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Abstract

When dynamic obstacles are present in the environment, traditional navigation methods often
struggle to achieve safe and efficient obstacle avoidance due to their lack of real-time adaptability. To
address this challenge, we propose an Action-Constrained Regularized Twin Delayed Deep
Deterministic Policy Gradient (ACR-TD3) algorithm. This algorithm introduces Action-Constrained
Regularization (ACR) into the framework of the Twin Delayed Deep Deterministic Policy Gradient
(TD3) to optimize navigation policies, ensuring that the robot outputs reasonable motion commands
and thereby reduces collision frequency, achieving higher navigation success rates. Additionally, we
design a multilayer reward function, combined with the ACR, to further optimize navigation
performance. Our proposed method does not rely on environmental maps and achieves end-to-end
autonomous navigation based solely on LiDAR input. Experimental results demonstrate that ACR-
TD3 achieves a 99% navigation success rate in simulated environments, outperforming classical
algorithms such as Deep Deterministic Policy Gradient (DDPG), TD3, and Soft Actor—Critic (SAC),
while also exhibiting strong generalization capabilities.

Keywords: deep reinforcement learning; robot navigation; autonomous navigation; obstacle
avoidance; LIDAR

1. Introduction

Mobile robots are currently being extensively utilized in autonomous delivery [1], cleaning [2],
and rescue [3] due to rapid advancements in robotics. Mobile robots are often required for these tasks
to achieve autonomous navigation and avoid both static and dynamic obstacles in the environment.
The complexity and diversity of real-world application scenarios mean that, despite ongoing research
on mobile robot navigation, numerous issues still require study and resolution.

Because of their dependability, traditional navigation methods [4-6] have been extensively
employed in structured environments such as factories and warehouses during the last few decades.
However, there are numerous drawbacks to this approach. The first is a lack of environmental
adaptability; traditional methods often depend on precise environment modeling, which makes it
challenging to deal with changes in dynamic or unfamiliar situations in real time. Second, it is hard
to fulfill the real-time demands of high-speed mobile robots due to the lack of computing efficiency
and real-time performance. For example, the A* algorithm has a high computational cost for path
search in large-scale maps. Furthermore, the generalization power of traditional methods is limited,
as they cannot automatically adapt to new environments and require manual parameter adjustments
for various circumstances. Lastly, due to their limited capacity for high-dimensional sensing,
traditional methods rely on human feature extraction and struggle to directly handle raw sensor data,
such as vision and point clouds, which degrades performance in complicated terrain or scenarios
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with shifting light. Traditional methods are limited by these drawbacks in terms of their use in real-
world scenarios, causing them to perform poorly in dynamic situations.

Deep Reinforcement Learning (DRL) offers a new technical avenue for mobile robot navigation
by combining the superior decision-making capabilities of reinforcement learning with the potent
perceptual capabilities of deep neural networks. DRL exhibits notable benefits over traditional
methods in terms of generalization ability, computational economy, and environmental flexibility [7-
9]. DRL can better adapt to dynamic situations by learning environmental properties directly from
raw sensor data, eliminating the need for environment modeling and laborious feature extraction. In
addition, DRL is capable of long-term planning, which may balance path optimization with real-time
decision-making by implicitly learning long-term rewards through value functions or actor networks.
Finally, the trained model may be transferred to similar but untrained environments and perform
well, demonstrating DRL'’s great generalization capabilities.

Although DRL-based techniques have shown promise in autonomous robot navigation, they
still face challenges such as trouble navigating in dynamic environments and a propensity for local
optimization. To address these challenges, we proposed a DRL-based mobile robot navigation
algorithm, ACR-TD3, which optimizes the training process of the actor network and achieves a higher
navigation success rate by introducing an ACR in the TD3 algorithm; at the same time, we design a
multilayer reward function, which, combined with ACR, improves navigation performance in
dynamic environments.

