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Abstract 

When  dynamic  obstacles  are  present  in  the  environment,  traditional  navigation methods  often 

struggle to achieve safe and efficient obstacle avoidance due to their lack of real‐time adaptability. To 

address  this  challenge,  we  propose  an  Action‐Constrained  Regularized  Twin  Delayed  Deep 

Deterministic Policy Gradient (ACR‐TD3) algorithm. This algorithm introduces Action‐Constrained 

Regularization (ACR) into the framework of the Twin Delayed Deep Deterministic Policy Gradient 

(TD3) to optimize navigation policies, ensuring that the robot outputs reasonable motion commands 

and thereby reduces collision frequency, achieving higher navigation success rates. Additionally, we 

design  a multilayer  reward  function,  combined  with  the  ACR,  to  further  optimize  navigation 

performance. Our proposed method does not rely on environmental maps and achieves end‐to‐end 

autonomous navigation based solely on LiDAR input. Experimental results demonstrate that ACR‐

TD3  achieves  a  99%  navigation  success  rate  in  simulated  environments,  outperforming  classical 

algorithms such as Deep Deterministic Policy Gradient (DDPG), TD3, and Soft Actor–Critic (SAC), 

while also exhibiting strong generalization capabilities. 

Keywords:  deep  reinforcement  learning;  robot  navigation;  autonomous  navigation;  obstacle 

avoidance; LiDAR 

 

1. Introduction 

Mobile robots are currently being extensively utilized in autonomous delivery [1], cleaning [2], 

and rescue [3] due to rapid advancements in robotics. Mobile robots are often required for these tasks 

to achieve autonomous navigation and avoid both static and dynamic obstacles in the environment. 

The complexity and diversity of real‐world application scenarios mean that, despite ongoing research 

on mobile robot navigation, numerous issues still require study and resolution. 

Because  of  their  dependability,  traditional  navigation methods  [4–6]  have  been  extensively 

employed in structured environments such as factories and warehouses during the last few decades. 

However,  there  are  numerous  drawbacks  to  this  approach.  The  first  is  a  lack  of  environmental 

adaptability;  traditional methods often depend on precise environment modeling, which makes  it 

challenging to deal with changes in dynamic or unfamiliar situations in real time. Second, it is hard 

to fulfill the real‐time demands of high‐speed mobile robots due to the lack of computing efficiency 

and real‐time performance. For example, the A* algorithm has a high computational cost for path 

search in large‐scale maps. Furthermore, the generalization power of traditional methods is limited, 

as they cannot automatically adapt to new environments and require manual parameter adjustments 

for  various  circumstances.  Lastly,  due  to  their  limited  capacity  for  high‐dimensional  sensing, 

traditional methods rely on human feature extraction and struggle to directly handle raw sensor data, 

such as vision and point clouds, which degrades performance  in complicated  terrain or scenarios 
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with shifting light. Traditional methods are limited by these drawbacks in terms of their use in real‐

world scenarios, causing them to perform poorly in dynamic situations. 

Deep Reinforcement Learning (DRL) offers a new technical avenue for mobile robot navigation 

by combining  the superior decision‐making capabilities of reinforcement  learning with  the potent 

perceptual  capabilities  of  deep  neural  networks.  DRL  exhibits  notable  benefits  over  traditional 

methods in terms of generalization ability, computational economy, and environmental flexibility [7–

9]. DRL can better adapt to dynamic situations by learning environmental properties directly from 

raw sensor data, eliminating the need for environment modeling and laborious feature extraction. In 

addition, DRL is capable of long‐term planning, which may balance path optimization with real‐time 

decision‐making by implicitly learning long‐term rewards through value functions or actor networks. 

Finally, the trained model may be transferred to similar but untrained environments and perform 

well, demonstrating DRL’s great generalization capabilities. 

Although DRL‐based  techniques have shown promise  in autonomous robot navigation,  they 

still face challenges such as trouble navigating in dynamic environments and a propensity for local 

optimization.  To  address  these  challenges, we  proposed  a  DRL‐based mobile  robot  navigation 

algorithm, ACR‐TD3, which optimizes the training process of the actor network and achieves a higher 

navigation success rate by introducing an ACR in the TD3 algorithm; at the same time, we design a 

multilayer  reward  function,  which,  combined  with  ACR,  improves  navigation  performance  in 

dynamic environments. 

