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Abstract

Environmental microorganisms are a rich yet underused source of bioactive chemistry, but many
remain uncultivated and numerous biosynthetic gene clusters fall silent ex situ. NP-TRAP (Natural
Product-Targeted Recovery and Adsorption Platform) is introduced here as a modular concept that
unites in situ cultivation with adjacent, retrieval-ready metabolite capture. The device architecture
couples cell-excluding 0.2-pm microfiltration interfaces with optional, gently duty-cycled vacuum to
bias metabolite flow in one direction while preserving near-ambient conditions at the culture layer.
A practical specification is outlined: probabilistic single-cell loading to favor clonal growth (including
slow growers), low-nutrient gels and matrix-matched osmolarity, inert structural materials and
corrosion-aware fasteners, elastomeric duckbill check-valving with redundant non-return protection,
two field-friendly filling workflows (fill-then-seal or micro-port injection), and a simplified two-layer
variant when affinity or imprinted membranes are used to seal culture wells. Positioned against
iChip, Small Molecule In Situ Resin Capture (SMIRC), and the Microbial Containment Device (MCD),
NP-TRAP aims to maintain producer—metabolite traceability while remaining simple and stackable
for exploratory deployments. A compact bench plan is also suggested —airtightness checks,
adsorption/desorption across a polarity range, valve unidirectionality, oxygen stability under
cycling, a clip-on prefilter to manage fouling, and monoclonality validation —to guide early pilots.
Empirical testing has not yet been performed; the concept and specification are offered to motivate
laboratory and environmental trials as resources become available.

Keywords: in situ cultivation; microbial metabolites; natural product discovery; honeycomb device;
microfiltration membrane; metabolite adsorption; environmental microbiology; vacuum-assisted
retrieval

Introduction

Only a small fraction of microbial chemodiversity has been accessed with conventional
cultivation, as many taxa resist ex situ growth and numerous biosynthetic gene clusters are
conditionally expressed or remain silent [1-6]. In situ tools such as iChip and diffusion chambers
broaden cultivability by permitting environmental exchange across cell-excluding membranes [1-
3,9-11]. By contrast, Small Molecule In Situ Resin Capture (SMIRC) follows a compound-first strategy
that decouples metabolites from specific producers [12], while the Microbial Containment Device
(MCD) enables confined in situ studies without integrated metabolite retrieval [13]. Related patent
work has also explored diffusion-based devices for detecting metabolites under natural conditions
[14]. NP-TRAP is intended to bridge these approaches by bringing together compartmental
cultivation, selective capture (resins or affinity/imprinted membranes), and mild, suggested duty-
cycled suction to promote unidirectional extraction while maintaining near-ambient gas exchange at
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the culture layer. Here, “0.2-um microfiltration membrane” denotes cell-exclusion barriers;
“selectively permeable/affinity membrane” denotes materials with molecular recognition or
molecular-weight cutoffs [15,16]. Against the broader backdrop of sustainable antibiotic discovery
and exploration of under-sampled environments, this integration targets both cultivability and
chemical readout [7,8,17-19].

Methods

Device Architecture and Functional Design

The baseline module uses three honeycomb layers in a 12 x 12 ¢cm footprint. Fifty-six hexagonal
wells (17 mm across flats, 4 mm depth) provide approximately 0.75 mL working volume each, with
peripheral through-holes for alignment and stacking. Adjacent layers are separated by 0.2-um
hydrophilic microfiltration membranes of polytetrafluoroethylene (PTFE), polyethersulfone (PES), or
polyvinylidene fluoride (PVDF) with 80-150 um thickness. Where finer selectivity is needed, affinity
or molecularly imprinted membranes can replace or complement resin capture without altering the
overall stack [15,16].

Metabolites are captured in a dedicated layer containing 10-25 mg of HP-20/Amberlite XAD-
type resin per well (up to 40 mg when yield permits), spanning a broad polarity range [20-22]. Below
each capture well, a silicone duckbill check-valve (elastomeric, not a filter membrane) sits in a shallow
conical seat (slit 2.0-2.5 mm, wall 0.25-0.35 mm, opening angle 8-12°, cracking pressure 0.2-0.5 kPa),
favoring unidirectional flow toward a lateral vacuum manifold. An inline non-return valve at the
outlet adds redundancy.