The structure of this paper is as follows: Section 2 reviews related work; Section 3 details the
proposed method; Section 4 presents the experimental design and result analysis; and finally, the
paper concludes with a summary and future research directions.

2. Related Work

In 2005, Garulli et al. [10] proposed a line-feature-based simultaneous localization and mapping
(SLAM) method that uses Extended Kalman Filtering (EKF) to facilitate localization and map
construction in structured environments while minimizing computational complexity. Harik et al.
[11] integrated Hector SLAM with Artificial Potential Field (APF) to provide real-time navigation and
obstacle avoidance in greenhouse conditions. Kim et al. [12] proposed an end-to-end deep learning
model to anticipate control instructions directly from sensor data, which decreases the error
accumulation of typical navigation modules. Wang et al. [13] proposed an end-to-end deep neural
network controller utilizing LiDAR, which establishes a direct sensor-to-action mapping for robotic
navigation. Nonetheless, these methods depend on precise environmental modeling, exhibit
significant computing complexity, and often underperform when confronted with dynamic
impediments and unstructured environments, hence complicating the fulfillment of real-time and
robustness requirements.

DRL was introduced by Minh et al. [14] in 2013 during the gameplay of an Atari game. The
intelligence model was able to effectively acquire control methods from the game environment and
surpassed human performance in certain games. In 2016, Tai, L. et al. [15] first implemented DRL for
robot navigation, demonstrating the viability of mapless navigation in both simulated and real-world
environments. Subsequently, [16] employed DRL for goal-driven visual navigation utilizing RGB and
target pictures as inputs and acquired navigation strategies via a Siamese network, establishing a
basis for future vision-based DRL navigation studies. The authors of [17] proposed an end-to-end
methodology of DRL to navigate a mobile robot in an unfamiliar area with an RGB camera for
environmental sensing. Nonetheless, RGB-based methods exhibit inadequate generalization
capabilities, and a substantial disparity in navigation performance exists in real-world and virtual
environments.

Therefore, multiple scholars have endeavored to enhance generalizability. One method involves
using a depth camera to obtain environmental data. A Convolutional Deep Deterministic Policy
Gradient (CDDPG) network [18] was proposed to process extensive depth image data, successfully
circumventing both static and dynamic barriers. The authors of [19] proposed a binocular vision-

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1995.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 August 2025 d0i:10.20944/preprints202508.1995.v1

3 of 12

based steering control system for autonomous driving, enabling end-to-end autonomous steering
decision-making using an enhanced Deep Deterministic Policy Gradient (DDPG) network.
Nevertheless, depth image-based techniques sometimes need intricate convolutional processes to
analyze visual data, resulting in significant processing demands, which creates a notable
performance limitation in real-world navigation applications. Conversely, LIDAR has emerged as an
efficient alternative to improve the generalization of DRL navigation owing to its exceptional
precision, rapid responsiveness, and robust anti-jamming capabilities. The authors of [20] proposed
a DRL navigation technique utilizing LiDAR and RGB cameras, achieving autonomous navigation
from basic memory to intricate reasoning in indoor environments via a memory-reasoning
framework. The authors of [21] used fused data from LiDAR and RGB cameras as inputs for the robot,
subsequently incorporating random Gaussian noise into the incoming laser data to improve
resilience and navigation. Nonetheless, multimodal sensor fusion not only increases computational
demands but may also induce calibration drift in dynamic environments. The authors of [22]
proposed an optimization method for navigation policy utilizing LiDAR and DRL frameworks that
rapidly adapts to human preferences, enabling dynamic adjustments of navigation behaviors in a
robot. In addition, the authors of [23] proposed a crowd-aware navigation system utilizing LIDAR
and memory-enhanced DRL, effectively achieving navigation in a densely populated area, while the
authors of [24] proposed the iTD3-CLN framework, which integrates LIDAR and TD3 to provide
mapless autonomous navigation in dynamic situations with little reliance on accurate sensors. The
authors of [25] proposed a navigation method that integrates imitation learning and DRL for motion
planning in congested environments. By independently processing information on static and
dynamic objects, the network may acquire motion patterns appropriate for real-world environments.
The SAC-DRL system proposed in [26] incorporates LiDAR perception and exhibits enhanced
stability and flexibility in navigating challenging terrains. This paper builds upon LiDAR technology
and presents ACR-TD3, which incorporates ACR into the TD3 algorithm to optimize the navigation
policy, enabling the robot to consistently generate accurate action commands and successfully
navigate dynamic environments.

