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Abstract 

Meta-analysis has become central to evidence-based medicine, yet a persistent gap remains between 
statistical experts and clinicians in understanding the implications of model choice. The distinction 
between fixed- and random-effects is often dismissed as a technical detail, when in fact it defines the 
very philosophy of evidence synthesis and must be addressed conceptually, a priori, rather than 
dictated by heterogeneity statistics. Fixed-effect models convey the illusion of a single universal truth, 
offering apparent precision but resting on an assumption rarely met in clinical practice. Random-
effects models, by contrast, acknowledge that true effects differ across studies, populations, and 
settings, providing wider but more credible intervals that reflect real-world diversity. This work 
presents a tutorial designed to explain, in a simple and accessible manner, how to conduct an updated 
and robust evidence synthesis. Through real and simulated examples—including clinical scenarios, 
a worked hypothetical meta-analysis, re-analyses of published reviews, and the metaphor of body 
temperature—the tutorial demonstrates how model choice can fundamentally alter conclusions. 
Results that appear significant under a fixed-effect model may become non-significant with more 
robust random-effects methods, due to wider confidence intervals that account for between-study 
heterogeneity. In contrast, prediction intervals reveal the range of effects likely to be observed in 
practice. Drawing on Cochrane guidance, the discussion highlights current standards, including 
REML and Paule–Mandel estimators, Hartung–Knapp–Sidik–Jonkman confidence intervals, and the 
routine use of prediction intervals. By combining intuitive analogies with practical applications, the 
tutorial provides clinicians with an accessible introduction to contemporary meta-analytic methods, 
promoting more reliable evidence synthesis. 

Keywords: meta-analysis; fixed-effect model; random-effects model; heterogeneity; prediction 
intervals; evidence synthesis; Cochrane Handbook 
 

Introduction 

Two meta-analyses, based on the very same set of studies, may yield strikingly different 
conclusions. For the clinician reviewing the literature, this contradiction is more than a statistical 
curiosity—it is a source of genuine confusion that can shape clinical decisions. Why does this happen? 
More often than not, the explanation lies in a modeling choice rarely discussed outside statistical 
circles: whether the analysis was conducted under a fixed-effect or a random-effects framework. 

This choice is not a technical footnote. It determines whether a meta-analysis communicates the 
illusion of a single universal truth or the reality of variable effects across diverse settings. 

In practical terms, it is the difference between reporting a highly precise estimate that assumes 
all studies are interchangeable and presenting a more cautious summary that acknowledges 
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heterogeneity as part of clinical reality—a distinction often misunderstood in clinical research [1]. 
Not only are such heterogeneity statistics misused to dictate model choice, but doing so confuses 
cause and effect: model philosophy should be set conceptually a priori, not driven by an I² value. 

For clinicians, understanding this distinction is essential. It reframes meta-analysis not as a 
machine for producing a single “answer,” but as a tool for interpreting variability in evidence. In this 
article, we offer a foundational explanation of fixed versus random effects, using a familiar clinical 
metaphor to make the concepts intuitive. This work aims not only to clarify statistical modeling but 
also to demonstrate why model choice carries direct consequences for how evidence is translated into 
practice. 

The Foundational Question: One True Effect? 

At its heart, the choice of model boils down to this: do we believe that every study is measuring 
the same single effect, or do we accept that true effects differ from one study to another? [2] 

The fixed-effect model assumes the former. It treats each study as a repeated measurement of 
the same underlying truth, with differences explained solely by chance. In this view, there is one 
“true effect,” and the task of meta-analysis is to identify it with the greatest possible precision. 

The random-effects model assumes the latter. It acknowledges that effects may legitimately 
differ across settings, populations, and methods. Rather than assuming one universal truth, it 
estimates the average of a distribution of true effects and incorporates that variability into the pooled 
estimate [3]. 

A clinical metaphor illustrates the distinction. Consider human body temperature: 
• Under a fixed-effect view, we would insist that the true temperature is always 37.0 °C. Any 

deviation measured in practice—36.8 °C, 37.3 °C—would be dismissed as random error around 
this single correct value. 

• Under a random-effects view, we recognize that normal body temperature is not identical for 
everyone. Some individuals average 36.5 °C, while others average 37.2 °C, and variations also 
occur with time of day, measurement method, or physiological state. There is still a meaningful 
average around 37 °C, but it represents a summary of genuine diversity rather than an 
immutable truth. 
This metaphor captures the essence of fixed versus random effects: one offers the illusion of 

uniformity, the other reflects the reality of variability. Choosing between them is not just a statistical 
decision—it determines whether we present evidence as a single number or as a distribution that 
mirrors clinical practice. Just as an individual’s temperature can vary yet still be normal, in meta-
analysis a treatment’s effect can vary across studies yet still be real. Importantly, clinical effects often 
exhibit even greater variability than body temperature—sometimes differing not only in magnitude 
but also in direction. 

While the body temperature metaphor effectively illustrates the contrast between a single value 
and a distribution, it is worth noting that clinical treatment effects can exhibit far wider variability. 
In some cases, results may not only differ in magnitude but even cross the null—showing benefit in 
certain contexts and possible harm in others. This broader spectrum of heterogeneity goes beyond 
the relatively narrow physiological range of normal temperature, but the metaphor remains useful 
as an entry point to the concept. This distinction is critical: while a fluctuation between 36.5 °C and 
37.2 °C carries little clinical consequence, the variability of treatment effects can extend from 
meaningful benefit to genuine harm. In this sense, the stakes of heterogeneity in clinical research are 
far higher than in physiology, making the recognition of treatment-effect distributions a matter of 
patient safety and health policy. 

Table 1 provides additional clinical examples that illustrate how fixed- and random-effects 
models embody fundamentally different assumptions, leading to distinct interpretations of the same 
evidence. 
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Table 1. Illustrative and simplified clinical scenarios contrasting the assumptions of fixed-effect and random-
effects models. 

