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Abstract

Ixodid ticks are blood-sucking ectoparasites of vertebrates. They are an integral part of any natural
foci and are responsible for the worldwide transmission of infections to humans, which can result in
severe symptoms. For instance, the Tomsk region, where three abundant tick species (Dermacentor
reticulatus, Ixodes pavlovskyi, 1. persulcatus) are found, is an endemic area for tick-borne encephalitis
virus (TBEV). An increasing number of novel infectious agents carried by ticks are being identified
using metagenomic sequencing. A notable example is the Yezo virus (Orthonairovirus yezoense,
YEZV), which was discovered in people with fever symptoms after tick bites in Japan and China from
2014 to 2025. For the first time, we performed metagenomic sequencing of the virome of ticks
collected in the Tomsk region. In a sample obtained from a pool of 1. paviovskyi ticks, all three
segments of the YEZV genome were detected. The subsequent phylogenetic analysis demonstrated
that the newly identified isolate formed a sister group to previously described virus isolates,
indicating the presence of a new genetic variant. These findings expand the geographic range and
the number of vector species for YEZV and highlight the importance of molecular monitoring of viral
agents circulating among ticks in Western Siberia.

Keywords: virome; metagenomic sequencing; tick-borne viruses; Ixodes pavlovskyi; Orthonaitovirus
yezoense

1. Introduction

Ticks (order Ixodida) are divided into three main families: Ixodidae (722 species), Argasidae (208
species), and Nutalliellidae (1 species) [1,2]. Hard ticks, belonging to the family Ixodidae, are highly
specialized obligate blood-sucking ectoparasites of terrestrial vertebrates, primarily birds and mammals,
and to a lesser extent, reptiles [3,4]. Ticks are significant vectors of various pathogenic microorganisms,
including bacteria, viruses, and protozoa, and represent one of the three main components of natural and
synanthropic foci of transmissible infections [5]. Three abundant species of ixodid ticks have endemic
significance in the Tomsk region: D. reticulatus, I. pavlovskyi, and I. persulcatus [6]. All of them, to varying
degrees, are involved in the spread of both well-known and regularly detected pathogenic
microorganisms (Anaplasma phagocytophilum, Babesia spp., Bartonella spp., Borrelia burgdorferi s.l., B.
miyamotoi, Ehrlichia chaffeensis, E. muris, Francisella tularensis, Rickettsia spp., TBEV, and West Nile virus), as
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well as newly discovered ones (viruses of the genera Phlebovirus, Uukivirus, and YEZV) [7-10]. In Russia,
based on the results of an analysis of 5318 I. persulcatus and I. ricinus ticks sampled in 23 regions revealed
of five YEZV isolates in I. persulcatus ticks from three regions: Khabarovsk, Primorsky and Transbaikal
territory [10]. However, within foci of tick-borne infections located in anthropogenically transformed
territories, the species I. paviovskyi is more significant, currently dominating urban biotopes of Tomsk over
both I. persulcatus and D. reticulatus [11]. Its ornithophilicity has been observed and documented at almost
all life cycle stages (larva, nymph, imago) [12].

Given the wide range of pathogens carried by ixodid ticks, the identification of novel infectious
agents capable of causing disease in humans and animals is of particular interest. A notable example
is the YEZV (Orthonairovirus yezoense), a recently identified member of the genus Orthonairovirus,
order Bunyavirales, first detected in Japan on Hokkaido Island in 2019 [13]. The presence of the YEZV
has been detected in ixodid ticks (D. silvarum, Haemaphysalis megaspinosa, H. japonica, 1. ovatus, L.
persulcatus), which are vectors, in wild animals (Cervus nippon yesoensis, Emberiza spodocephala, Procyon
lotor), as well as in the blood of 10 patients from Japan (since 2014) and 19 from China [10,13-19]. The
YEZV has not been previously detected in I. paviovskyi.

