analysis target) and ii) transparency
(sensor invisible for the analysis target). Virtualization ensures strong isolation between the guest
software to be monitored and the sensor software. This separation makes detecting and manipulating
the monitoring software significantly more difficult for an attacker [5], allowing for more resilient

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0003-2512-9292
https://orcid.org/0009-0006-0514-9535
https://orcid.org/0009-0000-0815-9284
https://orcid.org/0009-0001-7623-1038
https://orcid.org/0009-0001-5523-4467
https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

2 of 25

observation. However, a key challenge for VMI applications is to bridge the semantic gap [6], i.e.,
accurately interpret the guest software semantics based on guest memory. Typically, this involves an
in-depth understanding of OS and application data structures [7], possibly derived from debugging
symbols or via complex reverse engineering efforts, particularly when facing closed-source guest
software. When this key challenge is successfully addressed, VMI monitoring enables comprehensive
event tracing and memory analysis, providing critical information on the behavior of the system and
application.

Modern VMI solutions primarily perform inspections in response to VM events (e.g., page faults,
Control Register 3 (CR3) writes, or breakpoint interrupts). Dangl et al. [8] refer to this reactive approach
as active (or synchronous) VMI, while passive VMI tasks are scheduled asynchronously by the outer
monitoring software. A key method of active VMI is to place breakpoints at particular locations inside
the guest code. Whenever the guest in the VM triggers such a breakpoint, the VMI software can
analyze the guest state related to the intercepted execution (e.g., reading the function arguments of an
invocation). Beyond placing breakpoints, more invasive manipulations of the guest state can be useful.
For example, the VMI application DRAKVUF [9] uses function call injections to interact with the guest
Operating System (OS) Application Programming Interfaces (APIs) to perform data transfers between
the target VM and outer environments, or to invoke process starts (called process injection)—valuable
functionality in malware-analysis sandboxes.

The attempt to create a first standard of a low level VMI API as an interface between VMI
applications and hypervisors with access capabilities led to the LibVMI project [10]. This library focuses
on accessing VM memory and vCPU registers. It can deal with Guest Virtual Addresses (GVAs) of the
guest process address spaces and is able to translate them into Guest Physical Addresses (GPAs) of the
VM. In contrast to Host Physical Addresses (HPAs), GPAs are also virtual addresses from the host’s
point of view, but from guest’s perspective they are the physical addresses (of the VM). The bottom
line is that LibVMI enables data access addressed via both guest process-related GVAs and GPAs. For
translating GVAs into GPAs, the library performs a page table walk on the tables managed by the
guest OS in software, efficiently implemented with software-side caching. The existing prerequisite is
that LibVMI is aware of the guest OS and is able to interpret the required internal data structures of
the guest OS. Unfortunately, LibVMI does not cover breakpoint handling. The library only provides a
minimal trap interface, allowing control flow interception when a VM event occurs, e.g., page faults,
CR3 writes, or breakpoint interrupts. The handling of breakpoints is typically implemented in the
VMI application, if at all. As a result, various concepts and implementations have emerged over time.

Building on our work developing a VMI infrastructure for the KVM hypervisor to realize security
monitoring for Windows guests, we investigate, among other things, the various breakpoint handling
mechanisms employed in different VMI applications. The VMI software stack on that we focus consists
of the virtualization stacks KVM / QEMU and XEN / QEMU, and the VMI applications SmartVMI
and DRAKVUEF. SmartVMI [11] is a VMI application software, which was developed in the SmartVMI
research project [12] by VMI researcher D. Eikenberg (GDATA) and partners. Because it is based on
LibVMI, it is compatible with both KVM and Xen. It provides a plugin interface and guest access
functionalities to implement custom VMI monitoring logic. There are a VMI-based guest memory
YARA scanner and a guest API call tracer available as plugins. DRAKVUF [13] is a plugin-agnostic
VMI application software for monitoring guest behavior, too. It was developed by T. Lengyel with
the focus on stealthiness [14]. There are a lot of plugins and libraries available, targeting different use
cases of automated malware analysis used in sandbox solutions. DRAKVUF is also built on top of
LibVMI but currently only supports the XEN hypervisor as virtualization back end.

In most use cases, runtime performance is critical for different reasons. For sandboxes, minimizing
the overhead from VMI sensor interceptions is advantageous, because the additional cycles spent while
the vCPUs are paused extend the real-world execution time without affecting the effective execution
time within the VM. Longer execution times reduce the analysis throughput in Sandbox clusters,
or provide angles for timing-based evasion checks [15], and should be avoided. Similarly, for VMI

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

30f25

on endpoint VMs with user interactions, low latency VMI interceptions are very important because
applications with soft real-time requirements do not tolerate long interruptions. This is especially
true for graphical user interface activities in the case of VMs operated by human users. Customers of
VMI-monitored VMs expect their systems to be responsive.

In this paper, we address the research question: How do the existing breakpoint implementations
compare in terms of performance? This seemingly simple question reveals upon closer examination
quite a few facets, which we discuss in the following chapters. In summary, we make the following
contributions.

* We prepared a portable disk image containing recent releases of Ubuntu, XEN with QEMU,
DRAKVUEF, SmartVMI, our benchmark tool bpbench, and tools for VM snapshot management.
We make the image available to reproduce our measurements on matching hardware or repeat
the measurements on other systems.

* We provide breakpoint-benchmark results measured with the previously mentioned disk image
on 20 devices with Intel Core processors ranging from the 4th to the 13th generation.

The rest of this paper is structured as follows: Section 2 provides a thorough explanation of the
breakpoint handling implementations. Section 3 first discusses all the aspects to consider when trying
to answer the research question and eventually introduces our measurement study in detail. We
give an overview of the utilized hardware platforms in Section 4 before presenting and interpreting
measurement results in Section 5. Section 6 highlights relevant existing works. Finally, Section 7
concludes the paper by summarizing, discussing the results, and giving an outlook to future work.

2. Background

Virtual Machine Introspection (VMI) is a technique that allows the state and behavior of a virtual
machine (VM) to be monitored and analyzed from the outside —i.e., from the host environment (type
2 VM), a control VM (type 1 HV) or a special monitoring VM - without having to install agent software
within the VM itself. This is often used for security monitoring in malware sandboxes or malware
analysis. In the scientific community, there are a few generally useful open source applications for
performing security-related VM behavior monitoring on different virtualization platforms. We have
identified two of these, which were designed for use as malware sandbox sensors, as particularly
relevant. First there is DRAKVUF [13] by Tamas Lengyel a plugin agnostic framework for writing VMI
applications with a lot build in monitoring features for Linux and Windows guest software supporting
the XEN-QEMU virtualization platform [14]. The other nominee is SmartVMI [11] a also plugin
based VMI software for Windows guests developed by GDATA CyberDefense AG as a member of the
SmartVMI research project [12]. SmartVMI supports the two virtualization platforms XEN-QEMU
(type 1 HV) and KVM-QEMU (type 2 HV). For the last one, KVMI a VMI patch set for Linux KVM is
needed.

2.1. VMI Software Architecture

The architecture of VMI software can typically be divided into several layers or components.
The foundation is the virtualization platform consisting of a hypervisor (e.g., XEN, KVM, etc.) and a
Virtual Machine Monitor (e.g., QEMU, CloudHypervisor, etc.). The virtualization platform implements
access functions to the registers of the virtual CPUs (vCPUs) and the guest physical memory of the
VMs to be monitored, as well as an event system with which traps can be configured and notifications
on VM exits can be set up. These functionalities can be referred to as VMI infrastructure, which is
provided by the virtualization platform via interfaces to use by the VMI application software. For XEN
(type 1 HV), the corresponding mechanisms are located in the hypervisor itself in the host and are
accessed via hypercalls by VMI software within a VM. For KVM (type 2 HV), the VMI infrastructure
functions (KVMI) are also located in the hypervisor, i.e., in the KVM driver in the Linux kernel of
the host system. The KVM driver is used by the Virtual Machine Monitor (VMM) process for the
VM (QEMU process). The VMI application software communicates with the QEMU process or rather

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

4 0f 25

with the KVM driver inside the Kernel part of the QEMU process via an UNIX domain socket. An
implementation of VMI infrastructure functions within the VMM software would theoretically be
conceivable, but no implementations are known.

The VMI application software builds on and utilizes the VMI infrastructure. It is the core of a
VMI software stack and implements the sensor logic used to interpret the the guest software state
(semantic gap) for monitoring guest systems behavior. In the open source VMI ecosystem, there is the
LibVMI library [10] used by many VMI applications that implements VMI access procedures and trap
handling. LibVMI forms an intermediate layer between the VMI application or sensor logic and the
VMl infrastructure of the hypervisor. It generalizes the VMI access AP to provide the VMI software an
uniform API independent of the underlying hypervisor. However, LibVMI also plays a central role in
dealing with the semantic gap. It implements address translation from guest virtual addresses (GVA)
to guest physical addresses (GPA). This allows the VMI software to work with virtual addresses from
the address spaces of the guest processes. To do this, LibVMI reads and interprets the guest page tables
and does the page table walk in software. The mechanism is implemented in an efficient way with
software-side caching.

2.2. Hyper-Breakpoint Handling

Modern VMI-based monitoring methods use active VMI as an instrumentation method, which
enables event-based monitoring of the guest software. In order for VMI software to respond to events
in the guest software (active VMI), traps must be installed. One of the most important types of traps
are code breakpoints realized by breakpoint instructions (INT3 on x86) patched into the guest code.

The VMI software uses the hypervisor to configure the virtual CPUs of the VM to be monitored
via Virtual Machine Control Structure (VMCS) structs so that code breakpoints lead to a VM exit and a
handling by the hypervisor and the VMI software. The hypervisor checks whether the breakpoint is a
hyper breakpoint installed by the VMI software or a debug breakpoint set by guest software within
the VM. In the former case, the VMI software is notified to handle the breakpoint. In the latter case,
the breakpoint is injected as an interrupt into the VM during the VM resume process so that the guest
software that installed the breakpoint can handle it.