Clinical Scenario 
What does assuming fixed 

effects mean 

What does assuming 

random effects mean 

In non-operative 

management of 

uncomplicated appendicitis 

(antibiotics alone), is the 

success rate the same across 

all hospitals? 

Assumes that non-operative 

antibiotic management yields 

the same success rate 

everywhere, with any 

between-hospital differences 

attributed only to chance. 

Recognizes that true success 

rates differ—e.g., ~90% in 

some centers and ~70% in 

others—owing to patient 

selection, imaging protocols, 

antibiotic regimens, criteria 

for failure/crossover, and 

local care pathways.  

Do ACE inhibitors lower 

blood pressure by the same 

amount in every patient? 

Assumes that all patients 

experience an identical 

reduction (e.g., 10 mmHg), 

with observed deviations 

dismissed as random noise. 

Recognizes that true 

responses vary according to 

patient- and context-specific 

factors—such as race (e.g., 

Black patients often respond 

differently to ACE 

inhibitors), comorbidities, 

baseline blood pressure, and 

treatment adherence. 

Does screening colonoscopy 

reduce colorectal cancer 

mortality equally in all 

health systems? 

Assumes that screening 

colonoscopy provides the 

same mortality reduction 

regardless of context. 

Recognizes that the benefit of 

screening colonoscopy varies 

according to program- and 

practice-level factors. For 

example, mortality reduction 

is greater in robust, high-

coverage programs and 

smaller in under-resourced 

systems; likewise, differences 

in endoscopist quality—such 

as adenoma detection rates—

also influence the magnitude 

of effect. 

Does prone positioning 

reduce mortality in ARDS 

patients to the same extent 

across ICUs? 

Assumes a uniform mortality 

reduction across all settings 

(e.g., 15%). 

Recognizes that the benefit 

varies according to multiple 

factors. For example, 

outcomes may be better in 

experienced centers with 

established protocols, 

adequate nurse-to-patient 

ratios, and optimal 
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ventilatory management, 

compared to smaller units 

with less prepared staff. 

These are illustrative factors 

that influence the true effect, 

rather than random noise. 

Do COVID-19 vaccines 

protect against infection? 

Assumes identical vaccine 

effectiveness across all 

groups, regardless of age, 

comorbidity, or circulating 

variants. 

Recognizes that effectiveness 

genuinely varies, with higher 

protection in some groups 

and lower in others, the 

pooled estimate reflecting an 

average across these 

conditions. 

Does a smoking cessation 

intervention increase quit 

rates equally across settings? 

Assumes that this 

intervention produces the 

same improvement in quit 

rates everywhere, with any 

observed variation across 

studies explained only by 

chance. 

Recognizes that effectiveness 

depends on contextual and 

patient-level factors—for 

example, behavioral support 

intensity, pharmacotherapy 

access, or patient 

characteristics—so that 

observed differences reflect 

genuine variability rather 

than random noise. 
ACE = angiotensin-converting enzyme; ARDS = acute respiratory distress syndrome; ICU = intensive care unit. 

Fixed-Effect: Clarity with a Cost 

The appeal of the fixed-effect model lies in its apparent simplicity. By treating every study as a 
replicate of the same underlying truth, it produces a single pooled estimate with narrow confidence 
intervals. To the busy clinician, this precision can be seductive: it seems to promise certainty. 

Yet this clarity comes at a cost. If true effects genuinely differ across settings, the fixed-effect 
approach erases that variability, presenting heterogeneity as if it were mere random noise. The result 
is an artificially precise number that risks overstating the generalizability of the evidence. 

Returning to our metaphor of body temperature, the fixed-effect model insists that the true 
temperature of a human being is exactly 37.0 °C. A reading of 36.7 °C or 37.3 °C is treated only as a 
measurement error. Clinically, however, we know that variation in normal body temperature is real, 
not illusory. 

A practical example illustrates the point. As shown in Table 1, a fixed-effect model assumes, for 
instance, that screening colonoscopy reduces colorectal cancer mortality by the same amount 
everywhere, or that ACE inhibitors lower blood pressure identically in all patients. Such pooling 
yields a deceptively precise number, but one that obscures real differences driven by program 
quality, patient characteristics, or adherence. Importantly, this cost is not merely a loss of realism but 
a quantifiable statistical bias: when the assumption of homogeneity is violated, fixed-effect models 
yield biased significance tests and misleadingly narrow confidence intervals. Evidence from large-
scale re-analyses supports this concern.  

In short, fixed-effect analysis can create the mirage of certainty: an attractive single number that 
conceals rather than reflects clinical diversity. Although there are rare situations where a fixed-effect 
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approach may be justified—such as highly homogeneous studies or sensitivity analyses—it should 
not be the default choice in clinical meta-analysis, where acknowledging variability is almost always 
the more appropriate stance. 

Random-Effects: Embracing Variability 

In contrast, the random-effects model begins from a different premise: that variation across 
studies is not merely noise, but often reflects genuine differences between them. These differences 
may arise from multiple sources—such as populations, clinical settings, or how an intervention is 
implemented. Instead of forcing all studies into a single truth, the random-effects model estimates 
the mean of a distribution of true effects and widens the confidence interval to reflect that diversity. 

Returning to our body temperature metaphor, the random-effects model accepts that normal 
temperature does not have to be exactly 37.0 °C. Some people run at 36.5 °C, others at 37.2 °C. These 
differences are real, influenced by factors such as genetics, race, age, time of day, or even the 
measurement method used. The pooled value around 37 °C is still useful, but only when understood 
as an average of many true values, not as a universal constant. 

Clinically, this perspective is more faithful to reality. As shown in Table 1, the benefit of 
screening colonoscopy may be greater in well-resourced, high-coverage programs and smaller in 
under-resourced settings. The blood-pressure response to ACE inhibitors differs across patient 
groups, shaped by comorbidity, adherence, baseline risk, and even race. Random-effects models 
explicitly incorporate such heterogeneity into the summary estimate. 

