
Article Not peer-reviewed version

Deep Reinforcement Learning-Based

Autonomous Navigation for Mobile

Robots in Dynamic Environments

Lei Deng and Ming Chen *

Posted Date: 27 August 2025

doi: 10.20944/preprints202508.1995.v1

Keywords: deep reinforcement learning; robot navigation; autonomous navigation; obstacle avoidance;

LiDAR

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4685326
https://sciprofiles.com/profile/4685595

Article

Deep Reinforcement Learning‐Based Autonomous

Navigation for Mobile Robots in

Dynamic Environments

Lei Deng 1,2 and Ming Chen 1,2,*

1 Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering,

Yichang 443002, China

2 College of Computer and Information Technology, China Three Gorges University, Yichang 443002, China

* Correspondence: chenming1@ctgu.edu.cn

Abstract

When dynamic obstacles are present in the environment, traditional navigation methods often

struggle to achieve safe and efficient obstacle avoidance due to their lack of real‐time adaptability. To

address this challenge, we propose an Action‐Constrained Regularized Twin Delayed Deep

Deterministic Policy Gradient (ACR‐TD3) algorithm. This algorithm introduces Action‐Constrained

Regularization (ACR) into the framework of the Twin Delayed Deep Deterministic Policy Gradient

(TD3) to optimize navigation policies, ensuring that the robot outputs reasonable motion commands

and thereby reduces collision frequency, achieving higher navigation success rates. Additionally, we

design a multilayer reward function, combined with the ACR, to further optimize navigation

performance. Our proposed method does not rely on environmental maps and achieves end‐to‐end

autonomous navigation based solely on LiDAR input. Experimental results demonstrate that ACR‐

TD3 achieves a 99% navigation success rate in simulated environments, outperforming classical

algorithms such as Deep Deterministic Policy Gradient (DDPG), TD3, and Soft Actor–Critic (SAC),

while also exhibiting strong generalization capabilities.

Keywords: deep reinforcement learning; robot navigation; autonomous navigation; obstacle

avoidance; LiDAR

1. Introduction

Mobile robots are currently being extensively utilized in autonomous delivery [1], cleaning [2],

and rescue [3] due to rapid advancements in robotics. Mobile robots are often required for these tasks

to achieve autonomous navigation and avoid both static and dynamic obstacles in the environment.

The complexity and diversity of real‐world application scenarios mean that, despite ongoing research

on mobile robot navigation, numerous issues still require study and resolution.

Because of their dependability, traditional navigation methods [4–6] have been extensively

employed in structured environments such as factories and warehouses during the last few decades.

However, there are numerous drawbacks to this approach. The first is a lack of environmental

adaptability; traditional methods often depend on precise environment modeling, which makes it

challenging to deal with changes in dynamic or unfamiliar situations in real time. Second, it is hard

to fulfill the real‐time demands of high‐speed mobile robots due to the lack of computing efficiency

and real‐time performance. For example, the A* algorithm has a high computational cost for path

search in large‐scale maps. Furthermore, the generalization power of traditional methods is limited,

as they cannot automatically adapt to new environments and require manual parameter adjustments

for various circumstances. Lastly, due to their limited capacity for high‐dimensional sensing,

traditional methods rely on human feature extraction and struggle to directly handle raw sensor data,

such as vision and point clouds, which degrades performance in complicated terrain or scenarios

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from
any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 12

with shifting light. Traditional methods are limited by these drawbacks in terms of their use in real‐

world scenarios, causing them to perform poorly in dynamic situations.

Deep Reinforcement Learning (DRL) offers a new technical avenue for mobile robot navigation

by combining the superior decision‐making capabilities of reinforcement learning with the potent

perceptual capabilities of deep neural networks. DRL exhibits notable benefits over traditional

methods in terms of generalization ability, computational economy, and environmental flexibility [7–

9]. DRL can better adapt to dynamic situations by learning environmental properties directly from

raw sensor data, eliminating the need for environment modeling and laborious feature extraction. In

addition, DRL is capable of long‐term planning, which may balance path optimization with real‐time

decision‐making by implicitly learning long‐term rewards through value functions or actor networks.

