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Yanjing Zhang and Xiaohua Meng
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Abstract

A condition-based maintenance modeling approach for a multi-state system under competing
failures and imperfect repairs is proposed. The multi-state system will experience three states
(normal, defective and failed) through its lifecycle caused by two competing failure processes, i.e.,
natural degradation and external shocks. If the system becomes defective, an imperfect repair is
adopted to restore the system to a normal state. Firstly, imperfect repairs aimed at addressing defects
are mathematically characterized, based on which two kinds of system renewal scenarios and
corresponding occurrence probabilities are simulated and derived, respectively. Subsequently, the
cost of downtime caused by hidden failures are deduced. Then, a maintenance model of the expected
cost rate is constructed and the optimal inspection period that minimizes the expected cost rate is
determined. Finally, the correctness and effectiveness of the constructed maintenance model are
verified by a numerical example.

Keywords: multi-state system; maintenance model; competing failures; imperfect repair; inspection
strategy

1. Introduction

In classical reliability theory, systems are typically modeled as having two distinct states: perfect
functioning and complete failure. However, this binary representation is often too simplistic to
capture the behavior of complex real-world systems. Many industrial systems, such as those in
electrical power generation, aerospace, production, and manufacturing, exhibit multiple
performance levels between full functionality and total failure. These systems are known as multi-
state systems (MSSs) [1-4].

The evolution of the system state is influenced both internal degradation and external shocks.
Internal degradation generally results from the operational workload of the system. For instance, in
a battery, power is supplied through chemical reactions between internal chemicals, and degradation
occurs over time as these chemicals are gradually consumed. External shocks, on the other hand, stem
from random environmental damages, including both natural and human-induced factors. Examples
include overheating or over-voltage conditions that can abruptly worsen the system’s state. Both
internal degradation and external shocks can lead to system failure, though they manifest differently.
Failures due to internal degradation are often termed soft failures, characterized by a gradual decline
in performance until the system can no longer meet operational requirements. This includes
phenomena such as mechanical wear and tear or the aging of insulating materials. In contrast, hard
failures result from external shocks and involve a sudden loss of function, such as device breakdowns
or short circuits. The system is considered failed when either of these competing failure modes occurs
first. Moreover, multi-state degradation is commonly observed in systems subject to competing
failure processes prior to the final failure [5].

Maintenance is crucial for enhancing the reliability and safety of engineered systems. Both
academic research and engineering practice have demonstrated that condition-based maintenance
(CBM) offers distinct advantages in reducing or preventing failures compared to other preventive
maintenance strategies [6]. With the rapid advancement of sensor technology and signal processing
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methods, the benefits of CBM in supporting maintenance decisions have become even more
pronounced. The first step in CBM involves assessing the system state, followed by appropriate
maintenance actions based on the assessment.

Numerous studies have explored CBM for MSSs subject to two competing failure modes, with
a primary focus on developing and optimizing inspection and maintenance models. A key
contribution of these works lies in their modeling approaches, where the formulated models are
largely influenced by inspection and maintenance policies. In practice, however, inspection quality
is often compromised by factors such as measurement errors, sensor degradation, and other
uncertainties, meaning inspections are typically imperfect. The issue of imperfect inspection in MSSs
with competing failure modes has been addressed by several researchers [7,8]. In these studies,
maintenance actions based on inspection outcomes predominantly involved replacement.

Nevertheless, replacement is often more costly than repair. Especially in addressing partial
system defects, imperfect repair strategies may be more suitable, as they allow maintenance
personnel to control the extent of reliability improvement, making repair levels a decision variable
[9,10]. Despite its potential, imperfect repair has not received sufficient attention within CBM
frameworks for MSSs subject to competing failure modes.

Motivated by both theoretical foundations and industrial practice, this study develops CBM
models for MSSs with two competing failure modes, with the aim of deriving an optimal inspection
policy. The system undergoes gradual degradation, leading to a decline in performance from a
normal state to a defective state, and eventually to failure. Additionally, the system is exposed to
random shocks from the external environment. A sudden failure occurs if the load of any shock
exceeds a certain threshold.

Periodical inspections are conducted to monitor the system state. Based on the inspection results,
the operator decides whether to perform maintenance. When a defect is identified, the system
undergoes an imperfect repair, modeled by a proportional age reduction approach. This repair
restores the system from a defective state to a normal state but does not return it to an “good as new”
condition. If a failure whether due to gradual degradation or a fatal shock is detected, a failure-based
replacement is performed. Furthermore, if the system remains in a normal state after a predetermined
number of inspections, an age-based preventive replacement is conducted. Both types of replacement
restore the system to an as-good-as-new state.

The probabilities associated with these two system renewal scenarios under imperfect repair are
first derived. Based on these, a CBM model for the expected cost rate is formulated. To evaluate the
performance of the proposed model, optimization and sensitivity analysis are carried out. The results
demonstrate that the optimal inspection policy can be determined by minimizing the expected cost
rate. Moreover, improving the repair effectiveness can significantly reduce inspection frequency and
lower maintenance costs.

In summary, the main contributions of this study are as follows:

e A novel CBM model is developed for MSSs subject to two competing failure modes,
incorporating imperfect repairs. The proposed methodology captures multiple system states,
diverse failure modes, and imperfect maintenance actions, offering enhanced realism and
addressing greater practical complexity.

e  The model explicitly incorporates imperfect repair to better represent the actual impact of
maintenance on system condition. Results underscore the importance of considering imperfect
repair, as it significantly affects both the optimal inspection policy and the minimal expected
cost rate.

e A comprehensive sensitivity analysis is conducted to examine how the optimal inspection policy
responds to changes in key parameters. The findings provide valuable managerial insights that
can support effective maintenance decision-making for real-world MSSs exposed to competing
failure mechanisms.

