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Abstract

Meta-analysis has become central to evidence-based medicine, yet a persistent gap remains between
statistical experts and clinicians in understanding the implications of model choice. The distinction
between fixed- and random-effects is often dismissed as a technical detail, when in fact it defines the
very philosophy of evidence synthesis and must be addressed conceptually, a priori, rather than
dictated by heterogeneity statistics. Fixed-effect models convey the illusion of a single universal truth,
offering apparent precision but resting on an assumption rarely met in clinical practice. Random-
effects models, by contrast, acknowledge that true effects differ across studies, populations, and
settings, providing wider but more credible intervals that reflect real-world diversity. This work
presents a tutorial designed to explain, in a simple and accessible manner, how to conduct an updated
and robust evidence synthesis. Through real and simulated examples—including clinical scenarios,
a worked hypothetical meta-analysis, re-analyses of published reviews, and the metaphor of body
temperature—the tutorial demonstrates how model choice can fundamentally alter conclusions.
Results that appear significant under a fixed-effect model may become non-significant with more
robust random-effects methods, due to wider confidence intervals that account for between-study
heterogeneity. In contrast, prediction intervals reveal the range of effects likely to be observed in
practice. Drawing on Cochrane guidance, the discussion highlights current standards, including
REML and Paule-Mandel estimators, Hartung-Knapp-Sidik-Jonkman confidence intervals, and the
routine use of prediction intervals. By combining intuitive analogies with practical applications, the
tutorial provides clinicians with an accessible introduction to contemporary meta-analytic methods,
promoting more reliable evidence synthesis.

Keywords: meta-analysis; fixed-effect model; random-effects model; heterogeneity; prediction
intervals; evidence synthesis; Cochrane Handbook

Introduction

Two meta-analyses, based on the very same set of studies, may yield strikingly different
conclusions. For the clinician reviewing the literature, this contradiction is more than a statistical
curiosity —itis a source of genuine confusion that can shape clinical decisions. Why does this happen?
More often than not, the explanation lies in a modeling choice rarely discussed outside statistical
circles: whether the analysis was conducted under a fixed-effect or a random-effects framework.

This choice is not a technical footnote. It determines whether a meta-analysis communicates the
illusion of a single universal truth or the reality of variable effects across diverse settings.

In practical termes, it is the difference between reporting a highly precise estimate that assumes
all studies are interchangeable and presenting a more cautious summary that acknowledges

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0126.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2025 d0i:10.20944/preprints202509.0126.v1

2 of 21

heterogeneity as part of clinical reality —a distinction often misunderstood in clinical research [1].
Not only are such heterogeneity statistics misused to dictate model choice, but doing so confuses
cause and effect: model philosophy should be set conceptually a priori, not driven by an I? value.

For clinicians, understanding this distinction is essential. It reframes meta-analysis not as a
machine for producing a single “answer,” but as a tool for interpreting variability in evidence. In this
article, we offer a foundational explanation of fixed versus random effects, using a familiar clinical
metaphor to make the concepts intuitive. This work aims not only to clarify statistical modeling but
also to demonstrate why model choice carries direct consequences for how evidence is translated into
practice.

The Foundational Question: One True Effect?

At its heart, the choice of model boils down to this: do we believe that every study is measuring
the same single effect, or do we accept that true effects differ from one study to another? [2]

The fixed-effect model assumes the former. It treats each study as a repeated measurement of
the same underlying truth, with differences explained solely by chance. In this view, there is one
“true effect,” and the task of meta-analysis is to identify it with the greatest possible precision.

The random-effects model assumes the latter. It acknowledges that effects may legitimately
differ across settings, populations, and methods. Rather than assuming one universal truth, it
estimates the average of a distribution of true effects and incorporates that variability into the pooled
estimate [3].

A clinical metaphor illustrates the distinction. Consider human body temperature:

e  Under a fixed-effect view, we would insist that the true temperature is always 37.0 °C. Any
deviation measured in practice—36.8 °C, 37.3 °C—would be dismissed as random error around
this single correct value.

e  Under a random-effects view, we recognize that normal body temperature is not identical for
everyone. Some individuals average 36.5 °C, while others average 37.2 °C, and variations also
occur with time of day, measurement method, or physiological state. There is still a meaningful
average around 37 °C, but it represents a summary of genuine diversity rather than an
immutable truth.

This metaphor captures the essence of fixed versus random effects: one offers the illusion of
uniformity, the other reflects the reality of variability. Choosing between them is not just a statistical
decision—it determines whether we present evidence as a single number or as a distribution that
mirrors clinical practice. Just as an individual’s temperature can vary yet still be normal, in meta-
analysis a treatment’s effect can vary across studies yet still be real. Importantly, clinical effects often
exhibit even greater variability than body temperature —sometimes differing not only in magnitude
but also in direction.

While the body temperature metaphor effectively illustrates the contrast between a single value
and a distribution, it is worth noting that clinical treatment effects can exhibit far wider variability.
In some cases, results may not only differ in magnitude but even cross the null —showing benefit in
certain contexts and possible harm in others. This broader spectrum of heterogeneity goes beyond
the relatively narrow physiological range of normal temperature, but the metaphor remains useful
as an entry point to the concept. This distinction is critical: while a fluctuation between 36.5 °C and
37.2 °C carries little clinical consequence, the variability of treatment effects can extend from
meaningful benefit to genuine harm. In this sense, the stakes of heterogeneity in clinical research are
far higher than in physiology, making the recognition of treatment-effect distributions a matter of
patient safety and health policy.

Table 1 provides additional clinical examples that illustrate how fixed- and random-effects
models embody fundamentally different assumptions, leading to distinct interpretations of the same
evidence.
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Table 1. Illustrative and simplified clinical scenarios contrasting the assumptions of fixed-effect and random-

effects models.

Clinical Scenario

What does assuming fixed

effects mean

What does assuming

random effects mean

In non-operative
management of
uncomplicated appendicitis
(antibiotics alone), is the
success rate the same across

all hospitals?