If negative pressure is employed, downstream placement relative to the capture layer is
suggested, limited to a pressure differential (AP) of approximately 5-10 mbar (0.5-1.0 kPa). Oil-free
diaphragm pumps (for example, KNF Neuberger) are suggested at 0.1-1.0 L-min? with
programmable duty-cycling—illustratively 1-5 minutes ON per 30-60 minutes OFF—to support
retrieval while keeping the culture interface near ambient partial pressures of oxygen.

Materials are specified for chemical inertness and field robustness: poly(ether ether ketone)
(PEEK), polycarbonate (PC), and polypropylene (PP) for structure; PEEK or titanium grade 2 (Ti-2)
for fasteners (with stainless steel 316 [SS-316] only if passivated and kept away from high-salinity or
acidic environments); and expanded polytetrafluoroethylene (ePTFE) or medical-grade silicone
gaskets (0.5-1.0 mm) under torque-controlled compression. Adhesive-backed or thermally laminated
membranes can improve uniformity and handling.

Two-Layer Simplified Variant

When each culture well is sealed at the top by an imprinted/affinity membrane, the open top
layer may be omitted. The resulting stack —culture layer (bottom-sealed by a 0.2-um microfiltration
membrane) — capture layer (top-sealed by an affinity membrane) — valve-cap —preserves exchange
laterally and/or through the upper affinity membrane while reducing part count. Elimination of the
open top layer is contingent on reliable per-well sealing, to be verified by the suggested benchtop
checks below.

Device Loading and Environmental Deployment

To favor isolation, NP-TRAP employs limiting-dilution loading under a Poisson regime with A
= 0.1-0.2 cells-well™, yielding P(>2) < 2%. For 0.5 mL fills, a titer of 0.2-0.4 cells-mL! is targeted and
verified by droplet plating. Physical compartmentalization maintains clonal enrichment during
extended in situ incubation. Slow-growing or low-abundance taxa are supported by low-nutrient
gellan/agar (1.5-2%), matrix-matched osmolarity, and longer deployments (21-56 days), followed by
single-well subculture and standard taxonomic workflows (morphology plus 165 rRNA gene
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sequencing [16S], internal transcribed spacer [ITS], and whole-genome sequencing [WGS]) [1-3,9-
11].

When both faces of a culture well are membrane-bound, two practical fills are used. Fill-then-
seal: the bottom membrane is sealed; warm soft-gel medium (40-45 °C) plus inoculum is dispensed
(0.5-0.75 mL), allowed to gel, and the top membrane is laminated by low-temperature pressure
lamination or a pressure-sensitive adhesive (PSA) membrane using a rigid stencil. Micro-port
injection: both membranes are pre-laminated; a 100-200 pm port is laser-punched and medium is
injected through a 30-32 G needle; the puncture is sealed with an ultraviolet (UV)-curable
biocompatible dot or PSA micro-patch. Suggested acceptance: no dye leakage or mass loss greater
than 1% under +20 mbar for 10 minutes; visual integrity at 40—45 °C.

Reproducibility Package

Per-well dimensions: across-flats 17 + 0.2 mm, depth 4.0 £ 0.1 mm, wall 2.0 + 0.1 mm, seat chamfer
30° x 0.5 mm.

Membranes: 0.2 pm hydrophilic PTFE/PES/PVDF (80-150 pm), adhesive-backed or thermally
laminated.

Resins: HP-20/XAD-18; 10-25 mg per well (up to 40 mg).

Valves: silicone duckbill; slit 2.0-2.5 mm, wall 0.25-0.35 mm, cracking 0.2-0.5 kPa, seat outer
diameter (OD) 4.0-4.5 mm.

