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Abstract 

A core challenge in multimodal emotion recognition lies in the precise capture of the inherent 

multimodal interactive nature of human emotions. Addressing the limitation of existing methods, 

which often process visual signals (facial expressions) and physiological signals (EEG, ECG, GSR) in 

isolation and thus fail to exploit their complementary strengths effectively, this paper presents a new 

multimodal emotion recognition framework called the Gated Biological Visual Network (GBV-Net). 

This framework enhances emotion recognition accuracy through deep synergistic fusion of facial 

expressions and physiological signals. GBV-Net integrates three core modules: (1) A facial feature 

extractor based on a modified ConvNeXt V2 architecture incorporating lightweight Transformers, 

specifically designed to capture subtle spatio-temporal dynamics in facial expressions; (2) A hybrid 

physiological feature extractor combining 1D convolutions, Temporal Convolutional Networks 

(TCN), and convolutional self-attention mechanisms, adept at modeling local patterns and long-

range temporal dependencies in physiological signals; (3) An enhanced gated attention fusion 

module capable of adaptively learning inter-modal weights to achieve dynamic, synergistic 

integration at the feature level. A thorough investigation of the publicly accessible DEAP and 

MAHNOB-HCI datasets reveals that GBV-Net surpasses contemporary methods. Specifically, on the 

DEAP dataset, the model attained classification accuracies of 94.68% for Valence and 95.93% for 

Arousal. On MAHNOB-HCI, the accuracies achieved were 97.48% for Valence and 97.78% for 

Arousal. These experimental findings substantiate that GBV-Net effectively captures deep-level 

interactive information between multimodal signals, thereby improving emotion recognition 

accuracy. 

Keywords: GBV-Net; facial expressions; physiological signals; multimodal fusion; emotion 

recognition 

 

1. Introduction 

Emotion recognition, a key technology in human-computer interaction (HCI) and a core 

application of artificial intelligence (AI) [1], allows computer systems to accurately perceive human 

emotional states in real-time. This capability enables adaptive HCI models, forming the foundation 

for natural user experiences. Significant progress in emotion recognition has led to its widespread 

use in diverse applications, including driver rage detection [2], specialized patient care [3], and 

adolescent mental health assessment [4]. 

While unimodal recognition using facial expressions or physiological signals is well-established, 

emotion as a complex psychophysiological phenomenon often lacks robustness when analyzed 

through single modalities or even fused physiological signals alone [5]. Current research primarily 

uses visual data (e.g., facial images, video) and physiological data (e.g., EEG, ECG, GSR) [6]. Facial 

expressions, observable emotional cues, are easily captured via cameras, with features extractable by 

handcrafted or deep learning methods. Physiological signals, originating from nervous system 
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activity, are less susceptible to conscious control and may better reflect genuine emotional states. 

However, physiological signal acquisition faces challenges like hardware heterogeneity and 

specialized preprocessing needs, limiting deep learning exploration for this modality. Fusing visual 

and physiological data is essential for more accurate emotion recognition. Yet, current models often 

use simple feature concatenation before classification, failing to capture deep inter-modal correlations 

and complementarity, thus limiting performance gains. Furthermore, both subtle facial changes and 

rhythmic physiological fluctuations are inherently temporal processes. Existing research, to our 

knowledge, lacks systematic modeling of this crucial temporal dynamic. 

Therefore, this study focuses on improving feature extraction methods for visual (facial images) 

and physiological signals, while exploring more effective multimodal feature fusion strategies, 

aiming to improve the performance of affective computing systems in terms of both prediction 

reliability and generalization capability. Specifically, we design a computationally efficient, 

ConvNeXt V2-based feature extractor for facial expression analysis that better captures 

spatiotemporal features in long facial image sequences. For physiological signal processing, we 

innovatively propose a “Local-Medium-Global” hierarchical feature extraction framework. This 

framework synergistically captures transient local details, rhythmic mid-range patterns, and global 

temporal dynamics within physiological signals, significantly reducing computational complexity 

while maintaining performance. Crucially, at the feature fusion stage, we introduce a Gated Attention 

Mechanism. This mechanism dynamically learns complex nonlinear inter-modal interactions, 

enabling adaptive deep synergistic fusion of cross-modal features, thereby driving substantial 

improvements in recognition performance. 

In summary, this paper makes three core contributions: 

• To address the inefficient modeling of coupled spatio-temporal features in continuous facial 

expression sequences, we introduce a computationally efficient synergistic architecture 

combining ConvNeXt V2 and lightweight Transformers for efficient spatio-temporal dynamic 

feature extraction. 