The price to pay is less apparent precision. Confidence intervals under random-effects are 
usually wider. Put simply, a confidence interval is the range of values within which the true effect is 
most likely to lie. A narrow interval may look more reassuring, but if it ignores genuine variation, it 
can be misleading. Wider intervals under random-effects are not a weakness—they are a more honest 
reflection of the uncertainty clinicians face when applying evidence across diverse contexts. 

In practice, random-effects analysis acknowledges what every clinician already knows: patients, 
hospitals, and health systems are not identical. By embracing variability, it avoids the illusion of false 
certainty and produces estimates that more accurately reflect the realities of real-world medicine. 

Methodological Choices within the Random-Effects Framework 

Random-effects analysis is not a single recipe. There are different ways to estimate the average 
effect and its uncertainty, and the choice can influence the final numbers. Two aspects matter most: 
how we estimate the amount of heterogeneity (the model) and how we calculate the confidence 
interval (the CI method). 

1. Estimating heterogeneity (“the model”): All random-effects models try to capture how much 
the true effects vary between studies, but they use different formulas to do it. 

• DerSimonian–Laird (DL): the classic method, fast and simple, but tends to underestimate 
variability (i.e., the real differences between study results) when there are few studies. This 
underestimation can result in overly narrow confidence intervals, thereby increasing the risk of 
false-positive findings (especially in meta-analyses with a small number of studies) [4]. This 
method persists because it is the long-standing default in many software packages.  

• Restricted Maximum Likelihood (REML): the current standard, very robust for estimating 
variability, though slightly more complex [5,6]. 

• Paule–Mandel (PM): another robust option, often recommended today as an alternative to DL, 
particularly when heterogeneity is moderate. It has been endorsed in the Cochrane Handbook 
and supported by comparative evaluations [6]. 

2. Calculating confidence intervals (“the CI”): Once the average effect is estimated, we need to 
decide how wide the confidence interval should be. 
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• Wald CI: the traditional, straightforward approach; it often produces intervals that look 
reassuringly precise but can be too narrow, especially when there are few studies or some 
heterogeneity [2]. 

• Hartung–Knapp–Sidik–Jonkman (HKSJ): a modern method that produces wider and generally 
more reliable intervals. It is now considered the standard when heterogeneity is present. With 
very few studies, it can sometimes yield excessively wide (over-conservative) intervals; 
however, it remains the better option overall, as cautious inference is safer than overconfident 
conclusions [7,8]. 

• Modified or truncated HKSJ (mHK): a refinement of the HKSJ method, designed to prevent 
confidence intervals from becoming excessively wide in rare situations—typically when the 
number of studies is very small, a common scenario in clinical research, or when the between-
study variance is close to zero [9]. 

Random-effects models all share the same philosophy—accepting variability—but they differ in 
how cautious they are. DL + Wald often looks neat and “precise” but can be misleading. REML or 
Paule–Mandel combined with HKSJ intervals are increasingly seen as the safer choices when 
evidence is sparse or heterogeneous [2]. 

Heterogeneity as the Compass for Model Choice 

What Heterogeneity Means 

Heterogeneity means that the results of studies are not identical [10–13]. Sometimes this 
variation is small and trivial; other times it is significant and clinically meaningful. In meta-analysis, 
the question is not whether differences exist—they almost always do—but whether we interpret them 
as noise around one truth or as signals of genuinely different effects.  

Clinical vs. Statistical Heterogeneity 

Two forms of heterogeneity should be distinguished: 

• Clinical heterogeneity: This is the real-world variability we expect when studies are not identical 
in who they include, what they do, or where they are done. Patients may differ in age, 
comorbidities, or disease severity; interventions may vary in dose, surgical technique, or how 
strictly protocols are followed; and settings may range from highly specialized hospitals to 
resource-limited clinics. These differences are not errors but part of normal clinical diversity—
and they often explain why study results do not all look the same. 

• Statistical heterogeneity: this is heterogeneity “put into numbers.” It describes how much the 
results of the included studies differ once we account for normal random fluctuations due to 
sample size. Every study will vary slightly, simply due to chance—this is known as sampling 
error. However, when the differences are greater than what chance alone would explain, we 
refer to it as statistical heterogeneity. Indices like Q, I², and τ² are simply ways of expressing that 
variability in numbers. 

Model Choice Should Come First (and I² Should not Be Used to Make This Choice) 

Crucially, the decision between fixed- and random-effects models must be made conceptually 
before looking at any statistics [2]. The choice rests on whether we believe in a single universal effect 
or in a distribution of effects shaped by context. Measures of heterogeneity are helpful descriptors, 
but they do not dictate the model's philosophy. 

Statistical heterogeneity refers to the variability observed when combining study results, beyond 
what would be expected from random sampling error alone. Indices such as Q, I², and τ² quantify 
this variability [6,10–12], but they should be interpreted as guides to the extent of differences, not as 
arbiters of which model to use. As we will emphasize later, selecting between fixed and random 
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effects purely based on I² is misguided: the underlying conceptual question is whether one effect or 
many?—must always come first. 

Measuring Statistical Heterogeneity 

There are several common tools, each with a distinct role: 

• Cochran’s Q: a test that asks whether the differences between studies are greater than expected 
by chance [10]. Its main limitation is that it strongly depends on the number of studies: with few, 
it often misses real differences; with many, it flags even trivial ones. A non-significant Q should 
therefore never be taken as proof of homogeneity. 

• I²: the percentage of total variation explained by real heterogeneity rather than chance. Values 
of 25%, 50%, and 75% are often described as low, moderate, and high heterogeneity, though 
thresholds are arbitrary [11,12]. Moreover, I² itself is only an estimate and carries considerable 
uncertainty, particularly when the number of studies is small. It is also strongly influenced by 
the precision of the included studies: meta-analyses with large sample sizes can yield high I² 
values even when the absolute differences in effects are clinically trivial. These limitations 
further reinforce why model choice should be made conceptually rather than dictated by I². 

