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Abstract

Artificial Intelligence (AI) and Machine Learning (ML), especially deep learning, have
revolutionized genomics and protein structure prediction, advancing precision medicine
and drug discovery. This review focuses on the most widely used AI and ML algorithms
including deep learning models, from early neural networks to advanced transformer
architectures and Large Language Models (LLMs), are transforming our ability to interpret
genomic data, predict gene function, and accurately determine protein structures and
interactions. We highlight key breakthroughs such as AlphaFold and DeepBind and discuss
their impact on understanding complex biological systems. Furthermore, we address the
inherent connections between genomics and protein structure prediction, emphasizing how
insights from one field often inform and accelerate progress in the other. We also discuss
recent advancements, such as single-cell analysis using graph neural networks (e.g.,
scGNN). The review classifies deep learning methods (CNNs, RNNSs, transformers),
evaluating their strengths, limitations, and suitable applications. We also delve into the
challenges, including data quality, model interpretability, and computational demands, and
explore future directions, such as the integration of multi-omics data and the development
of hybrid models. Future directions, such as integrating multi-omics data and developing
hybrid models, aim to enhance scalability and clinical utility. This review provides insights
for researchers applying Al and ML in these fields, outlining current progress and emerging
opportunities.

Keywords: Artificial Intelligence; Machine learning; Genomics; deep learning; protein structure
prediction; precision medicine; convolutional neural networks; future directions

1. Introduction

1.1. Genomics and Protein Structure Prediction: A Unified Frontier Enabled by Deep Learning

Computational biology combines advanced computing with biological research to explore
complex living systems, particularly in genomics and protein structure prediction [1]. Within this
interdisciplinary realm, genomics and protein structure prediction represent two pivotal, yet
intrinsically linked, areas of research. The journey from genetic information encoded in DNA to the
functional machinery of proteins is a central dogma of molecular biology: DNA is transcribed into
RNA, which is then translated into protein sequences. The linear sequence of amino acids in a protein
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subsequently folds into a unique 3D structure, which in turn determines its biological activity.
Understanding this intricate flow of information from gene to protein structure to function is
paramount for advancing our knowledge of biological systems and developing novel therapeutic
interventions. This review combines genomics and protein structure prediction into a single, cohesive
narrative due to their inherent biological interconnectedness and the synergistic role Al and ML plays
in bridging these domains. The rationale is rooted in the central dogma of molecular biology: genomic
information (DNA/RNA sequences) directly encodes the amino acid sequences of proteins, and these
sequences, in turn, determine the protein's three-dimensional structure, which is crucial for its
function. Al and ML provide the computational framework to traverse this biological pathway,
enabling a holistic understanding of biological systems from the genetic blueprint to the functional
molecular machinery. By treating these fields jointly, we can better illustrate how advancements in
one area, driven by deep learning, often directly impact and accelerate progress in the other, leading
to a more comprehensive and integrated view of biological processes and disease mechanisms. Since
the 1990s, machine learning has evolved from basic neural networks analysing gene expression data
to sophisticated deep learning algorithms. Models such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and transformers now detect complex patterns in genomic and
proteomic datasets, enabling accurate predictions [2].

In 2015, researchers from Harvard and MIT developed DeepBind, a groundbreaking deep
learning algorithm that identifies RNA-binding protein sites, revealing previously unknown
regulatory elements in the genome [3]. Scientists increasingly rely on such algorithms to address
biological challenges, from predicting protein structures to identifying disease-causing mutations.
For example, DeepMind’s AlphaFold uses advanced neural networks to accurately predict proteins’
three-dimensional structures, opening new frontiers in structural biology [38]. These advancements
have driven significant progress in genomics, medical diagnosis, and drug discovery. The use of Al
and ML in computational biology has resulted in noteworthy breakthroughs spanning diverse niches,
like genomics, medical diagnosis, and drug discovery. Al enables precise analysis of genomic data,
identifying disease-causing mutations and supporting the development of personalized treatments.
It also predicts functional pathways for new drugs, streamlining target identification and reducing
reliance on trial-and-error experiments. By analyzing vast genomic, proteomic, and other biological
datasets, deep learning uncovers subtle patterns often missed by traditional statistical methods,
enhancing our understanding of biological systems.