The structure of the paper is organized as follows. Section 2 provides a review of the related
literature. In Section 3, we present a detailed description of the system and the underlying
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assumptions. Section 4 develops the CBM model for the expected cost rate, incorporating the derived
probabilities of imperfect repair, failure-based corrective replacement, and age-based preventive
replacement, along with the computed costs associated with downtime. The solution approach for
determining the optimal inspection interval and the minimum expected cost rate is introduced in
Section 5. Section 6 offers a numerical example to demonstrate the application of the proposed model
and presents a sensitivity analysis. Finally, Section 7 summarizes the main conclusions and suggests
potential directions for future research.

2. Literature Review

In this section, we first focus on studies about MSSs. Then, we discuss studies about maintenance
policies for MSSs. Finally, we introduce papers on imperfect repair for MSSs.

2.1. Research Topics on MSSs

A substantial body of research has been dedicated to MSSs, with major efforts concentrated in
areas such as reliability analysis [11-13], resilience analysis [14-16], and maintenance policies [17-
19]. For example, Janada et al. [20] developed a new design of Angular Control Chart to monitor the
reliability of MSSs, whose failure data can be modeled by any continuous probability distribution. L:
transformations have been widely used in the reliability modeling of MSSs. To solve the problem of
complex calculations due to the dense random combination of multi-state performance parameters
in the L: transformation, Zheng et al. [21] defined a screening function before the L: transformation
and combined with the performance threshold to screening the state performance parameters in
advance. Mi et al. [22] introduced a reliability analysis method for complex MSSs with epistemic
uncertainty, which was quantified by adding an uncertain state of root nodes in the multi-state
evidential network. Tan et al. [23] focused on a MSS which is exposed to disruptive events and
developed a comprehensive resilience modeling and quantifying framework based on Markov
processes. To have a more comprehensive understanding of the characteristics of the system, Dui et
al. [24] investigated the transient resilience evaluation for systems subjected to competing failures.
The overall resilience of the system was introduced based on the multi-state division of the system,
the resistibility index, absorbability index and recoverability index, and then a reliability and a cost-
based resilience model was proposed.

2.2. Maintenance of MSSs

In the study of MSSs, maintenance strategies represent a prominent research focus. Timely and
effective maintenance planning can restore aging systems to improved conditions, thereby
preventing unexpected failures and mitigating undesirable consequences during operation [25].
Chen et al. [26] proposed a joint optimization model of fleet-level sequential selective maintenance
and repairpersons assignment under flow dependency and uncertain maintenance duration. In the
proposed optimization model, the reliability of multi-state manufacturing systems was incorporated.
Ma et al. [27] developed a new selective maintenance model by integrating maintenance decision and
task assignment planning for multi-unit systems executing multiple missions and a cooperative co-
evolutionary genetic algorithm was tailored to solve the joint optimization problem. Results through
a numerical example and an air defense system showed that the proposed method can efficiently
improve the success probability of future missions by integrating selective maintenance and task
assignment.

In recent years, advancements in sensing technologies have significantly enhanced the
application of condition monitoring data in maintenance practices, leading to increased effectiveness
and adoption of CBM strategies. As a result, research on CBM for multi-state systems has attracted
growing interest [28-31]. For example, Cao et al. [32] designed a condition-based inspection policy to
capture the states of a multi-state deterioration system timely, based on which a new CBM policy for
systems subject to multi-state deterioration and random shock were proposed. Zhao et al. [33]
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focused on the effect of environmental factors on system failure behavior and maintenance decisions
and investigated the optimal joint inspection interval, CBM, and loading policies for systems
operating in a random shock environment. Zhang et al. [8] constructed a CBM model for a three-state
system subject to competing and hidden failures, where periodical inspection was utilized to identify
all states of the system. Wang and Zhu [34] considered the joint optimization of periodic condition-
based replacement of components and inventory control for a k-out-of-n: F system, whose degrading
components have multiple statuses and are non-repairable. Tang et al. [35] considered a multistate
deteriorating system whose states are hidden but partially observable and determined the optimal
maintenance and spare parts inventory ordering policy. In this study, a partially observable Markov
decision process and a heuristic search value iteration algorithm were respectively adopted to model
the problem and solve the optimization problem.

2.3. Imperfect Repair in Maintenance Policies of MSSs

Over the past few decades, significant attention has been devoted to the concept of imperfect
repair. It refers to a maintenance intervention that falls between perfect repair and minimal repair. A
perfect repair restores an item to an “as good as new” condition, while a minimal repair returns it to
an “as bad as old” state. Researchers have increasingly incorporated imperfect repair into
maintenance models for MSSs. Dong et al. [36] scheduled an imperfect maintenance policy for a single
unit MSS. A CBM action and a corrective maintenance (CM) activity were incorporated in each
operation stage, and the CBM was assumed to be a minimal repair and the effectiveness of CM was
assumed to be imperfect. Finkelstein and Cha [37] investigated a new approach to modelling the
imperfect repair and described the corresponding imperfect repair processes for items with
observable degradation process. The random virtual age was introduced to define the state of an item
after an imperfect repair, which reduced degradation of an item on failure to some intermediate level.
In the research by Liang et al. [38], the states of the system before repair were categorized into three
classes based on its internal degradation level: failure, major defect and minor defect with three
corresponding thresholds. The corresponding repairs were carried out to reduce the system’s
degradation to different levels. If the internal degradation level of the system was recognized as
minor defect, an imperfect repair was implemented to scale down the degradation level below the
minor defect threshold. If the degradation level was identified as major defect, an upgraded imperfect
repair was executed. Otherwise, if the degradation was beyond the failure threshold, replacement
would be carried out. Ultimately, a novel hierarchical imperfect maintenance structure was
introduced, and a multi-variable repair cost model was constructed. Tang et al. [39] considered
imperfect inspection and imperfect repair for a system subject to a three-stage degradation process.
The concepts of virtual age and the improvement factor were adopted to characterize the imperfect
repair effect. The case of a steel converter plant was applied to verify the effectiveness of the proposed
model. Chen and Zhao [40] proposed a maintenance optimization method that is applicable to
dependent two-component systems subject to degradation and imperfect repair. A random-effect
imperfect repair model was established to model the degradation process and maintainability of
components. The study discovered that the characteristics of imperfect repair can considerably
influence the optimal policies. Hu et al. [41] proposed a CBM model for multi-state systems that
operate under time-varying environmental condition, whose evolution was described by a Markov
process. Both imperfect maintenance and replacement actions were considered in the constructed
CBM model. The inspection interval, preventive maintenance threshold and number of imperfect
maintenance actions in a replacement cycle were jointly determined to minimize the long-run average
cost.