• τ² (between-study variance): measures how much the true effects differ across studies. It is 
reported on the same scale as the effect size (e.g., risk difference in absolute %, or log scale for 
risk ratios). A τ² of 0 means no variability at all [2,6]. An estimated τ² of 0 suggests that there is 
no evidence of between-study variance beyond what would be expected by chance. τ² matters 
because it drives the weights in a random-effects model and is essential for calculating prediction 
intervals [2,6]. 

Putting it Together 

In practice, heterogeneity is expected in almost every clinical question. The key is not whether it 
exists, but what it means. If studies are highly consistent, fixed- and random-effects estimates 
converge. If studies diverge, random-effects models acknowledge that reality, whereas fixed-effect 
models may suppress it. 

The Guiding Role of Heterogeneity 

Heterogeneity is thus not a flaw to be eliminated, but a compass: it helps us interpret the 
evidence and understand when variability matters. By embracing it, meta-analysis shifts from 
delivering a single, over-simplified answer to providing a more nuanced picture of reality—one that 
clinicians can trust when applying results to diverse patients and settings. Returning to our metaphor, 
heterogeneity in meta-analysis is no different from the spread of normal body temperatures: 
expected, natural, and informative when properly understood. 

Prediction Intervals: Looking Beyond Confidence Intervals 

Confidence intervals (CIs) around the pooled effect describe the precision of the average estimate. 
However, clinicians are often less interested in the mean effect and more concerned with what might 
happen in their own setting. For this purpose, prediction intervals (PIs) are more informative: they 
estimate the range within which the true effect of a new study, in a comparable context, is expected 
to fall [3,14,15]. Most importantly, PIs often expose the fragility of apparently significant findings. In 
large-scale reanalysis, almost 75% of statistically significant meta-analyses had PIs including the null 
[16]. 

Returning to our body temperature metaphor, the average human temperature may be 37.0 °C, 
and a 95% CI around the mean might be 36.9–37.1 °C. This interval is very narrow—but it only tells 
us how precisely we know the mean. A PI, in contrast, reflects the actual spread of normal body 
temperatures (e.g., 36.5–37.5 °C). This is directly linked to τ², which quantifies the between-study 
variance (τ²): the larger τ², the wider the prediction interval. This width is not arbitrary; the PI is 
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calculated directly from the τ². A large τ² mathematically guarantees a wide PI. In our metaphor, τ² 
is the statistical estimate of how much temperatures vary across the studies we have in hand, while 
the prediction interval (e.g., 36.5–37.5 °C) conveys the range we would expect to observe in new or 
future patients. 

Clinically, this distinction is crucial. A confidence interval might suggest that the effect of 
screening colonoscopy is “precisely” a 20% reduction in mortality, but the prediction interval may 
reveal that in some contexts, the effect is close to 40%, while in others, it approaches zero. By reporting 
both CIs and PIs, meta-analyses can move from abstract averages to a more realistic picture of how 
results may vary across real-world settings. Therefore, when counseling a patient or developing a 
local protocol, the prediction interval—when available—provides a more realistic and clinically 
relevant range of potential outcomes than the confidence interval alone. For example, when 
communicating results, a clinician might say: ‘Across all studies, the average benefit of this treatment 
was about a 20% reduction in risk (as reflected by the confidence interval). However, the prediction 
interval indicates that in a specific future setting, the effect could plausibly range from a 40% 
reduction to no benefit at all. This wider range provides a more realistic expectation of how the 
treatment might perform in our own patient population 

So, Which Model Should I Choose? 

Key Principles for Model Choice 

The decision between fixed- and random-effects is not a technical footnote—it reflects how we 
understand the evidence. Fixed-effect assumes that there is a single underlying effect that applies 
everywhere. Random-effects models, by contrast, assume that true effects differ across studies, 
shaped by patient characteristics, interventions, and contexts. In medicine, such diversity is the rule, 
not the exception. 

For this reason, model choice should be made conceptually, before looking at any statistics. 
Numbers like Q, I², or τ² are useful for describing how much studies vary, but they do not determine 
the philosophy of the model. The starting point must always be the question: do we believe in one 
effect, or in many? It is the same distinction as asking whether there is one single ‘normal’ 
temperature or a distribution of normal values across people. 

Table 2 summarizes the key criteria that distinguish fixed-effect from random-effects models 
and guides the use of each when they may be appropriate in clinical meta-analysis. 

Table 2. Choosing between fixed and random-effects: a clinician’s guide. 

Criterion 

Fixed-effect 

(common-effect) 

model 

Random-effects model 

Underlying 

assumption 

Assumes a single 

true effect applies to 

all studies; observed 

differences are due 

only to chance. 

Assumes true effects vary across 

studies; the pooled estimate 

represents the average of a 

distribution. 

Clinical 

diversity 

Suitable only when 

studies are 

essentially identical 

in population, 

intervention, and 

setting. 

Preferred when studies differ in 

patients, protocols, or healthcare 

contexts. 
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Number of 

studies 

Appears stable with 

very few studies, but 

precision is often 

misleading 

Safer with few; use HKSJ to better 

reflect uncertainty. HKSJ may be 

over-conservative with very few 

studies; consider 

modified/truncated HKSJ (mHK) 

Statistical 

heterogeneity 

Ignores between-

study variability; 

heterogeneity is 

treated as sampling 

error. 

Explicitly incorporates between-

study variability into the analysis. 

Precision vs 

realism 

Produces narrower 

confidence intervals 

that may overstate 

certainty. 

Produces wider intervals that 

better reflect real-world 

uncertainty. 

Generalizability 

Limited; results 

apply only to the 

specific studies 

included. 

Broader; results are more 

applicable across diverse contexts. 

Role in practice 

Occasionally useful 

for sensitivity 

analyses or narrowly 

defined questions. 

Default choice in most clinical 

meta-analyses. 

What Cochrane Recommends 

The Cochrane Handbook is explicit on this issue [2]. Random-effects models are generally the 
safer choice whenever clinical diversity is present—meaning, in most clinical questions. Fixed-effect 
can be defensible only when studies are virtually identical in design, participants, and context, a 
situation that is rare outside very narrow questions. 