Assumes that non-operative
antibiotic management yields
the same success rate
everywhere, with any
between-hospital differences

attributed only to chance.

Recognizes that true success
rates differ—e.g., ~90% in
some centers and ~70% in
others—owing to patient

selection, imaging protocols,

antibiotic regimens, criteria
for failure/crossover, and

local care pathways.

Do ACE inhibitors lower
blood pressure by the same

amount in every patient?

Assumes that all patients
experience an identical
reduction (e.g., 10 mmHg),
with observed deviations

dismissed as random noise.

Recognizes that true
responses vary according to
patient- and context-specific

factors—such as race (e.g.,
Black patients often respond
differently to ACE
inhibitors), comorbidities,
baseline blood pressure, and

treatment adherence.

Does screening colonoscopy
reduce colorectal cancer
mortality equally in all
health systems?

Assumes that screening
colonoscopy provides the
same mortality reduction

regardless of context.

Recognizes that the benefit of
screening colonoscopy varies
according to program- and
practice-level factors. For
example, mortality reduction
is greater in robust, high-
coverage programs and
smaller in under-resourced
systems; likewise, differences
in endoscopist quality —such
as adenoma detection rates —
also influence the magnitude

of effect.

Does prone positioning
reduce mortality in ARDS
patients to the same extent

across ICUs?

Assumes a uniform mortality
reduction across all settings

(e.g., 15%).

Recognizes that the benefit
varies according to multiple
factors. For example,
outcomes may be better in
experienced centers with
established protocols,
adequate nurse-to-patient

ratios, and optimal
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ventilatory management,
compared to smaller units
with less prepared staff.
These are illustrative factors
that influence the true effect,

rather than random noise.

Recognizes that effectiveness
Assumes identical vaccine | genuinely varies, with higher
) effectiveness across all protection in some groups

Do COVID-19 vaccines .
o ) groups, regardless of age, and lower in others, the
protect against infection? o . ) . .
comorbidity, or circulating | pooled estimate reflecting an

variants. average across these

conditions.

Recognizes that effectiveness

i depends on contextual and
Assumes that this )
) ) patient-level factors—for
intervention produces the )
example, behavioral support

Does a smoking cessation same improvement in quit ) .
. o ) ) intensity, pharmacotherapy
intervention increase quit rates everywhere, with any .
. Lo access, or patient
rates equally across settings? observed variation across

. ) characteristics—so that
studies explained only by )
observed differences reflect
chance. ] S
genuine variability rather

than random noise.

ACE = angiotensin-converting enzyme; ARDS = acute respiratory distress syndrome; ICU = intensive care unit.

Fixed-Effect: Clarity with a Cost

The appeal of the fixed-effect model lies in its apparent simplicity. By treating every study as a
replicate of the same underlying truth, it produces a single pooled estimate with narrow confidence
intervals. To the busy clinician, this precision can be seductive: it seems to promise certainty.

Yet this clarity comes at a cost. If true effects genuinely differ across settings, the fixed-effect
approach erases that variability, presenting heterogeneity as if it were mere random noise. The result
is an artificially precise number that risks overstating the generalizability of the evidence.

Returning to our metaphor of body temperature, the fixed-effect model insists that the true
temperature of a human being is exactly 37.0 °C. A reading of 36.7 °C or 37.3 °C is treated only as a
measurement error. Clinically, however, we know that variation in normal body temperature is real,
not illusory.

A practical example illustrates the point. As shown in Table 1, a fixed-effect model assumes, for
instance, that screening colonoscopy reduces colorectal cancer mortality by the same amount
everywhere, or that ACE inhibitors lower blood pressure identically in all patients. Such pooling
yields a deceptively precise number, but one that obscures real differences driven by program
quality, patient characteristics, or adherence. Importantly, this cost is not merely a loss of realism but
a quantifiable statistical bias: when the assumption of homogeneity is violated, fixed-effect models
yield biased significance tests and misleadingly narrow confidence intervals. Evidence from large-
scale re-analyses supports this concern.

In short, fixed-effect analysis can create the mirage of certainty: an attractive single number that
conceals rather than reflects clinical diversity. Although there are rare situations where a fixed-effect
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approach may be justified —such as highly homogeneous studies or sensitivity analyses—it should
not be the default choice in clinical meta-analysis, where acknowledging variability is almost always
the more appropriate stance.

Random-Effects: Embracing Variability

In contrast, the random-effects model begins from a different premise: that variation across
studies is not merely noise, but often reflects genuine differences between them. These differences
may arise from multiple sources—such as populations, clinical settings, or how an intervention is
implemented. Instead of forcing all studies into a single truth, the random-effects model estimates
the mean of a distribution of true effects and widens the confidence interval to reflect that diversity.

Returning to our body temperature metaphor, the random-effects model accepts that normal
temperature does not have to be exactly 37.0 °C. Some people run at 36.5 °C, others at 37.2 °C. These
differences are real, influenced by factors such as genetics, race, age, time of day, or even the
measurement method used. The pooled value around 37 °C is still useful, but only when understood
as an average of many true values, not as a universal constant.

Clinically, this perspective is more faithful to reality. As shown in Table 1, the benefit of
screening colonoscopy may be greater in well-resourced, high-coverage programs and smaller in
under-resourced settings. The blood-pressure response to ACE inhibitors differs across patient
groups, shaped by comorbidity, adherence, baseline risk, and even race. Random-effects models
explicitly incorporate such heterogeneity into the summary estimate.

The price to pay is less apparent precision. Confidence intervals under random-effects are
usually wider. Put simply, a confidence interval is the range of values within which the true effect is
most likely to lie. A narrow interval may look more reassuring, but if it ignores genuine variation, it
can be misleading. Wider intervals under random-effects are not a weakness—they are a more honest
reflection of the uncertainty clinicians face when applying evidence across diverse contexts.

In practice, random-effects analysis acknowledges what every clinician already knows: patients,
hospitals, and health systems are not identical. By embracing variability, it avoids the illusion of false
certainty and produces estimates that more accurately reflect the realities of real-world medicine.