Existing research has primarily focused on MSSs influenced by a single failure mode, whereas
the imperfect repair of MSSs subject to two competing failure modes has received comparatively little
attention.

3. System Description and Basic Assumptions
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In this paper, a MSS subject to two competing failure modes with hidden failures is taken as a
research object to explore its maintenance modeling methodology. When there are no external shocks,
it is assumed that the system goes through three states during the degradation process: normal,
defective, and failed. As shown in Figure 1, initially, the system is in a normal state. As the system’s
operational time increases, its performance gradually degrades, entering a defective state. Eventually,
the core functions are lost, resulting in system failure.

The defect has been repaired.

=S

Normal Degraded performance Defective Core functionality is lost, =

[

/operational | with core functions intact. | /Degraded | resulting in service outage.

Failed

The system has been restored and is back in operation.

Figure 1. State transition diagram of the system without external shocks.

However, the system will inevitably be affected by external shocks. As shown in Figure 2,

suppose that shocks reach the system at tp tza cem ! g and their loads are W1, W2, W, ..., W,. If the

magnitude W; of the jth shock (where j=1, 2, ..., ) exceeds the sudden failure threshold D, the system
is deemed to have experienced a sudden failure. The degradation failure and sudden failure compete
with each other, and the failure mode that occurs first ultimately leads to system failure.

A

® 7

o

peo[ Jooys jo spmruew

\

Figure 2. Schematic diagram of external shocks.

In this paper, the maintenance model of the MMS under competing failures is constructed based
on the CBM strategy, which is based on the state of the system to formulate the appropriate
maintenance action. The state of the MSS needs to be identified through inspection. Among various
inspection technologies, periodic inspection is widely used due to its ease of implementation and
effectiveness in improving system performance. Therefore, this article adopts a periodic inspection
strategy to identify the state of the system and then arranges corresponding maintenance activities
for the MSS based on the detected states. Maintenance behavior based on the system state consists of
the following 3 main types: (1) If the system is identified as a defective state at the kth (k =1, 2, ..., n)
inspection, an imperfect repair is performed on the system. (2) At the kth (k=1, 2, ..., n) inspection, if
the system is detected to have entered a failed state, a corrective replacement is implemented to
restore the system as new. (3) If the system is still normal at the nth inspection, a preventive
replacement is performed to restore the system as new to enhance the system’s ability to withstand
external shocks.
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The following research hypotheses are proposed to better construct a maintenance model for the
MSS subject to competing failures and imperfect repairs.

Assumption 1. The MSS is susceptible to hidden failures, which result in downtime and
consequent economic loss.

Assumption 2. Repairs for system defects are considered imperfect repairs. The effect of repair
in engineering practice is usually imperfect. A system can seldom be restored to an “as-new” state
but is instead returned to a condition intermediate between “as new” and “as old”.

Assumption 3. Degradation failure and sudden failure are independent, with system failure
resulting from the competition between these two modes. The degradation process is modeled using
a delay-time approach, while the sudden failure process is described by a homogeneous Poisson
process.

Assumption 4. The system’s duration in the normal and defective states are random variables,
denoted by X and Y, respectively, with probability density functions fx(x) and f¥(y). Shocks arrive at
the system with intensity A, and their magnitudes are independent and identically distributed normal

random variables, VK ~M (/IWa Ofy):] :1’2: 100,

Assumption 5. The time for inspection, repair, preventive replacement, and corrective
replacement is assumed to be negligible.

4. Maintenance Modeling for MSSs Subject to Competing Failure Processes and
Imperfect Repairs

There is a critical trade-off in maintenance scheduling: overly frequent inspections waste
resources, but excessively long intervals may cause missed opportunities for timely repairs. The
objective of this study is to establish the optimal inspection interval for the MSS through the
development and optimization of a maintenance model, with the goal of minimizing the total
maintenance cost over the long term.

Two of the three maintenance behaviors mentioned in Section 3 will renew the system. The first
system renewal scenario is triggered upon detecting a system failure at the kth (k=1, 2, ..., n)
inspection, leading to a corrective replacement. The second type of system renewal scenario is a
preventive replacement when the system is inspected as normal until the nth inspection. Let the
period inspection interval be T. If the time interval between two consecutive replacements is defined
as a renewal cycle, the system renewal cycle length for the first system renewal scenario is kT (k=1,
2, ..., n), while it equals nT for the second system renewal scenario.

Let the occurrence probabilities of a corrective replacement and a preventive replacement be
Peor(L=kT) (k=1, 2, ..., n) and Ppre(L=nT) respectively. Then, the expected length of the system renewal
cycle can be expressed by the following equation.