A significant difference between hyper breakpoints and classic in-VM breakpoints with regard
to inserting the breakpoint instruction is that, due to the copy-on-write (COW) policy for shared
user mode code pages within the guest systems, inserting an in-VM breakpoints results in a copy
of the page. The new copy is private for the target process and will be patched with the breakpoint,
which means that the breakpoint only takes effect in the user address space of the target process. In
contrast, such guest page policies do not exist for hyper breakpoints, which means that breakpoints in
shared code pages are effective in all processes in which the corresponding shared and patched page is
mapped.

To complete code breakpoint handling after the VMI sensor logic has processed the event, the
original instruction that was destroyed by the patching with the breakpoint instruction must be
executed before execution can continue with the next instruction of the guest code. To ensure that the
original instruction is executed, there are three basic concepts in VMI-based breakpoint handling. First
there is the repair mechanism that restores the origin instruction in main memory. As an alternative to
change the data in memory, the instruction can be emulated, which is the second method. The third
method only works in the context of virtualization and is based on the fact that the hypervisor can
give a vCPU different views of the memory.

Table 1 provides an overview of the three breakpoint handling concepts, named Instruction Repair,
Instruction Emulation and Second Level Address Translation (SLAT) View Switch, all of which will be
discussed in the following subsections. The first column contains the concept name as used throughout
this work, accompanied by a concise identified for its implementation. The subsequent columns reflect
concept properties — such as multiprocessor-safety, reliance on single-stepping, or the kind of trap
mechanism employed — and provide a summary of the corresponding processing sequence.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

5o0f 25
Table 1. Breakpoint Handling Concepts.
Name Implementation | MP-safe Single-step Trap Sequence
) repair instruction,
Instrgctmn SmartVMI Rep no yes INT3 single step execution,
Repair (1) patch instruction (INT3)
}Eﬁzﬁiﬁﬁ @) SmartVMI Emul | yes no INT3 emulate instruction
SLAT View DRAKVUF os os INT3 SlatSwitch(origin),
Switch (3) altp2m (FSS) y y single step execution,
SlatSwitch(patched)

2.2.1. Instruction Repair (1)

In the case of the instruction repair mechanism, after the breakpoint has been processed by the
VMI sensor logic, the original byte of the instruction that was overwritten by setting the breakpoint
instruction INT3 is written back to VM’s memory. The original instruction is thus restored or repaired.
However, before returning to the VM to execute the repaired original instruction, the interrupted
vCPU must be set to single stepping mode. This is done via the Monitor Trap Flag (MTF) in the
VMCS of the vCPU managed by the hypervisor. The MTF in the VMCS configures the vCPU to
operate in virtualized single step mode, executing only one command of the guest software and then
automatically triggering a VM exit again. The MTF thus corresponds to the Trap Flag (TF) of the
RFLAGS register in classic non-virtualized environments. After the repaired command of the guest
software has been executed, the VMI software can patch the instruction again with the breakpoint
instruction INT3 in response to the single step VM exit, so that the breakpoint trap is also set for future
executions again.

During the period in which the original instruction is persistent in memory without a breakpoint,
parallel executions could pass the code location without triggering the trap. For this reason, it should
be ensured that no parallel executions exist, e.g., by deactivating all other vCPUs of the VM for this
period or by strictly avoiding multiprocessing (single vCPU VM). This solution must therefore be
considered as non-multiprocessor-safe.

Another disadvantage of this method is that single stepping requires switching between the VM
to be monitored and the VMI software in a total of two times (at least four VM transitions). In the
case of a type 2 hypervisor such as XEN, this number doubles to eight VM transitions, as the VMI
software itself executes within a VM that must be entered and exited. These additional VM transitions,
along with the required communication between the hypervisor and the VMI software, introduce
considerable overhead and significantly increase execution latency.

2.2.2. Instruction Emulation (2)

To avoid the single-step overhead of the instruction repair mechanism and to create a hyper-
breakpoint handling method that is multiprocessing-safe, it is better to find a way without touching
the VM’s memory with the patched guest code. The alternative is to emulate the original instruction
outside the VM by using a software emulator that operates like a CPU instead of executing it on the
real CPU. The emulation contains the original instruction from the guest code before the breakpoint
patch from the VMI software and executes it on the state (registers, memory) of the vCPU. Afterwards,
the vCPU can be resumed (VMRESUME) to continue execution with the next command of the guest
software. Practical implementations of hyper-breakpoint handling using instruction emulation in VMI
software utilize the x86/1A32/ AMD64 instruction emulation that is integrated into the KVM and XEN
hypervisors.

This method is multiprocessor-safe because the patched code with the breakpoint that is seen
by other parallel vCPUs is never modified. The number of context switches and VM transitions also
remains minimal (Type 1 HV: 4, Type 2 HV: 2) and single-step overhead is avoided.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

6 of 25

Nevertheless, a notable limitation is that the emulation implementation may be incomplete and,
as a result, diverge from actual CPU execution. The extent of this issue largely depends on the quality
of the selected emulation and its commitment to completeness and correctness. The x86/IA32/ AMD64
instruction emulation integrated in KVM, XEN, and QEMU can be assumed to be highly accurate, as
these systems are mature, widely used, and have undergone extensive testing over time. However,
specific edge cases involving certain instructions and argument combinations may arise, in which
emulation is best avoided. When designing the VMI sensor logic, the approach can be aware of which
guest software instruction is being patched with a hyper-breakpoint. This knowledge allows the issue
to be largely mitigated by avoiding the placement of breakpoints on extremely rare instructions where
emulation may be unreliable or faulty.

2.2.3. SLAT View Switch (altp2m) (3)

Second Level Address Translation (SLAT) — implemented by Extended Page Table (EPT) in Intel
x86-64 processors — provides possibilities for realizing execution context-dependent manipulations of
guest software by VMI software. This enables another option for handling hyper-breakpoints, which
is only possible for hyper-breakpoints in virtualized environments, however. The reason for this is
that it is based on SLAT, which forms the basis of address translation in virtualization solutions. SLAT
is the translation stage in the host that enables guest physical addresses of the VM to be translated into
host or machine physical addresses of the host.

Using multiple EPT page table sets for one VM or one vCPU, the hypervisor can implement
multiple views of the memory from the perspective of a vCPU (SLAT views). By configuring the
VMCS, the hypervisor can change the vCPU’s view of its memory. This allows a page of the VM
memory to be mapped to several different page frames of the machine memory, depending on the
view. This possibility can be used for breakpoint handling. The page of VM’s memory that should be
patched with a hyper breakpoint is mapped to two different page frames via two SLAT views. One
page frame contains the original version of the code without the breakpoint instruction, while the
other contains the patched version with the INT3 instruction. The hypervisor configures the vCPUs in
such a way that the modified version with the breakpoint is used during normal execution, causing it
to trigger when executed. During breakpoint handling, the view of the original version is changed
for the interrupted vCPU and the original instruction is executed in single stepping mode. After the
original instruction has been executed, single stepping interrupts again and the VMI software can
change the view of the interrupted vCPU back to the patched version with the breakpoint instruction.
Then execution of the guest code can be continued.

Using this method, the original instruction is executed in hardware on the real CPU without
the need for emulation. Real execution on CPUs is faster and more reliable in terms of correctness
compared to emulation. In addition, this method is also multiprocessing-safe, as each vCPU has its
own configuration specifying which EPT page table set to use and which view of the memory should
be active. However, there again is the disadvantage that the VMI software and/or the hypervisor
must intervene twice to switch the memory view back and forth. This again results in the mentioned
single-step overhead, requiring 4 switches between VM execution and VMI software (type 1 HV: 8 VM
transitions; type 2 HV: 4 VM transitions).

Another major advantage of SLAT View Switching in the VMI context is that breakpoint traps
can be enabled and disabled by switching views, as required by the VMI software. For example,
breakpoints in operating system libraries in user-mode processes can be enabled or disabled for a
vCPU depending on the process or thread that is currently being executed. This allows monitoring
to be restricted to individual threads and processes of a system, thereby filtering out unimportant
behavior noise. Especially for hyper-breakpoints in shared libraries, whose code is mapped in different
process address spaces and where breakpoints are therefore also effective in different processes, SLAT
View Switching can still be used to differentiate between individual enablements.

In order for VMI Software to use SLAT View Switching for its purposes, the hypervisor must offer
the feature via its VMI infrastructure APL In the XEN hypervisor project, the function is referred to the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

7 of 25

acronym “altp2m” (alternative guest physical memory to machine physical). SLAT View Switching as
a method for hyper breakpoint handling was first used in the VMI Framework DRAKVUF, which was
developed at the same time as the VMI infrastructure functions in XEN in the same comunity, which
has established the term ”altp2m” as a synonym for SLAT View Switching in the VMI context.

2.3. Acceleration: Breakpoint Handling by the Hyperuvisor

In addition to the breakpoint handling methods themselves, the layer within the VMI stack on
which the method is implemented and executed also has a significant impact on execution speed.
Theoretically, the mechanisms described (repair, emulation, SLAT view switching) can be implemented
either within the VMI application (SmartVMI, DRAKVUF, LibVMI) or within the VMI infrastructure as
part of the hypervisor or VMM. The last option has the advantage that after the instruction is executed
by single step, the hypervisor does not have to communicate with the VMI application that these
can finish breakpoint handling. Instead, breakpoint handling is finished directly in the hypervisor.
Communication between the hypervisor and the VMI process is at least interprocess communication,
which represents additional avoidable overhead that carries the risk of delays and thus higher latencies.
In the case of a Type 2 hypervisor such as KVM, this involves interprocess communication between
the VMM process (QEMU) and the VMI process (SmartVMI). With a Type 1 hypervisor such as XEN,
the overhead is significantly greater, as hyper-communication must take place between the VM with
the VMI software and the hypervisor in the host, requiring additional VM transitions.