The growing demand for personalized medicine and efficient drug discovery drives the
adoption of Al in life sciences [4]. However, challenges remain. Al algorithms require large, high-
quality datasets, which can be scarce in some biological fields [3]. Additionally, interpreting their
results is complex, as they detect subtle patterns that may not align with traditional biological models.

Despite these challenges, Al has the potential to transform computational biology by deepening
our understanding of biological systems and improving healthcare outcomes. This review explores
its applications, addresses associated challenges, and highlights key advancements, such as
AlphaFold and DeepBind, and their potential impact on personalized medicine and drug discovery
in the coming years.

1.2. Brief History and Evolution of Deep Learning

The journey of deep learning, from its theoretical origins to its current state as a transformative
technology, is marked by periods of intense research and significant breakthroughs. Rina Dechter
introduced the term "deep learning" to the machine learning community in 1986, and Igor Aizenberg
and colleagues applied it to artificial neural networks in 2000, focusing on Boolean threshold neurons
[5]. The concept originated in 1943, when Warren McCulloch and Walter Pitts developed a computer
model based on human neural networks, using "threshold logic" to simulate cognitive processes [6].
Since then, deep learning has evolved continuously, with brief setbacks during the "AI Winters"
(periods of reduced funding and interest in Al research) [5]. Table 1 outlines the history and
evolution of deep learning. In 1943, Warren McCulloch and Walter Pitts pioneered neural networks
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with a computational model called threshold logic, using mathematical algorithms to mimic
cognitive processes [6]. In 1958, Frank Rosenblatt developed the perceptron, a two-layer neural
network for pattern recognition based on simple arithmetic operations. He also proposed adding
more layers, though practical implementation was delayed until 1975.

In 1980, Kunihiko Fukushima introduced the Neocognitron, a hierarchical, multilayered neural
network that excelled in handwriting and pattern recognition tasks. By 1989, researchers developed
algorithms for deep neural networks, though their lengthy training times (often days) limited
practicality. In 1992, Juyang Weng’'s Cresceptron enabled automated 3D object recognition in
complex scenes, advancing neural network applications.

In the mid-2000s, Geoffrey Hinton and Ruslan Salakhutdinov’s seminal paper popularized deep
learning by demonstrating the effectiveness of layer-by-layer neural network training [5]. In 2009, the
NIPS Workshop on Deep Learning for Speech Recognition showed that pre-training could be skipped
with large datasets, significantly reducing error rates. By 2012, deep learning algorithms achieved
human-level performance in pattern recognition tasks, marking a major milestone in the field.

In 2014, Google acquired DeepMind, a UK-based Al startup, for £400 million, accelerating Al
research advancements. In 2015, Facebook implemented DeepFace, a deep learning system with 120
million parameters, enabling accurate automatic tagging and identification in photographs. In 2016,
DeepMind’s AlphaGo defeated professional Go player Lee Sedol in a highly publicized Seoul
tournament, showcasing deep learning’s capabilities. By 2024, transformer-based models like
AlphaFold3 predicted protein complexes and ligand interactions, while genomic language models
(gLMs) forecasted gene co-regulation in single-cell data, advancing precision medicine [38,99]. These
developments, driven by large datasets and enhanced computational power, highlight deep
learning’s transformative impact on biological research (Table 2).

Deep learning uses artificial neural networks (ANNSs) to perform complex computations on large
datasets. These networks consist of interconnected neuron layers that process and extract patterns
from input data. Deep learning processes data through multiple layers of neural networks, with each
layer extracting and transforming features before passing them to the next. A fully connected deep
neural network includes an input layer, several hidden layers, and an output layer. Neurons in each
layer receive inputs from the previous layer, process them, and pass outputs forward, ultimately
producing the final result. Through nonlinear transformations, these layers learn complex patterns
and representations from the input data [7].