E(L)=Y kTP, (L =kT)+nTP, (L =nT). (1)

pre
k=1

Different system renewal scenarios correspond to different renewal cycle lengths and are
associated with distinct maintenance costs. For the first renewal scenario, the total cost from system
startup to failure comprises the expenses for k (k = 1, 2, ..., n) inspections, any imperfect repairs
conducted prior to failure, one corrective replacement and the downtime costs attributable to hidden
failures. Similarly, the costs incurred during a renewal cycle initiated by a preventive replacement
primarily include the expenses for n inspections, those for any imperfect repairs performed before
the nth inspection, and the cost of one preventive replacement.

Denote the unit inspection cost, imperfect repair cost, preventive replacement cost, and
corrective replacement cost as Ci, Cr, Cr, and Cc, respectively. The cost of downtime due to hidden
failures is denoted by Cp. Assume that the probability of identifying a system defect at the ith
inspection (where i =0, 1, ..., k-1) and subsequently addressing it with an imperfect repair is P(T, i).
Based on these cost parameters, the probability of an imperfect repair, and the probabilities associated
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with the two system renewal scenarios, the expected total cost per renewal cycle can be derived as

follows.
n k-1
E(C)=)_P, (L=kT)kC,+ > CiP(T,i)+C.+C,)+

e i )
n—1

P, (L=nT)(nC,+) C,P(T,i)+C,),
i=0

k-1

where Z CpP(T,i) represents the aggregate cost of imperfect repairs undertaken for defects prior
i=0
n—1
to a corrective replacement, and Z CRP(T,i) represents the total cost of all imperfect repairs
i=0
performed prior to a preventive replacement.
Based on Equations (1) and (2), the expected cost rate model for the condition-based maintenance

of the MSS is constructed as follows.
minECR(T') = iC). 3)
E(L)

The primary objective of this study is to determine the optimal inspection interval T* that
minimizes the expected cost rate function ECR(T). As shown in Equations (1) and (2), the maintenance
model involves four key unknown terms: the probability of imperfect repair P(T, i), the probability
of corrective replacement Por(L=kT), the probability of preventive replacement Ppre(L=nT), and the cost
of downtime due to hidden failures Co.

By examining system renewal scenarios, it is evident that the system may degrade into defective
states and undergo imperfect repairs before either corrective or preventive replacement occurs.
Consequently, the derivation of the corrective replacement probability Peor(L=kT) and the preventive
replacement probability Py(L=nT) depends on the probability P(T, i) of imperfect repairs. Thus, the
subsequent analysis proceeds as follow. First, the probability P(T, i) of imperfect repairs for system
defects is derived. Next, the probabilities Peor(L=kT) and Ppr(L=nT) are computed based on P(T, i).
Subsequently, the downtime costs Cb due to hidden failures are analyzed and evaluated. Finally, the
maintenance model of the system is formulated by integrating the explicit expressions of these four
key terms with the relevant cost parameters.

4.1. Mathematical Modeling of Imperfect Repair for System Defects

In this study, repair activities are scheduled to address system defects. However, these repairs
can only restore the system from a defective state to a normal operating state, rather than making it
“good as new”. Such interventions are therefore considered imperfect. To model this imperfection,
the proportional age reduction model is employed. This model is based on the premise that the
(k+1)th repair only influences the system’s operating time between the (k+1)th and the kth repair.

Let 7, be the time at which the kth repair is performed and @ the improvement factor of the

repair. Then the (k+1)th repair reduces the virtual age of the system by o (7, ,, - 7, ) . Therefore, the

k+1
virtual age of the system at time ¢ is given by
k
Vt:t_T/m+Z(1_w)(71+1_71):t_mk+1- 4)
=0
The virtual age defined in Equation (4) corresponds to the “normal age”, representing the actual
duration during which the system remains in a normal state. This quantity exclusively influences the
intensity function associated with the initiation of defects. Although an imperfect repair cannot
restore the system to an “as good as new” condition, it entirely eliminates existing defects. As a result,
the defective age of the system is reset to zero following each repair.
As illustrated in Figure 3, if a defect first occurs at time x1 and is identified at 7 , the normal

operating age of the system at that moment is x1, and its defective age is 7, - , . Since inspections in
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this study are assumed to be perfect, the defect will be detected and repaired during the subsequent
inspection, i.e., at time 7 . The imperfect repair completely eliminates the defect and converts the

accumulated defective age into normal operating age. Consequently, after the repair, the normal
operating age of the system becomes (1 - w)x, + (1 - )(z, - x,) = (1 - w)z, , while the defective age is

reset to zero.

A
Ay (1) .
defective age
normal age <
7
-
0 (I- @)1y X 7 X, t
<& Defect arrival ® Identification and repair of defect

Figure 3. Impact of imperfect repairs on the intensity function 2 (1) -

If a system defect is detected at the ith inspection and is subsequently subjected to an imperfect
repair, the density function of the defect initiation time X following this imperfect repair can be
expressed as follows:

S = Sy (u =0T, ©)
where Ti =T |
Additionally, the probability of an imperfect repair following the ith inspection can be derived

using the following expression.

P(T.i) =;:ZMP(T,m) jTT / };f(’()f Z)T_ ;‘)du, ©)

where P(T,m)(0 < m <i-1) denotes the probability that the last imperfect repair was performed at

time mT and P(T,0)=1

4.2. Probability of Implementing a Corrective Replacement

The system renewal process can be categorized into two scenarios. They are respectively
corrective replacement following system failure after the kth inspection (where k =1, 2, ..., n) and
preventive replacement performed if the system remains in a normal state up to the nth inspection.
This section first derives the probability of a corrective replacement. A corrective replacement is
triggered when the system fails at the kth inspection (k=1, 2, ..., n). System failure may arise from one
of three causes: (i) degradation failure, (ii) sudden failure, or (iii) a combination of both degradation
and sudden failure.

