
Article Not peer-reviewed version

Physical Information Theory and

Resource-Bounded Computation:

Recasting Classical Undecidability

Under Physical Constraints

Michael Rey *

Posted Date: 2 September 2025

doi: 10.20944/preprints202509.0241.v1

Keywords: physical information theory; undecidability; halting problem; Landauer principle; thermodynamic

computation; NP-completeness; physical complexity theory

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4670774


Article

Physical Information Theory and Resource-Bounded
Computation: Recasting Classical Undecidability
Under Physical Constraints
Michael Rey

Octonion Group, Hong Kong; contact@octoniongroup.com

Abstract

We propose that accepting the truly physical nature of information fundamentally recasts classical
undecidability problems under physical resource constraints. By recognizing that information process-
ing is governed by physical laws—including Landauer’s principle, Boltzmann entropy bounds, and
thermodynamic constraints—we demonstrate that computations with finite physical resources have
forecastable termination bounds under stated assumptions. This insight enables external observers to
provide termination forecasts for resource-bounded computations based on consumption patterns,
offering a physically-grounded approach to finite-model variants of classical problems. We extend this
framework to NP-completeness, showing that exhaustive search becomes thermodynamically impossi-
ble beyond specific problem sizes. Our analysis suggests that classical undecidability results, while
mathematically valid in abstract settings, lead to decidable finite-model variants when computational
systems are constrained by physical resources. We demonstrate how the STEH Living Turing Machine
provides a natural implementation framework for these physically-bounded computations, offering
new perspectives on resource-aware computation within fundamental physical limits.

Keywords: physical information theory; undecidability; halting problem; Landauer principle; thermo-
dynamic computation; NP-completeness; physical complexity theory

1. Introduction
The foundations of theoretical computer science rest upon mathematical abstractions that, while

elegant and powerful, may not accurately reflect the constraints of physical reality. Classical results
such as the undecidability of the halting problem, the incompleteness of formal systems, and the
presumed intractability of NP-complete problems all assume the possibility of unlimited computa-
tional resources—infinite time, unbounded memory, and inexhaustible energy. However, a growing
body of work in physical computation theory suggests that information processing is fundamentally
constrained by the laws of physics.

This paper argues that accepting the truly physical nature of information—not merely as an ab-
stract mathematical entity, but as a physical quantity governed by thermodynamic laws—fundamentally
alters our understanding of computational complexity and decidability. When we recognize that every
bit of information has a physical substrate, every computational step requires energy, and every stor-
age operation is subject to thermodynamic constraints, the landscape of theoretical computer science
transforms dramatically.

The implications are profound: problems that appear undecidable in abstract mathematical
frameworks lead to decidable finite-model variants when embedded in physical reality with bounded
resources. Resource-bounded halting can be forecast by external observers under assumptions stated
in Theorem 4, providing practical termination bounds while respecting the theoretical limits of the
classical halting problem. Similarly, NP-complete problems, while potentially requiring exponential
time in abstract models, face thermodynamic limits when bounded by finite physical resources.
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1.1. The Physical Nature of Information

The recognition that information has physical reality is not new, but its implications for compu-
tational complexity theory have been underexplored. Several fundamental principles establish the
physical nature of information:

Landauer’s Principle: Every logically irreversible bit operation requires a minimum energy
dissipation of kBT ln 2, where kB is Boltzmann’s constant and T is the temperature of the environment.
This principle establishes that information erasure has an unavoidable thermodynamic cost.

Boltzmann Entropy: The entropy of a physical system is fundamentally related to the information
content of its microscopic state. The relationship S = kB ln Ω, where Ω is the number of accessible
microstates, directly connects information theory to thermodynamics.

Bekenstein Bound: The maximum information content of a physical system is bounded by its
energy and size: I ≤ 2πER

h̄c ln 2 , where E is the energy, R is the radius, h̄ is the reduced Planck constant,
and c is the speed of light.

Quantum Speed Limits: The rate at which quantum information can be processed is funda-
mentally limited by the available energy, as expressed in the Margolus-Levitin theorem: τ ≥ πh̄

2E for
orthogonal state transitions.

Holographic Principle: The information content of a volume of space is bounded by the area of
its boundary, suggesting fundamental limits on information density in physical systems.

These principles collectively establish that information is not an abstract mathematical entity but
a physical quantity subject to conservation laws, thermodynamic constraints, and relativistic limits.

1.2. Implications for Classical Undecidability

If we accept that information is truly physical, then several classical results in theoretical computer
science must be reconsidered:

The Halting Problem: Turing’s proof assumes the possibility of constructing a machine that can
run indefinitely. However, any physical implementation must eventually exhaust its energy supply,
fill its available memory, or reach thermodynamic equilibrium. An external observer monitoring these
physical quantities can predict when the computation will necessarily halt.

NP-Completeness: The presumed intractability of NP-complete problems relies on the assump-
tion that exponential-time algorithms are impractical. However, when bounded by finite physical
resources, many NP problems become tractable through resource-aware algorithms that optimize the
exploration of the solution space.

Rice’s Theorem: The undecidability of non-trivial properties of programs assumes that programs
can exhibit arbitrary behavior. When programs are constrained by physical limits, their behavior
becomes bounded and potentially decidable.