Methodological Choices within the Random-Effects Framework

Random-effects analysis is not a single recipe. There are different ways to estimate the average
effect and its uncertainty, and the choice can influence the final numbers. Two aspects matter most:
how we estimate the amount of heterogeneity (the model) and how we calculate the confidence
interval (the CI method).

1. Estimating heterogeneity (“the model”): All random-effects models try to capture how much
the true effects vary between studies, but they use different formulas to do it.

e DerSimonian-Laird (DL): the classic method, fast and simple, but tends to underestimate
variability (i.e., the real differences between study results) when there are few studies. This
underestimation can result in overly narrow confidence intervals, thereby increasing the risk of
false-positive findings (especially in meta-analyses with a small number of studies) [4]. This
method persists because it is the long-standing default in many software packages.

e  Restricted Maximum Likelihood (REML): the current standard, very robust for estimating
variability, though slightly more complex [5,6].

e  Paule-Mandel (PM): another robust option, often recommended today as an alternative to DL,
particularly when heterogeneity is moderate. It has been endorsed in the Cochrane Handbook
and supported by comparative evaluations [6].

2. Calculating confidence intervals (“the CI”): Once the average effect is estimated, we need to
decide how wide the confidence interval should be.
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e Wald CL the traditional, straightforward approach; it often produces intervals that look
reassuringly precise but can be too narrow, especially when there are few studies or some
heterogeneity [2].

e  Hartung-Knapp-Sidik-Jonkman (HKS]J): a modern method that produces wider and generally
more reliable intervals. It is now considered the standard when heterogeneity is present. With
very few studies, it can sometimes yield excessively wide (over-conservative) intervals;
however, it remains the better option overall, as cautious inference is safer than overconfident
conclusions [7,8].

e  Modified or truncated HKS] (mHK): a refinement of the HKSJ method, designed to prevent
confidence intervals from becoming excessively wide in rare situations—typically when the
number of studies is very small, a common scenario in clinical research, or when the between-
study variance is close to zero [9].

Random-effects models all share the same philosophy —accepting variability —but they differ in
how cautious they are. DL + Wald often looks neat and “precise” but can be misleading. REML or
Paule-Mandel combined with HKS] intervals are increasingly seen as the safer choices when
evidence is sparse or heterogeneous [2].

Heterogeneity as the Compass for Model Choice

What Heterogeneity Means

Heterogeneity means that the results of studies are not identical [10-13]. Sometimes this
variation is small and trivial; other times it is significant and clinically meaningful. In meta-analysis,
the question is not whether differences exist—they almost always do—but whether we interpret them
as noise around one truth or as signals of genuinely different effects.

Clinical vs. Statistical Heterogeneity

Two forms of heterogeneity should be distinguished:

¢  Clinical heterogeneity: This is the real-world variability we expect when studies are not identical
in who they include, what they do, or where they are done. Patients may differ in age,
comorbidities, or disease severity; interventions may vary in dose, surgical technique, or how
strictly protocols are followed; and settings may range from highly specialized hospitals to
resource-limited clinics. These differences are not errors but part of normal clinical diversity —
and they often explain why study results do not all look the same.

e  Statistical heterogeneity: this is heterogeneity “put into numbers.” It describes how much the
results of the included studies differ once we account for normal random fluctuations due to
sample size. Every study will vary slightly, simply due to chance—this is known as sampling
error. However, when the differences are greater than what chance alone would explain, we
refer to it as statistical heterogeneity. Indices like Q, I2, and 12 are simply ways of expressing that
variability in numbers.

Model Choice Should Come First (and 1? Should not Be Used to Make This Choice)

Crucially, the decision between fixed- and random-effects models must be made conceptually
before looking at any statistics [2]. The choice rests on whether we believe in a single universal effect
or in a distribution of effects shaped by context. Measures of heterogeneity are helpful descriptors,
but they do not dictate the model's philosophy.

Statistical heterogeneity refers to the variability observed when combining study results, beyond
what would be expected from random sampling error alone. Indices such as Q, 1?2, and t? quantify
this variability [6,10-12], but they should be interpreted as guides to the extent of differences, not as
arbiters of which model to use. As we will emphasize later, selecting between fixed and random

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.0126.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 September 2025 d0i:10.20944/preprints202509.0126.v1

7 of 21

effects purely based on I? is misguided: the underlying conceptual question is whether one effect or
many? —must always come first.

Measuring Statistical Heterogeneity

There are several common tools, each with a distinct role:

e  Cochran’s Q: a test that asks whether the differences between studies are greater than expected
by chance [10]. Its main limitation is that it strongly depends on the number of studies: with few,
it often misses real differences; with many, it flags even trivial ones. A non-significant Q should
therefore never be taken as proof of homogeneity.

e I the percentage of total variation explained by real heterogeneity rather than chance. Values
of 25%, 50%, and 75% are often described as low, moderate, and high heterogeneity, though
thresholds are arbitrary [11,12]. Moreover, I? itself is only an estimate and carries considerable
uncertainty, particularly when the number of studies is small. It is also strongly influenced by
the precision of the included studies: meta-analyses with large sample sizes can yield high I?
values even when the absolute differences in effects are clinically trivial. These limitations
further reinforce why model choice should be made conceptually rather than dictated by I2.

e 12 (between-study variance): measures how much the true effects differ across studies. It is
reported on the same scale as the effect size (e.g., risk difference in absolute %, or log scale for
risk ratios). A 12 of 0 means no variability at all [2,6]. An estimated T2 of 0 suggests that there is
no evidence of between-study variance beyond what would be expected by chance. 2 matters
because it drives the weights in a random-effects model and is essential for calculating prediction
intervals [2,6].

Putting it Together

In practice, heterogeneity is expected in almost every clinical question. The key is not whether it
exists, but what it means. If studies are highly consistent, fixed- and random-effects estimates
converge. If studies diverge, random-effects models acknowledge that reality, whereas fixed-effect
models may suppress it.