Deep learning employs various algorithms, each suited to specific tasks. These include radial
basis function networks, multilayer perceptron, self-organizing maps, convolutional neural networks
(CNNs), recurrent neural networks (RNNs), long short-term memory networks (LSTMs), and
transformers. CNNs excel in genomics, as demonstrated by DeepBind for RNA-binding protein site
prediction and DeepCpG for DNA methylation analysis [32]. RNNs and LSTMs handle sequential
data effectively, while transformers, used in AlphaFold3, model complex protein interactions and
genomic sequences [38]. These algorithms drive advancements in precision medicine and drug
discovery by detecting subtle patterns in large biological datasets (Table 2). More recently, by 2024,
transformer-based models like AlphaFold3 have advanced to predict protein complexes and ligand
interactions with unprecedented accuracy, while genomic language models (gLMs) have emerged to
forecast gene coregulation in single-cell data, significantly advancing precision medicine. These
continuous developments, driven by the availability of massive datasets and enhanced
computational power, underscore deep learning’s transformative influence across diverse scientific
disciplines, including biological research.

Table 1. Timeline of Al history and evolution, highlighting key milestones from 1943 to 2024.

Date Developed by Evolution
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1873 A. Bain The earliest models of
neural networks, called
Neural Groupings, were
introduced and were
inspired by the Hebbian
Learning Rule.

1943 McCulloch & Pitts The MCP Model was

introduced, which is considered

the precursor to Artificial Neural

Models.
1949 Considered as the father of
D. Hebb neural networks, he introduced

the Hebbian Learning Rule,
which formed the basis for

modern neural networks.

1958 E. Rosenblatt The first perceptron, which
closely  resembles = modern

perceptron, was introduced.

1969 Minsky and Papert ~ Publish  Perceptron, = which
criticizes the perceptron and

limits the potential of neural

networks

1974 P. Werbos Introduced Backpropagation

1980 T. Kohonen Introduced Self Organizing Map
Neocogitron was introduced,

K. Fukushima which served as inspiration for

Convolutional Neural
Networks.

Date Developed by Evolution

1982 J. Hopheld The Hopfield Network was
introduced

1985 Hilton & Sejnowski ~ The Hopfield Network was
introduced

1986 P.Smolensky Introduced Harmonium, which

is later known as Restricted
Boltzmann Machine

M. L. Jordan
Defined and introduced
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Recurrent Neural Network

1990 Y. LeCun LeNet was introduced,
demonstrating the practical

potential of deep neural

networks.
1997 Schuster & Paliwal Introduced Bidirectional
Hochreiter& Recurrent Neural Network
Schmidhuber
Long Short-Term Memory
(LSTM) networks solved the
vanishing gradient problem in
recurrent neural networks
Deep Belief Networks

2006 G. Hinton were introduced, along
with  the  layer-wise
pretraining technique,
which marked the
beginning of the current
deep learning era.

2009 Salakhutdinov & Deep Boltzmann Machines were

Hinton introduced.

2012 G. Hinton Dropout, an efficient method for
training neural networks, was
introduced.

2012 Alex Krizhevsky, Ilya

Sutskever, and Convolutional neural network

Geoffrey Hinton (CNN) for Image classification

2014 TIan Goodfellow,
Yoshua Bengio, and (GAN) for image generation

Aaron Courville

2020 Deep learning continues to
evolve and is used for a wider
range of tasks, including self-
driving cars, medical diagnosis,

and financial trading etc.
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2. Advantages and Challenges of Using Deep Learning in
Computational Biology

Advancements in genomics and imaging technologies have generated vast molecular and
cellular profiling data from numerous global sources. This data surge challenges traditional analysis
methods [8]. Deep learning, a subset of machine learning, has emerged as a powerful tool for
bioinformatics, extracting insights from large datasets by identifying patterns and making accurate
predictions [10]. For instance, DeepBind uses convolutional neural networks (CNNs) to predict RNA-
binding protein sites, while AlphaFold employs transformers for precise protein structure prediction
[32,38]. These applications demonstrate deep learning’s transformative potential in biology and
medicine, though challenges persist (Figure 1).