The structure of this paper is as follows: Section 2 reviews related work; Section 3 details the 

proposed method; Section 4 presents the experimental design and result analysis; and finally, the 

paper concludes with a summary and future research directions. 

2. Related Work 

In 2005, Garulli et al. [10] proposed a line‐feature‐based simultaneous localization and mapping 

(SLAM)  method  that  uses  Extended  Kalman  Filtering  (EKF)  to  facilitate  localization  and  map 

construction in structured environments while minimizing computational complexity. Harik et al. 

[11] integrated Hector SLAM with Artificial Potential Field (APF) to provide real‐time navigation and 

obstacle avoidance in greenhouse conditions. Kim et al. [12] proposed an end‐to‐end deep learning 

model  to  anticipate  control  instructions  directly  from  sensor  data,  which  decreases  the  error 

accumulation of typical navigation modules. Wang et al. [13] proposed an end‐to‐end deep neural 

network controller utilizing LiDAR, which establishes a direct sensor‐to‐action mapping for robotic 

navigation.  Nonetheless,  these  methods  depend  on  precise  environmental  modeling,  exhibit 

significant  computing  complexity,  and  often  underperform  when  confronted  with  dynamic 

impediments and unstructured environments, hence complicating  the  fulfillment of real‐time and 

robustness requirements. 

DRL was  introduced by Minh et al.  [14]  in 2013 during  the gameplay of an Atari game. The 

intelligence model was able to effectively acquire control methods from the game environment and 

surpassed human performance in certain games. In 2016, Tai, L. et al. [15] first implemented DRL for 

robot navigation, demonstrating the viability of mapless navigation in both simulated and real‐world 

environments. Subsequently, [16] employed DRL for goal‐driven visual navigation utilizing RGB and 

target pictures as  inputs and acquired navigation strategies via a Siamese network, establishing a 

basis for future vision‐based DRL navigation studies. The authors of [17] proposed an end‐to‐end 

methodology  of DRL  to navigate  a mobile  robot  in  an unfamiliar  area with  an RGB  camera  for 

environmental  sensing.  Nonetheless,  RGB‐based  methods  exhibit  inadequate  generalization 

capabilities, and a substantial disparity in navigation performance exists  in real‐world and virtual 

environments. 

Therefore, multiple scholars have endeavored to enhance generalizability. One method involves 

using  a depth  camera  to obtain  environmental data. A Convolutional Deep Deterministic Policy 

Gradient (CDDPG) network [18] was proposed to process extensive depth image data, successfully 

circumventing both static and dynamic barriers. The authors of  [19] proposed a binocular vision‐
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based steering control system  for autonomous driving, enabling end‐to‐end autonomous steering 

decision‐making  using  an  enhanced  Deep  Deterministic  Policy  Gradient  (DDPG)  network. 

Nevertheless, depth  image‐based  techniques  sometimes need  intricate  convolutional processes  to 

analyze  visual  data,  resulting  in  significant  processing  demands,  which  creates  a  notable 

performance limitation in real‐world navigation applications. Conversely, LiDAR has emerged as an 

efficient  alternative  to  improve  the  generalization  of  DRL  navigation  owing  to  its  exceptional 

precision, rapid responsiveness, and robust anti‐jamming capabilities. The authors of [20] proposed 

a DRL navigation technique utilizing LiDAR and RGB cameras, achieving autonomous navigation 

from  basic  memory  to  intricate  reasoning  in  indoor  environments  via  a  memory‐reasoning 

framework. The authors of [21] used fused data from LiDAR and RGB cameras as inputs for the robot, 

subsequently  incorporating  random  Gaussian  noise  into  the  incoming  laser  data  to  improve 

resilience and navigation. Nonetheless, multimodal sensor fusion not only increases computational 

demands  but may  also  induce  calibration  drift  in  dynamic  environments.  The  authors  of  [22] 

proposed an optimization method for navigation policy utilizing LiDAR and DRL frameworks that 

rapidly adapts  to human preferences, enabling dynamic adjustments of navigation behaviors  in a 

robot. In addition, the authors of [23] proposed a crowd‐aware navigation system utilizing LiDAR 

and memory‐enhanced DRL, effectively achieving navigation in a densely populated area, while the 

authors of  [24] proposed  the  iTD3‐CLN  framework, which  integrates LiDAR and TD3  to provide 

mapless autonomous navigation in dynamic situations with little reliance on accurate sensors. The 

authors of [25] proposed a navigation method that integrates imitation learning and DRL for motion 

planning  in  congested  environments.  By  independently  processing  information  on  static  and 

dynamic objects, the network may acquire motion patterns appropriate for real‐world environments. 