Finally, the trained model may be transferred to similar but untrained environments and perform

well, demonstrating DRL’s great generalization capabilities.

Although DRL‐based techniques have shown promise in autonomous robot navigation, they

still face challenges such as trouble navigating in dynamic environments and a propensity for local

optimization. To address these challenges, we proposed a DRL‐based mobile robot navigation

algorithm, ACR‐TD3, which optimizes the training process of the actor network and achieves a higher

navigation success rate by introducing an ACR in the TD3 algorithm; at the same time, we design a

multilayer reward function, which, combined with ACR, improves navigation performance in

dynamic environments.

The structure of this paper is as follows: Section 2 reviews related work; Section 3 details the

proposed method; Section 4 presents the experimental design and result analysis; and finally, the

paper concludes with a summary and future research directions.

2. Related Work

In 2005, Garulli et al. [10] proposed a line‐feature‐based simultaneous localization and mapping

(SLAM) method that uses Extended Kalman Filtering (EKF) to facilitate localization and map

construction in structured environments while minimizing computational complexity. Harik et al.

[11] integrated Hector SLAM with Artificial Potential Field (APF) to provide real‐time navigation and

obstacle avoidance in greenhouse conditions. Kim et al. [12] proposed an end‐to‐end deep learning

model to anticipate control instructions directly from sensor data, which decreases the error

accumulation of typical navigation modules. Wang et al. [13] proposed an end‐to‐end deep neural

network controller utilizing LiDAR, which establishes a direct sensor‐to‐action mapping for robotic

navigation. Nonetheless, these methods depend on precise environmental modeling, exhibit

significant computing complexity, and often underperform when confronted with dynamic

impediments and unstructured environments, hence complicating the fulfillment of real‐time and

robustness requirements.

DRL was introduced by Minh et al. [14] in 2013 during the gameplay of an Atari game. The

intelligence model was able to effectively acquire control methods from the game environment and

surpassed human performance in certain games. In 2016, Tai, L. et al. [15] first implemented DRL for

robot navigation, demonstrating the viability of mapless navigation in both simulated and real‐world

environments. Subsequently, [16] employed DRL for goal‐driven visual navigation utilizing RGB and

target pictures as inputs and acquired navigation strategies via a Siamese network, establishing a

basis for future vision‐based DRL navigation studies. The authors of [17] proposed an end‐to‐end

methodology of DRL to navigate a mobile robot in an unfamiliar area with an RGB camera for

environmental sensing. Nonetheless, RGB‐based methods exhibit inadequate generalization

capabilities, and a substantial disparity in navigation performance exists in real‐world and virtual

environments.

Therefore, multiple scholars have endeavored to enhance generalizability. One method involves

using a depth camera to obtain environmental data. A Convolutional Deep Deterministic Policy

Gradient (CDDPG) network [18] was proposed to process extensive depth image data, successfully

circumventing both static and dynamic barriers. The authors of [19] proposed a binocular vision‐

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 12

based steering control system for autonomous driving, enabling end‐to‐end autonomous steering

decision‐making using an enhanced Deep Deterministic Policy Gradient (DDPG) network.

Nevertheless, depth image‐based techniques sometimes need intricate convolutional processes to

analyze visual data, resulting in significant processing demands, which creates a notable

performance limitation in real‐world navigation applications. Conversely, LiDAR has emerged as an

efficient alternative to improve the generalization of DRL navigation owing to its exceptional

precision, rapid responsiveness, and robust anti‐jamming capabilities. The authors of [20] proposed

a DRL navigation technique utilizing LiDAR and RGB cameras, achieving autonomous navigation

from basic memory to intricate reasoning in indoor environments via a memory‐reasoning

framework. The authors of [21] used fused data from LiDAR and RGB cameras as inputs for the robot,