• To overcome the challenge of unified modeling for multi-scale temporal patterns in 

physiological signals (transient local, rhythmic mid-range, and global dependencies), we 

develop a novel three-level hybrid feature extraction framework (“Local-Medium-Global”). This 

framework ensures computational efficiency while comprehensively capturing cross-scale bio-

features. 

• To mitigate the limitations of simple feature concatenation, such as modal redundancy and lack 

of complementarity, we propose a feature fusion module based on a Gated Attention 

Mechanism. This module adaptively learns and modulates the contribution weights of features 

from different modalities, enabling deep interaction and optimal collaboration at the feature 

level, effectively overcoming the drawbacks of naive concatenation. 

The structure of the subsequent sections of this paper is as follows: Part II discusses the latest 

methods for extracting features from facial information and physiological signals (especially 

electroencephalograms) as a means of multimodal emotion recognition. Section III provides a 

detailed introduction to GBV-Net, a hierarchical fusion multimodal emotion recognition model based 

on facial expressions and physiological signals. Section IV systematically describes the experimental 

framework, the datasets utilized, and the evaluation metrics employed, presents the results, and 

provides comparative analyses against existing methods. Finally, Section V summarizes the work, 

accompanied by a discourse on prospective avenues for future research. 

2. Related Work 

Emotion recognition holds significant value for diverse applications, including human-

computer interaction (HCI) and mental health assessment. This importance has motivated substantial 

research interest in recent years. Consequently, the field has established itself as a systematic research 

domain. From a technical implementation perspective, emotion recognition systems based on deep 
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learning are categorised primarily into two types according to the modality of the input data: 

unimodal and multimodal. 

2.1. Unimodal Emotion Recognition 

Unimodal emotion recognition employs a solitary data modality, encompassing facial 

expressions, physiological signals, text, or speech data. However, due to the susceptibility of 

unimodal data to noise and the inherent complexity of emotion recognition, the dependability and 

authenticity of results derived from models based solely on unimodal data are frequently questioned. 

2.1.1. Emotion Recognition from Facial Expressions 

Facial expressions serve as a spontaneous and inherent manifestation of an individual’s 

psychological disposition, conveying a complex array of emotional information. Facial Expression 

Recognition (FER) aims to infer emotional states by analyzing facial expressions in multimedia data 

like images and videos. Driven by advances in multimedia technology, FER has become a prominent 

area of research focus in the fields of computer vision and artificial intelligence due to its broad 

application prospects. Meena et al. [7] developed a CNN solution capable of handling large-scale 

signal data. Their optimization strategy employed larger batch sizes, increased convolutional layer 

depth, and extended training epochs to enhance model performance. Similarly, focusing on 

architectural innovation, Chowdary et al. [8] systematically evaluated four transfer learning 

frameworks. By removing the fully connected layers of previously trained CNNs and reconstructing 

task-specific FC layers, they achieved an average recognition accuracy of 96% on 918 images from the 

Cohn-Kanade (CK+) database. Expanding application scenarios further, Minaee et al. [9] addressed 

challenges in FER, notably high intra-class variance and the poor generalization of traditional 

handcrafted features, by proposing an attention-based convolutional network model. Their method, 

which focuses on key facial regions, significantly outperformed existing models on four benchmark 

datasets, including FER-2013. Innovatively, they combined visualization techniques to reveal facial 

regions sensitive to different emotions. This end-to-end framework effectively overcame challenges 

like partial occlusion and image variations, offering a new approach for expression recognition in 

complex scenarios. 

2.1.2. Emotion Recognition from Physiological Signals 

Compared to facial expressions, the core advantage of physiological signals lies in their 

authenticity and resistance to voluntary control, enabling a more objective assessment of emotional 

states. Recent research has primarily focused on EEG signals, alongside other physiological signals 

such as EMG, ECG, and GSR, yielding encouraging results. Zhu et al. [10] extracted Differential 

Entropy (DE) features from EEG signals, employed a Linear Dynamic System (LDS) for feature 

smoothing, and ultimately used a Support Vector Machine (SVM) for classification. Bhatti et al. [11] 

extracted time-domain and frequency-domain features from EEG signals and fed them directly into 

a classifier for emotion recognition. Algarni et al. [12] proposed a system framework aimed at 

enhancing the reliability of emotion recognition results to support precise medical decision-making. 