The Busy Beaver Problem: The non-computability of the busy beaver function relies on the
ability to construct arbitrarily complex Turing machines. Physical constraints limit the complexity of
implementable machines, making the busy beaver function computable within physical bounds.

1.3. Contributions

This paper makes several key contributions to the intersection of physical computation theory
and theoretical computer science:

Physical Decidability Framework: We develop a formal framework for analyzing computational
problems under physical constraints, showing how classical undecidability results are resolved when
information is treated as a physical quantity.

Resource-Bounded Halting: We prove that the halting problem becomes decidable for physical
Turing machines by external observers who monitor resource consumption.

Physical NP Theory: We demonstrate that NP-completeness is fundamentally altered when
computations are bounded by physical resources, leading to new complexity classes that reflect
physical reality.
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Thermodynamic Computation Limits: We establish precise bounds on computational complexity
based on thermodynamic principles, providing a bridge between physics and computer science.

STEH Implementation: We show how the STEH Living Turing Machine provides a natural
framework for implementing physically-bounded computations that resolve classical undecidability
problems.

2. Physical Foundations of Information
To establish our framework for physical computation theory, we must first examine the funda-

mental physical principles that govern information processing. This section provides a comprehensive
review of the key results that establish information as a physical quantity.

2.1. Thermodynamic Principles
2.1.1. Landauer’s Principle and Irreversible Computation

Landauer’s principle, first articulated by Rolf Landauer in 1961, establishes a fundamental
connection between information theory and thermodynamics. The principle states that any logically
irreversible manipulation of information, such as the erasure of a bit, must be accompanied by a
corresponding entropy increase in the environment.

Theorem 1 (Landauer’s Principle). The erasure of one bit of information requires a minimum energy
dissipation of:

Emin = kBT ln 2 (1)

where kB is Boltzmann’s constant and T is the temperature of the thermal reservoir.

This principle has been experimentally verified in multiple systems, from electronic circuits
to biological molecular motors. The implications for computation are profound: every irreversible
computational step has an unavoidable energy cost, making truly "free" computation impossible.

For a computation involving n irreversible bit operations, the minimum energy requirement is:

Etotal ≥ nkBT ln 2 (2)

This establishes a fundamental lower bound on the energy cost of computation that cannot be
circumvented by clever algorithms or more efficient hardware.

2.1.2. Boltzmann Entropy and Information Content

The relationship between thermodynamic entropy and information content was established by
Boltzmann’s statistical mechanics and later formalized by Shannon’s information theory.

Definition 1 (Boltzmann Entropy). For a system with Ω accessible microstates, the thermodynamic entropy
is:

S = kB ln Ω (3)

The connection to information theory becomes clear when we recognize that the number of
microstates Ω is directly related to the information content of the system. A system storing n bits of
information has Ω = 2n accessible states, giving:

S = kB ln(2n) = nkB ln 2 (4)

This establishes a direct proportionality between information content and thermodynamic entropy,
with the conversion factor kB ln 2.
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2.1.3. Maxwell’s Demon and Information Processing

The resolution of Maxwell’s demon paradox provides crucial insights into the thermodynamic
cost of information processing. Szilard’s analysis showed that the demon must erase information to
complete its cycle, incurring the Landauer cost.

Proposition 1 (Information Processing Cost). Any information processing system that reduces the en-
tropy of its environment must dissipate at least as much entropy internally, maintaining the second law of
thermodynamics.

This principle applies to all computational systems: they cannot create order (reduce entropy)
without paying a corresponding thermodynamic cost.

2.2. Quantum Mechanical Constraints
2.2.1. Quantum Speed Limits

Quantum mechanics imposes fundamental limits on the rate at which information can be pro-
cessed, independent of the specific physical implementation.

Theorem 2 (Margolus-Levitin Theorem). For a quantum system with average energy E above its ground
state, the minimum time required to evolve to an orthogonal state is:

τmin =
πh̄
2E

(5)

This establishes a fundamental speed limit for quantum computation: faster processing requires
more energy, and there is an absolute limit to how fast any quantum computation can proceed.

For classical computation implemented on quantum substrates, this limit translates to a minimum
energy-time product for each computational step:

Eτ ≥ πh̄
2

(6)

2.2.2. Heisenberg Uncertainty and Information Storage

The Heisenberg uncertainty principle imposes limits on the precision with which information can
be stored and retrieved in quantum systems.

Proposition 2 (Quantum Information Limits). The precision of information storage in a quantum system
is fundamentally limited by the uncertainty principle, affecting both the fidelity and capacity of quantum
information processing.

2.3. Relativistic Constraints
2.3.1. Bekenstein Bound

The Bekenstein bound provides a fundamental limit on the information content of any physical
system based on its energy and size.

Theorem 3 (Bekenstein Bound). The maximum information content of a physical system with energy E
confined to a sphere of radius R is:

Imax =
2πER
h̄c ln 2

(7)

This bound has profound implications for computation: there is a fundamental limit to how much
information can be stored or processed in any finite region of space, regardless of the technology used.
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2.3.2. Holographic Principle

The holographic principle, emerging from black hole thermodynamics and string theory, suggests
that the information content of a volume is bounded by the area of its boundary.