The Guiding Role of Heterogeneity

Heterogeneity is thus not a flaw to be eliminated, but a compass: it helps us interpret the
evidence and understand when variability matters. By embracing it, meta-analysis shifts from
delivering a single, over-simplified answer to providing a more nuanced picture of reality —one that
clinicians can trust when applying results to diverse patients and settings. Returning to our metaphor,
heterogeneity in meta-analysis is no different from the spread of normal body temperatures:
expected, natural, and informative when properly understood.

Prediction Intervals: Looking Beyond Confidence Intervals

Confidence intervals (Cls) around the pooled effect describe the precision of the average estimate.
However, clinicians are often less interested in the mean effect and more concerned with what might
happen in their own setting. For this purpose, prediction intervals (PIs) are more informative: they
estimate the range within which the true effect of a new study, in a comparable context, is expected
to fall [3,14,15]. Most importantly, PIs often expose the fragility of apparently significant findings. In
large-scale reanalysis, almost 75% of statistically significant meta-analyses had PIs including the null
[16].

Returning to our body temperature metaphor, the average human temperature may be 37.0 °C,
and a 95% CI around the mean might be 36.9-37.1 °C. This interval is very narrow —but it only tells
us how precisely we know the mean. A PI, in contrast, reflects the actual spread of normal body
temperatures (e.g., 36.5-37.5 °C). This is directly linked to 12, which quantifies the between-study
variance (12): the larger 12, the wider the prediction interval. This width is not arbitrary; the PI is
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calculated directly from the 2. A large 12 mathematically guarantees a wide PI. In our metaphor, t2
is the statistical estimate of how much temperatures vary across the studies we have in hand, while
the prediction interval (e.g., 36.5-37.5 °C) conveys the range we would expect to observe in new or
future patients.

Clinically, this distinction is crucial. A confidence interval might suggest that the effect of
screening colonoscopy is “precisely” a 20% reduction in mortality, but the prediction interval may
reveal that in some contexts, the effect is close to 40%, while in others, it approaches zero. By reporting
both CIs and PIs, meta-analyses can move from abstract averages to a more realistic picture of how
results may vary across real-world settings. Therefore, when counseling a patient or developing a
local protocol, the prediction interval —when available—provides a more realistic and clinically
relevant range of potential outcomes than the confidence interval alone. For example, when
communicating results, a clinician might say: ‘Across all studies, the average benefit of this treatment
was about a 20% reduction in risk (as reflected by the confidence interval). However, the prediction
interval indicates that in a specific future setting, the effect could plausibly range from a 40%
reduction to no benefit at all. This wider range provides a more realistic expectation of how the
treatment might perform in our own patient population

So, Which Model Should I Choose?

Key Principles for Model Choice

The decision between fixed- and random-effects is not a technical footnote —it reflects how we
understand the evidence. Fixed-effect assumes that there is a single underlying effect that applies
everywhere. Random-effects models, by contrast, assume that true effects differ across studies,
shaped by patient characteristics, interventions, and contexts. In medicine, such diversity is the rule,
not the exception.

For this reason, model choice should be made conceptually, before looking at any statistics.
Numbers like Q, I?, or 12 are useful for describing how much studies vary, but they do not determine
the philosophy of the model. The starting point must always be the question: do we believe in one
effect, or in many? It is the same distinction as asking whether there is one single ‘normal’
temperature or a distribution of normal values across people.

Table 2 summarizes the key criteria that distinguish fixed-effect from random-effects models
and guides the use of each when they may be appropriate in clinical meta-analysis.

Table 2. Choosing between fixed and random-effects: a clinician’s guide.

Fixed-effect
Criterion (common-effect) Random-effects model

model

Assumes a single
) Assumes true effects vary across
. true effect applies to ] i
Underlying studies; the pooled estimate
. all studies; observed
assumption i represents the average of a
differences are due
distribution.
only to chance.

Suitable only when

studies are
. Preferred when studies differ in
Clinical essentially identical )
. . ) ) patients, protocols, or healthcare
diversity in population,

. . contexts.
intervention, and

setting.
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Safer with few; use HKSJ to better

Appears stable with ]
) reflect uncertainty. HKSJ] may be
Number of very few studies, but . )
. L over-conservative with very few
studies precision is often
studies; consider
misleading

modified/truncated HKS] (mHK)

Ignores between-

. study variability; o
Statistical ] Explicitly incorporates between-
. heterogeneity is o )
heterogeneity ) study variability into the analysis.
treated as sampling

error.

Produces narrower ) _
Produces wider intervals that

Precision vs confidence intervals
. better reflect real-world
realism that may overstate .
. uncertainty.
certainty.
Limited; results
L apply only to the Broader; results are more
Generalizability . . ) i
specific studies applicable across diverse contexts.
included.
Occasionally useful
. . for sensitivity Default choice in most clinical
Role in practice
analyses or narrowly meta-analyses.

defined questions.

What Cochrane Recommends

The Cochrane Handbook is explicit on this issue [2]. Random-effects models are generally the
safer choice whenever clinical diversity is present—meaning, in most clinical questions. Fixed-effect
can be defensible only when studies are virtually identical in design, participants, and context, a
situation that is rare outside very narrow questions.

Cochrane also warns against a common mistake: switching between models based on whether
I2 is “high” or “low.” Heterogeneity statistics describe variability, but they should not dictate the
model. Instead, the model should be chosen a priori, guided by the plausibility of one universal effect
versus a distribution of effects. Increasingly, Cochrane reviews present both: random-effects as the
main analysis, and fixed-effect as a sensitivity check.

Table 3 reports the explicit recommendations of the Cochrane Handbook on model choice and
inference, together with their practical implications for clinical meta-analysis.

Table 3. Explicit recommendations from the Cochrane Handbook for Systematic Reviews.

Fixed-effect
Criterion (common-effect) Random-effects model

model

] Assumes true effects vary across
. Assumes a single
Underlying studies; the pooled estimate
. true effect applies to
assumption ] represents the average of a
all studies; observed
distribution.
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differences are due

only to chance.