subsequently incorporating random Gaussian noise into the incoming laser data to improve

resilience and navigation. Nonetheless, multimodal sensor fusion not only increases computational

demands but may also induce calibration drift in dynamic environments. The authors of [22]

proposed an optimization method for navigation policy utilizing LiDAR and DRL frameworks that

rapidly adapts to human preferences, enabling dynamic adjustments of navigation behaviors in a

robot. In addition, the authors of [23] proposed a crowd‐aware navigation system utilizing LiDAR

and memory‐enhanced DRL, effectively achieving navigation in a densely populated area, while the

authors of [24] proposed the iTD3‐CLN framework, which integrates LiDAR and TD3 to provide

mapless autonomous navigation in dynamic situations with little reliance on accurate sensors. The

authors of [25] proposed a navigation method that integrates imitation learning and DRL for motion

planning in congested environments. By independently processing information on static and

dynamic objects, the network may acquire motion patterns appropriate for real‐world environments.

The SAC‐DRL system proposed in [26] incorporates LiDAR perception and exhibits enhanced

stability and flexibility in navigating challenging terrains. This paper builds upon LiDAR technology

and presents ACR‐TD3, which incorporates ACR into the TD3 algorithm to optimize the navigation

policy, enabling the robot to consistently generate accurate action commands and successfully

navigate dynamic environments.

3. Materials and Methods

To achieve autonomous navigation of mobile robots in mapless dynamic environments, we

proposed a DRL‐based navigation algorithm, ACR‐TD3, which optimizes the navigation policy by

incorporating ACR into the actor loss of the TD3 network. This modification enables the actor

network to generate more rational motion commands, thereby increasing the success rate of

navigation in dynamic environments. Concurrently, we develop a multilayer reward function

integrated with ACR to improve navigation efficacy.

3.1. ACR‐TD3

Within the DRL framework, the essence of the mobile robot navigation challenge is to identify

the optimal policy  using a policy optimization technique that maximizes the anticipated

cumulative return achieved by the agent in the Markov Decision Process (MDP). The merits and

demerits of this navigation technique directly influence the efficacy of mobile robot navigation. In

TD3, the objective of the policy is to optimize the Q‐value, specifically to identify the action that

maximizes the Q‐value output of the critic network, while the optimizer is often employed to

minimize the loss, necessitating the usage of negative values to convert the issue into a minimization

framework. Consequently, the actor loss function is articulated as follows:

 1 ,Loss E Q s a     (1)

where s is the input state, a is the deterministic action output by the actor network, and 1Q is the

Q‐value of the first value network output of TD3.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 12

During the primary phases of training, the parameters of the actor network are iteratively

refined via gradient ascent to optimize policy efficacy. Model training is deemed complete when the

policy performance metric stabilizes within a defined range and the Bellman error decreases below a

certain threshold. At this juncture, the actor network attains a near‐optimal state
  and is

capable of producing a consistent sequence of navigation decisions. Nevertheless, the action orders

produced by the existing policy typically exhibit suboptimal performance, often resulting in accidents

due to inadequate time to evade moving impediments, thereby compromising navigation efficacy in

dynamic environments. To resolve this issue, we include ACR into the TD3 algorithm, incorporating

it into the actor loss function to optimize the navigation policy. This allows the actor network to

provide more rational movement orders, thereby improving navigation efficacy in dynamic

environments. The complete network structure of ACR‐TD3 is shown in Figure 1.

Figure 1. ACR‐TD3 algorithm network structure with actor and critic parts. The new actor loss is obtained by

combining ACR with the original actor loss.

The new actor loss following the implementation of ACR is defined as follows:

new ACRLoss Loss Loss  (2)

ACR primarily optimizes the policy by limiting the angular and linear velocities inside the action

space, achieving smooth and rational behaviors from the actor network following policy changes.