Proposition 3 (Holographic Bound). The maximum information content of a spatial region is proportional to
the area of its boundary, not its volume:

Imax ∝
A

4l2
P

(8)

where A is the boundary area and lP is the Planck length.

2.4. Synthesis: Information as Physical Quantity

The principles reviewed above collectively establish that information is not merely an abstract
mathematical concept but a physical quantity with the following characteristics:

Conservation: Information cannot be created or destroyed without corresponding changes in
physical entropy.

Energy Cost: Information processing requires energy, with fundamental lower bounds established
by quantum mechanics and thermodynamics.

Capacity Limits: The information content of any physical system is bounded by its energy, size,
and other physical properties.

Speed Limits: The rate of information processing is constrained by quantum mechanical and
relativistic principles.

Thermodynamic Integration: Information processing is subject to the laws of thermodynamics,
including the second law and the requirement for entropy increase in irreversible processes.

These characteristics form the foundation for our analysis of computational complexity and
decidability in physical systems.

3. Resource-Bounded Halting Analysis
The classical halting problem, as formulated by Alan Turing in 1936, asks whether there exists an

algorithm that can determine, for any given program and input, whether the program will eventually
halt or run forever. Turing’s proof of undecidability relies on a diagonal argument that constructs a
program whose behavior leads to a logical contradiction if a halting oracle exists.

However, Turing’s proof assumes that programs can run indefinitely without physical constraint.
In this section, we develop a framework for analyzing a related but distinct problem: predicting the
termination of computations that are bounded by finite physical resources. This resource-bounded halt-
ing analysis provides practical termination forecasts while respecting the theoretical limits established
by Turing’s original result.

3.1. Physical Turing Machines

We begin by defining a physically realistic model of computation that incorporates the constraints
established by physical law.

Definition 2 (Physical Turing Machine). A Physical Turing Machine (PTM) is a tuple M = (Q, Σ, δ, q0, F, R)
where:

• Q is a finite set of states
• Σ is a finite alphabet
• δ : Q× Σ→ Q× Σ× {L, R} is the transition function
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of accepting states
• R = (E, S, T, H) represents physical resource bounds for energy, space, time, and entropy
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The key difference from classical Turing machines is the inclusion of physical resource bounds R.
These bounds reflect the finite nature of any physical implementation:

Energy Bound (E): The total energy available to the computation, including both the energy
stored in the system and any external energy supply.

Space Bound (S): The maximum amount of physical space (and thus information storage capacity)
available to the computation.

Time Bound (T): The maximum duration for which the computation can proceed, limited by
factors such as component lifetime and environmental stability.

Entropy Bound (H): The maximum entropy that can be generated by the computation before
thermodynamic equilibrium is reached.

3.2. Resource Consumption Dynamics

During computation, a PTM consumes resources according to physical laws. We model this
consumption through a resource dynamics function.

Definition 3 (Resource Dynamics). For a PTM M with current resource state r(t) = (e(t), s(t), τ(t), h(t))
at time t, the resource consumption rate is given by:

de
dt

= −Pcomp(t)− Pdissip(t) (9)

ds
dt

= memory_allocation_rate(t) (10)

dτ

dt
= 1 (11)

dh
dt

=
Pdissip(t)

Tenv
(12)

where Pcomp(t) is the computational power consumption, Pdissip(t) is the power dissipated as heat, and Tenv is
the environmental temperature.

The computation must halt when any resource bound is reached:

Halt condition: e(t) ≤ 0 or s(t) ≥ S or τ(t) ≥ T or h(t) ≥ H (13)

3.3. External Observer Decidability

The crucial insight is that while a PTM cannot determine its own halting behavior (due to the
diagonal argument), an external observer can predict halting by monitoring resource consumption.

Theorem 4 (Resource-Bounded Termination Forecast Under Monotonic Consumption). For any Physical
Turing Machine M with resource bounds R and an external observer O that can monitor resource consumption,
under the following assumptions:

1. Resource consumption rates ρi(t) > ϵ > 0 for all resources i and times t
2. No external resource replenishment during computation
3. No resource reclamation or compression beyond monitored levels
4. Monotonic resource consumption (resources cannot increase)

There exists a computable upper bound Tmax such that machine M will halt on input w no later than time Tmax.
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Proof. Under the stated assumptions, the external observer O can compute conservative upper bounds
on resource exhaustion times:

te ≥
e(t)
ρe(t)

(energy exhaustion bound) (14)

ts ≥
S− s(t)

ρs(t)
(space exhaustion bound) (15)

tτ = T − τ(t) (time limit) (16)

th ≥
H − h(t)

ρh(t)
(entropy limit bound) (17)

The computation will halt no later than:

Tmax = min(te, ts, tτ , th) (18)

This provides a sound upper bound on termination time, though the actual halting may occur
earlier due to program completion or other factors not captured by resource monitoring.

3.4. Relationship to Classical Undecidability

The resource-bounded termination analysis developed above addresses a different problem from
Turing’s classical halting problem. While Turing’s diagonal argument remains valid for abstract Turing
machines with unlimited resources, physical implementations face fundamental constraints that enable
termination forecasting.