The clinical manifestations caused by the YEZV in patients from Japan were more pronounced
compared to the patients from China and were accompanied by an increase in body temperature up
to 39°C, loss of appetite, leukopenia, lymphocytopenia, thrombocytopenia, and elevated enzyme
levels (alanine aminotransferase, aspartate transaminase, creatine kinase, lactate dehydrogenase) and
ferritin, which may indicate liver damage. Furthermore, cases of blood coagulation disorders were
identified. The disease manifested in the Chinese patients as a milder form. In addition to elevated
body temperature and changes in blood cell counts and liver enzymes, headache, dizziness, joint
pain, visual disturbances, shortness of breath, and fatigue were also observed [13,14,16,18]. As
Matsuno [20] article asserts, the disease manifested as severe in eight out of 18 patients. Furthermore,
gastrointestinal tract disorders were detected in 9 patients, a phenomenon heretofore unreported in
the extant literature. Moreover, neurological symptoms were observed in 5 patients, the nature of
which was not specified in the publication. The clinical manifestation of the disease is subject to its
variation depending on various factors, including the patient's age and medical history, the presence
of co-infection, and concomitant medication use. It is important to note that all patients infected with
the YEZV exhibited full recovery within a period from two to three weeks [13,14,16,18,20].

According to the most recent official classification, the genus Orthonairovirus of the family
Nairoviridae includes 51 species, for which argasid or ixodid ticks serve as vectors [21]. The genome
of the Orthonairovirus is characterized of three linear single-stranded negative-sense RNA (ssRNA(-
)) segments with a size ranging from 17.2 to 20.1 kb (the S segment is 1.4-3.8 kb, the M segment is
3.9-5.9 kb, and the L segment is 11.7-12.6 kb) [22]. Most members of the genus Orthonairovirus have
been demonstrated to be capable of replicating in both arthropods (argasid and ixodid ticks) and
vertebrate animals [23]. The recent discovery of previously unknown viral agents in ixodid tick
populations indicates that the spectrum of pathogens carried by these ectoparasites is far from being
fully understood [7-10]. This underscores the need for modern research methods that can enhance
detection efficiency and enable rapid and timely monitoring of new or re-emerging pathogens. A
representative example of such a method is metagenomic next-generation sequencing [24]. Recent
studies have indicated a marked increase in the number of such studies over the past 15 years [25].
The objective of the present study was to perform the genomic characterization of a newly identified
orthonairovirus, designated as YEZV, which was detected by metagenomic sequencing in female 1.
pavlovskyi ticks collected in Tomsk.

2. Materials and Methods

2.1. Sampling

The collection of female I. pavlovskyi was conducted in June 2024 in Tomsk (Tomsk region,
Russia). The ixodid ticks were collected using the standard flagging method from the vegetation. The
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collected ticks were individually placed into 1.5 ml tubes and delivered to the laboratory while still
alive. There, they were stored at 4 °C until species identification. Using morphological keys [26], the
species, sex, and stage of the collected ticks were determined with a binocular microscope. After
identification, each tick was washed in 70% ethanol and sterile water, then placed individually into
a 0.5 ml tube, frozen in liquid nitrogen, and stored at -80 °C.