To avoid this overhead, DRAKVUF offers the Fast-Singlestep (FSS) option, whereby breakpoint
handling when switching SLAT views is not performed by DRAKVUF itself, but instead by the XEN
hypervisor which provides the necessary VMI infrastructure feature. The DRAKVUF feature is only
available for breakpoint handling and is not used to accelerate read traps in relation to breakpoint
hiding.

2.4. Hiding Breakpoints for Stealth

When using VMI-based monitoring in a security context, it may be important that the attacker
or the malware to be monitored cannot detect the monitoring. Examples here would be malware
sandboxes or high interaction honeypots. Code integrity checks, in which software reads the code
and checks its integrity, are not only performed by malware or attackers to find monitoring hooks or
breakpoints. Benign software also performs such checks to protect itself against malicious hooks and
breakpoints. For example, the Windows kernel is protected against changes to the kernel code, e.g., by
breakpoints, using Kernel Patch Protection (KPP), also known as PatchGuard. Therefore, a VMI-based
instrumentation solution must provide mechanisms to hide set INT3 breakpoint instructions from read
accesses by the guest software.

In principle, breakpoint instructions can be hidden using the same three concepts described
above, which are also used for breakpoint handling (repair, emulation, SLAT view switching), with
the same advantages and disadvantages. In breakpoint handling, the original instruction is executed;
in breakpoint hiding, the original instruction must be read. For that a read trap is set up using EPT
permissions for the page in which the breakpoint is located in order to intercept a corresponding read
access by the guest software. EPT permissions on the page works with page-granularity, so not only
read operations on the memory location where the breakpoint is set will be trigger the trap, also all
other read operations performed on the page with any hyper-breakpoint lead to an interception by
the hypervisor and VMI software. There are now two ways how the VMI software could handle the
intercepted read operation. Either every read operation on the page is handled as if it were a read
of the breakpoint location, or the VMI software checks the read address to see if it is the breakpoint
location and handles the read operation differently. Both options result in correct implementation of
breakpoint hiding. The latter option may offer potential for performance optimizations.

If the breakpoint instruction is read, the guest execution trapped and the read operation must be
given special treatment by the VMI software so that the original code is read instead of the breakpoint.
To do this, SmartVMI uses the read emulation available in XEN and KVM via LibVMI. The hypervisor is

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

8 of 25

provided with the original bytes of the patched instruction, which it uses to emulate the read operation
of the guest software with the advantages of multiprocessing safety and no single-step overhead.
DRAKVUEF, on the other hand, does not use emulation but instead it uses SLAT View Switching
(alternative guest physical to machine translation (altp2m)). Read access is handled in such a way that
the memory view of the reading vCPU is first switched to the original page without the breakpoint.
Then, single stepping is used to execute the one read instruction on the CPU. The single stepping
leads to another VM exit and interruption by the hypervisor and the VMI software, during which the
memory view is switched back to the page with the breakpoint before guest execution can continue.
The method is also multiprocessing-safe, but it has the disadvantage known from altp2m that the
necessary single stepping causes considerable overhead.

Table 2. Breakpoint hiding concepts.

VMI .
Name Software MP-safe Single-step Trap Sequence
)) EPT repair instruction,
Repair . (not imple- no yes read single step read,
Instruction mented) trap patch instriction (INT3)
Read EPT
. SmartVMI yes no read emulate read
Emulation
trap
EPT . -
i SlatSwitch ,
SLAT View DRAKVUF yes yes read AW (origin)
Switch single step read,
trap SlatSwitch(patched)

3. Approach

This section describes our considerations and decisions about how to design the measurement
study. The relevant topics are metrics, hypervisor, as well as hardware and software setup.

3.1. A Metric for Breakpoint Performance

Our main research question is as follows: How do the existing breakpoint implementations
compare with respect to performance?. As noted earlier, addressing this seemingly straightforward
question entails a variety of nontrivial considerations. This section discusses the relevant aspects, from
which the foundations for our measurement study are derived.

What does performance mean for a breakpoint implementation? Beierlieb et al. [16] address this
question in detail and identify three key aspects: the execution time required to handle a breakpoint hit,
the execution time for processing a read operation at a breakpoint location, and the overhead incurred
even when no breakpoint is triggered. Since the overhead is independent of the specific breakpoint
implementation, it is excluded from consideration in this paper. The read-handling execution time
depends on the stealth mechanism and thus on the breakpoint handling mechanism. Typically, this
metric is less important than the time to handle a breakpoint hit, because reads of code regions
typically only happen due to occasional code-integrity checks. Nonetheless, we include this metric in
our evaluation. Thus, the remaining relevant metric is the handling time of breakpoint hits, which we
regard as the most significant factor in assessing breakpoint performance. We use bpbench to measure
the execution and read times.

3.2. Choosing the Hypervisor

Using the same hypervisor is a necessity to ensure that measurement results are comparable. As
a type 1 hypervisor, XEN incurs more VM entries and exits during transitions from the guest to the
VMI application than KVM, a type 2 hypervisor. Consequently, the same breakpoint implementation
is expected to exhibit different execution times across the different hypervisors. Measuring two imple-
mentations on different hypervisors makes them incomparable because the performance influence of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

9 of 25

the approach cannot be differentiated from the influence of the hypervisor. KVM is excluded from
this study, because it is not supported by DRAKVUE. However, there are more reasons to discard
KVM from such measurements, at least currently. The kernel with the KVMI patchset is based on
Linux 5.4.24 (released in March 2020) and might subsequently have trouble working on more modern
hardware. KVMI/LibVMI also do not work perfectly with breakpoints in userspace processes. We had
to rewrite the breakpoint logic to support only a single breakpoint for our preliminary measurements
in the bpbench paper [16], because the interrupt event resulting from a breakpoint did not report the
corresponding instruction pointer, which typically allows identification of a breakpoint. Further, only
the instruction-repair implementation works on KVM, because LibVMI currently does not support
instruction emulation for KVMI. On the other hand, all implementations work flawlessly on XEN,
establishing it as the most suitable hypervisor for this study.

3.3. Hardware Platform Evaluation Set

The same principle applies to hardware: evaluating different implementations on different
hardware platforms prevents any reliable conclusions regarding the impact of the implementation
itself. Breakpoint handling requires operations such as VM exits, VM entries, system calls, context
switches between processes, inter process communication, EPT view switches, and regular instructions.
All operations depend on the CPU clock speed, but architectural changes between CPU generations
could affect the speed of some operations regardless of the clock frequency. Thus, only measurements
of different implementations conducted on the same hardware setup are directly comparable. We
performed the same measurements on 20 systems with Intel Core i processors ranging from the 4th
(released 2014) to the 13th generation (released 2023), spanning nine years. Section 4 provides a
detailed overview.

3.4. Software Setup

We prepared a disk image (approximately 18 GB in compressed form) containing the type 1
hypervisor XEN with the control VM (Dom0) including Ubuntu 24.04.3 LTS running on Linux kernel
6.14.0-28-generic as host OS. The image is configured with the XEN hypervisor (version 4.20) in
combination with the QEMU emulator as VMM (version 9.1.0). The control VM (Dom0) is a quad-core
virtual machine that is pinned to the first four real processor cores (no SMT) if available. In addition to
the Dom0 VM, the image includes a guest VM (DomU), which is configured as a single-core virtual
machine running Windows 10 Education 22H2 (Build 19045.2006) that is pinned to the fourth real
processor core (no SMT). So the fourth processor core is shared between the Dom0 VM and the DomU
VM.

On Dom0 VM, a modified version of DRAKVUF is installed to support the evaluation of EPT and
EPT-Fast breakpoints. For benchmarking instruction repair and instruction emulation breakpoints,
we rely on SmartVMI, which is built using the NIX package available on GitHub [17]. This setup
respectively loads the appropriate SmartVMI variants for each breakpoint mechanism [18,19].

The Windows VM is provisioned with the bpbench. exe binary, placed on the desktop, which
serves as the central workload for executing the Hyper-Breakpoint benchmark. An overview of all
software components used in this environment is provided in Table 3.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

10 of 25

Control VM (Dom0) Windows VM (DomU)

VMM process:
QEMU

1 1
i
i device
! .
' emulations

guest process:

, SmartVMli bpbench

| plugins
i

i

1| vmicore

i
oP |

NOP | i
REX| Breakpoint

Som oo oo [

L tbvmi E o |

: ! { i)
Linux XEN XEN ' Windows
Kemel i | Evtchn Backend Drv. | | Kernel

Interrupt Inject. Hypercall L

VM Transition VM Transition
XEN
Hypervisor

VMI Infrastructure

Figure 1. Software architecture for the benchmark using SmartVMI as an example.

Table 3. Software stack used in the Hyper-Breakpoint benchmark environment

Component Version / Configuration

Host OS (Dom0) Ubuntu 24.04.3 LTS, Linux kernel 6.14.0-28-generic
Hypervisor XEN 4.20

VMM QEMU 9.1.0

Guest OS (DomU) Windows 10 Education 22H2 (Build 19045.2006)
Packet Manager NIX2.31.0

BP: altp2m, altp2m_fss DRAKVUF with LibVMI (internal version)

BP: instr_repair, instr_emulation SmartVMI with LibVMI (NIX build)

Benchmark workload bpbench. exe (Windows VM, Desktop)

3.5. The bpbench Benchmark Tool

Our benchmatk tool bpbench allocates a new page-aligned memory region in user space, sized
at one page (4 KiB) with read, write and execute permissions. Then, it fills the whole page with a
sequence of NOP instructions. The last byte of the memory region is written to with a RET instruction.
The hyper breakpoint should be set on this return instruction. To do that, bpbench reports its process
ID and the virtual address where the hyper breakpoint should be placed to the user and waits for
confirmation from the user.