The key distinction is that our external observer monitors a physically distinct system, avoiding the
self-reference issues that make the classical halting problem undecidable. The observer’s computational
resources are separate from and can exceed those of the observed system, enabling the termination
analysis described in Theorem 4.

Corollary 1 (Resource-Bounded Termination Forecasting System). There exists a physical system that
can provide termination forecasting bounds for Physical Turing Machines with bounded resources, under the
monotonic consumption assumptions stated in Theorem 4.

3.5. Implications for Computational Complexity

The resolution of resource-bounded termination forecasting in physical systems has important
implications for computational complexity theory:

Finite-Model Decidability: For computations constrained by fixed physical resource bounds,
the finite-model variants of classical undecidability problems become decidable, though the original
problems remain undecidable in their abstract formulations.

Resource-Parameterized Complexity: Complexity classes must be redefined in terms of physical
resource bounds rather than abstract mathematical limits, leading to resource-parameterized variants
of classical complexity theory.

Observer-Dependent Forecasting: The ability to forecast termination depends on the resources
available to the observer relative to the observed system, introducing observer-relative aspects to
computational analysis.

4. Physical NP Theory and Bounded Complexity
The theory of NP-completeness, developed by Cook, Levin, and Karp in the early 1970s, identifies

a class of problems that appear to require exponential time to solve but can be verified in polynomial
time. The famous P vs NP question asks whether these problems can actually be solved efficiently.
However, this formulation assumes unlimited computational resources and abstract mathematical
models that may not reflect physical reality.
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This section develops a physical theory of NP-completeness that accounts for thermodynamic
and quantum mechanical constraints on computation.

4.1. Physical Complexity Classes

We begin by redefining complexity classes in terms of physical resource consumption rather than
abstract time and space measures.

Definition 4 (Physical P (P_phys)). A language L is in Physical P (P_phys) if there exists a Physical Turing
Machine that decides L using resources bounded by:

E(n) = O(nk) · kBT ln 2 (19)

S(n) = O(nk) bits (20)

τ(n) = O(nk) · τmin (21)

H(n) = O(nk) · kB ln 2 (22)

for some constant k, where n is the input size and τmin is the minimum time per computational step.

Definition 5 (Physical NP (NP_phys)). A language L is in Physical NP (NP_phys) if there exists a Physical
Turing Machine that verifies membership in L using polynomial physical resources, given an appropriate
certificate.

The key insight is that exponential resource consumption quickly becomes physically impossible
due to fundamental limits.

4.2. Thermodynamic Limits on Exponential Algorithms

Consider an NP-complete problem that requires examining 2n possible solutions. The thermody-
namic cost of this computation is:

Etotal = 2n · kBT ln 2 (23)

For modest values of n, this energy requirement becomes astronomical. Using kBT ln 2 ≈ 2.8×
10−21 J at room temperature (300 K):

• n = 100: E ≈ 2100 × 2.8× 10−21 ≈ 3.5× 109 J
• n = 200: E ≈ 2200 × 2.8× 10−21 ≈ 4.5× 1039 J
• n = 300: E ≈ 2300 × 2.8× 10−21 ≈ 5.7× 1069 J

For comparison, the total energy content of the observable universe is estimated at approximately
4× 1069 Joules. This means that for n ≳ 300, a brute-force solution to an NP-complete problem would
require more energy than exists in the observable universe.

Theorem 5 (Thermodynamic NP Bound). For any NP-complete problem with input size n, there exists a
threshold nmax ≈ 300 such that for n > nmax, no physical system can solve the problem by exhaustive search
within the energy bounds of the observable universe.

Proof. The energy required for exhaustive search is E = 2n · kBT ln 2. Setting this equal to the energy
content of the observable universe Euniverse ≈ 4× 1069 J and solving for n:

2n · kBT ln 2 = Euniverse (24)

Taking logarithms and using kBT ln 2 ≈ 2.8× 10−21 J:

n = log2

(
4× 1069

2.8× 10−21

)
≈ log2(1.4× 1090) ≈ 300 (25)
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Therefore, nmax ≈ 300 for problems requiring exhaustive search.

4.3. Quantum Speedup and Physical Limits

Quantum algorithms can provide exponential speedup for certain problems, but they are still
subject to physical constraints.

Proposition 4 (Quantum NP Limits). Even with optimal quantum algorithms, the solution of NP-complete
problems is bounded by:

1. The quantum speed limit: τ ≥ πh̄
2E per operation

2. Decoherence times that limit the duration of quantum computation
3. Error correction overhead that increases resource requirements

For Grover’s algorithm, which provides quadratic speedup for search problems, the energy
requirement becomes:

EGrover =
√

2n · Eper_step = 2n/2 · Eper_step (26)

This extends the thermodynamic limit to approximately nmax ≈ 600, but still provides a finite
bound.

4.4. Resource-Bounded NP Completeness

When we account for physical constraints, the landscape of NP-completeness changes dramati-
cally.

Definition 6 (Physically Tractable NP (PTNP)). A problem is in PTNP if it can be solved by a Physical
Turing Machine using resources that are achievable within current or foreseeable physical constraints.