2.2. Enrichment of Virus-like Particles, Nucleic Acid Extraction, Library Preparation and Metagenomic
Sequencing

The enrichment of virus-like particles was conducted in accordance with a modified NetoVir
protocol [27]. Prior to homogenization, individual ixodid tick samples were combined into pools.
Thus, two pools of eight individuals each were prepared for I pavlovskyi. A negative control
consisting only of Hanks' solution with phenol red (BioloT, Saint-Petersburg, Russia), was also used
for each processed batch of tick pools. The homogenization of the pools was conducted using 2.8 mm
ceramic beads (Allsheng, Hangzhou, China) and Hank’s solution with phenol red (BioloT, Saint-
Petersburg, Russia) on a Bioprep-24 instrument (Allsheng, Hangzhou, China) at a speed of 7000 rpm
at room temperature for 90 s. This procedure was repeated 4 times, with tubes placed at -20 °C for 1
min between repeats. The pools were centrifuged at 17,000g at 3 °C for 3 min. The supernatant was
passed through a 0.8 um pore size centrifugal microfilter (Sartorius, Gottingen, Germany). The filtrate
was treated with micrococcal nuclease (Thermo Fisher Scientific, Ipswich, MA, USA) and benzonase
(diaGene, Moscow, Russia). Nucleic acids were extracted after filtration using a column-based RNA
extraction kit (Biolabmix, Novosibirsk, Russia) according to the manufacturer's protocol. Full-
transcriptome amplification was performed using the WTA2 kit (Sigma-Aldrich, St. Louis, MO, USA)
according to the NetoVir protocol. The PCR product was purified using a kit for DNA and RNA
extraction from reaction mixtures (Biolabmix, Novosibirsk, Russia). After this, the PCR products from
the two pools were combined into one, and library preparation began. Libraries for massively parallel
sequencing were prepared using the SyntEra-DNA kit (Syntol, Moscow, Russia) according to the
manufacturer's protocol. Following library preparation, a reconditioning PCR was performed for the
two samples using the SyntEra-DNA kit with standard Illumina P5 (5-
AATGATACGGCGACCGAGATCT-3") and P7 (5'-CAAGCAGAAGGGCATACGAGAT-3') primers,
and the Encyclo Plus PCR kit (Evrogen, Moscow, Russia). Two-sided size selection was then
performed using AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA). The reaction
mixture consisted of the following components: 16 pul dH2O, 2.5 pl 10x Encyclo buffer, 0.5 pl 50x
dNTP mix, 2.5 ul P7 and P5 primer mix, 0.5 pl 50x Encyclo polymerase mix, and 3 ul DNA. PCR was
performed using the following program: initial denaturation at 95 °C for 2 min, 6 cycles of 95 °C for
15s, 60 °C for 30 s, 72 °C for 30 s, and final elongation at 72 °C for 1 min. After reconditioning PCR
following purification and size selection, fragment length analysis was conducted on a TapeStation
4150 instrument (Agilent Technologies, Santa Clara, CA, USA). The prepared libraries were
sequenced on a Genolab M platform (GeneMind Biosciences, Shenzhen, China) with 150-nucleotide
paired-end reads with an estimated average of 10 million reads per sample.

2.3. Virome Data Analysis

The raw reads obtained were processed using the ViPER pipeline v2.3 [28]. Particularly,
untreated raw reads were trimmed with Trimmomatic v0.39 [29] to remove Nextera adapters and
low-quality reads. The trimmed reads were then aligned to the contamination control library
(negative control sample) using Bowtie2 [30] to discard contamination-related reads from laboratory
sources. The remaining reads were then assembled into contigs using metaSPAdes v4.2.0 [31].
Contigs were subsequently filtered on length (>200 bp) and clustered based on their coverage and
identity threshold (80 and 95%, respectively). The contigs were taxonomically classified using
Diamond v2.1.11 [32] with the NCBI nr database, and further visualized with KronaTools v2.8 [33]
based on a common ancestor approach. Furthermore, the reads were mapped to the classified contigs
using bwa-mem?2 v2.2.1 [34] to quantify their abundance.
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2.4. Sequence Analysis

The Geneious v2025.1.3 software (Biomatters, Auckland, New Zealand) and the ExPASy [35]
were used for sequence analysis and subsequent visualization of the results. The genome
organization scheme was prepared based on the obtained metagenomic data sequences annotation
using the online graphical editor BioRender. Protein domain organization was predicted using
InterProScan v106.0 [36], while DeepTMHMM v1.0.44 [37] was used to predict protein
transmembrane domains. The presence of a signal peptide and signal peptidase cleavage site was
predicted using ProP v1.0 [38] and SignalP v6.0 [39]. N- and O-glycosylation sites were predicted
using NetNGlyc v1.0 [40] and NetOGlyc v4.0 [41], respectively.