The framework’s initial phase involved the extraction of wavelet features, the Hurst exponent, and 

statistical features from EEG signals. Subsequently, a Binary Grey Wolf Optimization (BGWO) 

algorithm is employed for feature selection to identify the most discriminative patterns. Finally, a 

stacked Bidirectional Long Short-Term Memory (Bi-LSTM) network was utilized for emotion 

classification based on the selected features. 

2.2. Multimodal Emotion Recognition 

In recent years, multimodal emotion recognition has attracted significant research interest. The 

integration of physiological signals, particularly EEG, with facial expression features has become an 

increasingly explored subject in research. This fusion method utilizes complementary information 
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from both modalities. Combining these features provides a more comprehensive characterization of 

emotional states. Consequently, recognition performance improves substantially. Salama et al [13]. 

implemented this approach by converting brief EEG data into three-dimensional blocks. These blocks 

were then combined with synchronized sequences of facial images within corresponding temporal 

windows. Siddharth et al. [14] extracted features from facial image sequences, EEG signals, and 

peripheral physiological signals (e.g., ECG, GSR), achieving feature-level fusion through vector 

concatenation. Huang et al. [15] employed Adaptive Boosting (Adaboost) combined with a decision-

level fusion strategy to integrate facial and EEG modality information, resulting in improved 

recognition accuracy. Xiang et al. [16] elicited emotions in subjects, simultaneously collected facial 

expression videos and physiological signals, and designed a Spatiotemporal Convolutional Neural 

Network (Spatiotemporal CNN) to analyze the performance of different modalities in emotion 

recognition. 

However, despite the potential of multimodal fusion to enhance accuracy, current mainstream 

methods exhibit significant limitations in their feature fusion strategies. Existing approaches 

predominantly rely on simplistic linear weighting or feature concatenation [17], failing to deeply 

explore and model the potential complex nonlinear correlations and complementarities between 

features from different modalities. This shallow fusion mechanism struggles to fully exploit inter-

modal synergies, limiting further improvements in model performance. 

To address the challenge of feature fusion, this paper proposes an efficient method based on a 

gated attention mechanism. It aims to explicitly model and enhance the intrinsic relationships 

between multimodal information, thereby driving substantial improvements in multimodal emotion 

recognition performance. Specifically, we propose a model based on a modified ConvNeXt V2 

architecture incorporating lightweight Transformers, designed to extract robust spatio-temporal 

dynamic features from facial image sequences. Concurrently, we design an innovative three-tier 

hybrid feature extraction framework (“Local-Medium-Global”) to efficiently capture fine-grained 

local patterns, mid-range rhythmic regularities, and global temporal dependencies within 

multimodal physiological signals. Finally, at the feature level, we introduce a Gated Attention 

Mechanism to perform adaptive deep fusion of the extracted facial and physiological features, fully 

mining their intrinsic relationships. The resulting fused features are then fed into a classifier to 

complete the emotion recognition task. 

3. Methodology 

3.1. GBV-Net Architecture Overview 

Figure 1 shows the Gated Biological Visual Network multimodal emotion recognition model 

proposed in this paper. Emotion recognition is achieved through the collaborative learning of visual 

and physiological signals. The model’s core includes a visual feature extractor based on an enhanced 

ConvNeXt V2, as well as a hybrid physiological feature extractor. The former uses a spatiotemporal 

encoder to capture the spatiotemporal evolution features of facial expressions, while the latter uses 

multi-scale convolutions and self-attention mechanisms to extract deep features from physiological 

signals. The innovative gated fusion module aligns cross-modal features through adaptive weight 

allocation, and the classifier outputs emotion prediction probabilities. This architecture optimises 

multimodal feature representations through end-to-end training, significantly improving cross-

modal feature complementarity while ensuring computational efficiency. 
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Figure 1. GBV-Net model. 

3.2. Multimodal Feature Extraction 

This section describes methods for extracting features from visual signals and physiological 

signals. For visual signals, an improved ConvNeXt V2 architecture is employed, extracting static 

features through four levels of spatial downsampling and capturing temporal dynamics using a two-

layer Transformer. Physiological signal processing uses a hybrid architecture that combines multi-

scale 1D convolution, temporal convolution, and convolutional self-attention mechanisms to extract 

feature sequences. These are ultimately output as deep representations through a feature integration 

layer. 

3.2.1. Facial Feature Extraction 

For facial features, the present study proposes a facial expression feature extraction architecture. 

By leveraging a modified ConvNeXt V2 architecture [18] and a lightweight Transformer temporal 

modeling module [19], it achieves joint modeling of spatial features and temporal dynamic features. 

This architecture divides facial feature extraction into two consecutive processing stages: spatial 

feature extraction and temporal dynamic modeling, significantly enhancing computational efficiency 

while ensuring feature discriminability. 