Cochrane also warns against a common mistake: switching between models based on whether 
I² is “high” or “low.” Heterogeneity statistics describe variability, but they should not dictate the 
model. Instead, the model should be chosen a priori, guided by the plausibility of one universal effect 
versus a distribution of effects. Increasingly, Cochrane reviews present both: random-effects as the 
main analysis, and fixed-effect as a sensitivity check. 

Table 3 reports the explicit recommendations of the Cochrane Handbook on model choice and 
inference, together with their practical implications for clinical meta-analysis. 

Table 3. Explicit recommendations from the Cochrane Handbook for Systematic Reviews. 

Criterion 

Fixed-effect 

(common-effect) 

model 

Random-effects model 

Underlying 

assumption 

Assumes a single 

true effect applies to 

all studies; observed 

Assumes true effects vary across 

studies; the pooled estimate 

represents the average of a 

distribution. 
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differences are due 

only to chance. 

Clinical diversity 

Suitable only when 

studies are 

essentially identical 

in population, 

intervention, and 

setting. 

Preferred when studies differ in 

patients, protocols, or healthcare 

contexts. 

Number of 

studies 

Appears stable with 

very few studies, 

but precision is 

often misleading 

Safer with few; use HKSJ to 

better reflect uncertainty. HKSJ 

may be over-conservative with 

very few studies; consider 

modified/truncated HKSJ (mHK) 

Statistical 

heterogeneity 

Ignores between-

study variability; 

heterogeneity is 

treated as sampling 

error. 

Explicitly incorporates between-

study variability into the 

analysis. 

Precision vs 

realism 

Produces narrower 

confidence intervals 

that may overstate 

certainty. 

Produces wider intervals that 

better reflect real-world 

uncertainty. 

Generalizability 

Limited; results 

apply only to the 

specific studies 

included. 

Broader; results are more 

applicable across diverse 

contexts. 

Role in practice 

Occasionally useful 

for sensitivity 

analyses or 

narrowly defined 

questions. 

Default choice in most clinical 

meta-analyses. 

ACE = angiotensin-converting enzyme; ARDS = acute respiratory distress syndrome; ICU = intensive care unit. 

Practical Guidance for Clinicians 

For clinicians interpreting meta-analyses, several practical lessons can be drawn. Random-effects 
should usually be the default, because patients and hospitals are not interchangeable. Fixed-effect 
has a role, but mainly as a sensitivity analysis or in narrowly defined questions where studies are 
genuinely homogeneous. 

Statistical significance under fixed-effect should not be mistaken for robustness. If a result 
disappears when random effects are applied, that is a warning sign that variability matters and the 
evidence is fragile. Finally, always look at the forest plot before the summary number. If studies point 
in different directions, an apparently precise fixed-effect estimate is misleading. Just as a single 
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thermometer reading can miss the natural variability across individuals, a single fixed-effect estimate 
can obscure meaningful differences between studies. 

Making it Visual: Fixed vs Random at a Glance 

The contrast between fixed- and random-effects models is not only conceptual but also readily 
visible. Figure 1 presents, for illustrative purposes, a simulated meta-analysis of six randomized trials 
evaluating a hypothetical new antithrombotic agent for the prevention of postoperative thrombosis. 
Each trial compared the novel drug with conventional prophylaxis, reporting the number of 
thrombotic events in each group. While all studies suggested fewer events in the treatment arm, the 
magnitude of benefit varied substantially across trials. 
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Figure 1. Simulated meta-analysis of six randomized trials of a new antithrombotic agent for postoperative 
thromboprophylaxis. Each study reports the number of thrombotic events in the treatment (novel agent) and 
control (conventional prophylaxis) groups. The top panel displays the fixed-effect Mantel–Haenszel model (RR 
0.73, 95% CI 0.62–0.87, p < 0.01). The middle panel shows the random-effects model using the REML estimator 
of τ² (RR 0.76, 95% CI 0.58–0.99, p = 0.04), with between-study variance τ² = 0.05, heterogeneity I² = 50.8%, and Q 
= 10.96 (p = 0.05); Wald confidence intervals are presented. The bottom panel illustrates the random-effects model 
using REML with Hartung–Knapp adjustment (RR 0.76, 95% CI 0.55–1.05, p = 0.08), where τ² = 0.05, I² = 50.8%, 
and Q = 10.96 (p = 0.05); confidence intervals are based on the Hartung–Knapp method. For the random-effects 
models, the 95% prediction interval (0.36–1.57) indicates that the effect in a future study could plausibly range 
from substantial benefit to no benefit—or even harm, underscoring the importance of model choice in clinical 
interpretation. All analyses were performed using Stata version 19.0 (StataCorp LLC, College Station, TX, USA), 
employing the meta package. A small note for readers: if the analyses are replicated under a Mantel–Haenszel fixed-effect 
model or using the DerSimonian–Laird method, the heterogeneity summaries will be slightly different from the REML-
based figures reported here—specifically, Q = 11.06 on 5 degrees of freedom (p = 0.05) and I² = 54.8%. This occurs because 
Q and its derivative I² are formally defined within a fixed-effect framework, where study weights depend only on within-
study variance. When software such as Stata recalculates these indices using random-effects weights (as in REML), the 
values shift modestly. Conceptually, the “canonical” values are those from the fixed-effect calculation (54.8% here); DL is 
consistent with this convention because it computes Q using fixed-effect inverse-variance weights. 

Under a fixed-effect Mantel–Haenszel model (a fixed-effect pooling method), pooling the six 
studies yielded a statistically significant reduction in thrombotic events with narrow confidence 
intervals (RR 0.73, 95% CI 0.62–0.87; p<0.01). At face value, this implies that the new antithrombotic 
reduces postoperative thrombosis by roughly 27% in every surgical context. However, when a 
random-effects model with REML estimation was applied, the pooled effect remained directionally 
similar but the confidence interval widened (RR 0.76, 95% CI 0.58–0.99; p = 0.04). Incorporating the 
Hartung–Knapp adjustment further broadened the interval, rendering the result statistically non-
significant (RR 0.76, 95% CI 0.55–1.05; p = 0.08). 