2.5. Phylogenetic Analysis

For phylogenetic analysis, nucleotide sequences of the L, M, and S segments of YEZV and Sulina
virus (SULV) isolates (Table S1), as well as the amino acid sequences of the L segment from
representatives of the genus Orthonairovirus (Table 52), were used. Multiple sequence alignment was
performed using the MAFFT v7.511 online server [42], with the automatic selection of the best
alignment algorithm. Phylogenetic trees were constructed using IQ-TREE 3 [43] with 1000 bootstrap
replicates. The selection of the most appropriate model was performed by ModelFinder [44]. As a
result, the GTR+F+]+G4 algorithm was chosen for the L segment, TIM2+F+]J+R2 for the M segment,
TPM2u+F+]J+R2 for the S segment, and Q.YEAST+F+J+R7 for the L segment amino acid sequences.
Phylogenetic trees were visualized in R using the ggtree v3.6.2 [45] and phytools v2.4-4 [46] packages.
The evolutionary distances of the amino acid and nucleotide sequences for the three segments of
YEZV isolates were estimated using the p-distance method [47]. The resulting values were converted
to identity percentages. Visualization of the results was performed in Python using the seaborn
v0.13.2 [48] and matplotlib v3.10.3 [49] packages.

3. Results

3.1. Characterization of the Metagenomic Library

In June 2024, a total of 12 I. pavlovskyi ticks were collected from the vegetation in the park area
of the Tomsk Polytechnic University «Polytechnic» stadium (Figure 1). They were combined into two
pools.

After sample preparation according to the modified NetoVIR protocol, they were combined into
a single pool. A cDNA library was then prepared for this pool, and metatranscriptomic sequencing
was performed. This resulted in 23,418,766 reads. After analysing the raw data, 196 viral contigs (0.5%
of the total) were obtained. Of these, 93 belonged to bacteriophages (families Haloferuviridae,
Shortaselviridae, ~Stanwilliamsviridae, Autographviridae, ~Soleiviridae, Casjensviridae, Straboviridae,
Zierdtviridae), while 37 belonged to DNA viruses (Baculoviridae, Bamfordviridae, Microviridae,
Genomoviridae, Parvoviridae and Inoviridae) and 55 to RNA viruses (Baculoviridae, Deltaflexiviridae,
Virgaviridae, Tombusviridae, Totiviridae, Sedoreoviridae, Partitiviridae, Hypoviridae, Nairoviridae,
Peribunyaviridae, Rhabdoviridae, Retroviridae, Botourmaviridae), and 11 to unclassified viruses. The
dominant viral taxa are shown in Table 3. For the YEZV, four contigs covering > 99% of the genome
with an average read depth of > 1500 were obtained.

Table 3. Composition of dominant viral taxa identified in the sample, based on average logarithm of the e-

value.
Count
Taxon (closest BLASTx match) of Relative Abundance (%) Covera'ge of Leng th of
. contigs contigs (nt)
contigs
YEZV (Nairoviridae) (94.91%-98.76%) 4 66 1,373,575 and 252, 1748, 4296

5356 and 12103
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Fangzheng tombus-like virus 3 28 920,3132and 3211, 1094 and
(Tombusviridae) (94.24%-96.11%) 6339 1479
Great Island virus (Sedoreoviridae) (28.47% 3 615 and 904 3031 and 2165
and 32.51%
Haerbin Reovi tick virus 1
1 2 414
(Unclassified Reiovirales) (99,46%) 690 ?
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Figure 1. Geographic map of the tick sampling area. Sampling areas are indicated by a red dotted line.

3.2. Genomic Characterization of the Detected Yezo Virus

The YEZV genome is a linear ssRNA(-) consisting of three segments (Figure 2).

The L segment is 12,103 bp in length and encodes an RNA-dependent RNA polymerase (RdRp)
(3938 aa). Previous studies have shown that RdRp contains an OTU-like protease domain, a
polymerase module consisting of pre-motif A and motifs A-E, as well as four conserved regions I-IV
[50,51]. Amino acid sequence alignment confirmed that the RdRp of the YEZV contains all the highly
conserved regions (Figure S3).