Proposition 5 (Resource-Bounded Tractability). Under sufficient physical resource bounds, any problem
that can be verified in polynomial physical resources can also be solved, though potentially requiring exponential
resources within those bounds.

Proof. For any problem in NP_phys, we can solve it by exhaustive search using a Physical Turing
Machine with sufficient resources. The key insight is that "intractability" in the classical sense becomes
a question of resource availability rather than fundamental impossibility, provided the resource bounds
are sufficient to accommodate the required computation.

4.5. Practical Implications

The physical theory of NP-completeness has several practical implications:
Problem Size Thresholds: For each NP-complete problem, there exists a threshold size beyond

which the problem becomes physically unsolvable by any method.
Resource-Aware Algorithms: Algorithm design should focus on optimizing resource consump-

tion rather than asymptotic complexity.
Approximation Necessity: For large problem instances, approximation algorithms become not

just preferable but necessary due to physical constraints.
Distributed Computation Limits: Even distributed computation across multiple systems is

bounded by the total available resources in the universe.

5. Finite-Model Variants of Classical Undecidability Problems
Having established frameworks for resource-bounded halting analysis and physical NP theory,

we now examine how classical undecidability results are recast when computational systems are
constrained by finite physical resources. This section analyzes several fundamental problems in
theoretical computer science and demonstrates how physical constraints lead to finite-model variants
that, while related to the original problems, have different decidability properties.
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It is important to note that these results do not overturn the classical undecidability theorems,
which remain valid in their original mathematical contexts. Rather, we show how physical constraints
naturally lead to finite versions of these problems that have different computational properties.

5.1. Rice’s Theorem and Program Properties

Rice’s theorem states that any non-trivial property of the function computed by a program is
undecidable. The proof relies on the ability to construct programs with arbitrary behavior, leading to a
reduction from the halting problem.

Theorem 6 (Finite-Model Rice’s Theorem Variant). For any non-trivial property P of programs, within
a finite set of physically implementable programs bounded by resource constraints R, the property P becomes
decidable by external observers with sufficient computational resources.

Proof. Consider any non-trivial property P of programs. The classical Rice’s theorem shows undecid-
ability by constructing programs whose behavior depends on the solution to the halting problem.

However, in physically constrained systems:
1. Bounded Program Space: The set of physically implementable programs is finite, bounded by

available resources for program storage and execution.
2. Observable Execution: An external observer can monitor the complete execution of any

program within physical resource bounds.
3. Finite Execution Time: All programs halt within finite time due to resource exhaustion, making

their complete behavior observable.
Therefore, an external observer can decide the finite-model variant of property P by exhaustively

analyzing all programs within the resource bounds. This is a different problem from the classical Rice’s
theorem, which considers infinite sets of programs with unbounded behavior.

5.2. The Entscheidungsproblem

Hilbert’s Entscheidungsproblem asks for an algorithm to determine the truth or falsehood of
any mathematical statement. Church and Turing proved this impossible by showing that the halting
problem reduces to it.

Proposition 6 (Physical Entscheidungsproblem). Within any formal system with physically bounded axioms
and inference rules, the Entscheidungsproblem becomes decidable for statements of bounded complexity.

Proof. Consider a formal system F with: - A finite set of axioms A (bounded by physical storage
limits) - A finite set of inference rules R (bounded by computational complexity) - Statements of length
at most n bits (bounded by information capacity)

For any statement S of length ≤ n:
1. The proof search space is finite, bounded by the maximum proof length achievable within

resource constraints.
2. An exhaustive search can explore all possible proofs within the resource bounds.
3. If no proof or disproof is found within the bounds, the statement is undecidable within the

resource-limited system, but this itself is a decidable outcome.
Therefore, the Entscheidungsproblem becomes decidable within physical constraints, though the

answer may be "undecidable within available resources" for some statements.

5.3. The Busy Beaver Problem

The busy beaver function BB(n) gives the maximum number of steps that an n-state Turing
machine can execute before halting. This function is non-computable because its computation would
solve the halting problem.
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Theorem 7 (Physical Busy Beaver Computability). The busy beaver function becomes computable for
Physical Turing Machines with bounded resources and finite program description space.

Proof. For Physical Turing Machines with resource bounds R = (E, S, T, H) and program descriptions
limited to at most S bits:

1. Finite Machine Space: The number of possible n-state Physical Turing Machines with program
descriptions ≤ S bits is finite, bounded by 2S.

2. Bounded Execution: Each machine can execute for at most T steps or until resource exhaustion,
whichever comes first.

3. Exhaustive Enumeration: We can enumerate all possible n-state Physical Turing Machines
with program length ≤ S bits and simulate each one until it halts or exhausts resources.

4. Maximum Computation: The physical busy beaver function PBB(n, R, S) is the maximum
number of steps executed by any n-state Physical Turing Machine within resource bounds R and
program description space S.

Since both the machine space (bounded by 2S) and execution time are finite, PBB(n, R, S) is
computable by exhaustive search over the finite program space.

The physical busy beaver function provides insights into the computational capacity of physical
systems and establishes upper bounds on the complexity of computations achievable within given
resource constraints.