3. Materials and Methods

To achieve autonomous navigation of mobile robots in mapless dynamic environments, we
proposed a DRL-based navigation algorithm, ACR-TD3, which optimizes the navigation policy by
incorporating ACR into the actor loss of the TD3 network. This modification enables the actor
network to generate more rational motion commands, thereby increasing the success rate of
navigation in dynamic environments. Concurrently, we develop a multilayer reward function
integrated with ACR to improve navigation efficacy.

3.1. ACR-TD3

Within the DRL framework, the essence of the mobile robot navigation challenge is to identify
the optimal policy 7 using a policy optimization technique that maximizes the anticipated
cumulative return achieved by the agent in the Markov Decision Process (MDP). The merits and
demerits of this navigation technique directly influence the efficacy of mobile robot navigation. In
TD3, the objective of the policy is to optimize the Q-value, specifically to identify the action that
maximizes the Q-value output of the critic network, while the optimizer is often employed to
minimize the loss, necessitating the usage of negative values to convert the issue into a minimization
framework. Consequently, the actor loss function is articulated as follows:

Loss = —E[Q1 (s, a)] 1)

where s is the input state, @ is the deterministic action output by the actor network, and ¢, is the

Q-value of the first value network output of TD3.
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During the primary phases of training, the parameters§ of the actor network are iteratively
refined via gradient ascent to optimize policy efficacy. Model training is deemed complete when the
policy performance metric stabilizes within a defined range and the Bellman error decreases below a
certain threshold. At this juncture, the actor network attains a near-optimal state 7= 7% and is
capable of producing a consistent sequence of navigation decisions. Nevertheless, the action orders
produced by the existing policy typically exhibit suboptimal performance, often resulting in accidents
due to inadequate time to evade moving impediments, thereby compromising navigation efficacy in
dynamic environments. To resolve this issue, we include ACR into the TD3 algorithm, incorporating
it into the actor loss function to optimize the navigation policy. This allows the actor network to
provide more rational movement orders, thereby improving navigation efficacy in dynamic
environments. The complete network structure of ACR-TD3 is shown in Figure 1.
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Figure 1. ACR-TD3 algorithm network structure with actor and critic parts. The new actor loss is obtained by

combining ACR with the original actor loss.

The new actor loss following the implementation of ACR is defined as follows:

Loss,,, = Loss ;. +Loss (2)

ACR primarily optimizes the policy by limiting the angular and linear velocities inside the action
space, achieving smooth and rational behaviors from the actor network following policy changes.
ACR can be articulated as follows:

Loss ;o = A, L, + AL, +A,.L 3)

sm™"sm sa”"sa ac™"ac

The ACR consists of three parts: smoothing loss, obstacle distance loss, and action boundary
loss, with corresponding coefficients of 4,,, A,, and 4,

sm 7 S

. » respectively. Reducing velocity mutation,
smoothing the navigation route, and preventing collisions or lengthier navigation trajectories caused
by frequent velocity changes are the goals of adding smoothing loss. Each step’s loss is determined
by calculating the square of the velocity difference between the current and previous moments, or
the square of the velocity change between two adjacent steps. The smoothing loss at each episode is

then calculated by averaging the loss at each step. The expression for the smoothing loss is
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L = E[(Av, )2J+ ZE[(Aa), )2} @

where Av, =v,-v,_, represents the change in linear velocity between two adjacent steps, while
Aw=w, -, signifies the change in angular velocity between two adjacent steps. Incorporating
Av, and Aw, into the smoothing loss term can effectively mitigate abrupt changes in the robot’s
velocity. The obstacle distance loss is implemented to maintain a specified distance between the
mobile robot and obstacles, providing the robot with adequate reaction time to address approaching
dynamic obstacles, thereby enhancing the success rate and navigation safety. The obstacle distance
loss can be articulated as follows:

10-(D-d,) d,<D

L, =E[y(d)], "’(dt):{ ¢ 42D v

whered, is the distance to the nearest obstacle acquired from LiDAR at the moment¢, and D is the

distance threshold. In order to impose restrictions on the robot’s movement close to the obstacle and
simultaneously encourage the robot to maintain a relatively safe distance from the obstacle, we set
v (d,)as a segmented function. When the distance between the robot and the nearest obstacle is

smaller than the preset distance threshold D, it will achieve a larger loss, and the loss will increase
linearly as the distance becomes closer; when the distance between the robot and the nearest obstacle
is larger than the preset distance threshold D , it will achieve a smaller loss, and the loss will decrease
exponentially as the distance increases. Therefore, the robot will choose the action with a distance
greater than D from the obstacle to minimize the loss, thus guaranteeing the safety of navigation.
The action boundary loss is introduced to place a limit on the size of the robot’s linear and angular
velocities. Excessive linear velocity will cause the robot to break the distance threshold in a short time,
and the robot will collide head-on with the dynamic obstacle when it comes close because it is too
late to avoid it; excessive angular velocity will cause the robot to over-adjust its direction, which will
lead to frequent direction corrections afterward and ultimately affect its navigation. The action
boundary loss can be expressed as follows:

I :{Vt'|a),| v, >0.5

0 0<v<05 ©)

where v, and @, denote the linear and angular velocities, respectively, at time ¢ . Linear velocities of 0.5

meters per second are within the allowable range of the robot’s design, and therefore, losses are
imposed only when the linear velocity is greater than 0.5 meters per second L, .

3.2. Reward Functions

The design of reward functions is particularly crucial due to the numerous uncertainties present
in dynamic environments. We examined several parameters influencing navigation in dynamic
environments and meticulously developed a multilayer reward function, delineated as follows:

R= thrm + Ryaw + Rgdis + Rudis + Rv + Ra) +r (7)

The multilayer rewards encompass termination awards, heading angle rewards, target distance
rewards, obstacle distance rewards, linear velocity rewards, angular velocity rewards, and decay
rewards. The termination awards, often referred to as sparse rewards, are assigned to the robot

according to the navigation outcomes (success, collision, or timeout) of each episode, indicated as
R

term *

r, if success
R, =3r. if collision 8)

term c

0 if timeout
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A positive reward 7, is awarded to the robot if it successfully reaches the target location, while
a negative reward 7, is awarded if the robot collides with an obstacle. If the robot fails to complete
the task within the designated time frame, it is deemed to have exceeded the time limit and is
awarded a 0 reward.

Nonetheless, confining sparse rewards solely to the robot is insufficient. The absence of reward
guidance during navigation impacts the robot’s ability to explore the target location randomly in the
early stages of training, resulting in a predominance of 0 rewards, which considerably diminishes
learning efficiency. Furthermore, this may induce an unstable training process, leading the policy
update to converge to a local optimum. To avoid these problems, we add the necessary dense rewards
to the sparse rewards, including heading angle rewards R,

jaw /

target distance rewards R, , obstacle

distance rewards R, , linear velocity rewards R,, angular velocity rewards R, and decay rewards r
. These dense rewards are all designed to make the robot explore more purposefully and improve its
learning efficiency.