Clinical diversity

Suitable only when
studies are
essentially identical

in population,

Preferred when studies differ in

patients, protocols, or healthcare

Number of

studies

contexts.
intervention, and
setting.
) Safer with few; use HKS]J to
Appears stable with

very few studies,
but precision is

often misleading

better reflect uncertainty. HKS]
may be over-conservative with
very few studies; consider
modified/truncated HKSJ (mHK)

Statistical

heterogeneity

Ignores between-

study variability;

heterogeneity is
treated as sampling

error.

Explicitly incorporates between-
study variability into the

analysis.

Precision vs

realism

Produces narrower
confidence intervals
that may overstate

certainty.

Produces wider intervals that
better reflect real-world

uncertainty.

Generalizability

Limited; results
apply only to the
specific studies

included.

Broader; results are more
applicable across diverse

contexts.

Role in practice

Occasionally useful
for sensitivity
analyses or
narrowly defined

questions.

Default choice in most clinical

meta-analyses.

ACE = angiotensin-converting enzyme; ARDS = acute respiratory distress syndrome; ICU = intensive care unit.

Practical Guidance for Clinicians
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For clinicians interpreting meta-analyses, several practical lessons can be drawn. Random-effects
should usually be the default, because patients and hospitals are not interchangeable. Fixed-effect
has a role, but mainly as a sensitivity analysis or in narrowly defined questions where studies are

genuinely homogeneous.

Statistical significance under fixed-effect should not be mistaken for robustness. If a result
disappears when random effects are applied, that is a warning sign that variability matters and the
evidence is fragile. Finally, always look at the forest plot before the summary number. If studies point
in different directions, an apparently precise fixed-effect estimate is misleading. Just as a single
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thermometer reading can miss the natural variability across individuals, a single fixed-effect estimate
can obscure meaningful differences between studies.

Making it Visual: Fixed vs Random at a Glance

The contrast between fixed- and random-effects models is not only conceptual but also readily
visible. Figure 1 presents, for illustrative purposes, a simulated meta-analysis of six randomized trials
evaluating a hypothetical new antithrombotic agent for the prevention of postoperative thrombosis.
Each trial compared the novel drug with conventional prophylaxis, reporting the number of
thrombotic events in each group. While all studies suggested fewer events in the treatment arm, the
magnitude of benefit varied substantially across trials.
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Treatment Control Risk ratio Weight

Study Yes No Yes No with 95% ClI (%)

Study1 30 30 28 32 —@— 1.07[ 0.74, 1.55] 16.87

Study2 22 28 24 26 —@—— 092[ 060, 140] 1446

Study3 10 30 12 28 = 0.83[ 041, 1.70] 7.23

Study4 15 30 20 25 —_—— 0.75[ 0.44, 1.27] 12.05

Study 5 5 25 12 18 = 0.42[ 0.17, 1.04] 7.23

Study6 40 40 70 10 —1 = 057[ 045, 072] 4217

Overall <P 0.73[ 0.62, 0.87]

Testofq=0:z=-3.63, p=0.00

T T T
1/4 1/2 1
Fixed—effects Mantel Haenszel model
Treatment Control Risk ratio Weight
Study Yes No Yes No with 95% Cl (%)
Study1l 30 30 28 32 —— 1.07[ 074, 1.55] 21.23
Study2 22 28 24 26 —l—  092[ 060, 1.40] 1876
Study3 10 30 12 28 u 0.83[ 0.41, 1.70]  9.99
Study4 15 30 20 25 —a— 0.75[ 0.44, 1271 14.94
Study 5 5 25 12 18 o 042[ 0.17, 1.04] 6.88
Study6 40 40 70 10 — = 0.57[ 045, 0.72] 28.20
Overall = 0.76 [ 0.58, 0.99]
Heterogeneity: t* = 0.05, I = 50.77%, H* = 2.03
Test of q; = g;: Q(5) = 10.96, p = 0.05
Testofq=0:z2=-2.07, p=0.04
1/4 12 1
Random—effects REML model
Treatment Control Risk ratio Weight
Study Yes No Yes No with 95% Cl (%)
Study1 30 30 28 32 —— 1.07[ 074, 155] 21.23
Study2 22 28 24 26 —l— 092 060, 1.40] 18.76
Study3 10 30 12 28 u 0.83[ 0.41, 1.70]  9.99
Study4 15 30 20 25 —— 0.75[ 0.44, 1.27] 14.94
Study 5 5 25 12 18 = 042[ 017, 1.04] 6.88
Study6é 40 40 70 10 — = 0.57[ 0.45, 0.72] 28.20
Overall - 0.76 [ 0.55, 1.05]
Heterogeneity: t* = 0.05, I” = 50.77%, H* = 2.03
Test of g, = g;: Q(5) = 10.96, p = 0.05
Testof q=0:1(5) =-2.22, p=0.08
1/4 12 1

Random-—effects REML model
Knapp Hartung standard errors
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Figure 1. Simulated meta-analysis of six randomized trials of a new antithrombotic agent for postoperative
thromboprophylaxis. Each study reports the number of thrombotic events in the treatment (novel agent) and
control (conventional prophylaxis) groups. The top panel displays the fixed-effect Mantel-Haenszel model (RR
0.73, 95% CI 0.62-0.87, p < 0.01). The middle panel shows the random-effects model using the REML estimator
of t2 (RR 0.76, 95% CI 0.58-0.99, p = 0.04), with between-study variance t2 = 0.05, heterogeneity 12 = 50.8%, and Q
=10.96 (p =0.05); Wald confidence intervals are presented. The bottom panel illustrates the random-effects model
using REML with Hartung-Knapp adjustment (RR 0.76, 95% CI 0.55-1.05, p = 0.08), where 12 = 0.05, 12 = 50.8%,
and Q =10.96 (p = 0.05); confidence intervals are based on the Hartung—Knapp method. For the random-effects
models, the 95% prediction interval (0.36-1.57) indicates that the effect in a future study could plausibly range
from substantial benefit to no benefit—or even harm, underscoring the importance of model choice in clinical
interpretation. All analyses were performed using Stata version 19.0 (StataCorp LLC, College Station, TX, USA),
employing the meta package. A small note for readers: if the analyses are replicated under a Mantel-Haenszel fixed-effect
model or using the DerSimonian—Laird method, the heterogeneity summaries will be slightly different from the REML-
based figures reported here—specifically, Q = 11.06 on 5 degrees of freedom (p = 0.05) and I?> = 54.8%. This occurs because
Q and its derivative I? are formally defined within a fixed-effect framework, where study weights depend only on within-
study variance. When software such as Stata recalculates these indices using random-effects weights (as in REML), the
values shift modestly. Conceptually, the “canonical” values are those from the fixed-effect calculation (54.8% here); DL is

consistent with this convention because it computes Q using fixed-effect inverse-variance weights.