The user communicates the information on the breakpoint location to the MOCK-Breakpoint
plugins of SmartVMI and DRAKVUF developed for this experiment. The VMI plugins install the hyper
breakpoint (code breakpoint via INT3) in the address space of the bpbench process at the specified
location. To handle the breakpoint event by the VMI software, both plugins register an empty callback
function. The breakpoint handling mechanism is not the responsibility of the plugin and is handled by
code in the core logic of the SmartVMI/DRAKVUF framework or in the LibVMI library. The breakpoint
handling sequence is performed by the VMI software after returning from the empty callback function.
To investigate and measure the various breakpoint handling methods for this experiment, we perform
several measurement runs with bpbench, configuring DRAKVUF differently and loading different
versions of SmartVMI. We use our own versions of both DRAKVUF and SmartVMI, which contain
changes to support the various breakpoint handling methods and are extended with our plugins.

After the VMI software has installed the breakpoint trap, the user starts the benchmark process in
bpbench. The various workloads are applied to the selected breakpoint handling configuration one

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

11 of 25

after the other. Depending on the workload, either the return instruction (RET) with the breakpoint
or the first NOP instruction of the written will be jumped directly by a CALL instruction. This triggers
the hyper breakpoint to be measured. Before and after execution of the CALL instruction, a timestamp
is determined via the Windows API using the QueryPerformanceCounter function. The process is
repeated 200°000 times, with each individual time span being logged.

For stealth-related workloads, bpbench does not perform a jump into the page, instead, the page
is read, which should trigger the breakpoint hiding mechanism, where the read operation will be
handled in special by the VMI software. To do this, related to the two workloads the RET instruction
on the one hand and the entire page on the other hand are read each 200,000 times with measurement
and logging the execution time of the read operation.

In order to have a reference for the accuracy of our time source, we also determine the time
required to query the timestamp via the Windows API function QueryPerformanceCounter and report
this value as a reference in all our measurement results.

3.6. Configurations to Improve Measurement Accuracy

This subsection describes four configuration aspects intended to improve measurement accuracy
and avoid side effects.

3.6.1. Focus on Process Priority

A breakpoint event is signaled by an injected interrupt from the XEN hypervisor into the control
VM (Dom0) and the resulting wake-up of the DRAKVUF/SmartVMI thread by the interrupt handler of
the XEN event system driver within Dom0. Between this wake up of the thread and its dispatch with
continuation of execution, other threads of the Ubuntu system within the Dom0 can be dispatched and
executed. To minimize such delays in breakpoint handling, the threads of the VMM process (QEMU)
and the VMI software (DRAKVUF/SmartVMI) should be executed with higher priority. This gives
them precedence over other threads in the Dom0 during the dispatch procedure. To ensure this, we
start QEMU for the Windows VM with a nice value of -5 and DRAKVUF and SmartVMI with a nice
value of -10, which increases the process priority by 5 and 10, respectively.

3.6.2. CPU Pinning

To ensure that there is always a free CPU core available for running the Windows VM and our
VMI software, we configure the CPU affinity for processes in Dom0 and the allocation of vCPUs from
Dom0 and DomU to the real CPU cores. The first 4 real CPU cores are assigned to the vCPUs of the
control VM for this purpose. The Windows VM vCPU is pinned to the 4th real CPU core, resulting in
shared use between Dom0 and DomU. The VMM process (QEMU) within Dom0 is also pinned to the
fourth CPU core. This configuration is beneficial because the execution related to a VM per vCPU or
per VM thread can be run either in the VM or out of the VM in the VMM process. At the same time,
data that can be used by both the guest and the VMM can be located in the cache of the same CPU
which increases performance. The same principle applies to TLB entries and other CPU-local resources.
Although it would be reasonable to assume that the VMI software should also be executed on the
fourth core, we have determined that we get the best performance when SmartVMI and DRAKVUF
will be assigned the second core. That is why we are also using this CPU affinity configuration with
the VMI software on the second core for the experiment. All other system processes and threads that
could be assigned were assigned to the remaining cores so that the cores for the VM, VMM and VMI
are kept free.

3.6.3. Disabling SMT

To ensure that only true physical cores were used, Simultaneous Multithreading (SMT) — com-
monly known as Hyper-Threading on Intel x86 architectures — was disabled through the firmware
settings. On newer Intel Core i processors of the 12th and 13th generations, which feature two types of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

12 of 25

CPU cores, the slower efficiency cores were also disabled via firmware configuration, leaving only the
first four performance cores for the experiment.

3.6.4. Fix CPU Clock Speed

An important aspect for accurate measurements is that the speed of the CPU cores involved in
the experiment does not change while the measurement is running. To ensure this, all processors in
our evaluation hardware were configured to operate continuously at their model-specific base clock
frequency. We used the firmware settings to disable all CPU features that increase the speed above the
base clock speed (Turbo Boost) or decrease it below the base clock speed (SpeedStep, energy-saving
modes, etc.). In cases where the firmware did not provide the appropriate settings, we attempted to set
the clock frequency to the base clock level (PO without Turbo, P3 with Turbo) using the configuration
parameters of the XEN hypervisor.

3.7. Workloads

We identify the following four specialized workloads, each focusing on a different aspect of
the measured breakpoint handling and hiding implementations, and, when their results are put
together, can provide a full overview of the overhead the different breakpoint handling and hiding
implementations cause. The first two workloads, WL1 and WL2, focus on the execution of the
breakpoint and its handling. The last two workloads, WL3 and WL4, are related to measuring the
breakpoint hiding methods by reading data from the page where the breakpoint is placed.

* WL1: Execute the breakpoint. This workload is supposed to measure how long it takes the whole
VMI stack to handle a breakpoint. There are a multitude of factors that comprise this latency:
VM transitions (exits and entries), processing in the hypervisor, communication between the
hypervisor and the VMI application, processing in the VMI application.

¢ WL2: Execute the page with the breakpoint. Techniques such as altp2m make changes to the
EPT configuration of individual vCPUs, which could also impact caching and TLB performance.
If it has an impact on performance, this may be noticeable when other instructions are executed
on the same page where the breakpoint is located. The previous workload does not reflect that,
so this one is supposed to measure the latency of executing the breakpoint as well as additional
instructions (NOP) that are located on the same page.

Table 4. Workloads: Breakpoint execution.

R P e
Instr_Repair SmartVMI exec_bp_rep exec_page_rep
Instr_Emulation SmartVMI exec_bp_emul exec_page_emul
Altp2m DRAKVUF exec_bp_altp2m exec_page_altp2m
Altp2m_FSS DRAKVUF exec_bp_altp2m_fss exec_page_altp2m_fss

e WL3: Reading the breakpoint. The stealth-related breakpoint hiding methods using EPT per-
missions to realize the read trap on the page where the breakpoint is located cause overhead for
the same reasons as mentioned in WL1. This workload is designed to quantify this latency by
reading from the exact same memory location where the breakpoint is placed.

e WL4: Reading the page with the breakpoint. The used read trap based on EPT permissions has
page-granularity. This trap not only intercepts and handles the read operation at the address
where the breakpoint is located, but it also triggers for every other read operation on the page.
This workload reflect this fact and perform multiple read operation on all bytes of the whole page
where the breakpoint is located. The statement that code pages are practically hardly ever read is
not true in every case. There is a real use case for this workload, because code integrity checks,
such as those performed by KPP / PathGuard, involve reading entire code pages.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

13 of 25

Table 5. Workloads: Reading page with hidden breakpoint.

Breakpoint hiding VMI software WL3: read breakpoint WL4: rea‘d page with
method breakpoint
Read_Emulation SmartVMI read_bp_emul read_page_emul
Altp2m DRAKVUF read_bp_altp2m read_page_altp2m

4. Hardware Platforms

In this section, we describe the hardware platforms utilized for the Hyper-Breakpoint benchmark.
Our selection encompasses Intel Core processors from the fourth generation onward, with the ex-
ception of the fifth generation, for which no representative CPU was available. To capture a broader
performance spectrum, we also include comparatively weak devices, such as the Intel Core i3-6100
and the Intel Core i5-7300U, both limited to two cores. The complete set of devices employed in the
experiments is summarized in Table 6.

Table 6. Hardware Platforms.

Year CPU Gen CPU Model Base Clock i{s:;? Vendor, Sysbench score
. (custom build
2014 4th i7 4790K 4000 MHz desktop PO) 1292.46
2015 6th i3 6100 3700 MHz FD‘;];;“ ESPRIMO 1594 50
2016 7th i5 7300U 2600 MHz Intel 908.56
NUC7i5DNHE :
. Lenovo
2017 8th i5 8350U 1700 MHz Thipad Tagos 123127
. Lenovo Yoga 730
2018 8th i7 8565U 1800 MHz il 1554.17
2019 8th i7 8665U 1900 MHz Lenovo ThinkPad /1) 54
X390 Yoga
2019 9th i7 9750H 2600 MHz Igg(&%](m 7 1356.64
2019 9th i7 9850H 2600 MHz lging:r?zmmkpad 1529.44
. custom build
2018 9th i9 9900K 3600 MHz desktop PC 1270.40
2020 10th 5 10310U 1700 MHz Lenovo ThinkPad .7 4o
T14 Genl
. TUXEDO Book
2020 11th i7 1165G7 2800 MHz XP14 Conl2 2389.13
2021 11th i7 11800H 1900 MHz ivll%EKatana GF76 1961.76
2022 12th i7 1260P 2100 MHz Lenovo ThinkPad 59,7 ;¢
T14 Gen3
2022 12th i7 1265U 1800 MHz Lenovo ThinkPad 5 5,
L14 Gen3
R Lenovo IdeaPad
2022 12th i7 12700H 2300 MHz = Pro SIALL 3877.77
Lenovo
2022 12th i7 12700T 1400 MHz ThinkStation 3867.40
P360 Tiny
TUXEDO
2023 13th i7 13620H 2400 MHz InfinityBook Pro 3602.98
Gen8
TUXEDO
2023 13th i7 13700H 2400 MHz InfinityBook Pro 3453.76
Gen8
- (custom built
2022 13th i7 13700K 3400 MHz desktop PO) 2921.45
2023 13th 9 13900HX 2200 MHz EEIEEDO Gemini 350 94

r(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025

d0i:10.20944/preprints202509.1115.v1

14 of 25

For all systems, we attempted to establish stable operating conditions for the processor by

adjusting the firmware settings. As far as the corresponding CPU features were available on the

devices and the UEFI firmware setup allowed them to be disabled, the following functions were
disabled:

all Efficient-cores (on processors with performance and efficient cores)

Simultaneous Multithreading (SMT) aka Intel Hyperthreading (Intel HT)
Intel SpeedStep
Intel SpeedShift

Intel Turbo Boost Mode
CPU Power Management

CPU Power Saving Mode (C-states)

The firmware setup did not provide the settings to disable the aforementioned features on all systems.