The heading angle reward is used to encourage the robot to move in the direction of the goal to
minimize roaming or detours. The representation is as follows:

R, =-a’ ©

yaw

wherea denotes the angle between the robot’s forward direction and the target direction, i.e., the
heading angle, and the larger the angle «, the larger the negative reward the robot receives. The
target distance reward measures the reward obtained by calculating the Euclidean distance between
the robot and the target, which is used to encourage the robot to approach the target step by step,
and can be expressed as follows:

2x(1-d.) d >1
o [Pa) @ »
4><(1—dg) d, <1

whered, denotes the distance between the robot and the target location. When a moving obstacle

approaches head-on towards the robot, the robot often hits the moving obstacle because it is too late
to avoid it. Therefore, an obstacle distance reward is set for penalizing the robot for getting too close
to an obstacle and is denoted as follows:

—10x [
Rudi.s' =

e d 2D

2D-d,

j d <D
(11)

When the distanced, to the nearest obstacle is less than the distance threshold D, the robot
receives a larger negative reward, and the closer the robot is to the obstacle, the larger the negative
reward is; when d, is larger than D , the robot receives a negative reward that decreases
exponentially asd, increases. The linear and angular velocity rewards are used to penalize sudden
velocity changes and keep the robot running smoothly. The linear velocity reward is denoted as
follows:

r v<0.05

v

k= ~(10x(V =v))" v>0.05 (12

V is the desired linear velocity, and the larger the deviation of the actual linear velocity v from
the desired linear velocity V', the larger the negative reward received. In particular, if the robot’s
linear velocity v is less than 0.05 meters per second, the robot is considered to rotate in place or stay
in place, which is not allowed, and therefore, a fixed negative reward », is given. The angular

velocity reward is denoted as follows:
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R,=-05xw" (13)

This is used to penalize the robot for frequently changing the direction of movement. Finally, for
better navigation, we also add a decaying reward, which gives a constant negative reward r for each
step of the robot to urge the robot to reach the goal as soon as possible.

4. Training

In addition to being costly and risky for robots, training in real-world environments is also
hazardous for people and the environment. In order to address this problem, we trained the proposed
model in a 6x6 m? simulated environment in Gazebo [27], as seen in Figure 2. The machine has an
Intel Core i9-10900K CPU, an NVIDIA GeForce RTX 3090 GPU, and 64 GB of RAM. PyTorch is the
training framework utilized [28]. We interact with the simulated world using a TurtleBot 3 robot that
is outfitted with odometry and LiDAR. The robot’s control and communication architecture is the
Robot Operating System 2 (ROS 2) [29], which is mainly used to publish target position information,
subscribe to messages from the LiDAR and odometer, and publish linear and angular velocity
information to regulate the robot’s movements.

Figure 2. In the training environment, the brick-red rectangles represent walls that double as static barriers, the
white cylindrical objects represent dynamic obstacles, the red points represent target locations, and the blue
regions represent the LIDAR’s sample range.

At the start of each episode, the target position is published via ROS 2 and marked as a red point
in the training environment. Simultaneously, the dynamic obstacle begins to move along the specified
path, and the robot starts navigation training from the center position. During training, the robot’s
maximum linear velocity is set to 0.5 meters per second, and the maximum angular velocity is set to
2 radians per second. Key information for each step is stored in a replay buffer with a capacity of 2e6
in the form of an array (s, a,r,ns ,done), wheres anda represent the current state and action, »

represents the current reward, ns represents the next state, and done indicates whether the episode
has ended. When the buffer reaches capacity, new data supersedes the existing data. Three scenarios
cause the episode to end: success, collision, and timeout. If the robot is within 0.2 meters of the target,
it is considered to have successfully reached the target, the episode ends, and a success reward 7, is
granted; if the robot is within 0.13 meters of an obstacle, it is considered to have collided, the episode
ends, and a collision reward 7, is granted; and if the episode has not ended after 50 seconds, it is

considered a timeout, the episode is forced to end, and no rewards are granted. The network
parameters used for model training are shown in Table 1. We performed training until the model
converged, which required approximately 6,000 episodes, and this took about 27 hours.