< Case 1. System failure caused exclusively by degradation

In Case 1, the system degradation evolves such that the most recent defect occurs within the
interval ((k-1)T, kT) for k=1, 2, ..., n), and the system failure is detected during the kth inspection.
Furthermore, the shock process affecting the system is characterized by the absence of any fatal
shocks throughout the period (0, kT). Denoting the probability of this event by p it can be

calculated as follows.
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P, = Z;OP(WI <D,W,<D,...,W,<D|N(kT)= j)P(N(kT) = j)

kT j

L
. Oy J!

where A represents the arrival rate of shocks, and D is the failure threshold of the shock process.

The probability of a corrective replacement, considering degradation only, is denoted by p and

(7

can be expressed as follows.

S praf LRG0,
5 R (-0

Therefore, the probability of a corrective replacement triggered solely by degradation failure can

®)

be expressed as
Pey = PP, (9)

! e non-fatal shocks @ imperfect repa1r|

| < defect arrival @ soft failure |
Degradat] on // ...... / M
(i- l)T (k-)T
Shocks
t

Figure 4. Evolution pattern of system state in Case 1.

< Case 2. System failure due solely to a sudden failure

Next, calculate the probability of a system failure attributable to a sudden failure. As illustrated
in Figure 5 (Case 2), a sudden failure is identified at an inspection time kT (k=1, 2, ..., n). Critically, at
these same inspection intervals, the system’s degradation process may either be in a normal state (see
degradation path (a) in Figure 5) or in a defective state (see degradation path (b) in Figure 5).

! |
| ® non-fatal shocks @ fatal shocks i
| <> defect arrival @ imperfect repair |
e — e — e — —_
Shocks \ ° ° ° \
0 (k-1)T kT t
(a) W /
.............. i
Degradation T (-1 (k-1)T kT t
© J M @_,
T @-DT (-1)T t

Figure 5. Evolution pattern of system state in Case 2.
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The shock process in Case 2 is characterized by the first fatal shock arriving between (k-1)T and
kT, k = 1, 2, ..., n. This necessitates that no fatal shock occurs from time 0 to (k-1)T (event with
probability Py, and at least one fatal shock occurs in the subsequent interval ((k—1)T, kT) (event with
probability Px). Consequently, the overall probability for this shock scenario is

P, = P, P,. (10)
Define ji as the total number of shocks reaching the system within the time period (0, (k-1)T).
Then, Pm can be computed as

P, = Z::OP(W1 <D,W,<D,....,W, <D|N((k=DT)= j)P(N((k-DT) = j,)

_ R a1 _ i
=z°?0q>[D /‘WJ e @EDD 4y
" Oy Ji!

The complement of the event of “at least one fatal shock reaches the system during ((k-1)T, kT)”

(11)

is that “all shocks arriving at the system during ((k-1)T, kT) are non-fatal shocks”. Let j2 be the number
of shocks during ((k — 1)T, kT). The probability Px can then be calculated as

P, =1—ZZ=0P(W1 <D,W,<D,...,W, <D|N(T —(k—-1)T)= j,)P(N(T) = j,)

_ BT J2
S1-Y" | Dot | €T AT
o, J!

The occurrence probabilities for the two evolutionary patterns of the degradation process can be

(12)

calculated using the following two equations, respectively.

LG PTH fi ) _ S PTR, (KT)

2a — ’ (1 3)
i=0 RX ((1 - w)Z ) i=0 RX ((1 - a))]; )
k=1 k-1 T )z( Ry ];( _
By ZZZP(T’DL L R(”()(l _(w)T)”)du, (14)

R ()=R,(u—aT)

Therefore, the overall probability of system failure attributable only to a sudden failure is given

where

by the following expression.

Pe, =(P, + PP, (15)

< Case 3. System failure resulting from the combined effects of degradation failure and sudden

failure

Finally, the probability of system failure resulting from the combined effects of degradation and
sudden failure is computed. As illustrated in Figure 6, the shock process follows the same
evolutionary pattern as in Case 2; its probability, denoted as Py, is therefore given by Equation (10).
In Case 3, the degradation process evolves such that the system transitions to a defective state within
the interval ((k-1)T, kT), and a degradation failure is identified at the kth inspection. The probability
of this degradation evolutionary pattern can be calculated using the following equation.

< N )l( F Y 7;_
B= ;P(T,z) L /; Ri“()(l _(w)z;l)du.

Consequently, the probability of system failure due to the concurrent occurrence of degradation

(16)

failure and a sudden shock is given by

Pey = PP, (17)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0986.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 September 2025 d0i:10.20944/preprints202509.0986.v1

11 of 23
| ® non-fatal shocks @ fatal shocks @ soft failure :
I <& defect arrival @ imperfect repair |
L L L .
Shocks | ° ° . |
(k-1)T kT t
Degmdamn %77, @// 7. 7
T (-DHT (k-1)T kT t

Figure 6. Evolution pattern of system state in Case 3.

Following the preceding analysis, the probability for a corrective replacement action is therefore
given by the sum of the three cases, which is equal to

P, (L =kT)=Poy+ Poy+ Pcy. (18)

4.3. Probability of Performing a Preventive Replacement

If the system remains in a normal state by the nth inspection, a preventive replacement should
be performed. This is because, as service time increases, the system can function normally for
progressively shorter durations, and its ability to withstand external shocks is significantly
diminished. Consequently, there is a high likelihood of failure occurring in the near term, which
could lead to substantial economic losses. A preventive replacement requires the satisfaction of two
conditions. First, no fatal shock must have reached the system before time nT. Second, the
degradation process must remain in a normal state at time nT.

[ [
| @ non-fatal shocks @ soft failure i

| <& defect arrival @ imperfect repair |
Shocks ‘ ® T ® | ‘ -
(n-1)T nT t
Degradatlon v // { C & / ¥ g é/%.
T (-HT (n-)T nT t

Figure 7. System state evolution under preventive replacement.