The M segment is 4247 bp in length and encodes a glycoprotein precursor complex (GPC) (1356
aa), which consists of two subunits — Gn (from 369 to 687 aa) and Gc (from 777 to 1319 aa). The
position of the N-terminal signal peptide and its cleavage site were predicted to be between 21 and
22 aa. In the N-terminal part of the glycoprotein, a high density of O- and N-glycosylation sites,
susceptible to proteolytic cleavage, was identified. The Gn protein contains one O- and two N-
glycosylation sites, two transmembrane domains (the first is between 541 and 560 aa, and the second
is between 668 and 682 aa), and a pair of conserved zinc finger domains. These have also been found
in Meihua Mountain virus and Crimean-Congo hemorrhagic fever viruses (CCHFV) [51,52]. The Gc
protein contains one O- and one N-glycosylation site, as well as one transmembrane domain located
between 1283 and 1303 aa. In addition, the nucleoprotein of the YEZV has conserved fusion loop
regions (bc loop, cd loop, ij loop), like those observed in other orthonairoviruses [53] (Figure S4).

The S segment is 1685 bp in length and encodes a nucleocapsid protein (502 aa). A detailed study
has established the structural organization of the nucleocapsid protein in nairovirus representatives,
revealing two main domains: a globular head and a stem, along with sites that are necessary for
binding RNA/DNA molecules [54]. The alignment of the nucleotide sequences of the two domains
showed that YEZV isolates differ from viruses of the NSD (Nairobi sheep disease) genogroup and
exhibit high conservation among the YEZV isolates (Figure S5).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 2. Schematic map of the YEZV genome. (a) Segment L and the encoded RdRp; (b) segment M and the
encoded GPC; (c) segment S and the encoded nucleoprotein.

3.3. Nucleotide and Amino Acid Identity

To assess the degree of nucleotide (Figure S6) and amino acid (Figure S7) identity of the genome
segments of our identified YEZV, a comparative analysis was performed with other virus isolates
genome segments sequences. The degree of nucleotide identity for the L segment ranged from
90.848% to 91.399%. The maximum value was observed for isolate PV061572.1 (I. persulcatus,
Khabarovsk region, Far East). For the M segment, the identity values ranged from 89.336% to
90.054%. The closest match was found for isolate PQ475627.1 (I. persulcatus, Inner Mongolia, China).
For the S segment, the identity values ranged from 91.328% and 92.341%. The closest match was
found for isolate PV061580.1 (I. persulcatus, Primorsky region, Far East).

The amino acid identity for the RdRp protein was between 98.502% and 98.959%, with the
highest value being recorded for isolate WWT48702.1 (I. persulcatus, Jilin Province, China). According
to the ICTV species demarcation criteria (<93% identity in L amino-acid sequence for new species in
the genus Orthonairovirus), the detected virus belongs to the YEZV. For the GPC, the identity varied
from 93.732% to 94.764%. The closest matches were two isolates, XJP49230.1 (I. persulcatus, Inner
Mongolia, China). For the nucleoprotein, the identity values ranged from 96.414% to 97.200%. The
highest value was observed for isolate XJQ61045.1 (Homo sapiens (human metagenome), Heilongjiang
Province, China).

3.4. Phylogenetic Analysis

Phylogenetic analysis, performed based on the nucleotide sequences of the three segments (L, M, S)
of the YEZV genome, demonstrated that all isolates of this virus form a well-supported monophyletic
clade, which is clearly distinct from the closely related SULV. The isolates are distributed without a
specific pattern based on the source and year of virus isolation. Our newly discovered YEZV isolate

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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(Tomsk_Ipav1l) forms a sister clade to previously identified virus isolates based on the L and S segments.
For the M segment, our isolate exhibited a closer evolutionary relationship with the segments of two

Chinese isolates (Figure 8). However, the bootstrap support is low.
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Figure 8. Maximum likelihood phylogenetic tree based on the nucleotide sequences of YEZV and SULYV isolates.
(a) Segment L; (b) segment M; (c) segment S. The red square indicates the sequences of YEZV from the study.

Bootstrap values >70 are indicated.