Pump and control: suggested oil-free diaphragm pump; AP 5-10 mbar; duty 1-5 min-h?; outlet
non-return valve.

Materials: structural PEEK/PC/PP; fasteners PEEK/Ti-2; gaskets ePTFE/silicone 0.5-1.0 mm.

Suggested Bench Pre-Validation

A compact benchtop verification set is outlined to make the concept actionable once a basic lab
setup is available. Airtightness and sealing: pressure-decay at +20 mbar and —10 mbar for 10 minutes
with less than 5% AP as a practical target. Valve unidirectionality: bubble-point and dye-backflow
per well with no reverse flow at +0.5 kPa; confirm redundancy via the inline non-return valve. Resin
adsorption/desorption: spike extracts across the octanol/water partition coefficient (logP) range -1 to
5, compare static versus duty-cycled flow; elute with methanol/ethyl acetate; use liquid
chromatography-mass spectrometry (LC-MS) recovery to tune resin mass [20-22]. Vacuum
perturbation: monitor partial pressure of oxygen (pO:) at the culture interface with a fiber-optic
micro-sensor during cycling; aim for change in partial pressure of oxygen (ApQO,) less than 5% of
ambient per cycle. Membrane sealing of culture holes: dye penetration and leak-rate checks under
+20 mbar; target no visible ingress/egress and less than 1% mass transfer in 10 minutes. Fouling
evaluation (contingent): challenge with particles under 63 pm to induce about 30% flow drop, add a
clip-on 5-10 pym polyamide/PP mesh prefilter, and verify at least 80% flow recovery without
backflush. Monoclonality verification: seed a tracer strain at A =0.1/0.2/0.3; plate-out to estimate P(22)
versus Poisson predictions and refine standard operating procedures (SOPs).
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Figure 1. Illustrative exploded schematic of the NP-TRAP device highlighting its main conceptual components.
The top layer allows passive influx of nutrients and substrate-derived molecules from the environment and
remains unsealed by membrane. The second layer contains 56 hexagonal cultivation chambers arranged in a
honeycomb pattern and is separated from the top layer by a 0.2 pm microfiltration (cell-excluding) membrane,
enabling molecular diffusion while excluding cells. The third layer, designed for metabolite capture, is also
separated by a 0.2 pum microfiltration membrane and houses adsorbent resins or compound-selective
membranes. A unidirectional diaphragm layer with duckbill-type silicone check-valves, beneath an additional
0.2 um microfiltration membrane, prevents reflux. All layers are aligned through peripheral orifices and secured
using stainless steel rods and nuts. The bottom cap includes a lateral vacuum outlet fitted with a non-return

valve for mild suction.
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Figure 2. Middle honeycomb-patterned layer of the NP-TRAP device (12 x 12 cm). This component contains 56

uniform hexagonal through-holes (each ~17 mm across and 4 mm deep), with an internal volume of
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approximately 0.75 mL per well. These orifices are arranged in a honeycomb pattern and support either
microbial cultivation or metabolite capture, accommodating solid or semisolid growth media, adsorbent resins,
or imprinted membranes. The hexagonal geometry improves surface-to-volume ratio, molecular diffusion
efficiency, and spatial compartmentalization. Peripheral alignment holes facilitate precise stacking and sealing

of layers.

a

Figure 3. Diaphragm interface integrated into the top of the bottom cap. Each hexagonal compartment is fitted
with a central duckbill-type silicone valve to ensure unidirectional flow and prevent backflow or cross-
contamination. This configuration enables passive or suggested mild vacuum-assisted metabolite transport from

the cultivation chambers into the capture layer.
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Figure 4. Cross-sectional schematic of a duckbill silicone valve integrated into each hexagonal orifice on the
upper surface of the vacuum outlet cap of the NP-TRAP device. This valve layer is positioned beneath the
microfiltration membrane adhered to the bottom of the metabolite capture chamber. The elastomeric element
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(~100-300 pum thick) is molded into a unidirectional duckbill shape, allowing metabolite flow toward the bottom
cap and connected vacuum line, while preventing backflow into the capture zone.