Most importantly, the prediction interval revealed the fragility of the evidence: in a future trial, 
the true effect could plausibly range from a 64% risk reduction to a 57% risk increase (95% PI 0.36–
1.57). In other words, while some surgical populations might experience substantial benefit, others 
could see little to no advantage—or even possible harm. With moderate heterogeneity (I² = 50.77%, 
Q = 10.96, p = 0.05, τ² = 0.05), this example underscores how fixed-effect analysis may create the 
illusion of a universal benefit, whereas random-effects modelling more faithfully represents the 
uncertainty and variability encountered in clinical practice. 

The heterogeneity observed in this example could plausibly arise from multiple sources: Do all 
patients across trials share the same baseline thrombotic risk, or were study populations selected 
differently? Were thrombotic events documented consistently across centers, or did outcome 
assessment vary? Were prophylaxis protocols strictly adhered to in all trials, or was implementation 
uneven? These questions illustrate that heterogeneity is not a nuisance but often reflects genuine 
clinical and methodological differences that need to be acknowledged rather than averaged away. 

How to Report a Meta-Analysis 

Methods 

Transparency in methods is essential. A well-reported meta-analysis should clearly state which 
statistical model was used (fixed- or random-effects, with the specific estimator such as DerSimonian–
Laird, Paule–Mandel, or REML), the software and commands employed, and the planned strategies 
to explore heterogeneity. This includes pre-specified subgroup analyses (e.g., by population, setting, 
or intervention dose), sensitivity analyses (e.g., excluding high-risk-of-bias studies), and, when 
appropriate, meta-regression. Any continuity corrections (adjustments for studies with zero events 
in one arm) should be explicitly described, as different corrections can yield different results. By 
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laying out these choices in advance, the analysis avoids the perception of selective reporting and 
allows full reproducibility. Continuing with our metaphor, report not only the mean body 
temperature (37 °C), but also the normal spread (for example, 36.5–37.5 °C), as both are important for 
interpretation. Equally important, meta-analyses should adhere rigorously to established 
methodological standards. The Cochrane Handbook for Systematic Reviews of Interventions 
provides detailed guidance on appropriate model selection, heterogeneity assessment, and 
sensitivity analyses [2], while the PRISMA 2020 statement ensures transparent and complete 
reporting of methods and results [17]. Following these frameworks not only strengthens 
methodological rigor but also facilitates critical appraisal, reproducibility, and trust in the evidence 
synthesized. 

Results 

In the results section, findings should be presented with forest plots that are legible and fully 
annotated, showing study-level estimates, pooled effects, and heterogeneity measures (Q, I², τ²). Both 
confidence intervals (CI) and, when possible, prediction intervals (PI) should be reported to convey 
not only the precision of the mean effect but also the likely range of effects in future settings. The type 
of model and interval calculation method (e.g., Wald vs. Hartung–Knapp–Sidik–Jonkman) must be 
specified, since some software packages (such as CMA) provide only default or limited options. If 
continuity corrections were applied, these must also be reported, with justification for the chosen 
method. Above all, the principle of maximum transparency is paramount: every analytical choice 
should be transparent to the reader, ensuring that conclusions are seen as robust and reproducible. 

Table 4 summarizes the essential elements that should be transparently reported in the methods 
and results of a meta-analysis, including model choice, heterogeneity measures, confidence and 
prediction intervals, and sensitivity analyses. 

Table 4. Reporting essentials for a meta-analysis. 

Section What should be reported Why it matters 

Methods 

- Pre-registration of the analysis protocol (e.g., in a 
registry like PROSPERO) 

- Software and commands used 
- Rationale for model choice (conceptual 

justification for using fixed vs random) 
- Model used (fixed vs random; explicitly report the 

τ² estimator employed, e.g., REML, Paule–Mandel, 
or DL) 

- CI method: explicitly state the procedure used (e.g., 
Wald, HKSJ, or truncated HKSJ) 

- Heterogeneity metrics: report Q, I², and τ² together 
with the τ² estimator used 

- Strategy to explore heterogeneity (subgroup, 
sensitivity, meta-regression) 

- Continuity corrections applied (e.g., Haldane) 
- Software limitations (e.g., RevMan 5.4, CMA) 

Transparency; 

reproducibility; 

avoids selective 

reporting. 

Results 

- Forest plots that are legible and annotated 
- Study-level data (e.g., events per group over total) 

and pooled effects 
- Heterogeneity metrics: Q, I², τ² 

Ensures clarity; 

communicates both 

precision (CI) and 

expected variability 
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- CI 95% (with method specified, e.g., HKSJ)  
- PI 95% (when random-effects is used) 

across contexts (PI); 

readers understand 

robustness of 

findings. 
τ² = between-study variance; I² = inconsistency index; Q = Cochran’s Q test; CI = confidence interval; PI = prediction 
interval; DL = DerSimonian–Laird; REML = restricted maximum likelihood; HKSJ = Hartung–Knapp–Sidik–Jonkman; 
CMA = Comprehensive Meta-Analysis; RevMan = Review Manager. 

Real-World Case Studies: How Fixed vs Random-Effects Alter Conclusions 

Applied case study 1: Urination stimulation techniques in infants 
Clean urine collection in non-toilet-trained infants is clinically challenging: invasive methods, 

such as suprapubic aspiration, are painful, while non-invasive alternatives, like urine bags, are prone 
to contamination. Recently developed stimulation techniques (e.g., Herreros’ tapping/massage and 
the Quick-Wee cold gauze method) aim to facilitate voiding in infants under one year. The available 
trials, however, differ in infant age, maneuver applied, clinical setting, and outcome definitions, 
introducing substantial heterogeneity. 