In the spatial feature extraction stage, a modified ConvNeXt V2 architecture is employed for 

multi-level feature extraction. This module first employs a 4x4 convolutional layer with a stride of 4 

on the input image to a low-resolution feature space. The convolutional operation is expressed as 

follows: 

𝑌(𝑖, 𝑗) = ∑ ∑𝑊(𝑚, 𝑛)

𝑘−1

𝑛=0

𝑘−1

𝑚=0

⋅ 𝑋(𝑖 + 𝑚, 𝑗 + 𝑛) + 𝑏 (1) 

In which X stands for the input facial image feature map, W is the convolution kernel of size K 

x K, b indicates the bias, i and j denote the spatial coordinates of the feature map, and Y represents 

the output feature map. 

Subsequently, we perform feature transformation and dimensionality enhancement through a 

series of modular components consisting of convolutional layers, Layer Normalization (LayerNorm), 

and the GELU activation function. Compared to the original ConvNeXt V2, we simplified the 

network’s depth and width while retaining its efficient feature extraction capability. This architecture 

employs a layer-wise, dimension-increasing design that enables the network to capture multi-scale 

facial features, from local details to global semantics, at different hierarchical levels. The introduction 

of a lightweight Transformer module was made for the purpose of modeling temporal dependencies 

within the expression sequence, given the dynamic evolution of facial expressions over time. This 

module consists of a 2-layer Transformer encoder, where each encoder layer incorporates a multi-

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2025 doi:10.20944/preprints202509.0094.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0094.v1
http://creativecommons.org/licenses/by/4.0/


 6 of 15 

 

head self-attention mechanism and a feedforward neural network. The multi-head self-attention 

mechanism is shown below： 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄,𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(head1, head2, … , headℎ) ⋅ 𝑊
𝑂 (2) 

In this context, Q, K, and V in head𝑖 = Attention(𝑄 ⋅ 𝑊𝑖
𝑄, 𝐾 ⋅ 𝑊𝑖

𝐾 , 𝑉 ⋅ 𝑊𝑖
𝑉) Represent the query, 

key, and value matrices, respectively. 𝑊𝑖
𝑄 ,𝑊𝑖

𝐾 ,𝑊𝑖
𝑉 ,𝑊𝑂 All of the learnable parameters are matrices, 

each of which has several attention heads denoted by h. 

The Transformer’s input is the feature sequence processed by the spatial feature extractor. To 

satisfy the input requirements of the Transformer architecture, the feature sequence dimensionality 

is adjusted accordingly. The self-attention mechanism effectively models dependency relationships 

across different time steps. Compared to traditional recurrent neural networks, such as LSTMs, the 

Transformer can more effectively capture long-range temporal dependencies. Additionally, it 

supports parallel processing, which substantially enhances training efficiency. 

3.2.2. Physiological Signal Feature Extraction 

The bio-signals feature extraction module proposed in this study adopts a hierarchical 

architecture. This design integrates local feature extraction, temporal dependency modeling, and 

global correlation learning. It effectively captures multi-scale features and dynamic patterns inherent 

in bio-signals. The module consists of three core components: a local feature extractor, a temporal 

convolutional network (TCN), and an efficient convolutional self-attention mechanism. These 

components collaborate to extract deep features from bio-signals. 

The Local Feature Extractor employs a CNN architecture tailored to capture transient local 

patterns and high-frequency features in bio-signals. This sub-module utilizes a dual-layer 1D 

convolutional architecture [20]. The refinement of features is attained through a progressive 

reduction of feature channels and a decrease in convolutional kernel size across layers. Each layer 

incorporates batch normalization and ReLU activation functions. These functions accelerate training 

convergence and enhance the model’s nonlinear expressive capacity. The local features are as follows: 

𝐹local(𝑋) = ReLU(BN(𝑊 ∗ 𝑋 + 𝑏)) (3) 

TCN [21] captures medium-length temporal dependencies in biological signals. The module 

consists of three dilated convolutional layers with progressively increasing dilation rates. By 

introducing gaps within the convolutional kernel, the receptive field expands exponentially. This 

expansion enables the extraction of dynamic features across multiple time scales. Each dilated 

convolution is followed by batch normalization and a ReLU activation function. The final layer 

reduces the feature dimension to eight. Medium-length feature extraction is represented as follows: 

𝐹𝑚𝑒𝑑𝑖𝑢𝑚(𝑋) = ReLU(BN( ∑ 𝑊𝑑

𝑑∈{1,2,4}

∗𝑑 𝑋 + 𝑏𝑑)) (4) 

In which d is the expansion rate and Wd is the weight. By adjusting the expansion rate, TCN can 

effectively model medium-range dependencies in signals without increasing parameters and 

computation. 