On systems that had no corresponding settings options, the features remained enabled. Table 7

provides an overview of which features could be disabled on which systems. In one case (ThinkPad

T14 Gen3), SpeedStep was intentionally kept enabled (ENABLED), because of operational issues with

disabled SpeedStep. There were two other cases where SpeedStep could not be disabled, but instead a

performance policy could be set via the firmware setup. In these cases, the processor performance was

set to maximum (max perf.).

Table 7. Firmware Setup Feature Matrix.

SpeedStep /
System SMT (HT) SpeedShift Turbo Boost Power Mgmt
custom PC (i7 4790K) disabled disabled disabled not adjustable
1215 (I))OI?MO D757 (i3 disabled disabled not adjustable not adjustable
NUC (i5 7300U) disabled max perf. disabled not adjustable
';';1511(')111}1;61(1 T480s (5 disabled disabled not adjustable disabled
Yoga 730 15IWL (i7 disabled not adjustable not adjustable not adjustable
8565U)
ThinkPad X390 Yoga
(i7 8665U) disabled disabled not adjustable disabled
OMEN 17 CBOXXX(i7 disabled not adjustable not adjustable not adjustable
9750H)
ThinkPad P1 Gen2 (i7
9850H) disabled disabled not adjustable disabled
custom PC (i9 9900K) disabled disabled disabled disabled
ThinkPad T14 Genl
(i5 10310U) disabled disabled not adjustable disabled
Book XP14 Gen12 (i7
1165G7) disabled disabled disabled not adjustable
Katana GF76 11UE (i7
11800H) disabled disabled not adjustable disabled
ThinkPad T14 Gen3 . . .
(i7 1260P) disabled ENABLED disabled disabled
ThinkPad L14 Gen3
(i7 1265U) disabled disabled not adjustable disabled
IdeaPad 5 Pro . . .
16IAH7 (i7 12700H) disabled max perf. not adjustable not adjustable
ThinkStation P360
Tiny (i7 12700T) disabled disabled not adjustable disabled
InfinityBook Pro
Gen8 (i7 13620H) disabled not adjustable not adjustable not adjustable
InfinityBook Pro
Gen8 (i7 13700H) not adjustable not adjustable not adjustable not adjustable
custom PC (i7
13700K) disabled disabled disabled not adjustable
Gemini Gen2 (i9
13900HX) disabled disabled not adjustable not adjustable

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025

d0i:10.20944/preprints202509.1115.v1

15 of 25

4.1. Special Cases
* Intel NUC7i5DNHE (7th gen i5 7300U)

- Processor model has only two cores (0,1)

- We chose to run system threads on core 0 and the VM, VMM process and VMI software on
core 1.

— The system has only 8GB main memory. We had to configure both VMs down to give 4GB to
the control VM (Dom0) and 3.6GB to the Windows VM (Domu).

e Fujitsu ESPRIMO D757 (6th gen i3 6100)

- Processor model has only two cores (0,1)
- Similar pinning/memory management as the previous device

* Lenovo ThinkPad L14 Gen3 (12th gen i7 1265U)

— Processor model has only two performance cores (0,1) and 8 efficient cores (2,3,4,5,6,7,8,9).
- Control VM (dom0) was running on CPU 0,1,2,3 (two performance cores, two efficient cores).
- SmartVMI and DRAKVUF were running on CPU 1 (performance core).

- Windows VM with bpbech and VMM were running on CPU 2 (efficiency core).

— All other system processes were pinned to CPU 0,1,3.

* InfinityBook Pro Gen8 (13th gen i7 13700H)

- Hyperthreading (SMT) could not be disabled via firmware setup.

- We enforced that only one logical CPU of each HT core was used by assigning only the first
logical CPU of each core to the VMs via XEN config, with the effect that Hyperthreading was
not used.

4.2. XEN Performance Adjustments

Since it could not be ensured via the firmware settings that all processor models would use their
base clock speed consistent (SpeedStep and Power Management disabled), an attempt was made to set
the clock speed to the base clock speed via the performance settings of the XEN hypervisor to prevent
any form of dynamic clock speed adjustments. This worked for most models where the firmware setup
approach failed. Details can be found in Table 8.

Table 8. XEN Performance Adjustments.

System force clock speed to base clock speed SpeedStep and Power Mgmt disabled

custom PC (i7 4790K)

failed

not adjustable

ESPRIMO D757 (i3 6100) failed not adjustable
NUC (i5 7300U) P0 2600 MHz not adjustable
ThinkPad T480s (i5 8350U) failed disabled
Yoga 730 15IWL (i7 8565U) P3 1800 MHz not adjustable
ThinkPad X390 Yoga (i7 8665U) failed disabled
OMEN 17 CBOXXX(i7 9750H) P12600 MHz not adjustable
ThinkPad P1 Gen2 (i7 9850H) failed disabled
custom PC (i9 9900K) failed disabled
ThinkPad T14 Genl1 (i5 10310U) failed disabled
Book XP14 Gen12 (i7 1165G7) P0 2800 MHz not adjustable
Katana GF76 11UE (i7 11800H) failed disabled
ThinkPad T14 Gen3 (i7 1260P) P3 2300 MHz ENABLED
ThinkPad L14 Gen3 (i7 1265U) failed disabled
IdeaPad 5 Pro 16IAH?7 (i7 12700H) P3 2500 MHz not adjustable
ThinkStation P360 Tiny (i7 12700T) P0 1400 MHz disabled
InfinityBook Pro Gen8 (i7 13620H) P3 2700 MHz not adjustable
InfinityBook Pro Gen8 (i7 13700H) P3 2700 MHz not adjustable
custom PC (i7 13700K) P0 3400 MHz not adjustable
Gemini Gen2 (i9 13900HX) P0 2400 MHz not adjustable

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

16 of 25

5. Measurements

As described in the previous section, the time measurements for the four breakpoint handling
methods and two breakpoint hiding mechanisms were performed with the four workloads on all 20
systems.

5.1. Initial Analysis and Filtering

Here is a box plot showing the execution times of the SLAT View switching method for both
breakpoint handling (breakpoint execution) and breakpoint hiding (breakpoint reading) as measured
on the ThinkPad X390 (i7 8665U) system. The plot is an example. Corresponding plots also exist for
all other methods and systems (measurement results are publicly available in a raw and aggregated
variant as well as plots at https://github.com/lbeierlieb/bpbench_measurement_study/tree/f441
dfda25e4ee7ef(07c122fa3efal5faleabfab/plots/individual).

Results for method altp2m_fss on machine 08gen_i7_8665U_X390

225

200 4

175 4 o

o
OM@OO © OCEmD OO0
CD GO0 O 00O @D

150

6]

=
N
v

100 A

Latency [us]

75 A

@EmOOO GO O

53.30 ps
50 (46.50 ps)
o

33.10 ps 33.90 ps

(25.70 ps) (25.60 ps)
25 A g

0.80 ps
0 n (0.70 ps) T T ;
timer latency WL1: exec_bp WL2: exec_page WL3: read_bp
| execute breakpoint read at

breakpoint location

Figure 2. The Measurement Results for the altp2m_fss Methods on ThinkPad X390 (i7 8665U).

The figure shows a boxplot of the measured latencies of the two breakpoint-execution-related
workloads WL1 (column 2) and WL2 (column 3) and the stealth-related workload WL3 (column 4).
Workload WL4 aiming at the “read a while page with a breakpoint” metric is not plotted, because
4096 VMlI-intercepted one byte read operations to read the whole read-protected page lead to much
longer times than the other measured workloads, so that the time are in range of milliseconds. Due to
the scaling, they can not be meaningfully displayed in this kind of plot. Column 1 provides reference
information regarding the accuracy of the time source used. The values indicate how much time
is required to query the timestamp. The bounds of the boxes show the InterQuartile Range (IQR),
which encloses the middle 50% of the measured values. Inside every box an orange line represents
the median item, whose value is also noted right to the line. The “whiskers” (shorter horizontal lines
below and above of the orange one) extend from the boxes to the smallest and largest values within 1.5
times the IQR. Any values outside of this range are considered outliers and plotted individually as a
circle. In all the shown boxplots, there are outliers that are not displayed because they are many orders
of magnitudes too large for plots’ scaling. They occur as results from measurements during which
interrupts or context switches inside the Windows VM pausing bpbench’s execution. However, all
measurements with all outliers included are used to calculate the IQR and median value. The median
value and minimum value (in brackets) of the respective measurement series are shown next to each

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/lbeierlieb/bpbench_measurement_study/tree/f441dfda25e4ee7ef07c122fa3efa15fa1eabfab/plots/individual
https://github.com/lbeierlieb/bpbench_measurement_study/tree/f441dfda25e4ee7ef07c122fa3efa15fa1eabfab/plots/individual
https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

17 of 25

box of the boxplot. The minimum value is the lowest time that was measured and thus represents the
technical limit of each method that can reached in the best case.