ACR can be articulated as follows:

ACR sm sm sa sa ac acLoss L L L     (3)

The ACR consists of three parts: smoothing loss, obstacle distance loss, and action boundary

loss, with corresponding coefficients of sm , sa , and ac , respectively. Reducing velocity mutation,

smoothing the navigation route, and preventing collisions or lengthier navigation trajectories caused

by frequent velocity changes are the goals of adding smoothing loss. Each step’s loss is determined

by calculating the square of the velocity difference between the current and previous moments, or

the square of the velocity change between two adjacent steps. The smoothing loss at each episode is

then calculated by averaging the loss at each step. The expression for the smoothing loss is

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 12

   2 2
2sm t tL E v E           (4)

where 1t t tv v v    represents the change in linear velocity between two adjacent steps, while

1t t      signifies the change in angular velocity between two adjacent steps. Incorporating

tv and t into the smoothing loss term can effectively mitigate abrupt changes in the robot’s

velocity. The obstacle distance loss is implemented to maintain a specified distance between the

mobile robot and obstacles, providing the robot with adequate reaction time to address approaching

dynamic obstacles, thereby enhancing the success rate and navigation safety. The obstacle distance

loss can be articulated as follows:

     
2

10
,

t

t t
sa t t d

t

D d d D
L E d d

e d D
  

  
     

 (5)

where td is the distance to the nearest obstacle acquired from LiDAR at the moment t , and D is the

distance threshold. In order to impose restrictions on the robot’s movement close to the obstacle and

simultaneously encourage the robot to maintain a relatively safe distance from the obstacle, we set

 td as a segmented function. When the distance between the robot and the nearest obstacle is

smaller than the preset distance threshold D , it will achieve a larger loss, and the loss will increase

linearly as the distance becomes closer; when the distance between the robot and the nearest obstacle

is larger than the preset distance threshold D , it will achieve a smaller loss, and the loss will decrease

exponentially as the distance increases. Therefore, the robot will choose the action with a distance

greater than D from the obstacle to minimize the loss, thus guaranteeing the safety of navigation.

The action boundary loss is introduced to place a limit on the size of the robot’s linear and angular

velocities. Excessive linear velocity will cause the robot to break the distance threshold in a short time,

and the robot will collide head‐on with the dynamic obstacle when it comes close because it is too

late to avoid it; excessive angular velocity will cause the robot to over‐adjust its direction, which will

lead to frequent direction corrections afterward and ultimately affect its navigation. The action

boundary loss can be expressed as follows:

0.5

0 0 0.5
t t t

ac
t

v v
L

v

  
 

 
 (6)

where tv and t denote the linear and angular velocities, respectively, at time t . Linear velocities of 0.5

meters per second are within the allowable range of the robot’s design, and therefore, losses are

imposed only when the linear velocity is greater than 0.5 meters per second acL .

3.2. Reward Functions

The design of reward functions is particularly crucial due to the numerous uncertainties present

in dynamic environments. We examined several parameters influencing navigation in dynamic

environments and meticulously developed a multilayer reward function, delineated as follows:

term yaw gdis odis vR R R R R R R r       (7)

The multilayer rewards encompass termination awards, heading angle rewards, target distance

rewards, obstacle distance rewards, linear velocity rewards, angular velocity rewards, and decay

rewards. The termination awards, often referred to as sparse rewards, are assigned to the robot

according to the navigation outcomes (success, collision, or timeout) of each episode, indicated as

termR :

0

s

term c

r if success

R r if collision

if timeout


 



 (8)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 12

A positive reward sr is awarded to the robot if it successfully reaches the target location, while

a negative reward cr is awarded if the robot collides with an obstacle. If the robot fails to complete

the task within the designated time frame, it is deemed to have exceeded the time limit and is

awarded a 0 reward.