Discussion

Potential membrane clogging is handled operationally to keep the device simple under
environmental use. Two fouling modes are anticipated —biofilm accrual and particulate loading —
and the clip-on 5-10 pm prefilter at the environmental intake is suggested for quick swaps as
pressure-drop increases; a single stress step can demonstrate at least 80% flow recovery after a swap.
Hydrophilic, low-protein-binding microfiltration films are preferred; OFF intervals in duty-cycled
operation reduce continuous loading. Where matrices are highly particulate, a spare prefiltered face
or a standby bottom-cap can be exchanged without disturbing cultivation.

On single-cell occupancy and isolation, a limiting-dilution regime (A = 0.1-0.2 cells-well™) biases
for monoclonality (P(22) < 2%). Spatial compartmentalization prevents mixing during extended in
situ growth, so continuous cultivation in-device functions as the isolation step. After incubation, each
well is subcultured individually, and a tracer-strain check (A = 0.1/0.2/0.3) with plate-outs can
empirically validate occupancy before field trials—especially relevant to slow-growing or low-
abundance taxa supported by low-nutrient, matrix-matched gels and longer deployments (21-56
days) [1-3,9-11].

For vacuume-assisted retrieval, risks to oxygen partial pressure and osmotic/pressure balance are
controlled by keeping AP < 10 mbar, applying suction intermittently, and placing the pump
downstream from the capture layer to keep the culture interface near ambient composition. A pO.
micro-sensor can verify ApO, under 5% across a cycle. Gel matrices buffer transients; ramped startup
mitigates pressure shock. Microaerophiles can be accommodated by overlays or by choosing
deployment depths with lower oxygen.

Material compatibility is considered to avoid growth inhibition: structural PEEK/PC/PP are
prioritized; PEEK/Ti-2 fasteners avoid corrosion, while SS-316 (if used) should be passivated and
avoided in brine/acid settings. Simple extractables control (methanol/water rinses) is suggested pre-
deployment; where feasible, eluate spot-checks by LC-MS can flag leachables. In parallel, adjacent
capture followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) profiling
enables dereplication against known metabolite libraries and prioritization of novel features, with
molecular networking providing a practical pathway for feature grouping and identification [19,23].

In the broader context, NP-TRAP aims to combine the cultivability expansion of iChip/diffusion
chambers with the compound-first reach of SMIRC, while maintaining producer—-metabolite
traceability through adjacent capture and gentle, suggested suction in a modular stack [1-3,9-16].
The approach is framed against the need for sustainable, cost-conscious discovery under real-world
constraints [7,8,17,18].

Table 1. Comparative features of microbial in situ cultivation platforms.

Feature iChip SMIRC MCD NP-TRAP
In situ cultivation v X v v
Metabolite adsorption X v X v
Vacuume-assisted extraction X X X v
Expandable modularity X X X N4
Strain-level traceability X X v v*

* Traceability depends on analytical validation.

Conclusions

NP-TRAP is presented as a concept that brings together in situ compartmental cultivation,
adjacent selective capture, and directionally assisted retrieval in a single, buildable format. By
treating anti-fouling as a contingency rather than a built-in subsystem, the idea aims to remain
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simple, serviceable, and field-oriented while retaining a mitigation path when particulate loads are
high. With the specification set and bench pre-validation described here, the concept may help
motivate laboratory pilots and environmental trials that explore connections between strain identity
and metabolite profiles across diverse habitats. To the author’s knowledge, there is currently no
single platform that integrates in situ cultivation with on-device, retrieval-ready metabolite capture
in a way that preserves strain-level traceability while remaining relatively low-cost. NP-TRAP is
offered as a step in that direction—deliberately simple, likely to reveal practical challenges, and
intended to catalyze iterative improvements toward robust, affordable, and field-practical devices.

Funding: No external funding was received for this work.
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restrictions and provide the DOI link to the complete 3D-printing design files on Zenodo (DOI:
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optional STL exports, a README with printing and assembly guidance, and a CSV of well centers.
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