Under a fixed-effect Mantel-Haenszel model (a fixed-effect pooling method), pooling the six
studies yielded a statistically significant reduction in thrombotic events with narrow confidence
intervals (RR 0.73, 95% CI 0.62-0.87; p<0.01). At face value, this implies that the new antithrombotic
reduces postoperative thrombosis by roughly 27% in every surgical context. However, when a
random-effects model with REML estimation was applied, the pooled effect remained directionally
similar but the confidence interval widened (RR 0.76, 95% CI 0.58-0.99; p = 0.04). Incorporating the
Hartung-Knapp adjustment further broadened the interval, rendering the result statistically non-
significant (RR 0.76, 95% CI 0.55-1.05; p = 0.08).

Most importantly, the prediction interval revealed the fragility of the evidence: in a future trial,
the true effect could plausibly range from a 64% risk reduction to a 57% risk increase (95% PI 0.36—
1.57). In other words, while some surgical populations might experience substantial benefit, others
could see little to no advantage—or even possible harm. With moderate heterogeneity (12 = 50.77%,
Q =10.96, p = 0.05, T2 = 0.05), this example underscores how fixed-effect analysis may create the
illusion of a universal benefit, whereas random-effects modelling more faithfully represents the
uncertainty and variability encountered in clinical practice.

The heterogeneity observed in this example could plausibly arise from multiple sources: Do all
patients across trials share the same baseline thrombotic risk, or were study populations selected
differently? Were thrombotic events documented consistently across centers, or did outcome
assessment vary? Were prophylaxis protocols strictly adhered to in all trials, or was implementation
uneven? These questions illustrate that heterogeneity is not a nuisance but often reflects genuine
clinical and methodological differences that need to be acknowledged rather than averaged away.

How to Report a Meta-Analysis

Methods

Transparency in methods is essential. A well-reported meta-analysis should clearly state which
statistical model was used (fixed- or random-effects, with the specific estimator such as DerSimonian—
Laird, Paule-Mandel, or REML), the software and commands employed, and the planned strategies
to explore heterogeneity. This includes pre-specified subgroup analyses (e.g., by population, setting,
or intervention dose), sensitivity analyses (e.g., excluding high-risk-of-bias studies), and, when
appropriate, meta-regression. Any continuity corrections (adjustments for studies with zero events
in one arm) should be explicitly described, as different corrections can yield different results. By
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laying out these choices in advance, the analysis avoids the perception of selective reporting and
allows full reproducibility. Continuing with our metaphor, report not only the mean body
temperature (37 °C), but also the normal spread (for example, 36.5-37.5 °C), as both are important for
interpretation. Equally important, meta-analyses should adhere rigorously to established
methodological standards. The Cochrane Handbook for Systematic Reviews of Interventions
provides detailed guidance on appropriate model selection, heterogeneity assessment, and
sensitivity analyses [2], while the PRISMA 2020 statement ensures transparent and complete
reporting of methods and results [17]. Following these frameworks not only strengthens
methodological rigor but also facilitates critical appraisal, reproducibility, and trust in the evidence
synthesized.

Results

In the results section, findings should be presented with forest plots that are legible and fully
annotated, showing study-level estimates, pooled effects, and heterogeneity measures (Q, I?, 12). Both
confidence intervals (CI) and, when possible, prediction intervals (PI) should be reported to convey
not only the precision of the mean effect but also the likely range of effects in future settings. The type
of model and interval calculation method (e.g., Wald vs. Hartung—Knapp-Sidik-Jonkman) must be
specified, since some software packages (such as CMA) provide only default or limited options. If
continuity corrections were applied, these must also be reported, with justification for the chosen
method. Above all, the principle of maximum transparency is paramount: every analytical choice
should be transparent to the reader, ensuring that conclusions are seen as robust and reproducible.

Table 4 summarizes the essential elements that should be transparently reported in the methods
and results of a meta-analysis, including model choice, heterogeneity measures, confidence and
prediction intervals, and sensitivity analyses.

Table 4. Reporting essentials for a meta-analysis.

Section What should be reported Why it matters
- Pre-registration of the analysis protocol (e.g., in a
registry like PROSPERO)
- Software and commands used
- Rationale for model choice (conceptual
justification for using fixed vs random)
- Model used (fixed vs random; explicitly report the
2 estimator employed, e.g.,, REML, Paule-Mandel, Transparency;
Methods or DL) reproducibility;
- CI'method: explicitly state the procedure used (e.g., avoids selective
Wald, HKS], or truncated HKSJ) reporting.
- Heterogeneity metrics: report Q, I, and 2 together
with the t2 estimator used
- Strategy to explore heterogeneity (subgroup,
sensitivity, meta-regression)
- Continuity corrections applied (e.g., Haldane)
- Software limitations (e.g., RevMan 5.4, CMA)
- Forest plots that are legible and annotated Ensures clarity;
- Study-level data (e.g., events per group over total) communicates both
Results and pooled effects precision (CI) and
- Heterogeneity metrics: Q, I?, 12 expected variability
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- CI95% (with method specified, e.g., HKS]) across contexts (PI);
- PI195% (when random-effects is used) readers understand

robustness of

findings.

T2 = between-study variance; 1? = inconsistency index; Q = Cochran’s Q test; CI = confidence interval; PI = prediction
interval; DL = DerSimonian—Laird; REML = restricted maximum likelihood; HKS] = Hartung—Knapp-Sidik—Jonkman;
CMA = Comprehensive Meta-Analysis; RevMan = Review Manager.