Nonetheless, confining sparse rewards solely to the robot is insufficient. The absence of reward

guidance during navigation impacts the robot’s ability to explore the target location randomly in the

early stages of training, resulting in a predominance of 0 rewards, which considerably diminishes

learning efficiency. Furthermore, this may induce an unstable training process, leading the policy

update to converge to a local optimum. To avoid these problems, we add the necessary dense rewards

to the sparse rewards, including heading angle rewards yawR , target distance rewards gdisR , obstacle

distance rewards odisR , linear velocity rewards vR , angular velocity rewards R , and decay rewards r

. These dense rewards are all designed to make the robot explore more purposefully and improve its

learning efficiency.

The heading angle reward is used to encourage the robot to move in the direction of the goal to

minimize roaming or detours. The representation is as follows:

2
yawR   (9)

where denotes the angle between the robot’s forward direction and the target direction, i.e., the

heading angle, and the larger the angle  , the larger the negative reward the robot receives. The

target distance reward measures the reward obtained by calculating the Euclidean distance between

the robot and the target, which is used to encourage the robot to approach the target step by step,

and can be expressed as follows:

 
 

2 1 1

4 1 1

g g

gdis

g g

d d
R

d d

    
  

 (10)

where gd denotes the distance between the robot and the target location. When a moving obstacle

approaches head‐on towards the robot, the robot often hits the moving obstacle because it is too late

to avoid it. Therefore, an obstacle distance reward is set for penalizing the robot for getting too close

to an obstacle and is denoted as follows:

2

2
10

2 t

t
t

odis
d

t

D d
d D

R D

e d D

        
  

 (11)

When the distance td to the nearest obstacle is less than the distance threshold D , the robot

receives a larger negative reward, and the closer the robot is to the obstacle, the larger the negative

reward is; when td is larger than D , the robot receives a negative reward that decreases

exponentially as td increases. The linear and angular velocity rewards are used to penalize sudden

velocity changes and keep the robot running smoothly. The linear velocity reward is denoted as

follows:

  2

0.05

10 0.05

v

v

r v
R

V v v

 
   

 (12)

V is the desired linear velocity, and the larger the deviation of the actual linear velocity v from
the desired linear velocityV , the larger the negative reward received. In particular, if the robot’s

linear velocity v is less than 0.05 meters per second, the robot is considered to rotate in place or stay

in place, which is not allowed, and therefore, a fixed negative reward vr is given. The angular

velocity reward is denoted as follows:

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 12

20.5R    (13)

This is used to penalize the robot for frequently changing the direction of movement. Finally, for

better navigation, we also add a decaying reward, which gives a constant negative reward r for each

step of the robot to urge the robot to reach the goal as soon as possible.

4. Training

In addition to being costly and risky for robots, training in real‐world environments is also

hazardous for people and the environment. In order to address this problem, we trained the proposed

model in a 6x6 m2 simulated environment in Gazebo [27], as seen in Figure 2. The machine has an

Intel Core i9‐10900K CPU, an NVIDIA GeForce RTX 3090 GPU, and 64 GB of RAM. PyTorch is the

training framework utilized [28]. We interact with the simulated world using a TurtleBot 3 robot that

is outfitted with odometry and LiDAR. The robot’s control and communication architecture is the

Robot Operating System 2 (ROS 2) [29], which is mainly used to publish target position information,

subscribe to messages from the LiDAR and odometer, and publish linear and angular velocity

information to regulate the robot’s movements.

Figure 2. In the training environment, the brick‐red rectangles represent walls that double as static barriers, the

white cylindrical objects represent dynamic obstacles, the red points represent target locations, and the blue

regions represent the LiDAR’s sample range.

At the start of each episode, the target position is published via ROS 2 and marked as a red point

in the training environment. Simultaneously, the dynamic obstacle begins to move along the specified

path, and the robot starts navigation training from the center position. During training, the robot’s

maximum linear velocity is set to 0.5 meters per second, and the maximum angular velocity is set to

2 radians per second. Key information for each step is stored in a replay buffer with a capacity of 2e6

in the form of an array  , , , ,s a r ns done , where s and a represent the current state and action, r

represents the current reward, ns represents the next state, and done indicates whether the episode

has ended. When the buffer reaches capacity, new data supersedes the existing data. Three scenarios

cause the episode to end: success, collision, and timeout. If the robot is within 0.2 meters of the target,

it is considered to have successfully reached the target, the episode ends, and a success reward sr is

granted; if the robot is within 0.13 meters of an obstacle, it is considered to have collided, the episode

ends, and a collision reward cr is granted; and if the episode has not ended after 50 seconds, it is

considered a timeout, the episode is forced to end, and no rewards are granted. The network

parameters used for model training are shown in Table 1. We performed training until the model

converged, which required approximately 6,000 episodes, and this took about 27 hours.