The  SAC‐DRL  system  proposed  in  [26]  incorporates  LiDAR  perception  and  exhibits  enhanced 

stability and flexibility in navigating challenging terrains. This paper builds upon LiDAR technology 

and presents ACR‐TD3, which incorporates ACR into the TD3 algorithm to optimize the navigation 

policy,  enabling  the  robot  to  consistently  generate  accurate  action  commands  and  successfully 

navigate dynamic environments. 

3. Materials and Methods 

To  achieve  autonomous navigation of mobile  robots  in mapless dynamic  environments, we 

proposed a DRL‐based navigation algorithm, ACR‐TD3, which optimizes the navigation policy by 

incorporating ACR  into  the  actor  loss  of  the  TD3  network.  This modification  enables  the  actor 

network  to  generate  more  rational  motion  commands,  thereby  increasing  the  success  rate  of 

navigation  in  dynamic  environments.  Concurrently,  we  develop  a  multilayer  reward  function 

integrated with ACR to improve navigation efficacy. 

3.1. ACR‐TD3 

Within the DRL framework, the essence of the mobile robot navigation challenge is to identify 

the  optimal  policy    using  a  policy  optimization  technique  that  maximizes  the  anticipated 

cumulative  return achieved by  the agent  in  the Markov Decision Process  (MDP). The merits and 

demerits of this navigation technique directly influence the efficacy of mobile robot navigation. In 

TD3,  the objective of  the policy  is  to optimize  the Q‐value, specifically  to  identify  the action  that 

maximizes  the Q‐value  output  of  the  critic  network, while  the  optimizer  is  often  employed  to 

minimize the loss, necessitating the usage of negative values to convert the issue into a minimization 

framework. Consequently, the actor loss function is articulated as follows: 

 1 ,Loss E Q s a       (1)

where  s   is the input state, a   is the deterministic action output by the actor network, and 1Q   is the 

Q‐value of the first value network output of TD3. 
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During  the primary phases of  training,  the parameters   of  the actor network are  iteratively 

refined via gradient ascent to optimize policy efficacy. Model training is deemed complete when the 

policy performance metric stabilizes within a defined range and the Bellman error decreases below a 

certain  threshold. At  this  juncture,  the  actor  network  attains  a  near‐optimal  state
    and  is 

capable of producing a consistent sequence of navigation decisions. Nevertheless, the action orders 

produced by the existing policy typically exhibit suboptimal performance, often resulting in accidents 

due to inadequate time to evade moving impediments, thereby compromising navigation efficacy in 

dynamic environments. To resolve this issue, we include ACR into the TD3 algorithm, incorporating 

it  into  the actor  loss  function  to optimize  the navigation policy. This allows  the actor network  to 

provide  more  rational  movement  orders,  thereby  improving  navigation  efficacy  in  dynamic 

environments. The complete network structure of ACR‐TD3 is shown in Figure 1. 

 

Figure 1. ACR‐TD3 algorithm network structure with actor and critic parts. The new actor loss is obtained by 

combining ACR with the original actor loss. 

The new actor loss following the implementation of ACR is defined as follows: 

new ACRLoss Loss Loss    (2)

ACR primarily optimizes the policy by limiting the angular and linear velocities inside the action 

space, achieving smooth and rational behaviors from the actor network following policy changes. 

ACR can be articulated as follows: 

ACR sm sm sa sa ac acLoss L L L       (3)

The ACR consists of  three parts: smoothing  loss, obstacle distance  loss, and action boundary 

loss, with corresponding coefficients of sm ,  sa , and ac , respectively. Reducing velocity mutation, 

smoothing the navigation route, and preventing collisions or lengthier navigation trajectories caused 

by frequent velocity changes are the goals of adding smoothing loss. Each step’s loss is determined 

by calculating the square of the velocity difference between the current and previous moments, or 

the square of the velocity change between two adjacent steps. The smoothing loss at each episode is 

then calculated by averaging the loss at each step. The expression for the smoothing loss is 
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   2 2
2sm t tL E v E             (4)

where  1t t tv v v      represents  the  change  in  linear  velocity  between  two  adjacent  steps, while 