In this context, a published meta-analysis applied a fixed-effect Mantel–Haenszel model, pooling 
three small randomized trials and reporting a precise and statistically significant effect (OR 3.88, 95% 
CI 2.28–6.60; p < 0.01; I² = 72%) [18]. This approach assumes identical efficacy across studies, an 
assumption that may not hold given the clinical diversity. When the data were re-analysed using a 
random-effects model with REML estimation, the effect remained directionally similar but with 
wider confidence intervals (OR 3.44, 95% CI 1.20–9.88; p = 0.02). With the Hartung–Knapp–Sidik–
Jonkman (HKSJ) adjustment, recommended for small and heterogeneous datasets, the interval 
widened further and statistical significance was lost (OR 3.44, 95% CI 0.34–34.91; p = 0.15) [19]. This 
scenario remains partially conflicting: with very few studies, Wald-type intervals tend to be overly 
optimistic, whereas HKSJ intervals can become excessively conservative. In such cases, the most 
informative approach is to present both sets of results and interpret them jointly. Nevertheless, this 
example illustrates how fixed-effect modelling can overstate precision in the presence of variability. 
In contrast, random-effects methods with robust interval estimation provide a more cautious and 
clinically faithful interpretation. 

Applied case study 2: musculoskeletal outcomes after esophageal atresia repair 
Children with esophageal atresia (EA) require surgical repair, most commonly through 

conventional open thoracotomy repair (COR) or thoracoscopic repair (TR). Long-term 
musculoskeletal sequelae—such as scoliosis, rib fusion, and scapular winging—are recognized 
complications, particularly after open procedures involving rib spreading. A recent meta-analysis 
compared TR with thoracotomy; however, the included studies varied in follow-up duration, 
diagnostic methods (clinical assessment versus imaging), and surgeon expertise. These differences 
introduce clinical heterogeneity, making the assumption of a single common effect less plausible. 

In this setting, the analysis employed a fixed-effect Mantel–Haenszel model, reporting 
statistically significant and precise reductions in musculoskeletal complications with TR (e.g., 
scoliosis: RR 0.35, 95% CI 0.14–0.84; p = 0.02) [20]. With only four small retrospective studies and 
moderate inconsistency (I² = 38%), a random-effects model using REML estimation yielded wider 
intervals and reduced certainty (RR 0.35, 95% CI 0.09–1.36; p = 0.13). When the Hartung–Knapp–
Sidik–Jonkman (HKSJ) adjustment was applied, the confidence interval broadened further, and 
statistical significance was lost (RR 0.35, 95% CI 0.05–2.36; p = 0.18) [21]. 

This case illustrates how fixed-effect modelling can produce narrow intervals that may overstate 
certainty. In contrast, random-effects approaches, particularly REML with HKSJ adjustment, provide 
a more cautious and clinically appropriate interpretation. 

Applied case study 3: re-analysis of psychological bulletin meta-analyses 
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Schmidt et al. revisited 68 meta-analyses published in Psychological Bulletin, many of which had 
relied on fixed-effect models as their primary approach. They aimed to test whether this choice was 
justified, given that most sets of studies in psychology—and, by extension, in medicine—are drawn 
from diverse populations, designs, and settings, where assuming a single common effect is 
unrealistic. 

When they re-analysed the same datasets using random-effects procedures, the results changed 
substantially. Confidence intervals that had looked narrow and precise under fixed-effect became 
much wider, and in many cases, the apparent statistical significance disappeared. On average, the 
“95% CIs” reported with fixed-effect overstated precision by about half, giving an impression of 
robustness that the data did not actually support. 

The key conclusion was that only in a small minority of cases (~3%) could a fixed-effect model 
reasonably be defended. In the overwhelming majority, random-effects models better captured the 
genuine variability between studies [22]. This large-scale re-analysis showed convincingly that 
reliance on fixed-effect can create an illusion of certainty and systematically exaggerate confidence in 
meta-analytic findings. 

Applied case study 4: the rosiglitazone link with myocardial infarction and cardiac death 
Shuster et al. revisited the influential meta-analysis by Nissen and Wolski on rosiglitazone and 

cardiovascular risk [23]. The original authors had chosen a fixed-effect approach, arguing that 
homogeneity tests did not reject the null. However, this decision was problematic: with rare adverse 
events and many trials, such tests have very low power. Moreover, the studies pooled differed 
substantially in dose, comparators, follow-up, and populations—conditions that make the 
assumption of a single common effect implausible. When Shuster and colleagues re-analysed the 48 
eligible trials using random-effects methods specifically adapted for rare events, the findings shifted. 
For myocardial infarction, the fixed-effect model suggested statistical significance (RR 1.43, 95% CI 
1.03–1.98, p = 0.03), whereas the random-effects estimate was non-significant (RR 1.51, 95% CI 0.91–
2.48, p = 0.11). Conversely, for cardiac death, the fixed-effect result was null (RR 1.64, 95% CI 0.98–
2.74, p = 0.06), but the random-effects analysis indicated a clear increase in risk (RR 2.37, 95% CI 1.38–
4.07, p = 0.0017). The key message was that reliance on fixed-effect models, especially in the rare-
event setting, can both mask and exaggerate signals depending on how large studies dominate the 
weights. By contrast, random-effects better accounted for the true diversity of trial scenarios. This re-
analysis underscored that method choice was not a technical detail: for rosiglitazone, it meant the 
difference between concluding “no risk” and identifying a serious safety concern. 

Applied case study 5: The Role of magnesium in acute myocardial infarction 
A meta-analysis of 12 randomized trials assessed intravenous magnesium for acute myocardial 

infarction. Under a fixed-effect model, the pooled odds ratio was null (OR 1.02, 95% CI 0.96–1.08), 
but heterogeneity was extreme (p < 0.0001), driven largely by a single large trial where magnesium 
was administered late, often after fibrinolysis. Applying a random-effects model changed the 
conclusion: the pooled odds ratio indicated significant benefit (OR 0.61, 95% CI 0.43–0.87; p = 0.006) 
[24]. Experimental data support that magnesium’s cardioprotective effect depends on timely 
administration—before or at reperfusion, not after. Here, heterogeneity reflected a true effect 
modifier (timing), not random noise. This case illustrates that fixed-effect pooling can obscure 
clinically meaningful patterns, whereas random-effects better accommodate mechanistic plausibility 
and context. 