5.4. Kolmogorov Complexity and Physical Information

Kolmogorov complexity measures the length of the shortest program that produces a given string.
Classical results show that Kolmogorov complexity is uncomputable.

Definition 7 (Physical Kolmogorov Complexity). The Physical Kolmogorov Complexity KP(x|R) of a
string x given resource bounds R is the length of the shortest Physical Turing Machine program that produces x
within resource bounds R, where program descriptions are constrained to at most S bits (the space bound in R).

Proposition 7 (Physical Kolmogorov Computability). Physical Kolmogorov complexity KP(x|R) is com-
putable for any string x and resource bounds R with finite program description space S.

Proof. To compute KP(x|R) with program length bound S:
1. Enumerate all Physical Turing Machine programs of length at most S bits in order of increasing

length.
2. For each program p, simulate its execution within resource bounds R.
3. If program p produces string x within the resource bounds, return |p|.
4. If no program of length ≤ S produces x within the bounds, return ∞ (indicating that x is not

producible within the given constraints).
This procedure terminates because: - The program space is finite (at most 2S programs of length

≤ S) - Each simulation terminates within finite time (due to resource exhaustion) - The enumeration is
systematic and complete

Therefore, KP(x|R) is computable for finite program description spaces.

5.5. The Word Problem and Group Theory

The word problem asks whether two words represent the same element in a finitely presented
group. This problem is undecidable in general.

Theorem 8 (Physical Word Problem Resolution). The word problem becomes decidable for finitely presented
groups when word operations are subject to physical resource constraints.
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Proof. Consider a finitely presented group G = ⟨S|R⟩ with generators S and relations R. For words
w1, w2 over the alphabet S ∪ S−1:

1. Bounded Reduction Sequences: Any sequence of reductions using relations in R is bounded
by the available computational resources.

2. Finite Search Space: The space of possible reduced forms reachable within resource bounds is
finite.

3. Exhaustive Exploration: We can exhaustively explore all possible reduction sequences for both
w1 and w2 within the resource bounds.

4. Decidable Equality: If both words reduce to the same form within the bounds, they are equal
in G. If they reduce to different forms, or if the reduction process exceeds resource bounds, we can
conclude they are either unequal or the equality is undecidable within the given resources.

This provides a decision procedure for the word problem within physical constraints.

5.6. Implications for Mathematical Logic

The resolution of classical undecidability problems under physical constraints has profound
implications for mathematical logic and the foundations of mathematics:

Finite Model Theory: Mathematical systems become effectively finite when constrained by
physical reality, making many problems decidable that are undecidable in infinite models.

Resource-Relative Truth: Mathematical truth becomes relative to available computational re-
sources, introducing a new dimension to logical systems.

Constructive Mathematics: Physical constraints naturally lead to constructive approaches to
mathematics, where existence proofs must be accompanied by explicit constructions within resource
bounds.

Computational Foundations: The foundations of mathematics may need to be reconsidered in
light of physical computational constraints, leading to new axiom systems that explicitly account for
resource limitations.

6. STEH Implementation of Physical Computation
The STEH Living Turing Machine, introduced in our previous work, provides a natural frame-

work for implementing the physically-bounded computations described in this paper. This section
demonstrates how the STEH architecture can be used to realize the theoretical results we have estab-
lished.

6.1. STEH Architecture for Physical Decidability

The STEH Living Turing Machine operates within a four-dimensional resource manifold R =

(S, T, E, H) representing Space, Time, Energy, and Entropy. This framework directly addresses the
physical constraints that render classical undecidability problems decidable.

Definition 8 (STEH External Resource Monitor). An STEH External Resource Monitor is a STEH Living
Turing Machine configured as an external observer that monitors the resource consumption of target computations
and provides termination forecasts based on physical constraints under the assumptions of Theorem 4.

The oracle operates by:
1. Resource Monitoring: Continuously tracking the resource state r(t) = (s(t), τ(t), e(t), h(t)) of

the target computation.
2. Consumption Prediction: Using streaming control algorithms to predict future resource

consumption based on current usage patterns.
3. Termination Forecasting: Computing the expected time to resource exhaustion and the likely

termination condition.
4. Termination Forecasting: Providing termination bounds and forecasts under the assumptions

stated in Theorem 4, based on physical constraints rather than logical impossibility.
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6.2. Streaming Control for Resource Management

The STEH streaming control system enables real-time optimization of resource allocation to
maximize computational capability within physical bounds.

Algorithm 1 STEH Physical Halting Oracle

1: Input: Target machine M, input w, resource bounds R
2: Output: Halting decision and predicted termination time
3:
4: Initialize resource monitoring: r(0)← R
5: Initialize consumption tracking: ρ(0)← 0
6:
7: while M is running on input w do
8: Monitor current resource state: r(t)
9: Update consumption rates: ρ(t)

10: Compute time to exhaustion: texhaust ← mini
ri(t)
ρi(t)

11:
12: if texhaust ≤ ϵ then ▷ Near resource exhaustion
13: return ("HALT", t + texhaust, "Resource exhaustion")
14: end if
15:
16: if M produces output then
17: return ("HALT", t, "Normal termination")
18: end if
19:
20: Update streaming control parameters
21: Optimize resource allocation
22: end while

6.3. Certificate-Based Verification

The STEH certificate system provides verifiable guarantees about the correctness of physical
decidability results.