For the global dependency modeling stage in bio-signals feature extraction, we employ an 

efficient convolutional self-attention mechanism. This module first extracts local feature patterns 

through depthwise convolution operations. Subsequently, pointwise convolution adjusts channel 

dimensionality to capture richer feature representations. Building upon these features, a self-

attention mechanism is subsequently delineated as a means to model long-range dependencies 

among features, thereby enabling the model to adaptively focus on salient discriminative segments 

within the signal sequence. Finally, feature transformation is performed via a lightweight 

feedforward network, and residual connections are incorporated to further enhance feature flow and 

gradient propagation. This design ensures computational efficiency and representational capacity 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2025 doi:10.20944/preprints202509.0094.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202509.0094.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 15 

 

while capturing global dependencies. The architecture effectively strikes a balance between model 

complexity and performance, making it particularly well-suited for processing long-sequence bio-

signals data. Long-distance global associations are as follows: 

𝐹global(𝑋) = Residual(FFN(Attention (Convpoint (Convdepth(𝑋)))) , 𝑋) (5) 

In this formulation, Convdepth and Convpoint represent depth-wise and point-wise 

convolution operations, respectively. Attention is indicative of the incorporated self-attention 

mechanism. FFN is an acronym for feedforward network, and Residual signifies the residual 

connection. 

3.3. Feature Fusion 

According to the latest findings in the neurosciences, the processing of emotions in humans is 

supported by a distributed network involving coordinated activity across multiple brain regions [22]. 

This network comprises several key nodes, including the occipitotemporal neocortex, which 

facilitates visual integration; the amygdala, which processes affective evaluations; the orbitofrontal 

cortex, which governs value-based decision-making; and the right frontoparietal cortex, which 

regulates spatial attention [23]. During the process of emotional regulation, the brain concurrently 

processes multisource heterogeneous physiological and visual signals [24]. Consequently, 

computational models that can effectively integrate multimodal features provide a more biologically 

plausible approach, aligning with the neurophysiological mechanisms underlying emotion 

generation. 

The fusion module proposed in this study employs a gated attention fusion strategy, with the 

objective of achieving adaptive integration of facial expression and bio-signals attributes. The core 

design of the fusion module aims to dynamically balance the contribution weights of features from 

different modalities, effectively addressing the issues of complementarity and redundancy inherent 

in multimodal data. Specifically, a simplified ConvNeXt V2 network is initially employed to derive 

high-level semantic features of facial expressions, while a hybrid bio-feature extractor captures 

dynamic features from bio-signals. To avoid information redundancy caused by simple feature 

concatenation, the model incorporates a gating mechanism for fine-grained regulation of the fusion 

process. The combined facial and bio-signals feature vectors pass through a gating mechanism, 

utilizing a stack of fully connected layers with Sigmoid-based activation for multimodal fusion. This 

unit generates a weight vector matching the dimensionality of the input features, enabling dynamic 

weighting of features from disparate analytical modalities. 

The primary benefit of this gated attention mechanism is its capacity to adapt the contribution 

of each modality to the characteristics of the input samples. When a modality’s features are of high 

quality, the gating unit assigns them a higher weight. Conversely, the gating unit reduces the weight 

when the quality is low. Compared to traditional methods such as feature concatenation or weighted 

averaging, the proposed gated attention fusion strategy can more effectively capture complex 

relationships between multimodal data. This enhancement of the model’s capacity to integrate cross-

modal information leads to an improvement in emotion recognition performance. The fusion part is 

shown below: 

𝐹fused = [𝐹face, 𝐹bio] ⊙ 𝜎([𝐹face, 𝐹bio]) (6) 

In this case, Fface and Fbio represent facial features and biometric features, respectively, while Ffused 

represents the fused features. 