Table 5 summarizes how conclusions shifted in the five real-world case studies when analyses 
were re-examined under random-effects models, highlighting how methodological choice can 
transform the apparent certainty and even the direction of evidence. 
  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2025 doi:10.20944/preprints202509.0126.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0126.v1
http://creativecommons.org/licenses/by/4.0/


 17 of 21 

 

Table 5. Summary of how conclusions shifted in five real-world case studies when re-analysed under random-
effects models. 

Case study Clinical 

question 

Original 

model & 

result 

Re-analysed 

model & 

result 

Key lesson 

1. Urination 

stimulation 

in infants 

Non-invasive 

stimulation to 

collect urine 

samples 

FE Mantel–

Haenszel: OR 

3.88 (95% CI 

2.28–6.60), 

p<0.01; I²=72% 

→ strongly 

positive 

RE REML: OR 

3.44 (1.20–

9.88), p=0.02; 

HKSJ: OR 3.44 

(0.34–34.91), 

p=0.15 → 

wide, 

inconclusive 

FE overstates precision; 

RE + HKSJ highlight the 

underlying uncertainty. 

With very few studies, 

confidence intervals 

become challenging to 

interpret—either too 

narrow under FE or 

excessively wide under 

HKSJ—underscoring the 

inherent difficulty of 

sparse-data scenarios 

2. Esophageal 

atresia repair 

Musculoskeletal 

sequelae after 

thoracoscopic 

vs open repair 

FE Mantel–

Haenszel: RR 

0.35 (0.14–

0.84), p=0.02 

→ significant 

reduction 

RE REML: RR 

0.35 (0.09–

1.36), p=0.13; 

HKSJ: RR 0.35 

(0.05–2.36), 

p=0.18 → loss 

of significance 

Certainty collapses when 

heterogeneity is 

acknowledged; RE 

prevents false confidence 

3. 

Psychological 

Bulletin re-

analysis 

68 psychology 

meta-analyses 

re-examined 

FE gave 

narrow, often 

“significant” 

CIs; apparent 

robustness 

RE widened 

CIs, 

significance 

often 

disappeared; 

FE defensible 

in ~3% only 

Large-scale evidence that 

FE systematically 

exaggerates certainty 

4. 

Rosiglitazone 

& CV risk 

Myocardial 

infarction & 

cardiac death 

with 

rosiglitazone 

FE: MI RR 1.43 

(1.03–1.98), 

p=0.03 (↑ risk); 

cardiac death 

RR 1.64 (0.98–

2.74), p=0.06 

(NS) 

RE (rare-

event): MI RR 

1.51 (0.91–

2.48), p=0.11 

(NS); cardiac 

death RR 2.37 

(1.38–4.07), 

p=0.0017 (↑ 

risk) 

FE masked real risk 

signal; RE exposed to 

clinically important harm 
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5. 

Magnesium 

in acute MI 

IV Mg²⁺ for AMI 

FE: OR 1.02 

(0.96–1.08) → 

null; extreme 

heterogeneity 

(p<0.0001) 

RE: OR 0.61 

(0.43–0.87), 

p=0.006 → 

protective 

FE obscured mechanistic 

truth; RE aligned with 

biological plausibility 

(timing of administration) 

FE = fixed-effect; RE = random-effects; REML = restricted maximum likelihood; HKSJ = Hartung–Knapp–Sidik–Jonkman; 
OR = odds ratio; RR = risk ratio; MI = myocardial infarction; AMI = acute myocardial infarction. 

A final Nuance: Diagnostic Test Accuracy Studies 

Model choice has particular nuances in diagnostic test accuracy (DTA) meta-analyses [25–27]. 
Here, the standard is not a simple fixed-versus-random-effects dichotomy, but rather hierarchical 
models that almost always assume random effects by default. Modern approaches, such as the 
bivariate model or the hierarchical summary receiver operating characteristic (HSROC) model, are 
estimated by maximum likelihood methods. These models jointly account for sensitivity and 
specificity, explicitly allowing for between-study variability in both parameters, as well as differences 
in diagnostic thresholds. In practice, this means that DTA meta-analyses are nearly always 
conceptualized within a random-effects framework, with heterogeneity treated as intrinsic to 
diagnostic performance rather than an optional feature. 

Conclusions 

For ease of application, the core principles of this tutorial are summarized in Table 6 as key take-
away messages. These concise points highlight best practices—model choice, heterogeneity, modern 
methods, and transparent reporting—ensuring that evidence synthesis remains both rigorous and 
clinically meaningful. 

Table 6. Takeaway messages. 

• Follow Cochrane guidance and the PRISMA 2020 checklist rigorously 
• Default to random-effects models in clinical meta-analyses 
• Interpret fixed-effect results with caution; use them mainly for sensitivity analyses 
• Always report heterogeneity (I², Q, τ²) and include a 95% prediction interval 
• Use modern methods: apply REML for τ² and HKSJ for confidence intervals 
• Treat heterogeneity as clinical information, not a nuisance 
• Report models, estimators, and intervals transparently to ensure reproducibility 

At first glance, fixed- and random-effects models may seem like technical details, but they 
embody fundamentally different views of evidence. Fixed-effect conveys the illusion of one universal 
truth, while random-effects embraces the diversity that defines real-world medicine. 

Returning to our metaphor, body temperature is not always 37.0 °C; it fluctuates across people, 
time, and circumstances. The same is true of treatment effects. To insist on one “true” number is to 
ignore that reality. To acknowledge a distribution of effects is not to weaken evidence, but to 
strengthen its credibility. 

For clinicians, the message is clear. Random-effects models should be the default in most 
situations, because medicine is heterogeneous. Fixed-effect models retain a role in very specific 
contexts or as sensitivity analyses, but not as the starting point. Heterogeneity is not a flaw to be 
eliminated—it is the compass that guides interpretation. 

Original work: The manuscript's author declares that it is an original contribution, not previously published. 
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