The probability of the event that no fatal shock arrives at the system before time nT is expressed
as follows.

P = Z;OP(WI <D,W,<D,...W,<D|N(nT)= j)P(N(nT)= )

z (D ,uw)e_l"T(/inT)j
=> . .

Oy J!
The probability of the evolutionary pattern of the degradation process can be calculated by
. _iP(T,i) [ fGoydu _SUPTOR (T) 0
TS R(-OL) S R(-0T)
Ry (nT)=R,(nT - oT,) .

(19)

where
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Therefore, the probability of preventive replacement is equal to

P, (L=nT)=P,P,,. @h

4.4. Costs Associated with Operational Downtime

The expected cost of downtime resulting from hidden failures is the product of the cost per unit
downtime and the expected downtime duration. Based on the Mean Past Life (MPL) method [42], it
is assumed that the system fails at time Ty, (x _ )7 < T, <kT - The resulting downtime length at the

kth (k=1, 2, ..., n) inspection is kT _]}. Let Ca represent the cost of downtime per unit. The total cost

of downtime due to hidden failures is then given by
C,=C,-E(KT~T,|T, <KT). (22)
The expected system downtime is calculated using the following procedure.
Step 1. Manipulate the downtime length k7-T5.
Let 11 _ 1, - then B(KT—T,|T, <kT)=E(0<Z<kT)=E(Z|0<Z<kT).
Step 2. Derive E(Z‘O<Z <kT) based on the conditional expectation formula.
Let the cumulative distribution function and probability density function of Z be G(z) and g(z),

respectively. Employing the conditional expectation formula from Equation (23), E(Z‘0<Z <kT)
is expressed by Equation (24).

[ (e
=< 23
Ey(x]y) [7o (23)
IOkT zg(z)dz
, &(2)dz

Step 3. Derive the numerator and denominator of the right-hand term in Equation (24) separately.
First, the molecular I:ng(z)dz is derived. Denote the cumulative distribution function and

probability density function of the failure time as F(x) and f(x), respectively. Giventhat ;7 _ r _ ;

, it follows that G(z)=1- F(x) and g(z) = — f(x) . Therefore,
kT kT
[ z2(2)dz= [ (KT =)=/ )T - )
= {7 (kT =) f (x)dx

(25)
= KTF ()| —xF (@)|i7 + jo"TF(x)dx
= [ Food,
Then, we derive the denominator | g(z)dz
[ g@)dz =] (~/ (NA(KT ~x)
= [\ foax (26)

=F(kT)
Substituting Equations (25) and (26) into Equation (24) yields the following result.
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[ Fodx
E(Z|0<Z<kT):°F(TT). (27)

Consequently, the costs associated with downtime losses attributable to hidden failures are
calculated as follows.

Cp=C,-E(kT =T, |T, <kT)=C, - E(Z|0< Z <kT)

[ Fax (28)
T F(kT)

where F(x) is the failure distribution function of the multi-state system, which depends on the

distributions of the random variables X, Y and W,.

5. Optimization of Inspection Scheduling to Minimize Expected Cost Rate

The primary objective of this paper is to determine the optimal inspection interval that
minimizes the expected cost rate. This is achieved by developing and optimizing a maintenance
model formulated as the expected cost rate, denoted ECR(T), where T represents the inspection
interval and serves as the decision variable in the optimization framework.

Based on the probability of imperfect repair given in Equation (6), the probabilities of corrective
and preventive replacements provided in Equations (18) and (21), and the cost contributions due to
hidden failures derived in Equation (28), a comprehensive maintenance model of the multi-state
system subject to competing failures and imperfect repair is constructed. The explicit expression of
this model is presented in Equation (29).

n k-1 n-1
ZPW (L=kT)(kC, + Z CyP(T,i)+ C. +Cp)+ P, . (L=nT)(nC, + Z C.P(T,i)+C,)
ECR(T) =42, i=0 py

n

> kTP, (L=kT)+nTP, (L=nT)

cor pre
k=1

(29)

Although ECR(T) is a univariate function of the decision variable T and has an explicit analytical
expression, the diversity and complexity of its constituent terms make it impractical to derive a
closed-form solution for T analytically. Therefore, this study employs a numerical approach to solve
the maintenance model, thereby identifying the optimal inspection interval and its corresponding
minimum expected cost rate. The simulation procedure is illustrated in Figure8.
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Figure 8. Simulation flow chart.

6. Numerical Example

Distribution system capacitor banks undergo continuous degradation from the start of their
service life. In the initial stages, electrolyte consumption is minimal, and the system can be considered
to be in a normal operating state. As the electrolyte depletes beyond a certain point, the capacitor
bank enters a defective state. Once the electrolyte level falls below a critical threshold, the capacitor
bank can no longer perform its intended function and eventually fails due to degradation.

In addition to inherent degradation, capacitor banks are also susceptible to external shocks, such
as overvoltage or reverse voltage, which may cause sudden failure if the magnitude of any shock
exceeds the sudden failure threshold. The condition of the capacitor bank can be assessed through
periodic inspection, allowing for timely maintenance based on its identified state. This proactive
approach helps ensure reliable performance and optimizes maintenance costs.