4. Experimental Results and Analysis 

Two publicly available benchmark datasets, DEAP [25] and MAHNOB-HCI [26], are employed 

for model validation in this study. Both datasets provide multimodal physiological signals and facial 

expression videos recorded simultaneously, offering standardized evaluation environments for 
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multimodal emotion recognition research. Experiments integrate nearly complete multimodal data 

from all available participants (after invalid samples are removed) to ensure the statistical 

significance of the evaluation results. Model performance was assessed using a 10-fold cross-

validation strategy. This method involves the random partitioning of the dataset into ten mutually 

exclusive subsets. In this particular instance, the training process involves the sequential utilization 

of nine distinct subsets. Concurrently, the residual subset functions as the designated test set, thereby 

ensuring the systematic exploration of all ten combinations. The final performance metrics represent 

the average values across all ten test iterations. The calculation formula is as follows: 

𝐴𝑐𝑐𝑎𝑣𝑔 =
1

10
∑𝐴𝑐𝑐𝑘

10

𝑘=1

 (7) 

Among them, 𝐴𝑐𝑐𝑎𝑣𝑔  Represents the accuracy rate of the k-fold validation. This design 

effectively reduces the impact of random data partitioning on the results, providing a more objective 

reflection of the model’s generalization ability. 

4.1. Experimental Dataset and Preprocessing 

The DEAP dataset is a multimodal database designed for studying human emotional states. It 

contains synchronized recordings from 32 participants exposed to 40 emotion-eliciting video clips 

(each 63 seconds), capturing central neural system signals as indicated by EEG, EMG, and GSR 

measures, as well as peripheral physiological signals, and facial expression video streams. For each 

stimulus presented, participants evaluated their responses along the dimensions of Valence, Arousal, 

Dominance, Liking, and Familiarity. EEG signals in DEAP were downsampled. Initially, the signals 

were sampled at a rate of 128 hertz. Then, they underwent a bandpass filtering procedure, during 

which the frequencies were limited to a range between 4.0 and 45 Hz and processed with blind source 

separation to remove ocular artifacts. Detailed specifications are provided in Table 1. 

The MAHNOB-HCI database is another multimodal emotional database comprising recordings 

of 30 participants across 20 experimental sessions. It synchronously captures facial videos and central 

nervous system signals, peripheral physiological signals, and eye movement data. Notably, stimulus 

durations vary across trials, requiring precise segmentation of valid time windows based on official 

annotation files. Emotional annotations utilize four dimensions: the following factors must be 

considered: valence, arousal, control, and predictability. However, the integrity of the data from three 

participants was compromised, resulting in their exclusion from the study. Consequently, the 

analysis was based on the data from 27 participants, thereby ensuring the reliability and validity of 

the study’s findings. Complete dataset characteristics are summarized in Table 1. 

Table 1. Dataset details. 

Attribute DEAP MAHNOB-HCI 

Subjects 22 27 

Available channels 40 38 

Length of each train 60s 49s-117s 

Trail of each subject 40 20 

Emotional description Valence, Arousal Valence, Arousal 

The data preprocessing methodology employed in this study is detailed below: For facial 

expression data, we performed temporal sampling at 10 fps for DEAP and 12 fps for MAHNOB-HCI 

to sufficiently capture facial dynamics, with extracted frames undergoing pose-normalized 

alignment using 68 facial landmarks detection [27], followed by facial region cropping to preserve 

expression-critical features. For biosensor data, signals were downsampled to 128 Hz, bandpass-

filtered, segmented using non-overlapping 1-second windows, and baseline-corrected by subtracting 

mean baseline values to mitigate signal drift. Regarding data augmentation, facial images employed 

domain-appropriate techniques including horizontal flipping, color jittering, and Gaussian blurring, 
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distinct from augmentation methods in fields like remote sensing [28], while bio-signals applied 

additive noise, temporal shifting, and amplitude scaling. Notably for EEG signals, both datasets share 

identical channel configurations and electrode placements (Table 2), ensuring consistent 

neurophysiological feature extraction. 

Table 2. Electroencephalogram signal electrode channel arrangement. 

Channel number Channel name Channel number Channel name 

1 Fp1 17 Fp2 

2 AF3 18 AF4 

3 F3 19 Fz 

4 F7 20 F4 

5 FC5 21 F8 

6 FC1 22 FC6 

7 C3 23 FC2 

8 T7 24 Cz 

9 CP5 25 C4 

10 CP1 26 T8 

11 P3 27 CP6 

12 P7 28 CP2 

13 PO3 29 P4 

14 O1 30 P8 

15 Oz 31 PO4 

16 Pz 32 O2 

4.2. Experimental Results and Analysis 

The model proposed in this paper uses a server equipped with an Intel(R) Xeon(R) Silver 4210R 

CPU and NVIDIA RTX A6000 graphics card implemented in the Pytorch framework. To optimize the 

hyperparameter settings, the batch size has been set to 256, and the learning rate has been set to 0.001. 

During training, the Adam algorithm is used in conjunction with an optimizer, and binary 

classification cross-entropy is used as the loss function. 