Real-World Case Studies: How Fixed vs Random-Effects Alter Conclusions

Applied case study 1: Urination stimulation techniques in infants

Clean urine collection in non-toilet-trained infants is clinically challenging: invasive methods,
such as suprapubic aspiration, are painful, while non-invasive alternatives, like urine bags, are prone
to contamination. Recently developed stimulation techniques (e.g., Herreros’ tapping/massage and
the Quick-Wee cold gauze method) aim to facilitate voiding in infants under one year. The available
trials, however, differ in infant age, maneuver applied, clinical setting, and outcome definitions,
introducing substantial heterogeneity.

In this context, a published meta-analysis applied a fixed-effect Mantel-Haenszel model, pooling
three small randomized trials and reporting a precise and statistically significant effect (OR 3.88, 95%
CI 2.28-6.60; p < 0.01; 12 = 72%) [18]. This approach assumes identical efficacy across studies, an
assumption that may not hold given the clinical diversity. When the data were re-analysed using a
random-effects model with REML estimation, the effect remained directionally similar but with
wider confidence intervals (OR 3.44, 95% CI 1.20-9.88; p = 0.02). With the Hartung-Knapp-Sidik-
Jonkman (HKS]J) adjustment, recommended for small and heterogeneous datasets, the interval
widened further and statistical significance was lost (OR 3.44, 95% CI 0.34-34.91; p = 0.15) [19]. This
scenario remains partially conflicting: with very few studies, Wald-type intervals tend to be overly
optimistic, whereas HKS]J intervals can become excessively conservative. In such cases, the most
informative approach is to present both sets of results and interpret them jointly. Nevertheless, this
example illustrates how fixed-effect modelling can overstate precision in the presence of variability.
In contrast, random-effects methods with robust interval estimation provide a more cautious and
clinically faithful interpretation.

Applied case study 2: musculoskeletal outcomes after esophageal atresia repair

Children with esophageal atresia (EA) require surgical repair, most commonly through
conventional open thoracotomy repair (COR) or thoracoscopic repair (TR). Long-term
musculoskeletal sequelae—such as scoliosis, rib fusion, and scapular winging—are recognized
complications, particularly after open procedures involving rib spreading. A recent meta-analysis
compared TR with thoracotomy; however, the included studies varied in follow-up duration,
diagnostic methods (clinical assessment versus imaging), and surgeon expertise. These differences
introduce clinical heterogeneity, making the assumption of a single common effect less plausible.

In this setting, the analysis employed a fixed-effect Mantel-Haenszel model, reporting
statistically significant and precise reductions in musculoskeletal complications with TR (e.g.,
scoliosis: RR 0.35, 95% CI 0.14-0.84; p = 0.02) [20]. With only four small retrospective studies and
moderate inconsistency (I = 38%), a random-effects model using REML estimation yielded wider
intervals and reduced certainty (RR 0.35, 95% CI 0.09-1.36; p = 0.13). When the Hartung-Knapp—
Sidik-Jonkman (HKS]J) adjustment was applied, the confidence interval broadened further, and
statistical significance was lost (RR 0.35, 95% CI 0.05-2.36; p = 0.18) [21].

This case illustrates how fixed-effect modelling can produce narrow intervals that may overstate
certainty. In contrast, random-effects approaches, particularly REML with HKS] adjustment, provide
a more cautious and clinically appropriate interpretation.

Applied case study 3: re-analysis of psychological bulletin meta-analyses
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Schmidt et al. revisited 68 meta-analyses published in Psychological Bulletin, many of which had
relied on fixed-effect models as their primary approach. They aimed to test whether this choice was
justified, given that most sets of studies in psychology —and, by extension, in medicine—are drawn
from diverse populations, designs, and settings, where assuming a single common effect is
unrealistic.

When they re-analysed the same datasets using random-effects procedures, the results changed
substantially. Confidence intervals that had looked narrow and precise under fixed-effect became
much wider, and in many cases, the apparent statistical significance disappeared. On average, the
“95% Cls” reported with fixed-effect overstated precision by about half, giving an impression of
robustness that the data did not actually support.

The key conclusion was that only in a small minority of cases (~3%) could a fixed-effect model
reasonably be defended. In the overwhelming majority, random-effects models better captured the
genuine variability between studies [22]. This large-scale re-analysis showed convincingly that
reliance on fixed-effect can create an illusion of certainty and systematically exaggerate confidence in
meta-analytic findings.

Applied case study 4: the rosiglitazone link with myocardial infarction and cardiac death

Shuster et al. revisited the influential meta-analysis by Nissen and Wolski on rosiglitazone and
cardiovascular risk [23]. The original authors had chosen a fixed-effect approach, arguing that
homogeneity tests did not reject the null. However, this decision was problematic: with rare adverse
events and many trials, such tests have very low power. Moreover, the studies pooled differed
substantially in dose, comparators, follow-up, and populations—conditions that make the
assumption of a single common effect implausible. When Shuster and colleagues re-analysed the 48
eligible trials using random-effects methods specifically adapted for rare events, the findings shifted.
For myocardial infarction, the fixed-effect model suggested statistical significance (RR 1.43, 95% CI
1.03-1.98, p = 0.03), whereas the random-effects estimate was non-significant (RR 1.51, 95% CI 0.91-
2.48, p = 0.11). Conversely, for cardiac death, the fixed-effect result was null (RR 1.64, 95% CI 0.98-
2.74, p =0.06), but the random-effects analysis indicated a clear increase in risk (RR 2.37, 95% CI 1.38—
4.07, p = 0.0017). The key message was that reliance on fixed-effect models, especially in the rare-
event setting, can both mask and exaggerate signals depending on how large studies dominate the
weights. By contrast, random-effects better accounted for the true diversity of trial scenarios. This re-
analysis underscored that method choice was not a technical detail: for rosiglitazone, it meant the
difference between concluding “no risk” and identifying a serious safety concern.