To clarify the evolutionary relationships of our discovered isolate within the genus
Orthonairovirus, a phylogenetic tree was constructed based on the amino acid sequence of the RdRp
(Figure 9).

| Orthonairowius zinwense

| Orthonairowrus bushiepense

AUD:
343163 1/Co,
AUTTE422
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—®1:513834 10uge_wus Orthonaiowus dugoeense

Figure 9. Maximum likelihood phylogenetic tree on the amino acid sequences of the L segment of
Orthonairovirus. The red square indicates the sequence of YEZV from the study. The green dots indicate the
sequence of member species. The yellow dots indicate the sequence of related and unclassified species. Bootstrap

support values >70 are indicated.

The analysis included 65 representatives of the genus Orthonairovirus and 6 YEZV isolates,
including the one we discovered. The resulting phylogram shows that all the YEZV isolates,
including the variant detected in the study, form a well-supported species subclade, clearly separate
from the other viruses in the genus. Overall, the tree structure is consistent with previously published
data [21]. Thus, the relatively high percentage of differences in the virus genome segments, obtained
by comparing the results on the identity of amino acid and nucleotide sequences identities between
YEZV isolates, as well as the phylogenetic analysis results, indicates the discovery of a new genetic
variant of Yezo virus circulating in Tomsk region (Western Siberia, Russia).

4. Discussion

In the present study, we first demonstrated the presence of YEZV in the Tomsk region (Western
Siberia), significantly expanding its geographical range beyond the several regions of Japan, China,
and Russia in which it was previously found. Previously, in Russia, the virus was only found in
Eastern Siberia (the Zabaykalsky region) and the Far East (the Primorsky and Khabarovsk regions),
while no YEZV was detected among 952 samples from Western Siberia (Altai Republic (n = 79),
Kemerovo region (n = 289), Novosibirsk region (n = 107), Tomsk region (n = 340) and Tyumen region
(n = 137)) [10]. We found that the set of oligonucleotides used in the above study contains single-
nucleotide mismatches, which may result in reduced sensitivity or even complete failure of PCR
detection of the genetic variant of the YEZV genetic variant that we identified. Another significant
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finding was the detection of the virus in the ixodid tick I. pavlovskyi, while previous study from Russia
had reported detections exclusively in I. persulcatus (I. persulcatus and I. ricinus was studied).
Previously published data from other countries has shown that various other ixodid tick species,
including D. silvarum, H. megaspinosa, H. japonica, I. ovatus and 1. persulcatus, can carry this virus
[10,13-19].

As aresult of metagenomic sequencing, we obtained the complete sequences of all three genome
segments of the virus; its high quality allowed for detailed genomic characterization. Specifically, the
L segment encodes an RdRp and includes an OTU-like protease domain and a polymerase module
consisting of pre-motif A and motifs A-E and four conserved regions I-IV. The M segment encodes a
GPC that consists of two subunits, Gn and Gc. In addition, the GPC contains an N-terminal signal
peptide with its cleavage site, O- and N-glycosylation rich regions, a pair of conserved zinc finger
domains, and conserved fusion loop regions — bc, c¢d, and ij loops. The S segment encodes a
nucleoprotein, which consists of two domains: a globular head and a stem. All of the above structural
components of the three genome segments of the YEZV are integral parts of the genomes of other
representatives of the genus Orthonairovirus [10,50-54].

Analysis of nucleotide and amino acid sequence identity showed that our identified YEZV is
similar to previously published sequences of isolates. However, the relatively high level of
differences suggests that a new genetic variant of the virus has been discovered. The percentage of
differences varied from 8.601% to 9.152% for the L segment; from 9.946% to 10.664% for the M
segment, and from 7.659% to 8.672% for the S segment. At the protein level, the differences ranged
from 1.041% to 1.498% for the RdRp, from 5.236% to 6.268% for the GPC, and from 2.8% to 3.586%
for the nucleoprotein. These data confirm the pattern previously observed in the literature that the M
segment accumulates the most mutations [55]. The increased level of genetic variability in the M
segment compared to the other two genome segments is likely due to its functional significance,
which lies in encoding the glycoproteins located on the surface of the viral particle. Since these
proteins are responsible for viral attachment and entry into the cell, they are subject to selective
pressure from the host's immune system and during adaptation to different host and vector species.
This ensures the virus's adaptability to new conditions.