Figure 2 and Figure 3 show the trends in training accuracy, validation accuracy, and training 

loss during the training process of the model proposed in this paper on the DEAP and MAHNOB-

HCI datasets. 

  
(a) (b) 

Figure 2. Model performance evaluation curves in the DEAP dataset. Among them, (a) represents the Valence 

dimension curve, (b) represents the Arousal dimension curve. 
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(a) (b) 

Figure 3. Model performance evaluation curves in the MAHNOB-HCI dataset. Among them, (a) represents the 

Valence dimension curve, (b) represents the Arousal dimension curve. 

As shown in Figures 2 and 3, the training loss on the DEAP dataset consistently decreases with 

increasing iterations and eventually plateaus. This indicates that the model effectively learns data 

patterns and optimizes its parameters during training. Concurrently, the training accuracy exhibits a 

steady rise. The validation accuracy also demonstrates an overall upward trend, maintaining close 

alignment with the training accuracy curve. The model exhibits remarkable generalization on the 

DEAP dataset, as evidenced by the tight agreement between training and validation results. On the 

MAHNOB-HCI dataset, the training loss similarly exhibits a continuous decline, accompanied by a 

consistent improvement in training accuracy. Notably, despite some fluctuations in validation 

accuracy (Figure 3(a)) attributed to the dataset’s more complex and heterogeneous sample 

distribution, the overall trend remains upward. Furthermore, the validation accuracy eventually 

converges towards the training accuracy. This observation demonstrates the model’s effectiveness in 

identifying salient emotional features and its adaptability to the challenging demands of complex 

datasets. 

A comparative analysis of the learning curves from the DEAP and MAHNOB-HCI datasets 

reveals distinctive patterns. The smoother curves observed in the DEAP dataset suggest a more 

homogeneous data distribution, resulting in more stable model convergence. In contrast, fluctuations 

in the validation accuracy on the MAHNOB-HCI dataset reflect its higher inherent data complexity. 

Notably, these variations also demonstrate the strong robustness of GBV-Net in handling challenging 

and heterogeneous scenarios. 

The classification accuracy of the proposed model is shown in Table 3. 

Table 3. Comparison of GBV-Net model classification results with existing methods. 

Datasets Authors 
Accuracy 

Valence Arousal 

DEAP 

Yuvaraj et al [29] 78.18% 79.90% 

Huang et al [15] 80.30% 74.23% 

Li et al [30] 71.00% 58.75% 

Zhang et al [31] 72.89% 77.03% 

Siddharth et al [14] 79.52% 78.34% 

Ours 94.68% 95.93% 

MAHNOB-HCI 

Yuvaraj et al [29] 83.98% 85.58% 

Huang et al [15] 75.21% 75.63% 

Li et al [30] 70.04% 72.14% 

Zhang et al [31] 79.90% 81.37% 

Siddharth et al [14] 85.49% 82.93% 

Ours 97.48% 97.78% 

The model demonstrates notable efficacy in binary classification tasks when evaluated on the 

DEAP dataset. Specifically, the model achieves an accuracy of 94.68% for valence and 95.93% for 
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arousal recognition. Notably, on the MAHNOB-HCI dataset, the model attains even higher 

accuracies of 97.48% for valence and 97.78% for arousal in the corresponding binary classification 

tasks. These results not only demonstrate a significant advantage over the accuracies reported for 

other existing methods listed in the table but also exhibit superior and consistent performance across 

both datasets and emotional dimensions. This provides robust evidence for the effectiveness and 

strong generalization capability of the proposed model. 

To evaluate our model’s classification performance, we benchmarked it against leading 

multimodal emotion recognition approaches. All comparative results are provided in Table 3. 

Yuvaraj et al. [29] systematically evaluated various classical EEG features, including fractal 

dimension (FD) and Hjorth parameters, establishing the significance of feature engineering in 

identifying valence and arousal dimensions. Meanwhile, Huang [15] proposed a multimodal emotion 

recognition framework integrating facial expressions and EEG, while Li et al. [30] developed 

MindLink-Eumpy, an open-source toolkit for multimodal emotion recognition. These works, from 

the perspectives of framework design and tool implementation, respectively, validated the feasibility 

of significantly enhancing recognition performance through decision-level fusion strategies, offering 

promising approaches to overcome the limitations of unimodal methods. Furthermore, Zhang et al. 

[31] introduced a hierarchical self-attention-based framework for spatiotemporal modeling, 

demonstrating its potential to effectively capture long-range dependencies and critical spatial 

information within EEG signals for improved recognition accuracy. Siddharth et al. [14] explored the 

use of deep networks for processing transformed physiological signal features and multi-modal 

fusion, representing a trend towards deep learning advancements in this field. 