1t t        signifies  the change  in angular velocity between  two adjacent steps.  Incorporating 

tv   and t   into  the  smoothing  loss  term  can  effectively mitigate abrupt  changes  in  the  robot’s 

velocity. The obstacle distance  loss  is  implemented  to maintain  a  specified distance between  the 

mobile robot and obstacles, providing the robot with adequate reaction time to address approaching 

dynamic obstacles, thereby enhancing the success rate and navigation safety. The obstacle distance 

loss can be articulated as follows: 

     
2

10
,

t

t t
sa t t d

t

D d d D
L E d d

e d D
  

  
     

  (5)

where td is the distance to the nearest obstacle acquired from LiDAR at the moment t , and D is the 

distance threshold. In order to impose restrictions on the robot’s movement close to the obstacle and 

simultaneously encourage the robot to maintain a relatively safe distance from the obstacle, we set 

 td as a  segmented  function. When  the distance between  the  robot and  the nearest obstacle  is 

smaller than the preset distance threshold D , it will achieve a larger loss, and the loss will increase 

linearly as the distance becomes closer; when the distance between the robot and the nearest obstacle 

is larger than the preset distance threshold D , it will achieve a smaller loss, and the loss will decrease 

exponentially as the distance increases. Therefore, the robot will choose the action with a distance 

greater than D   from the obstacle to minimize the loss, thus guaranteeing the safety of navigation. 

The action boundary loss is introduced to place a limit on the size of the robot’s linear and angular 

velocities. Excessive linear velocity will cause the robot to break the distance threshold in a short time, 

and the robot will collide head‐on with the dynamic obstacle when it comes close because it is too 

late to avoid it; excessive angular velocity will cause the robot to over‐adjust its direction, which will 

lead  to  frequent  direction  corrections  afterward  and  ultimately  affect  its  navigation.  The  action 

boundary loss can be expressed as follows: 

0.5

0 0 0.5
t t t

ac
t

v v
L

v

  
 

 
  (6)

where tv and t denote the linear and angular velocities, respectively, at time t . Linear velocities of 0.5 

meters per  second are within  the allowable  range of  the  robot’s design, and  therefore,  losses are 

imposed only when the linear velocity is greater than 0.5 meters per second acL . 

3.2. Reward Functions 

The design of reward functions is particularly crucial due to the numerous uncertainties present 

in  dynamic  environments. We  examined  several  parameters  influencing  navigation  in  dynamic 

environments and meticulously developed a multilayer reward function, delineated as follows: 

term yaw gdis odis vR R R R R R R r         (7)

The multilayer rewards encompass termination awards, heading angle rewards, target distance 

rewards, obstacle distance  rewards,  linear velocity  rewards, angular velocity  rewards, and decay 

rewards. The  termination  awards, often  referred  to  as  sparse  rewards,  are  assigned  to  the  robot 

according  to the navigation outcomes  (success, collision, or timeout) of each episode,  indicated as

termR : 

0

s

term c

r if success

R r if collision

if timeout


 



  (8)
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A positive reward sr   is awarded to the robot if it successfully reaches the target location, while 

a negative reward cr   is awarded if the robot collides with an obstacle. If the robot fails to complete 

the  task within  the designated  time  frame,  it  is deemed  to have  exceeded  the  time  limit  and  is 

awarded a 0 reward. 

Nonetheless, confining sparse rewards solely to the robot is insufficient. The absence of reward 

guidance during navigation impacts the robot’s ability to explore the target location randomly in the 

early stages of training, resulting in a predominance of 0 rewards, which considerably diminishes 

learning efficiency. Furthermore,  this may  induce an unstable  training process,  leading the policy 

update to converge to a local optimum. To avoid these problems, we add the necessary dense rewards 

to the sparse rewards, including heading angle rewards yawR , target distance rewards gdisR , obstacle 

distance rewards odisR , linear velocity rewards vR , angular velocity rewards R , and decay rewards r

. These dense rewards are all designed to make the robot explore more purposefully and improve its 

learning efficiency. 