Table 1. Network training parameters for ACR‐TD3.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 12

Parameter Value

Learning Rate 0.0005

Discount Factor 0.97

Soft Target Update Parameter 0.001

Batch Size 256

Buffer Size 2e6

5. Experiments

We created three test scenarios of differing complexity within the Gazebo simulation platform

to assess the proposed approach, as seen in Figure 3. The test environments retain the same physical

dimensions (8×6 m2) and a consistent number of static obstacles; however, they vary in the

arrangement of static obstacles and the quantity of dynamic obstacles. Figure 3(a) depicts four

dynamic obstacles and six static obstacles, categorized as a simple environment (Env1); Figure 3(b)

illustrates six dynamic obstacles and six static obstacles, classified as a medium‐difficulty

environment (Env2); and Figure 3(c) presents eight dynamic obstacles and six static obstacles,

designated as a difficult environment (Env3).

(a)

(b)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 12

(c)

Figure 3. Three assessment environments of varying difficulty, including (a) a simple environment, (b) a

medium‐difficulty environment, and (c) a difficult environment.

We tested the trained model in the environment shown in Figure 3. Each environment

performed 100 independent navigation tasks and was repeated three times to eliminate random

errors. The test results are recorded in Figure 4.

(a)

(b)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 12

(c)

Figure 4. Test results of DDPG, TD3, SAC, and ACR‐TD3 in three environments of varying difficulty levels.

Figure 4 shows that our proposed ACR‐TD3 surpasses the other three algorithms in the number

of successful navigation occurrences across all three environments, indicating superior performance

in dynamic environments. To provide a clearer comparison of navigation performance, we recorded

the model’s navigation success rate and trajectory length after the application of a moving average in

Tables 2 and 3. Table 2 shows that in the comparatively straightforward Env1 and the moderately

challenging Env2 environments, our model attained navigation success rates of 99% and 98%,

respectively, surpassing other models. Despite the arduous Env3 environment, our suggested model

achieved a navigation success rate of 96.7%, surpassing the best‐performing model by 6.33% under

identical conditions. Furthermore, as seen in Table 3, our model exhibits a reduced trajectory length

in comparison to other models, reinforcing the superiority of ACR‐TD3.

The previous analysis shows that ACR‐TD3 performs well in terms of navigation success rate,

trajectory length, and environmental adaptability, validating the effectiveness of ACR‐TD3 for

navigation in dynamic environments and providing a new solution for mobile robot navigation in

dynamic environments.

Table 2. Comparison of model navigation success rates.

Method Env1 Env2 Env3

DDPG 96.00% 95.33% 89.67%

TD3 96.00% 94.00% 90.33%

SAC 96.67% 95.00% 88.00%

ACR‐TD3 99.00% 98.00% 96.67%

Table 3. Comparison of model trajectory lengths.

Method Env1 Env2 Env3

DDPG 4.476 4.553 4.785

TD3 4.531 4.557 4.768

SAC 4.508 4.989 5.014

ACR‐TD3 4.307 4.452 4.547

6. Conclusions

This paper proposes a DRL algorithm that incorporates ACR. By utilizing LiDAR to obtain

environmental information, it achieves end‐to‐end autonomous navigation in dynamic

environments. The algorithm innovatively integrates an action space constraint mechanism with a

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 12

multilayer reward function design, effectively improving navigation success rates and efficiency

without the need for pre‐constructed maps. For experiments, we created a dynamic environment

using the Gazebo simulation platform to assess the algorithm’s efficacy. The experimental findings

exhibited the superiority of the proposed model regarding the success rate and generalization

capability. Owing to constraints in the experimental context, the approach was verified solely

through simulation. Future studies should concentrate on verifying the algorithm on actual robotic

platforms, such as TurtleBot 3, to augment its applicability.