Phylogenetic analysis based on the nucleotide sequences from all three genome segments and
the amino acid sequence of the RdRp confirmed the affiliation of the new genetic variant within the
YEZV clade. At the same time, on the phylograms for the nucleotide sequences of the L and S
segments, this genetic variant forms a distinct, well-supported sister branch relative to other virus
isolates, indicating its genetic distinctiveness. This may be related to the discovery of the virus in a
different species of ixodid tick and its circulation in a geographically remote region. Meanwhile, for
the M segment, the new genovariant shows a closer relationship with two Chinese isolates.

The discrepancies in the topology of the phylogenetic trees indicate differences in the
evolutionary dynamics of individual virus genome segments, which are likely due to reassortment.
The data on the nucleotide sequence identity of the new genovariant with other isolates support this
hypothesis: the L segment is most similar to the sequence from the Khabarovsk region, the M segment
to the isolate from Inner Mongolia, and the S segment to the isolate from the Primorsky region. A
similar situation is observed when comparing the amino acid sequences of the proteins: the RdRp is
most similar to the isolate from Jilin Province, the GPC to the isolate from Inner Mongolia, and the
nucleoprotein to the isolate from Heilongjiang Province. Reassortment events have been previously
described in the literature for other orthonairoviruses, such as Uzhun-Agach virus, CCHFV, and
Paramushir virus [56-58].

From an epidemiological perspective, it is important to note that I. paviovskyi is the predominant
species of ixodid ticks in urban biotopes in Tomsk, exhibiting a high degree of ornithophilicity at all
developmental stages [11,12]. The detection of a new genovariant of the YEZV in a pool of ticks of
this species may be a consequence of a high level of contact with birds, whose migration can facilitate
the cross-border transfer of pathogens. As the YEZV has been found in animals and ixodid ticks in
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Japan and China [10,13-19], it is possible that it is also circulating among vertebrates in Western
Siberia, although there is currently no data to confirm this.

Thus, our findings expand knowledge of the virus and its vectors' geographic distribution,
genome size and structural organization, and highlight the need for further epidemiological
surveillance of the pathogen. Future research should focus on expanding the collection sites,
development of the RT-PCR oligonucleotides to detect new and known variants, assessing the
prevalence of the virus among other species of ixodid tick that are important for the epidemiology of
Western Siberia and among vertebrate animals, in order to establish the virus's host range.

5. Conclusions

Due to its clinical manifestations, the YEZV poses a significant threat to public health. In this
study, we report for the first time the detection of YEZV in Western Siberia, substantially expanding
its geographical range. Our discovery also represents the first documented case of the virus in the
tick I. pavlovskyi, thereby extending the range of its potential vectors. Using metagenomic sequencing,
we obtained and characterized the complete sequences of the three YEZV genome segments. Our
analysis revealed that the isolate represents a novel genetic variant, as demonstrated by sequence
identity results and phylogenetic analysis. The highest number of mutations was found in the M
segment, indicating its key role in adapting to new hosts and vectors. Differences in the topology of
the phylogenetic tree for all three segments suggest the possibility of reassortment. This highlights
the complex evolutionary dynamics of the virus and explains its genetic diversity. Our data expand
the knowledge of the virus's distribution and its vectors, emphasizing the importance of further
epidemiological surveillance.
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The following abbreviations are used in this manuscript:

YEZV Yezo virus

TBEV Tick-borne encephalitis virus
ssRNA(-) Single-stranded negative-sense RNA
SULV Sulina virus

RdRp RNA-dependent RNA polymerase

GPC Glycoprotein precursor complex
CCHFV  Crimean-Congo hemorrhagic fever virus
NSD Nairobi sheep disease
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