The heading angle reward is used to encourage the robot to move in the direction of the goal to 

minimize roaming or detours. The representation is as follows: 

2
yawR     (9)

where   denotes the angle between the robot’s forward direction and the target direction, i.e., the 

heading angle, and the larger the angle   , the larger the negative reward the robot receives. The 

target distance reward measures the reward obtained by calculating the Euclidean distance between 

the robot and the target, which is used to encourage the robot to approach the target step by step, 

and can be expressed as follows: 

 
 

2 1 1

4 1 1

g g

gdis

g g

d d
R

d d

    
  

  (10)

where gd   denotes the distance between the robot and the target location. When a moving obstacle 

approaches head‐on towards the robot, the robot often hits the moving obstacle because it is too late 

to avoid it. Therefore, an obstacle distance reward is set for penalizing the robot for getting too close 

to an obstacle and is denoted as follows: 

2

2
10

2 t

t
t

odis
d

t

D d
d D

R D

e d D

        
  

  (11)

When  the distance td   to  the nearest obstacle  is  less  than  the distance  threshold D ,  the  robot 

receives a larger negative reward, and the closer the robot is to the obstacle, the larger the negative 

reward  is;  when td   is  larger  than D ,  the  robot  receives  a  negative  reward  that  decreases 

exponentially as td   increases. The linear and angular velocity rewards are used to penalize sudden 

velocity  changes and keep  the  robot  running  smoothly. The  linear velocity  reward  is denoted as 

follows: 

  2

0.05

10 0.05

v

v

r v
R

V v v

 
   

  (12)

V is the desired linear velocity, and the larger the deviation of the actual linear velocity  v from 
the desired  linear velocityV ,  the  larger  the negative  reward  received.  In particular,  if  the  robot’s 

linear velocity v   is less than 0.05 meters per second, the robot is considered to rotate in place or stay 

in  place, which  is  not  allowed,  and  therefore,  a  fixed  negative  reward vr   is  given.  The  angular 

velocity reward is denoted as follows: 
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20.5R      (13)

This is used to penalize the robot for frequently changing the direction of movement. Finally, for 

better navigation, we also add a decaying reward, which gives a constant negative reward r   for each 

step of the robot to urge the robot to reach the goal as soon as possible. 

4. Training 

In  addition  to being  costly  and  risky  for  robots,  training  in  real‐world  environments  is also 

hazardous for people and the environment. In order to address this problem, we trained the proposed 

model in a 6x6 m2 simulated environment in Gazebo [27], as seen in Figure 2. The machine has an 

Intel Core i9‐10900K CPU, an NVIDIA GeForce RTX 3090 GPU, and 64 GB of RAM. PyTorch is the 

training framework utilized [28]. We interact with the simulated world using a TurtleBot 3 robot that 

is outfitted with odometry and LiDAR. The robot’s control and communication architecture is the 

Robot Operating System 2 (ROS 2) [29], which is mainly used to publish target position information, 

subscribe  to messages  from  the  LiDAR  and  odometer,  and  publish  linear  and  angular  velocity 

information to regulate the robot’s movements. 

 

Figure 2. In the training environment, the brick‐red rectangles represent walls that double as static barriers, the 

white cylindrical objects represent dynamic obstacles,  the red points represent  target  locations, and  the blue 

regions represent the LiDAR’s sample range. 

At the start of each episode, the target position is published via ROS 2 and marked as a red point 

in the training environment. Simultaneously, the dynamic obstacle begins to move along the specified 

path, and the robot starts navigation training from the center position. During training, the robot’s 

maximum linear velocity is set to 0.5 meters per second, and the maximum angular velocity is set to 

2 radians per second. Key information for each step is stored in a replay buffer with a capacity of 2e6 

in  the  form of an array  , , , ,s a r ns done , where s   and a   represent  the current  state and action, r  

represents the current reward, ns   represents the next state, and done   indicates whether the episode 

has ended. When the buffer reaches capacity, new data supersedes the existing data. Three scenarios 

cause the episode to end: success, collision, and timeout. If the robot is within 0.2 meters of the target, 

it is considered to have successfully reached the target, the episode ends, and a success reward sr is 

granted; if the robot is within 0.13 meters of an obstacle, it is considered to have collided, the episode 

ends, and a collision  reward cr is granted; and  if  the episode has not ended after 50 seconds,  it  is 

considered  a  timeout,  the  episode  is  forced  to  end,  and  no  rewards  are  granted.  The  network 

parameters used for model training are shown in Table 1. We performed training until the model 

converged, which required approximately 6,000 episodes, and this took about 27 hours. 