Author Contributions: Conceptualization, L.D. and M.C.; methodology, L.D.; software, L.D.; validation, L.D.;

formal analysis, M.C.; resources, M.C.; data curation, L.D.; writing—original draft preparation, L.D.; writing—

review and editing, M.C.; project administration, M.C.; funding acquisition, M.C. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was funded by Hubei Provincial Central Guidance Local Science and Technology

Development Project (No. 2024BSB002).

Data Availability Statement: The original contributions presented in the study are included in the article;

further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Chen, Z.; Gan, Y.; Dong, S. Optimization of Mobile Robot Delivery System Based on Deep Learning. J.

Comput. Sci. Res. 2024, 6, 51–65.

2. Cimurs, R.; Merchán‐Cruz, E.A. Leveraging Expert Demonstration Features for Deep Reinforcement

Learning in Floor Cleaning Robot Navigation. Sensors 2022, 22, 7750.

3. Abdeh, M.; Abut, F.; Akay, F. Autonomous Navigation in Search and Rescue Simulated Environment Using

Deep Reinforcement Learning. Balkan J. Electr. Comput. Eng. 2021, 9, 92–98.

4. Zhai, H.‐Q.; Wang, L.‐H. The Robust Residual‐Based Adaptive Estimation Kalman Filter Method for Strap‐

Down Inertial and Geomagnetic Tightly Integrated Navigation System. Rev. Sci. Instrum. 2020, 91, 10.

5. Bai, Y.; Zhang, H.; Wu, J.; Yang, W. UAV Path Planning Based on Improved A* and DWA Algorithms. Int.

J. Aerosp. Eng. 2021, 2021, 4511252.

6. Li, B.; Chen, B. An Adaptive Rapidly‐Exploring Random Tree. IEEE/CAA J. Autom. Sin. 2022, 9, 283–294.

7. Plasencia‐Salgueiro, A.J. Deep Reinforcement Learning for Autonomous Mobile Robot Navigation. In

Artificial Intelligence for Robotics and Autonomous Systems Applications; Springer: Cham, Switzerland, 2023;

pp. 195–237.

8. Ranaweera, M.; Mahmoud, Q.H. Virtual to Real‐World Transfer Learning: A Systematic Review. Electronics

2021, 10, 1491.

9. James, S.; Wohlhart, P.; Kalakrishnan, M.; Kalashnikov, D.; Irpan, A.; Ibarz, J.; et al. Sim‐to‐Real via Sim‐to‐

Sim: Data‐Efficient Robotic Grasping via Randomized‐to‐Canonical Adaptation Networks. In Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 2019, 12619–12629.

10. Garulli, A.; Giannitrapani, A.; Prattichizzo, D.; Vicino, A. Mobile Robot SLAM for Line‐Based Environment

Representation. In Proceedings of the 44th IEEE Conference on Decision and Control (CDC), Seville, Spain, 2005;

pp. 2041–2046.

11. Harik, E.H.; Korsaeth, A. Combining Hector SLAM and Artificial Potential Field for Autonomous

Navigation Inside a Greenhouse. Robotics 2018, 7, 22.

12. Kim, Y.‐H.; Jang, J.‐I.; Yun, S. End‐to‐End Deep Learning for Autonomous Navigation of Mobile Robot. In

Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,

12–14 January 2018; pp. 1–6.

13. Wang, J.K.; Zhang, X.; Zhao, Y.; Li, H.; Guo, K. A LiDAR‐Based End‐to‐End Controller for Robot

Navigation Using Deep Neural Network. In Proceedings of the 2017 IEEE International Conference on

Unmanned Systems (ICUS), Beijing, China, 27–29 October 2017; pp. 302–307.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 12

14. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;

Fidjeland, A.K.; Ostrovski, G.; et al. Human‐Level Control Through Deep Reinforcement Learning. Nature

2015, 518, 529–533.