Table 1. Network training parameters for ACR-TD3.
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Parameter Value

Learning Rate 0.0005
Discount Factor 0.97

Soft Target Update Parameter 0.001
Batch Size 256
Buffer Size 2e6

5. Experiments

We created three test scenarios of differing complexity within the Gazebo simulation platform
to assess the proposed approach, as seen in Figure 3. The test environments retain the same physical
dimensions (8x6 m?) and a consistent number of static obstacles; however, they vary in the
arrangement of static obstacles and the quantity of dynamic obstacles. Figure 3(a) depicts four
dynamic obstacles and six static obstacles, categorized as a simple environment (Env1); Figure 3(b)
illustrates six dynamic obstacles and six static obstacles, classified as a medium-difficulty
environment (Env2); and Figure 3(c) presents eight dynamic obstacles and six static obstacles,
designated as a difficult environment (Env3).
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Figure 3. Three assessment environments of varying difficulty, including (a) a simple environment, (b) a

medium-difficulty environment, and (c) a difficult environment.

We tested the trained model in the environment shown in Figure 3. Each environment
performed 100 independent navigation tasks and was repeated three times to eliminate random
errors. The test results are recorded in Figure 4.
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Figure 4. Test results of DDPG, TD3, SAC, and ACR-TD3 in three environments of varying difficulty levels.

Figure 4 shows that our proposed ACR-TD3 surpasses the other three algorithms in the number
of successful navigation occurrences across all three environments, indicating superior performance
in dynamic environments. To provide a clearer comparison of navigation performance, we recorded
the model’s navigation success rate and trajectory length after the application of a moving average in
Tables 2 and 3. Table 2 shows that in the comparatively straightforward Envl and the moderately
challenging Env2 environments, our model attained navigation success rates of 99% and 98%,
respectively, surpassing other models. Despite the arduous Env3 environment, our suggested model
achieved a navigation success rate of 96.7%, surpassing the best-performing model by 6.33% under
identical conditions. Furthermore, as seen in Table 3, our model exhibits a reduced trajectory length
in comparison to other models, reinforcing the superiority of ACR-TD3.

The previous analysis shows that ACR-TD3 performs well in terms of navigation success rate,
trajectory length, and environmental adaptability, validating the effectiveness of ACR-TD3 for
navigation in dynamic environments and providing a new solution for mobile robot navigation in
dynamic environments.

Table 2. Comparison of model navigation success rates.

Method Envl Env2 Env3
DDPG 96.00% 95.33% 89.67%
TD3 96.00% 94.00% 90.33%
SAC 96.67% 95.00% 88.00%
ACR-TD3 99.00% 98.00% 96.67%

Table 3. Comparison of model trajectory lengths.

Method Envl Env2 Env3
DDPG 4476 4.553 4.785
TD3 4531 4.557 4.768
SAC 4.508 4.989 5.014
ACR-TD3 4.307 4.452 4.547

6. Conclusions

This paper proposes a DRL algorithm that incorporates ACR. By utilizing LiDAR to obtain
environmental information, it achieves end-to-end autonomous navigation in dynamic
environments. The algorithm innovatively integrates an action space constraint mechanism with a
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multilayer reward function design, effectively improving navigation success rates and efficiency
without the need for pre-constructed maps. For experiments, we created a dynamic environment
using the Gazebo simulation platform to assess the algorithm'’s efficacy. The experimental findings
exhibited the superiority of the proposed model regarding the success rate and generalization
capability. Owing to constraints in the experimental context, the approach was verified solely
through simulation. Future studies should concentrate on verifying the algorithm on actual robotic
platforms, such as TurtleBot 3, to augment its applicability.
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