Table 1. Network training parameters for ACR‐TD3. 
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Parameter  Value 

Learning Rate  0.0005 

Discount Factor  0.97 

Soft Target Update Parameter  0.001 

Batch Size  256 

Buffer Size  2e6 

5. Experiments 

We created three test scenarios of differing complexity within the Gazebo simulation platform 

to assess the proposed approach, as seen in Figure 3. The test environments retain the same physical 

dimensions  (8×6  m2)  and  a  consistent  number  of  static  obstacles;  however,  they  vary  in  the 

arrangement  of  static  obstacles  and  the  quantity  of  dynamic  obstacles.  Figure  3(a)  depicts  four 

dynamic obstacles and six static obstacles, categorized as a simple environment (Env1); Figure 3(b) 

illustrates  six  dynamic  obstacles  and  six  static  obstacles,  classified  as  a  medium‐difficulty 

environment  (Env2);  and  Figure  3(c)  presents  eight  dynamic  obstacles  and  six  static  obstacles, 

designated as a difficult environment (Env3). 

 

(a) 

 
(b) 
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(c) 

Figure  3.  Three  assessment  environments  of  varying  difficulty,  including  (a)  a  simple  environment,  (b)  a 

medium‐difficulty environment, and (c) a difficult environment. 

We  tested  the  trained  model  in  the  environment  shown  in  Figure  3.  Each  environment 

performed  100  independent navigation  tasks  and was  repeated  three  times  to  eliminate  random 

errors. The test results are recorded in Figure 4. 

 

(a) 

 
(b) 
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(c) 

Figure 4. Test results of DDPG, TD3, SAC, and ACR‐TD3 in three environments of varying difficulty levels. 

Figure 4 shows that our proposed ACR‐TD3 surpasses the other three algorithms in the number 

of successful navigation occurrences across all three environments, indicating superior performance 

in dynamic environments. To provide a clearer comparison of navigation performance, we recorded 

the model’s navigation success rate and trajectory length after the application of a moving average in 

Tables 2 and 3. Table 2 shows that in the comparatively straightforward Env1 and the moderately 

challenging  Env2  environments,  our model  attained  navigation  success  rates  of  99%  and  98%, 

respectively, surpassing other models. Despite the arduous Env3 environment, our suggested model 

achieved a navigation success rate of 96.7%, surpassing the best‐performing model by 6.33% under 

identical conditions. Furthermore, as seen in Table 3, our model exhibits a reduced trajectory length 

in comparison to other models, reinforcing the superiority of ACR‐TD3. 

The previous analysis shows that ACR‐TD3 performs well in terms of navigation success rate, 

trajectory  length,  and  environmental  adaptability,  validating  the  effectiveness  of  ACR‐TD3  for 

navigation in dynamic environments and providing a new solution for mobile robot navigation in 

dynamic environments. 

Table 2. Comparison of model navigation success rates. 

Method  Env1  Env2  Env3 

DDPG  96.00%  95.33%  89.67% 

TD3  96.00%  94.00%  90.33% 

SAC  96.67%  95.00%  88.00% 

ACR‐TD3  99.00%  98.00%  96.67% 

Table 3. Comparison of model trajectory lengths. 

Method  Env1  Env2  Env3 

DDPG  4.476  4.553  4.785 

TD3  4.531  4.557  4.768 

SAC  4.508  4.989  5.014 

ACR‐TD3  4.307  4.452  4.547 

6. Conclusions 

This paper proposes  a DRL  algorithm  that  incorporates ACR. By utilizing LiDAR  to obtain 

environmental  information,  it  achieves  end‐to‐end  autonomous  navigation  in  dynamic 

environments. The algorithm innovatively integrates an action space constraint mechanism with a 
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multilayer  reward  function design,  effectively  improving navigation  success  rates  and  efficiency 

without  the need  for pre‐constructed maps. For experiments, we created a dynamic environment 

using the Gazebo simulation platform to assess the algorithm’s efficacy. The experimental findings 

exhibited  the  superiority  of  the  proposed model  regarding  the  success  rate  and  generalization 

capability.  Owing  to  constraints  in  the  experimental  context,  the  approach was  verified  solely 

through simulation. Future studies should concentrate on verifying the algorithm on actual robotic 

platforms, such as TurtleBot 3, to augment its applicability. 
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