Definition 9 (Physical Decidability Certificate). A Physical Decidability Certificate is a data structure that
contains:

• Resource consumption bounds and measurements
• Termination predictions with confidence intervals
• Verification checksums for computational integrity
• Thermodynamic consistency proofs

These certificates enable independent verification of decidability results and provide guarantees
about the physical validity of the computations.

6.4. Implementation of Physical NP Solver

The STEH framework can implement resource-aware NP solvers that optimize solution search
within physical constraints.

6.5. Morphogenesis for Adaptive Problem Solving

The STEH morphogenesis system enables adaptive reconfiguration of the computational architec-
ture based on problem characteristics and resource availability.

Proposition 8 (Adaptive Physical Decidability). The STEH morphogenesis system can automatically
reconfigure the computational architecture to optimize decidability within physical constraints for different
problem classes.
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Algorithm 2 STEH Physical NP Solver

1: Input: NP problem instance I, resource bounds R
2: Output: Solution or resource exhaustion report
3:
4: Initialize STEH controller with bounds R
5: Estimate problem complexity: C ← estimate_complexity(I)
6:
7: if C > available_resources(R) then
8: return "Problem exceeds physical resource bounds"
9: end if

10:
11: Initialize search strategy based on resource constraints
12: while resources available and no solution found do
13: Select next candidate solution using STEH optimization
14: Verify candidate within resource bounds
15:
16: if valid solution found then
17: Generate verification certificate
18: return solution with certificate
19: end if
20:
21: Update resource consumption estimates
22: Adapt search strategy based on remaining resources
23: end while
24:
25: return "No solution found within resource bounds"

This adaptive capability allows the system to:
1. Problem Recognition: Identify the class of decidability problem being addressed 2. Resource

Optimization: Allocate resources optimally for the specific problem type 3. Architecture Adaptation:
Modify the computational structure to match problem requirements 4. Performance Monitoring:
Continuously assess and improve decidability performance

6.6. Experimental Validation Framework

The STEH implementation provides a framework for experimental validation of physical decid-
ability results.

Definition 10 (Physical Decidability Experiment). A Physical Decidability Experiment consists of:

1. A classical undecidability problem instance
2. Physical resource bounds reflecting realistic constraints
3. An STEH implementation configured as a physical oracle
4. Measurement protocols for resource consumption and termination prediction
5. Verification procedures for result correctness

Such experiments can empirically validate the theoretical results presented in this paper and
provide practical insights into the behavior of physical computation systems.

7. Broader Implications and Future Directions
The recognition that information is fundamentally physical has far-reaching implications that

extend beyond the resolution of classical undecidability problems. This section explores the broader
consequences for theoretical computer science, mathematics, and our understanding of computation
itself.
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7.1. Foundations of Computer Science
7.1.1. Computational Complexity Theory

The physical nature of information necessitates a fundamental revision of computational com-
plexity theory:

Resource-Parameterized Complexity: Traditional complexity classes like P, NP, and PSPACE
must be redefined in terms of physical resource bounds rather than abstract mathematical limits. This
leads to a hierarchy of complexity classes parameterized by available energy, space, time, and entropy.

Thermodynamic Complexity: New complexity measures based on thermodynamic principles
become relevant, such as the minimum entropy production required to solve a problem or the minimum
energy dissipation for irreversible computations.

Observer-Relative Complexity: The complexity of a problem becomes relative to the resources
available to the observer, introducing a new dimension to complexity analysis.

7.1.2. Algorithm Design

Physical constraints fundamentally change the principles of algorithm design:
Energy-Aware Algorithms: Algorithms must be designed to minimize energy consumption, not

just time or space complexity. This leads to new trade-offs between computational speed and energy
efficiency.

Entropy-Conscious Computing: Algorithms should minimize irreversible operations to reduce
entropy production and energy dissipation.

Resource-Adaptive Strategies: Algorithms must adapt their behavior based on available physical
resources, leading to new paradigms in adaptive computation.

7.2. Mathematical Logic and Foundations
7.2.1. Finite Model Theory

The physical constraints on information processing naturally lead to finite model theory becoming
more central to mathematical logic:

Bounded Quantification: Logical systems must account for the fact that quantification over
infinite domains is physically impossible.

Resource-Bounded Proof Theory: Proof systems must consider the physical resources required
to construct and verify proofs.

Constructive Mathematics: Physical constraints naturally favor constructive approaches to
mathematics, where existence proofs must be accompanied by explicit constructions.

7.2.2. Computational Mathematics

Mathematical practice itself is affected by physical constraints:
Approximate Mathematics: Exact solutions may be physically impossible to compute, making

approximation methods not just practical but necessary.
Resource-Bounded Axiom Systems: Axiom systems may need to explicitly account for the

physical resources required to apply axioms and inference rules.
Physical Consistency: Mathematical theories must be consistent with physical laws, particularly

thermodynamics and quantum mechanics.