15. Tai, L.; Li, S.; Liu, M. A Deep‐Network Solution Towards Model‐Less Obstacle Avoidance. In Proceedings

of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of

Korea, 9–14 October 2016; pp. 2759–2764.

16. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei‐Fei, L.; Farhadi, A. Target‐Driven Visual Navigation

in Indoor Scenes Using Deep Reinforcement Learning. In Proceedings of the 2017 IEEE International

Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3357–3364.

17. Ruan, X.; Zhang, Y.; Zhang, Z.; Zhou, X. Mobile Robot Navigation Based on Deep Reinforcement Learning.

In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019;

pp. 5803–5808.

18. Cimurs, R.; Suh, I.H.; Lee, S.H. Goal‐Driven Autonomous Exploration Through Deep Reinforcement

Learning. IEEE Robot. Autom. Lett. 2021, 7, 730–737.

19. Wu, K.; Wang, X.; Zhang, S.; Huang, K. BND*‐DDQN: Learn to Steer Autonomously Through Deep

Reinforcement Learning. IEEE Trans. Cogn. Dev. Syst. 2019, 13, 249–261.

20. Ma, L.; Zhao, T.; Wang, Y.; Wang, X.; Zhao, H.; Wang, Y. Learning to Navigate in Indoor Environments:

From Memorizing to Reasoning. arXiv 2019, arXiv:1904.06933.

21. Surmann, H.; Pörtner, A.; Pfingsthorn, M.; Wünsche, H. Deep Reinforcement Learning for Real

Autonomous Mobile Robot Navigation in Indoor Environments. arXiv 2020, arXiv:2005.13857.

22. Choi, J.; Dance, C.; Kim, J.E.; Park, K.S.; Han, J.; Seo, J.; et al. Fast Adaptation of Deep Reinforcement

Learning‐Based Navigation Skills to Human Preference. In Proc. IEEE Int. Conf. Robotics Autom. (ICRA),

2020; pp. 3363–3370.

23. Samsani, S.S.; Mutahira, H.; Muhammad, M.S. Memory‐Based Crowd‐Aware Robot Navigation Using

Deep Reinforcement Learning. Complex Intell. Syst. 2023, 9, 2147–2158.

24. Jiang, H.; Ding, Z.; Cao, Z.; Liu, H. iTD3‐CLN: Learn to Navigate in Dynamic Scene Through Deep

Reinforcement Learning. Neurocomputing 2022, 503, 118–128.

25. Liu, L.; Lin, H.; Zhang, M.; Wang, H.; Li, L.; Wang, Z. Robot Navigation in Crowded Environments Using

Deep Reinforcement Learning. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 11349–11355.

26. Liu, Y.; Zhang, X.; Yu, D.; Xu, W.; Lu, Y.; Song, Y. A Soft Actor‐Critic Deep Reinforcement‐Learning‐Based

Robot Navigation Method Using LiDAR. Remote Sens. 2024, 16, 2072.

27. Koenig, N.; Howard, A. Design and Use Paradigms for Gazebo, an Open‐Source Multi‐Robot Simulator. In

Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai,

Japan, 28 September–2 October 2004; Volume 3, pp. 2149–2154.

28. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;

Antiga, L.; et al. PyTorch: An Imperative Style, High‐Performance Deep Learning Library. In Adv. Neural

Inf. Process. Syst. 2019, 32, 8024–8035.

29. Puck, L.; Walther, D.; Lüdtke, D.; Schlegel, C. Distributed and Synchronized Setup Towards Real‐Time

Robotic Control Using ROS2 on Linux. In Proceedings of the 2020 IEEE 16th International Conference on

Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 351–358.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 doi:10.20944/preprints202508.1995.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