Across all measurements we can see that the timer overhead (column 1) is usually very low. Its in
the range of 0.5us to 2.5us for all regular runs on standard CPU cores or performance cores. On the
exceptional candidate ThinkPad L14 (i7 1265U) the values are a little bit higher, because the Wndows
VM must run on an efficiency core, because not enough performance cores exists. The timing overhead
will be measured again on every bpbench run for every method. The timer overhead values of the
two DRAKVUF runs (altp2m, altp2m_fss) and the two SmartVMI runs (instr_rep, instr_emul)
are always very close together. However, there are differences between the timer overhead of the
SmartVMI runs and the DRAKVUF runs. Thus we can only merge the values measured in runs with
the same VMI application, so that we get one timer latency results for each VMI application on each
system.

Furthermore, we can see across all measurement results that workload WL2 aiming at “execution
a page with a breakpoint” metric shows always approximately the same values than workload WL1
(executing the breakpoint) for all four breakpoint handling variants. WL2 is the same than WL1 plus
the execution of 4095 NOP instructions. Therefore, we will discard the metric in future plots.

5.2. Comparison of the Breakpoint Methods

The values of the individual measurements from the various methods for every machine were
aggregated with a little filtering to produce a common result plot for each machine. Now, we take a
look at the corresponding result plot for the ThinkPad X390 (i7 8665U) machine as an example. All ag-
gregated benchmark results for each machine are publicly available at https:/ /github.com/lbeierlieb/
bpbench_measurement_study/tree/f441dfda25e4ee7ef07c122fa3efal5faleabfab /plots/machines.

Aggregated Results for Machine 08gen_i7_8665U_X390

225 g g
2001
1754 o B [} 8
8 a
150 o [}
3 8 g
=125
9 o
g
E 100 A e
o 75.40 s
757 8 (68.20 us)
52.00 ps 53.30 ps
501 (46.00 pis) (46.50 pis)
25 4 E E : 18.30 s
(12.10 ps)
ol 0.80 ps 0.80 us |
J (0.70 ps) H &-«J (0.70 us) [T & I & T 2 T & T S RS
<& & < [K &7 ¢ N
& & 194 R’ 2 & R/ ?
’D{C\ & & ol (I‘QQ > D7 é»o‘?
S D ’ Y & p:
BN @ ?j?f zcx/; < &
e
timer latency WL1: execute breakpoint WL3: read at breakpoint location

Figure 3. The Summarized Measurement Results for ThinkPad X390 (i7 8665U).

The timer latencies were determined during each run of bpbench for each method. They are all
very low and similar across all platforms, and therefore are not shown separately. Instead, we have
combined them into a common timer latency time set.

Each time bpbench is run, all four workloads are executed. This results in four measurement
results for breakpoint hiding mechanisms (WL3, WL4) on each machine using the tested methods.
However, since there are only two breakpoint hiding mechanisms in our experiments with the selected
VMI software, certain methods appear twice. We present only the read_bp_altp2m, since DRAKVUF
with and without fast-singlestep mode produces essentially equivalent values, bcause fast-singlestep is
not implemented for breakpoint hiding, so every time it is the same method read_bp_altp2m. Similarly,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/lbeierlieb/bpbench_measurement_study/tree/f441dfda25e4ee7ef07c122fa3efa15fa1eabfab/plots/machines
https://github.com/lbeierlieb/bpbench_measurement_study/tree/f441dfda25e4ee7ef07c122fa3efa15fa1eabfab/plots/machines
https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

18 of 25

only read_bp_emul is shown, because this is the only breakpoint hiding method that is implemented
in SmartVMI. A breakpoint hiding mechanism using instruction repair does not exist.
We can see:

* Breakpoint handling mechanism using SLAT view switching (exec_bp_altp2m, exec_page_altp2m)
incurs the same tempral costs than the SLAT view switching based breakpoint hiding method
(read_bp_altp2m, read_page_altp2m). This makes sense because both based on the same ap-
proach and operations (EPT switch, single-step execution, EPT switch back).

* The fast single-step extension (FSS) XEN provides makes the breakpoint handling quite a bit
faster. We may be able to estimate the costs of switching from XEN to DRAKVUF and back again
by comparing the measurement results from exec_bp_altp2m and exec_bp_altp2m_fss, because
it is precisely this switch that is made unnecessary by the FSS optimization. The FSS option in
DRAKVUEF only optimizes the breakpoint handling, for the stealth-related mechanism of read
operation trapping FSS will not be used. So the measurements of read_bp_altp2m show the same
results regardless of whether FSS is enabled.

* The instruction repair method (exec_bp_rep) is quite a bit slower than the SLAT view switching
variant (exec_bp_altp2m). This is in line with our expectations, because the repair mechanism
has the same number of transitions as the SLAT view switching approach, but instead of the
VMCS manipulation, a writing to guest memory will be performed, which apparently is a more
expensive operation.

e The emulation of the origin instruction as a breakpoint handling method (exec_bp_emul) has
roughly the same speed as the stealth-related read emulation (read_bp_emul) in all measurements
on all machines, which seems reasonable.

5.3. SmartVMI Anomalies

But before we go to compare hardware platforms, we have to investigate some anomalies.

225 Aggregated Results for Machine 10gen_i5_10310U_T14

2001

@D GO OO0

1751

1501

i

N

v
L

Latency [ps]

104.40 ps
(92.60 ps)

-

o

)
L

84.70 us -4
(57.90 ps) =3

82.50 ps
(69.50 us)

751 68.80 us g
(5660 us) | 3 55.60 s 56.70 s
50 ! (48.60 ps) (49.80 ps)
254
0
= Y S [Y T
& S <
&8 <« & 7 < &
N 7 S SV R/ ?
& 0 7 KL O ;
{C\ (o R > S/ S
g & &7 K7 & L7
B e &7 @
Pl
timer latency WL1: execute breakpoint WL3: read at breakpoint location

Figure 4. The summarized measurement results for ThinkPad T14 (i5 10310U).

We can see that the timer latency with SmartVMI is very high, even the lowest measurement
is roughly equal to the median of the SLAT view switching breakpoint handling methods (altp2m).
Although there is no breakpoint that could trigger involved in determining the timer latency. SmartVMI
also registers handlers for CR3 writes (context switches) to disable process-specific breakpoints for
inactive processes. We can only assume that this causes the problem. The measurments of the
SmartVMI-based breakpoint handling methods are then also very different than on the runs with
normal timer latencies, so we have to discard these measurements because we do not know how

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

19 of 25

much of the time is spent on breakpoint handling and how much on the requests of timestamps
before and after workload execution. Mostly affected are older processor models and models with
less performance like i5 and i3 series, but the Intel Core i7 9750H certainly does not fall into those
categories.

5.4. Measurements on All Hardware Platforms

To find out how different processor models influence the measurement results, we summarize the
results from the individual measurements for each machine in an aggregated form. The aim here is not
to compare the different hardware platforms with each other. Instead, the aim is to determine whether
the pattern of the method comparison remains the same across different systems or changes visibly.

As described in 5.3, a few runs of SmartVMI showed very high timer latencies, so that the results
were unusable. Such SmartVMI results are excluded whenever the timer latency appeared suspicious.

The measurement results presented are absolute/raw values of the measured temporal periods.

The height of each bar indicates the median value of all measurement points of a workload run.
The horizontal black line within each bar provides the minimum measured time as a technical limit
value for each measurement.

Absolute Measurements

B WL1 exec_bp_rep (SmartVMmI)
[WL1 exec_bp_emul (SmartvMmI)
[WL1 exec_bp_altp2m (DRAKVUF)
M [WL1 exec_bp_altp2m_fss (DRAKVUF)
3 WL3 read_bp_emul (SmartvMmI)
175 3 WL3 read_bp_altp2m (DRAKVUF)

200

1504

Time (ps)

254

o4 | | Ll

- N N N N N ¥ ¥ % N 4 $ R N ¥ < ‘«\ ¥ % *
o0 A0 \Y o0 > ©> O o0 o0 A0 © '\ O > o o© 0O o o o
ol 2o > <}) O 1) o) £} < & I v %)) 3 X 1) o
B S SRS R B AR B A D LN LA S S PR i Sl DA Bl RN LS Cl S CS S o

O

CPU

Figure 5. The measurement results of the different machines.

Since the exec_bp_emul mechanism was the fastest in all experiments on all machines, it can be
used as a baseline for normalizing the time measurements of all methods. However, this requires
removing all machines from the dataset for which no valid measurements are available for the
exec_bp_emul method, because of suspicious timer latencies discussed in 5.3.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

20 of 25
Benchmark Results Normalized to emul_exec
Il WL1 exec_bp_rep (SmartvMI)
[WL1 exec_bp_emul (SmartvmI)

[WL1 exec_bp_altp2m (DRAKVUF)
[WL1 exec_bp_altp2m_fss (DRAKVUF)
3 WL3 read_bp_emul (SmartvMI)
3 WL3 read_bp_altp2m (DRAKVUF)

IS
L

w
s

N
N

Normalized Time (relative to emul_exec)
T
|

04 || || || || || || || || ||

N N ® ¥ ;\ » N M »
©> & o0 o &° o 20 6> o°
a® a2 o2 s A X >

A A

5
& \}(,10\)\

% %
al al ar ¥

CPU

Figure 6. The measurement results of the different machines normalized against exec_bp_emul.

Turning to common patterns across systems, we can confidently state that instruction emulation
incurs lower overhead than SLAT view switching (altp2m) because of the missing single-stepping over-
head. The two SLAT view switching variants with and without fast-singlestep (altp2m vs. altp2m_fss)
acceleration are both slower than emulation. However, in any case, with fast-singlestep mode (FSS)
enabled the procedure is faster than without it. The instruction repair mechanism consistently shows
the highest temporal overhead. These relative differences are remarkably consistent across all tested
platforms.

However, the exceptions among the machines are also clearly visible in the diagram. Both the
Intel Core i3-6100U and Intel Core i5-7300U processors exhibit relatively slow performance. These
CPUs each have only two cores, which prevents us from applying the default pinning scheme (core 1
for VMI software, and core 3 for the VM and VMM process, and all other system threads on core 0
and 2). On other machines, we observed performance degradation when the VM and VMI software
were pinned to the same core. The Intel Core i7-1265U processor runs the VM on an efficiency core,
which explains its comparatively lower speed as expected. For the Intel Core i7-11800H, however, the
cause of its performance behavior remains unclear; since it was connected to external power during
measurement, battery power management can be ruled out.