Building upon the research and analysis of the aforementioned classical methods, the GBV-Net 

framework proposed in this paper significantly improves emotion recognition accuracy. In contrast 

to the hierarchical self-attention mechanism employed by Zhang et al. [31], the proposed framework 

employs a spatiotemporal feature extraction architecture that synergistically integrates ConvNeXt V2 

and Transformer. Specifically, in the spatial dimension, progressive downsampling enhances visual 

feature representation capabilities. In the temporal dimension, a lightweight Transformer encoder 

effectively models long-range dependencies. Unlike the static fusion strategies adopted by Huang 

[15] and Li et al. [30] for multimodal data, the present study introduces a dynamic gated attention 

mechanism. This mechanism facilitates the integration of facial expressions and physiological signals 

through a learnable feature weighting process. Departing from the classical feature engineering 

paradigm explored by Yuvaraj et al. [29] and the PSD heatmap transformation method used by 

Siddharth et al. [14] for physiological signal processing, GBV-Net constructs a three-stage processing 

pipeline: local convolution, temporal modeling, and convolutional self-attention. This pipeline 

implements true end-to-end deep feature learning. Additionally, the framework incorporates 

techniques such as adaptive pooling, residual connections, and depthwise separable convolutions. 

These components collectively enhance the model’s adaptability to long sequences and 

computational efficiency. Experimental results demonstrate that this framework surpasses the 

aforementioned related studies on classification tasks using both the DEAP and MAHNOB-HCI 

datasets, offering a superior solution for multimodal emotion recognition. 

4.3. Ablation Experiment 

To investigate the superiority of multimodal over unimodal emotion recognition, we conducted 

systematic validation across both datasets, with detailed accuracy presented in Table 4 and ablation 

results visualized in Figure 4. The facial modality demonstrated significant advantages on DEAP and 

MAHNOB-HCI, achieving stable accuracies exceeding 90%, while the physiological modality 

exhibited relatively limited performance. Multimodal fusion consistently enhanced performance: 

valence recognition improved by over 4 percentage points and arousal by nearly 5 percentage points 

on DEAP, whereas MAHNOB-HCI reached remarkable accuracies exceeding 97.5%. Notably, the 

performance gain for arousal consistently surpassed valence, indicating physiological signals’ unique 

value in capturing emotional intensity. The final fused model approached or surpassed 95% accuracy 
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across all four tasks (valence and arousal on both datasets), peaking at 97.78%. This robust 

performance substantiates that facial features provide foundational discriminative power, 

physiological signals complement dynamic responses, and the gating fusion mechanism effectively 

coordinates their strengths. Cross-dataset consistency further validates GBV-Net’s generalization 

capability in dynamically coordinating multimodal information. 

Table 4. Classification results of ablation experiments (%). 

Datasets Modal 
Accuracy 

Valence Arousal 

DEAP 

Bio 62.70 62.07 

Face 90.22 91.40 

Facebio 94.68 95.93 

MAHNOB-HCI 

Bio 74.55 77.78 

Face 93.99 92.64 

Facebio 97.48 97.78 

 

Figure 4. Classification results of ablation experiments. 

5. Conclusions 

The proposed framework, termed GBV-Net, is a pioneering multimodal emotion recognition 

system that integrates physiological signals and facial expressions synergistically. The model extracts 

discriminative features directly from raw physiological data and facial video streams. It employs a 

gated attention fusion mechanism to dynamically weight cross-modal interactions. In terms of facial 

expression feature extraction, the combination of an improved ConvNeXt V2 Tiny structure and a 

lightweight Transformer temporal modeling module enables joint modeling of spatial features and 

temporal dynamic features, thereby improving feature extraction capabilities and training efficiency. 

Physiological signal processing adopts a three-tier hierarchical feature abstraction framework, where 

cascaded convolutional blocks progressively capture local motifs, mid-range dependencies, and 

global contextual patterns. The gated cross-attention fusion module adaptively recalibrates modality-

specific contributions, significantly boosting recognition robustness. The findings of the present 

study demonstrate that this method achieves a high level of accuracy in identifying emotions. 

Combining facial expressions and physiological signals yields a superior recognition effect compared 

to using a single modality alone. Next, we will develop a neuron pruning strategy to optimize the 
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computational efficiency of the model and integrate multimodal inputs, such as speech and limb 

behavior, to create a more comprehensive emotion recognition framework. 
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