7.3. Philosophy of Computation
7.3.1. The Nature of Information

Accepting information as physical has profound philosophical implications:
Information Realism: Information becomes a fundamental aspect of physical reality, not merely

an abstract concept.
Computational Naturalism: Computation becomes a natural physical process, subject to the

same laws as other physical phenomena.
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Limits of Abstraction: Mathematical abstractions must be grounded in physical reality to be
meaningful for actual computation.

7.3.2. Consciousness and Computation

The physical nature of information has implications for theories of consciousness:
Physical Constraints on Mind: If consciousness involves information processing, it is subject to

the same physical constraints as other computational processes.
Thermodynamic Theories of Consciousness: Consciousness may be understood in terms of

entropy production and information integration within physical bounds.
Computational Limits of Cognition: Human cognitive abilities are bounded by the physical

constraints on neural computation.

7.4. Practical Applications
7.4.1. Quantum Computing

Physical information theory has direct implications for quantum computing:
Quantum Resource Theory: Quantum algorithms must be analyzed in terms of physical resource

consumption, not just gate counts.
Decoherence and Thermodynamics: The relationship between quantum decoherence and ther-

modynamic irreversibility becomes crucial for understanding quantum computational limits.
Quantum Error Correction Costs: The physical costs of quantum error correction must be

accounted for in assessing quantum computational advantages.

7.4.2. Artificial Intelligence

AI systems are subject to physical constraints that affect their capabilities:
Energy-Efficient AI: AI algorithms must be designed to minimize energy consumption while

maintaining performance.
Physical Limits of Learning: Machine learning is bounded by the physical resources available for

data storage and processing.
Thermodynamic Intelligence: Intelligence itself may be understood as a thermodynamic process

that optimizes information processing within physical constraints.

7.4.3. Distributed Computing

Large-scale distributed systems face fundamental physical limits:
Communication Costs: The energy cost of communication becomes a fundamental constraint on

distributed algorithm design.
Synchronization Limits: Physical constraints on information propagation limit the achievable

synchronization in distributed systems.
Scalability Bounds: There are fundamental limits to the scalability of distributed systems based

on physical resource constraints.

7.5. Future Research Directions
7.5.1. Experimental Physical Computer Science

New experimental approaches are needed to validate physical computation theory:
Thermodynamic Computing Experiments: Direct measurement of energy consumption and

entropy production in computational processes.
Quantum Computation Thermodynamics: Experimental investigation of the thermodynamic

costs of quantum computation.
Biological Computing Studies: Analysis of information processing in biological systems from a

physical perspective.
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7.5.2. Theoretical Developments

Several theoretical questions remain open:
Optimal Physical Algorithms: What are the optimal algorithms for various problems when

physical constraints are considered?
Physical Complexity Hierarchies: How do complexity classes relate when parameterized by

different physical resources?
Thermodynamic Computational Geometry: How do geometric problems change when embed-

ded in physical space with thermodynamic constraints?

7.5.3. Technological Implications

Physical computation theory may lead to new technologies:
Thermodynamically Optimal Computers: Computer architectures designed to minimize entropy

production and energy dissipation.
Resource-Aware Programming Languages: Programming languages that explicitly manage

physical resources.
Physical Verification Systems: Systems that verify not just logical correctness but also physical

feasibility of computations.

8. Conclusion
This paper has demonstrated that accepting the truly physical nature of information fundamen-

tally recasts our understanding of computational complexity and decidability. By recognizing that
information processing is governed by physical laws—including Landauer’s principle, thermodynamic
constraints, and quantum mechanical limits—we have shown that classical undecidability problems
require reinterpretation when applied to physical computational systems.

Our main contributions include:
Physical Computation Framework: We have developed a comprehensive framework for analyz-

ing computational problems under physical constraints, showing how the finite nature of physical
resources leads to tractable finite-model variants of classical problems.

Resource-Bounded Termination Analysis: We have established that termination forecasting
becomes possible for Physical Turing Machines through external observation of resource consumption,
providing practical bounds on computation time under stated assumptions.

Physical Complexity Theory: We have shown that complexity classes must be redefined in
terms of physical resource bounds, leading to new insights about the relationship between energy
consumption and computational tractability.

Finite-Model Undecidability Variants: We have demonstrated how classical undecidability
results lead to decidable finite-model variants when computational systems are constrained by physical
resources, while respecting the validity of the original mathematical theorems.

STEH Implementation Framework: We have shown how the STEH Living Turing Machine
provides a natural implementation framework for physically-bounded computations with resource
monitoring and termination forecasting capabilities.

The implications of this work extend beyond theoretical computer science. By grounding com-
putation in physical reality, we provide new foundations for algorithm design, complexity analysis,
and understanding the fundamental limits of information processing. The recognition that informa-
tion is physical not only leads to new perspectives on classical problems but also provides practical
frameworks for developing more efficient and realistic computational systems.

Future work should focus on experimental validation of these theoretical frameworks, devel-
opment of practical algorithms that exploit physical constraints, and exploration of the broader
implications for mathematics, physics, and computational practice. As computing systems face increas-
ingly stringent resource constraints, the principles developed in this paper will become increasingly
relevant for practical system design and theoretical understanding.
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