5.5. Does Hardware Advancement Have an Effect?

We aimed to investigate whether advancements in processor architecture have led to improve-
ments in the performance of breakpoint-handling and -hiding methods, and whether these develop-
ments result in changes to the observed outcomes.

However, making direct comparisons proves challenging in many cases, as laptops typically
employ aggressive speed-stepping techniques and often operate at reduced frequencies. Additionally,
disabling Intel TurboBoost functionality appears to be rarely supported on newer models. Furthermore,
querying the actual CPU frequency using standard Linux tools is not easy feasible in our setup, since
we run our VMI tools within the control VM Dom0 and our measurement tool inside an other VM
and we can only observe virtual CPU information that does not reflect true hardware frequencies.
For these reasons, we limit our comparison to a small subset of processors for which we can ensure
comparability. Specifically, we select the Intel Core i7-4790K and Intel Core i7-13700K as representative
examples; both systems have TurboBoost disabled and operate at fixed frequencies of 4 GHz and
3.4 GHz, respectively. Intel certainly improved the CPU architecture in regards to computational

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025

21 of 25

performance. The 13th gen processor more than makes up for the clock speed deficit, probably with a
combination of higher Inter-Process Communication (IPC) and better branch prediction, achieving a
single-core sysbench score of 2921, while the 4th gen processor achieved only 1292 points. However,
the speed-ups do not carry over to breakpoint-handling performance.

Figure 7 shows the same measurements for the two processors as Figure 5, but the results are
easier to visually compare here. Additionally, we added bars on the right that show the times of the
4790K as if the CPU would run at 3.4 GHz (assuming the performance scales linearly). The 4790K
slightly outperforms the 13700K in the EPT-switching-based workloads. Comparing the 13700K and
slower-scaled 4790K, then the 13700K is faster, at least in the median results.

Absolute Measurements

[WL1 exec_bp_altp2m (DRAKVUF)
704 EEE WL1 exec_bp_altp2m_fss (DRAKVUF)
3 WL3 read_bp_altp2m (DRAKVUF)

60

50

IS
o

Time (ps)

w
o
!

" "
o0 o
u 3
Q2 X

CPU

Figure 7. i7 4790K vs. i7 13700K vs. i7 4790K scaled to 3.4GHz.

From these measurements and calculations, we cannot conclude whether there are architectural
speed-ups when it comes to the crucial operations VM context switches, EPT table switch, single-
stepping. If there are speed-ups, they are only marginal, especially compared to the increase in
compute performance.

6. Related Work

Related work can be classified into three different categories, (i) papers related directly to our
work on the different techniques for (hyper-) breakpoint mechanisms and their performance, (ii) papers
presenting security implementations where hyper breakpoints are utilized to collect data about a guest
system, and (iii) are papers with architectural proposals for designing hyper-breakpoints in the CPU.

In our previous work [16] we presented the existing implementations for hyper-breakpoints,
discussing their strengths, limitations and trade-offs. Furthermore, we proposed and implemented
a benchmark for x86_64 breakpoints, which is suitable for measuring the execution performance of
a VMlI-based breakpoint implementations. This paper differs from our earlier work mainly because
now we are able to benchmark and compare all breakpoint implementations, whereas previously only
Instruction Emulation breakpoints could be tested on a single evaluation system with an Intel Core
i5 7300U. While the present study provides a comparative benchmark of breakpoint handling across
different Intel Core CPU generations.

Wahbe emphasizes in his work [20] the difference between data hardware- and software break-
point implementations. He elaborates that hardware breakpoints can indeed deliver the best per-
formance; nevertheless, they are more expensive to provide and support a very limited number of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

doi:10.20944/preprints202509.1115.v1

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

22 of 25

concurrent breakpoints. Software approaches, on the other hand, patch the debuggee’s code or insert
checks at relevant write instructions. These are easier to deploy and scale to arbitrary numbers of
breakpoints, but they incur higher runtime overhead and can perturb the program’s behavior. Wahbe
also discusses a third category, using the virtual memory system to monitor writes, which strikes a
balance between the two previous approaches but depends heavily on operating system support.

Wahbe et al. expands his work in [21] by presenting the design and implementation for new
practical data breakpoints that improve the feasibility of software-based implementations. In particular,
he introduces compiler optimizations and efficient run data structures, such as segmented bitmaps, to
reduce the overhead of checking monitored memory locations. This approach makes data breakpoints
more scalable and portable than hardware solutions, which achieving acceptable performance for
interactive debugging.

Dangl et al. introduce RapidVMI to address multi-core and shared memory issues in active VML
Their system presented in [8] implements process-bound and core-selective introspection by leveraging
XEN's alternative EPT mappings (altp2m). Breakpoints or injected code are mapped to shadow pages
that apply only to a specific process or core to prevent unintended side effects across shared libraries
or concurrent threads.

Spider Framework [22] emphasizes the importance of stealthiness during malware execution
and that is why they introduces the concept of invisible breakpoints using VMI. In particular, it
leverages EPT to maintain separate read and execute views of the code pages. The guest therefore sees
unmodified instructions, while the hypervisor executes patched pages containing breakpoints. Once a
breakpoint is hit, a VM exit is triggered and handled externally.

HyperDbg [23] is a modern hypervisor-assisted malware debugger that integrates breakpoint
handling directly into its custom VMX-Root hypervisor. It uses EPT hidden hooks that avoid patching
code directly, making breakpoints faster and stealthier than traditional INT3. HpyerDbg implements
classic EPT hooks implemented by injecting a #BP (0xCC) to the target VM memory, as well as the
Detours-Style hooks which redirect control flow with a jump to the patched instruction and then
resumes normal execution after the callback.

Finally, Price proposes an architectural extension of Memory Management Unit (MMU) to over-
come the inherent flaws of the existing breakpoints [24]. The paper identifies three core issues: (*)
corruption of program bytes due to INT3 patching (”critical byte problem”), (**) detectability of both
software patching and limited hardware debug registers, (***) inefficiency of fallbacks such as single-
stepping or emulation. The solution is a buddy-frame mechanism, where each page table entry can
reference a companion frame containing per-byte breakpoint metadata (read /write/execute flags).
When the breakpoint bit is set in a page table entry, the MMU consults this buddy frame during
instruction fetch or memory access, raising a trap if a breakpoint condition matches. This design
removes the need to patch code, provides effectively unlimited and invisible breakpoints, and ensures
robust and efficient debugging directly at the hardware level.

7. Conclusion

This section concludes this paper. In Subsection 7.1, we summarize the main takeaways from the
paper, before we give an outlook into planned and potential future work in Subsection 7.2.

7.1. Summary and Discussion

In this work, we presented a measurement study that compares approaches of handling and hiding
VMI breakpoints. We built a portable OS image containing Ubuntu, XEN, DRAKVUEF, SmartVMI, and
a Windows 10 VM with bpbench. On a range of devices with various Intel Core i CPUs ranging from
the 4th to the 13th generation, we configured the UEFI firmware for more consistent measurements,
booted the image, and performed breakpoint measurements for all handling approaches.

We stated the research question that led to the creation of this work in the introduction: How do
the existing breakpoint implementations compare in terms of performance?

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

23 of 25

Fortunately, our measurement results allow us now to give a conclusive answer to this question.
On all measured CPUs, instruction emulation is the fastest breakpoint handling approach, followed
by EPT switching with fast single-stepping (FSS), EPT switching with normal single-stepping, and
finally instruction repair in memory. When it comes to keeping breakpoints stealthy, read emulation is
consistently faster than switching EPT tables and single-stepping the reading instruction.

Some devices did not allow us to disable TurboBoost technology, through the layer of Xen we
did not have a feasible way of measuring the actually clock speeds, and the CPUs all came with
different base frequencies and boosting behavior—all these factors make it difficult, if not impossible,
to distinguish between the influences from CPU architecture and clock speed. Comparing the two
desktop processors i7 4790K and i7 13700K, where we can be reasonably certain that they were running
on the base frequencies, we could see that while the prime-number identification performance (as
measured by sysbench) increased significantly, the breakpoint handling is only marginally affected, if
at all.

7.2. Future Work

In this paper, we only considered the XEN hypervisor, because the breakpoint approaches ei-
ther already existed for Xen or where easy to implement (SmartVMI instruction emulation). The
only working implementation for introspection with KVM is SmartVMI'’s default instruction re-
pair mechanism. DRAKVUF is not compatible with KVM and we are unsure how much work it
would take to make the two compatible. According to the maintainer, SmartVMI supports EPT
switching, so implementing DRAKVUF’s altp2m approach in SmartVMI should be possible (see
https:/ /github.com/GDATASoftwareAG/smartvmi/issues/140#issue-2046303351). SmartVMI’s in-
struction emulation that we implemented for XEN does not directly work with KVM, because LibVMI
is missing the implementation for instruction emulation. However, SmartVMI'’s read emulation is
functional with KVM, so we hope the required changes in LibVMI and KVMI are small and we can
implement instruction-emulation-based breakpoint handling for KVM soon.

Finally, we want to improve the situation of VMI infrastructure deployment. Our prepared image
for the measurements has a size of 18 GB. It has to be stored on a file server for sharing and making
changes or updates is a tedious process (deploying image on a system, booting, updating, recreating
a compressed image). Ideally, all components would be packaged with Nix, and we could simply
share a NixOS configuration or NixOS module on GitHub, which could reproducibly build the OS
locally and allow for simple configuration changes. XEN and SmartVMI are already usable with Nix,
so mainly packaging for DRAKVUF is missing.