6.1. Maintenance Model Optimization and Analysis

Regularly inspect the capacitor bank at intervals of length T. If defects are identified, repair the
capacitor bank to restore it to normal working condition. However, the repairs are imperfect,
meaning they cannot restore the capacitor bank to an as-new state. Assume that before the first
imperfect repair, the normal lifespan X and the delay time Y of the system follow Weibull
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distributions with shape parameters a1 and a2, and scale parameters b1 and b2, respectively. The
t
—(—)
probability density function and survival function of X are given by fy(¥)=(}, / a )(t/ a )b‘ Te @
_(L)bl
and R (t)=e “ , respectively. Similarly, the probability density function and survival function of
_ i)bz _(L)bz
Y are given by f,(t)=(b, / az)(t/ az)bfle “ and R/(H)=e “ respectively.
Since imperfect repairs only affect the normal lifetime, it can be inferred from Equation (5) that
after an imperfect repair is implemented at time iT, the probability density function of X becomes
i . -l 7(ai)ln
[y @O=b/a)(-aT)/a) e

Accordingly, the corresponding reliability function and lifetime distribution function are given

by RX(t) :e{(wm/al)bl and E((t):l_RX(f):l—e{(tiwn/al)bl , respectively. The parameters of the
two Weibull distributions are respectively a1=1, 22=0.8, b1=2, b2=1.

The shock arrival intensity parameter (1) for the system is 1. The mean (4, ) and variance (g, )
of the shock magnitudes are 5 and 4, respectively, and the sudden failure threshold (D) is 8. The
minimum inspection interval is set to 1 month [43]. If defects are detected, the system undergoes
imperfect repair with an improvement factor of w = 0.8.

The failure time of the capacitor bank is assumed to follow a uniform distribution over the
interval ((k-1)T, kT). The downtime cost per unit time, denoted as Cd, is 100 (in units of $100) [43,44].
The remaining cost parameters in the maintenance model are as follows.

e  cost of a single inspection, Cr=10

e  cost of an imperfect repair, Cr =40

e  cost of a preventive replacement, Cr = 60
e  cost of a corrective replacement, Cc =800

Let n = 8. The expected cost rates under different inspection intervals can be calculated using
Equation (29). As shown in Figure 9, the horizontal axis represents the inspection interval T, and the
vertical axis represents the corresponding expected cost rates. As shown in Figure 9, when the repair
improvement factor is set to w = 0.8, the optimal inspection interval is 0.23 months. At this interval,
the maintenance cost of the system is minimized, with a minimal expected cost rate of $384.5311.
Figure 9 also reveals that under perfect repair conditions (w = 1), the optimal inspection interval
increases to 0.33 months (approximately 10 days), resulting in a further reduced minimized expected
cost rate of $348.7024.

A comparison between the imperfect and perfect repair scenarios reveals that the system
requires more frequent inspections under imperfect repair conditions—specifically, every 0.23
months compared to 0.33 months under perfect repair. This indicates that when repairs are imperfect,
a higher inspection frequency is necessary to mitigate the risks of defects and failures, thereby helping
to control the overall maintenance costs. Furthermore, the minimum expected cost rate is higher in
the imperfect repair case ($384.5311) than in the perfect repair case ($348.7024), demonstrating that
maintenance costs increase when repair effects are imperfect.

Indeed, accounting for imperfect repairs more closely aligns with real-world engineering
contexts. Neglecting the imperfection of repairs during the design of inspection and maintenance
strategies may lead to underestimation of the total maintenance cost, thereby hindering rational
resource allocation decisions by maintenance engineers. Thus, it is essential to incorporate the effect
of imperfect repair when formulating maintenance models for MSSs susceptible to competing failure
modes.
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Figure 9. Expected cost rate at different inspection intervals.

6.2. Sensitivity Analysis of the Repair Improvement Factor

This subsection analyzes the influence of the repair improvement factor w on the maintenance
model. The analysis is confined to the range of 0.6 < w < 1, as it better reflects realistic engineering
conditions. The optimal inspection interval T* and the corresponding minimum expected cost rate
ECR(T") for different values of w are computed and presented in Figure 10.

As shown in Figure 10, the ECR-T curve shifts downward as w increases, indicating an inverse
relationship between repair quality and maintenance costs. Specifically, when w rises from 0.6 to 1,
the optimal inspection interval T" increases from 0.19 to 0.23, while the minimum expected cost rate
ECR(T") decreases from 409.771 to 348.7024. These results suggest that improved repair effectiveness
allows for less frequent inspections and effectively lowers overall maintenance expenses. The
findings highlight that enhancing repair quality can significantly reduce both the inspection
frequency and the total maintenance cost of capacitor banks. Therefore, in practical applications,
maintenance engineers should focus on improving repair effectiveness to achieve substantial cost
savings.

460

360
(0.33, 348.7024)

340 L .
0.1 0.2 0.3 0.4

T

Figure 10. Sensitivity analysis of the improvement factor w.

6.3. Sensitivity Analysis of Cost Parameters

This section conducts a sensitivity analysis of the five cost parameters in the maintenance model.
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6.3.1. Sensitivity Analysis of a Single Cost Parameter

To perform sensitivity analysis for a given cost parameter, w is first set to its default value of 0.8.
The value of the target cost parameter is then varied across a defined range while keeping other
parameters constant. These values are substituted into the maintenance model to determine the
optimal inspection interval T* and the corresponding minimum expected cost rate ECR(T") through
model optimization. As summarized in Table 1, the sensitivities of five cost parameters, i.e., Ci, Ck,
Cr, Cc, and Cy, to both T* and ECR(T") are analyzed individually.