Applied case study 5: The Role of magnesium in acute myocardial infarction

A meta-analysis of 12 randomized trials assessed intravenous magnesium for acute myocardial
infarction. Under a fixed-effect model, the pooled odds ratio was null (OR 1.02, 95% CI 0.96-1.08),
but heterogeneity was extreme (p < 0.0001), driven largely by a single large trial where magnesium
was administered late, often after fibrinolysis. Applying a random-effects model changed the
conclusion: the pooled odds ratio indicated significant benefit (OR 0.61, 95% CI 0.43-0.87; p = 0.006)
[24]. Experimental data support that magnesium’s cardioprotective effect depends on timely
administration—before or at reperfusion, not after. Here, heterogeneity reflected a true effect
modifier (timing), not random noise. This case illustrates that fixed-effect pooling can obscure
clinically meaningful patterns, whereas random-effects better accommodate mechanistic plausibility
and context.

Table 5 summarizes how conclusions shifted in the five real-world case studies when analyses
were re-examined under random-effects models, highlighting how methodological choice can
transform the apparent certainty and even the direction of evidence.
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Table 5. Summary of how conclusions shifted in five real-world case studies when re-analysed under random-

effects models.

Case study Clinical Original Re-analysed Key lesson
question model & model &
result result
FE overstates precision;
RE + HKSJ highlight the
RE REML: OR | underlying uncertainty.
FE Mantel-
3.44 (1.20- With very few studies,
Haenszel: OR
Non-invasive 9.88), p=0.02; confidence intervals
1. Urination 3.88 (95% CI
stimulation to HKSJ: OR 3.44 become challenging to
stimulation ) 2.28-6.60), ) )
o collect urine (0.34-34.91), interpret—either too
in infants p<0.01; I>=72%
samples p=0.15 — narrow under FE or
— strongly ) ) )
o wide, excessively wide under
positive . . )
inconclusive HKSJ —underscoring the
inherent difficulty of
sparse-data scenarios
RE REML: RR
FE Mantel-
0.35 (0.09-
Musculoskeletal | Haenszel: RR 1.36), p=0.13 Certainty collapses when
2. Esophageal | sequelae after 0.35 (0.14- NPT heterogeneity is
. . HKSJ: RR 0.35
atresia repair | thoracoscopic 0.84), p=0.02 (0.05-2.36) acknowledged; RE
Vs open repair — significant . o prevents false confidence
) p=0.18 — loss
reduction
of significance
RE widened
3 FE gave CIs,
) . 68 psychology | narrow, often significance Large-scale evidence that
Psychological o )
meta-analyses “significant” often FE systematically
Bulletin re-
. re-examined Cls; apparent | disappeared; exaggerates certainty
analysis
robustness FE defensible
in ~3% only
RE (rare-
FE:MIRR 1.43 | event): MIRR
Myocardial (1.03-1.98), 1.51 (0.91-
4. infarction & p=0.03 (1 risk); | 2.48), p=0.11 FE masked real risk
Rosiglitazone | cardiac death cardiac death | (NS); cardiac signal; RE exposed to
& CV risk with RR 1.64 (0.98- | death RR2.37 | clinically important harm
rosiglitazone 2.74), p=0.06 (1.38-4.07),
(NS) p=0.0017 (1
risk)
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FE: OR 1.02
RE: OR 0.61 FE obscured mechanistic
5. (0.96-1.08) —
. (0.43-0.87), truth; RE aligned with
Magnesium | IV Mg?* for AMI | null; extreme
. ) p=0.006 — biological plausibility
in acute MI heterogeneity
protective (timing of administration)
(p<0.0001)

FE = fixed-effect; RE = random-effects; REML = restricted maximum likelihood; HKS] = Hartung—Knapp-Sidik—Jonkman;
OR = odds ratio; RR = risk ratio; MI = myocardial infarction; AMI = acute myocardial infarction.

A final Nuance: Diagnostic Test Accuracy Studies

Model choice has particular nuances in diagnostic test accuracy (DTA) meta-analyses [25-27].
Here, the standard is not a simple fixed-versus-random-effects dichotomy, but rather hierarchical
models that almost always assume random effects by default. Modern approaches, such as the
bivariate model or the hierarchical summary receiver operating characteristic (HSROC) model, are
estimated by maximum likelihood methods. These models jointly account for sensitivity and
specificity, explicitly allowing for between-study variability in both parameters, as well as differences
in diagnostic thresholds. In practice, this means that DTA meta-analyses are nearly always
conceptualized within a random-effects framework, with heterogeneity treated as intrinsic to
diagnostic performance rather than an optional feature.

Conclusions

For ease of application, the core principles of this tutorial are summarized in Table 6 as key take-
away messages. These concise points highlight best practices—model choice, heterogeneity, modern
methods, and transparent reporting —ensuring that evidence synthesis remains both rigorous and
clinically meaningful.

Table 6. Takeaway messages.

e Follow Cochrane guidance and the PRISMA 2020 checklist rigorously

e  Default to random-effects models in clinical meta-analyses

e Interpret fixed-effect results with caution; use them mainly for sensitivity analyses
e Always report heterogeneity (I2, Q, 7%) and include a 95% prediction interval

e Use modern methods: apply REML for 12 and HKSJ for confidence intervals

e Treat heterogeneity as clinical information, not a nuisance

e Report models, estimators, and intervals transparently to ensure reproducibility

At first glance, fixed- and random-effects models may seem like technical details, but they
embody fundamentally different views of evidence. Fixed-effect conveys the illusion of one universal
truth, while random-effects embraces the diversity that defines real-world medicine.

Returning to our metaphor, body temperature is not always 37.0 °C; it fluctuates across people,
time, and circumstances. The same is true of treatment effects. To insist on one “true” number is to
ignore that reality. To acknowledge a distribution of effects is not to weaken evidence, but to
strengthen its credibility.

For clinicians, the message is clear. Random-effects models should be the default in most
situations, because medicine is heterogeneous. Fixed-effect models retain a role in very specific
contexts or as sensitivity analyses, but not as the starting point. Heterogeneity is not a flaw to be
eliminated —it is the compass that guides interpretation.
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