Author Contributions: Conceptualization, L.B.; investigation, L.B., A.S., AK., and A.L.; methodology, A.S. and
L.B.; software, A.S., L.B., AK, and A.L,; validation, A.S. and L.B.; formal analysis, L.B.; resources, L.B., A.S., AK,,
and A.L.; data curation, L.B.; writing—original draft preparation, L.B., A.S, and A.K,; writing—review and editing,
C.D,; visualization, L.B. and A.S.; supervision, C.D.; project administration, L.B.; funding acquisition, L.B. and
C.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the German Federal Ministry of Research, Technology and Space
(BMFTR) as part of the HypErSIS project (grant ID 16KIS1745K and 16KIS1746). Additionally, Lukas Beierlieb was
supported by Cyberus Technology GmbH. MDPI has kindly waived the submission fees for this paper.

Data Availability Statement: The original data presented in the study are openly available in the repositories
specified in Subsection 3.4. The disk image containing the whole software stack (Ubuntu, XEN, DRAKVUE,
SmartVML... etc.) is available upon request

Acknowledgments: We thank Philipp Schuster and Werner Haas from Cyberus Technology GmbH for their work
on the HypErSIS project, which made this publication possible in the first place. This work was supported by the
German Federal Ministry of Research, Technology and Space (BMFTR) as part of the HypErSIS project (grant ID
16KIS1745K and 16KIS1746). Additionally, Lukas Beierlieb was supported by Cyberus Technology GmbH. MDPI
has kindly waived the submission fees for this paper.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/GDATASoftwareAG/smartvmi/issues/140#issue-2046303351
https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

24 of 25

Use of Artificial Intelligence: The Al-assisted proofreading tool Writefull has been used to audit and improve
this manuscript. ChatGPT’s PDF summarization feature has been used to select appropriate related work.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. Garfinkel, T.; Rosenblum, M; et al. A virtual machine introspection based architecture for intrusion detection.
In Proceedings of the Ndss. San Diega, CA, 2003, Vol. 3, pp. 191-206.

2. wook Baek, H.; Srivastava, A.; Van der Merwe, J. CloudVMI: Virtual Machine Introspection as a Cloud
Service. In Proceedings of the 2014 IEEE International Conference on Cloud Engineering. IEEE, IEEE, 3 2014,
pp. 153-158. https://doi.org/10.1109/ic2e.2014.82.

3. Jiang, X.;; Wang, X,; Xu, D. Stealthy malware detection through VMM-based ‘out-of-the-box’semantic view.
In Proceedings of the Proceedings of the 14th ACM conference on Computer and communications security.
ACM, 10 2007, Vol. 10, CCS07, pp. 128-138. https://doi.org/https://doi.org/10.1145/1315245.1315262.

4. Dinaburg, A ; Royal, P; Sharif, M.; Lee, W. Ether: malware analysis via hardware virtualization extensions.
In Proceedings of the Proceedings of the 15th ACM conference on Computer and communications security.
ACM, 10 2008, CCS08, pp. 51-62. https:/ /doi.org/10.1145/1455770.1455779.

5. Willems, C.; Hund, R.; Holz, T. Cxpinspector: Hypervisor-based, hardware-assisted system monitoring.
Technical report, Ruhr-Universitat Bochum, 2013.

6. Dolan-Gavitt, B.; Leek, T.; Zhivich, M.; Giffin, J.; Lee, W. Virtuoso: Narrowing the Semantic Gap in Virtual
Machine Introspection. In Proceedings of the 2011 IEEE Symposium on Security and Privacy. IEEE, IEEE, 5
2011, pp. 297-312. https://doi.org/10.1109/sp.2011.11.

7. Jain, B,; Baig, M.B.; Zhang, D.; Porter, D.E.; Sion, R. SoK: Introspections on Trust and the Semantic Gap. In
Proceedings of the 2014 IEEE Symposium on Security and Privacy, 5 2014, pp. 605-620. ISSN: 2375-1207,
https://doi.org/10.1109/SP.2014.45.

8. Dangl, T.; Taubmann, B.; Reiser, H.P. RapidVMI: Fast and multi-core aware active virtual machine introspec-
tion. In Proceedings of the Proceedings of the 16th International Conference on Availability, Reliability and
Security, New York, NY, USA, 8 2021; ARES "21, pp. 1-10. https://doi.org/10.1145/3465481.3465752.

9. Lengyel, TK,; 3esca, S.; Payne, B.D.; Webster, G.D.; Vogl, S.; Kiayias, A. Scalability, fidelity and stealth
in the DRAKVUF dynamic malware analysis system. In Proceedings of the Proceedings of the 30th
Annual Computer Security Applications Conference. ACM, 12 2014, ACSAC "14, pp. 386-395. https:
//doi.org/10.1145/2664243.2664252.

10. Tarral, M. LibVMI: Simplified Virtual Machine Introspection. https://github.com/libvmi/libvmi, 2007.
Accessed: 2025-15-01.

11. Eikenberg, D. SmartVMI. https:/ /github.com/GDATASoftwareAG/smartvmi, 2021. Accessed: 2025-15-01.

12. Reiser, H.P; Eikenberg, D. SmartVMI - Virtual Machine Introspection (VMI) for memory forensics and
machine-learning. http://www.smartvmi.org/, 2021. Accessed: 2025-15-01.

13. Lengyel, T. DRAKVUEF Black-box Binary Analysis. https://github.com/tklengyel /drakvuf, 2014. Accessed:
2024-12-19.

14. Lengyel, TK. Stealthy monitoring With xen altp2m. https:/ /xenproject.org/blog/stealthy-monitoring-with-
xen-altp2m/, 2016. Accessed: 2024-12-17.

15. Roccia, T. Evolution of Malware Sandbox Evasion Tactics — A Retrospective Study, 2019.

16. Beierlieb, L.; Schmitz, A.; Springer, R.; Dietrich, C.; Ifflinder, L. Benchmarking Hyper-Breakpoints for
Efficient Virtual Machine Introspection. Electronics 2025, 14. https://doi.org/10.3390/electronics14030534.

17. Beierlieb, L. vmi-nix: Nix Packaging and NixOS Modules for VML https://github.com/Ibeierlieb/vmi-nix/
tree/e2f26e840bcb69e85¢f790a3a40c790492cd 6662, 2025.

18. Beierlieb, L. REPAIR: vmi-nix: Nix Packaging and NixOS Modules for VMI. https://github.com/Ibeierlieb/
smartvmi/tree/c848275674ad19ad7df6fe972852ce2af5db4746, 2025.

19. Beierlieb, L. EMULATION vmi-nix: Nix Packaging and NixOS Modules for VMI. https://github.com/
Ibeierlieb/smartvmi/tree/f0959d7776686a78b0fc7379aeb182a6bb3518al, 2025.

20. Wahbe, R. Efficient data breakpoints. ACM SIGPLAN Notices 1992, 27, 200-212. https://doi.org/10.1145/14
3371.143518.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1109/ic2e.2014.82
https://doi.org/https://doi.org/10.1145/1315245.1315262
https://doi.org/10.1145/1455770.1455779
https://doi.org/10.1109/sp.2011.11
https://doi.org/10.1109/SP.2014.45
https://doi.org/10.1145/3465481.3465752
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1145/2664243.2664252
https://github.com/libvmi/libvmi
https://github.com/GDATASoftwareAG/smartvmi
http://www.smartvmi.org/
https://github.com/tklengyel/drakvuf
https://xenproject.org/blog/stealthy-monitoring-with-xen-altp2m/
https://xenproject.org/blog/stealthy-monitoring-with-xen-altp2m/
https://doi.org/10.3390/electronics14030534
https://github.com/lbeierlieb/vmi-nix/tree/e2f26e840bcb69e85cf790a3a40c790492cd6662
https://github.com/lbeierlieb/vmi-nix/tree/e2f26e840bcb69e85cf790a3a40c790492cd6662
https://github.com/lbeierlieb/smartvmi/tree/c848275674ad19ad7df6fe972852ce2af5db4746
https://github.com/lbeierlieb/smartvmi/tree/c848275674ad19ad7df6fe972852ce2af5db4746
https://github.com/lbeierlieb/smartvmi/tree/f0959d7776686a78b0fc7379aeb182a6bb3518a1
https://github.com/lbeierlieb/smartvmi/tree/f0959d7776686a78b0fc7379aeb182a6bb3518a1
https://doi.org/10.1145/143371.143518
https://doi.org/10.1145/143371.143518
https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 September 2025 d0i:10.20944/preprints202509.1115.v1

25 of 25

21. Wahbe, R; Lucco, S.; Graham, S.L. Practical data breakpoints: Design and implementation. In Proceed-
ings of the Proceedings of the ACM SIGPLAN 1993 conference on Programming language design and
implementation. ACM, 6 1993, Vol. 28, PLDI93, pp. 1-12. https://doi.org/10.1145/155090.155091.

22. Deng, Z.; Zhang, X.; Xu, D. SPIDER: stealthy binary program instrumentation and debugging via hardware
virtualization. In Proceedings of the Proceedings of the 29th Annual Computer Security Applications
Conference, New York, NY, USA, 2013; ACSAC "13, p. 289-298. https://doi.org/10.1145/2523649.2523675.

23. Karvandi, M.S.; Gholamrezaei, M.; Khalaj Monfared, S.; Meghdadizanjani, S.; Abbassi, B.; Amini, A;
Mortazavi, R.; Gorgin, S.; Rahmati, D.; Schwarz, M. HyperDbg: Reinventing Hardware-Assisted Debugging.
In Proceedings of the Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, New York, NY, USA, 2022; CCS "22, p. 1709-1723. https://doi.org/10.1145/3548606.3560649.

24. Price, G.M. Virtual Breakpoints for x86/64, 2019, [arXiv:cs.0S/1801.09250].

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.1145/155090.155091
https://doi.org/10.1145/2523649.2523675
https://doi.org/10.1145/3548606.3560649
http://arxiv.org/abs/1801.09250
https://doi.org/10.20944/preprints202509.1115.v1
http://creativecommons.org/licenses/by/4.0/