The analysis begins with Ci by holding all other parameters fixed. T"and ECR(T") are computed
for varying values of Ci. The same procedure is repeated for the remaining four parameters, with all
results compiled in Table 1. To facilitate visual interpretation of how each cost parameter influences
T"and ECR(T"), the data from Table 1 are plotted in Figures 11 and 12. Figure 11 illustrates the
sensitivity of ECR(T") (in units of $100) and T to Ci, Cr, and Cp, while Figure 12 shows the sensitivity

to Ccand Ca.
Table 1. Optimal solutions under different cost parameters.
Cost parameter
T ECR(T)

Cr Cr Cr Cc Ca

6 40 60 800 100 0.21 366.3166
8 40 60 800 100 0.22 375.6450
10 40 60 800 100 0.23 384.5311
12 40 60 800 100 0.24 393.0203
14 40 60 800 100 0.25 401.1472
10 20 60 800 100 0.22 338.0560
10 30 60 800 100 0.22 361.3959
10 40 60 800 100 0.23 384.5311
10 50 60 800 100 0.24 407.5389
10 60 60 800 100 0.25 430.3200
10 40 40 800 100 0.22 376.6323
10 40 50 800 100 0.22 380.6841
10 40 60 800 100 0.23 384.5311
10 40 70 800 100 0.24 388.2153
10 40 80 800 100 0.25 391.7374
10 40 60 600 100 0.26 334.0888
10 40 60 700 100 0.24 359.5363
10 40 60 800 100 0.23 384.5311
10 40 60 900 100 0.22 409.1874
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10 40 60 1000 100 0.21 433.6087
10 40 60 800 60 0.25 372.7835
10 40 60 800 80 0.24 378.8396
10 40 60 800 100 0.23 384.5311
10 40 60 800 120 0.22 389.9357
10 40 60 800 140 0.22 395.1355

As shown in Figure 11, the optimal inspection interval T and the minimum expected cost rate
ECR(T") exhibit consistent trends in response to changes in Ci, imperfect repair cost Cr, and
preventive replacement cost Cr. Specifically, as these three parameters increase, both T* and ECR(T")
show an upward trend. In particular, ECR(T") increases strictly monotonically with Ci, while T also
tends to lengthen as Ci rises. This indicates that inspection cost significantly influences the total
maintenance cost. To control expenses, maintenance managers should reduce inspection frequency
when Cr is high. Similarly, both Cr and Cr contribute to increased ECR(T") and longer optimal
inspection intervals, as also depicted in Figure 11. This result shows that Cr and Crhave a large impact
on maintenance costs. It is therefore recommended that maintenance personnel implement effective
measures to reduce these costs, thereby lowering the total cost of maintenance.

0.26

— 1392
—e— ECR(T") 1300
4388
1386

1384

ECR(T")

382
0.22
380
1378

1376

0.20 L L L L L L L L L L L L L L L

Figure 11. Sensitivities of ECR(T") (x$100) and T" to Cr, Cr, and C».

In addition, Figure 12 reveals that the Cc and Ca exhibit broadly similar influences on both
ECR(T) and T'. Specifically, as Cc increases, ECR(T") rises from 334.0888 to 433.6087, while T
decreases from 0.26 to 0.21. This suggests that higher corrective replacement costs lead to an increase
in the expected cost rate, and that more frequent inspections become necessary to mitigate overall
maintenance expenses when Cc is high.
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Figure 12. Sensitivities of ECR(T") (x$100) and T" to Ccand Cu.

6.3.2. Sensitivity Analysis of Multiple Cost Parameters

Further, the five cost parameters were varied synchronously across percentage changes of -60%,
-30%, 0%, +30% and +60% to observe their combined effect on the optimal inspection interval T* and
the corresponding minimum expected cost rate ECR(T"). The adjusted parameter values for each
variation level are presented in Table 2. Using a simulation algorithm, the values of T* and ECR(T")
under each percentages change were computed, and the results are shown in the last two columns of
Table 2.

The data from Table 2 are plotted in Figure 13 to facilitate further analysis. As shown in the
figure, the optimal inspection interval T* for the capacitor bank remains constant at 0.23 months,
forming a straight line, even as all five cost parameters vary synchronously by the same proportion.
This indicates that the optimal inspection interval remains unchanged when the relative proportions
among the cost parameters are maintained, regardless of absolute changes in their values.

In contrast, the minimum expected cost rate ECR(T") increases from 153.8124 to 615.2497 as the
percentage change in cost parameters rises from -60% to 60%, demonstrating that ECR(T") grows with
increasing cost levels. Furthermore, the analysis reveals that for every 10% synchronized increase in
the cost parameters, the maintenance cost increases by approximately 38.4531. The results indicate
that the total maintenance cost of the capacitor bank is sensitive to the absolute values of the five cost
parameters, whereas the optimal inspection interval is primarily determined by their relative ratios.

Table 2. Adjusted value of each cost parameter (in $100 units) after a uniform change of +% .

Percentage

Number Cr Cr Cp Cc Cd T"  ECR(T)
change

1 -60% 4 16 24 320 40 0.23  153.8124

2 -30% 7 28 42 560 70 023  269.1717

3 0% 10 40 60 800 100 0.23  384.5311

4 +30% 13 52 78 1040 130 0.23  499.8904

5 +60% 16 64 96 1280 160  0.23  615.2497
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Figure 13. Sensitivity of ECR(T") (x$100) and T" to a uniform percentage change in cost parameters.

7. Conclusion

In this paper, a condition-based maintenance model is developed for a multi-state system subject
to competing and hidden failures, taking into account imperfect repairs of identified defects. A
simulation algorithm is proposed to minimize the ECR, thereby determining the optimal inspection
interval and the minimal maintenance cost rate. The study yields several meaningful conclusions:

(1) The developed maintenance model for MSSs with two competing failure modes is validated
as correct and effective in identifying the optimal inspection strategy.

(2) The imperfect repair of defects significantly influences both the optimal inspection policy and
the maintenance cost. Specifically, a higher repair improvement factor leads to a longer optimal
inspection interval and a lower ECR.

(3) All cost parameters have a noticeable impact on the optimal inspection interval and the
minimal ECR.

These findings provide valuable insights to assist maintenance engineers in making informed
inspection and maintenance decisions. Future work may extend the proposed methodology to more
complex applications, such as transitioning from single-unit systems to multi-component systems,
considering MSSs with more than three states, and incorporating imperfect inspection of system
states within the maintenance model.
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