ADVANCES IN DEEP LEARNING FOR COMPUTATIONAL BIOLOGY
ADVANCEMENTS & DNA SEQUENCE CLASSIFICATION PREDICTING PROTEIN STRUCTURE KEY CHALLENGES IN APPLYING DL
CHALLENGES AND PREDICTION FROM SEQUENCE DATA TO BIOLOGICAL DATA
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Figure 1. Overview of deep learning applications in computational biology, illustrating key algorithms (CNNs,
RNNS, transformers) and their roles in genomics and protein structure prediction.

2.1. Advantages of Using Deep Learning

Deep learning enhances disease diagnosis and prediction. Ching et al. [11] highlights its ability
to develop accurate, data-driven diagnostic tools that identify pathological samples. It also rapidly
screens large datasets, reducing drug discovery costs by identifying targets and predicting responses
[11]. Furthermore, deep learning supports drug repositioning by analyzing transcriptomic data to
identify new therapeutic targets [12]. Deep learning supports precision medicine by developing
personalized treatments [13]. It integrates patient-specific data, including genomic profiles, clinical
records, and lifestyle factors, to tailor therapies [14]. By analyzing large datasets with high accuracy,
deep learning identifies genetic markers, variations, drug efficacy, protein interactions, and clinical
prognoses, optimizing treatment selection and disease monitoring [15]. For example, Dinov et al. [16]
developed a deep learning protocol for Parkinson’s disease diagnosis, achieving high accuracy and
demonstrating potential for drug discovery and personalized medicine.

Deep learning models efficiently handle large, complex biological datasets [8]. These algorithms
extract intricate patterns, improving the accuracy of predictions and data classification. By learning
relevant features from vast datasets, they minimize the need for human intervention [17]. This is
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particularly valuable in biomedicine and molecular biology, where complex, heterogeneous data
often pose analytical challenges. The scalability and transferability of deep learning models enable
efficient handling of large, complex datasets [18]. These models can be trained in specific biological
tasks with minimal modifications, reducing resource demands and improving generalization of new
data. Additionally, deep learning identifies novel patterns that conventional methods may miss. For
example, Liu et al. [25] used deep learning to predict functional implications of non-coding genomic
variations with greater accuracy than traditional approaches.

2.2. Challenges of Using Deep Learning

A key challenge in applying deep learning to computational biology is interpretability [11].
Complex model architecture often functions as "black boxes," making it difficult for researchers to
understand how predictions reflect biological mechanisms. Interpretability is critical for building
trust among clinicians and stakeholders, particularly in medical diagnostics, where decisions must
rely on reliable factors rather than data artefacts. Ongoing efforts aim to develop techniques that
clarify deep learning’s decision-making processes [8]. Deep learning enhances diagnostic accuracy in
medicine but raises ethical and regulatory concerns, particularly regarding patient privacy [20].
Robust guidelines on informed consent and data protection can mitigate these issues. Additionally,
biased diagnostic reports risk discriminating between patient groups, potentially leading to incorrect
diagnoses or unequal treatment access [20,21]. Transparent and ethical use of deep learning models
promotes accountability in biomedical research and healthcare.

Although deep learning models handle large datasets effectively, they require high-quality,
labelled data for training [22]. In healthcare and biomedicine, obtaining such data is challenging due
to privacy regulations and data heterogeneity. Moreover, biological data from sources like electronic
health records and pathological reports often vary in format and standards, reducing model
performance and generalization. Deep learning models, despite their advanced capabilities, demand
significant computational resources and specialized hardware for training and deployment [23].
High-performance computing infrastructure is essential, posing challenges for small non-profit
organizations and research institutions with limited resources.

3. Interconnecting Genomics and Protein Structure Prediction through Deep
Learning

The central dogma of molecular biology —DNA to RNA to protein—establishes a direct link:
genomic information dictates protein sequences, and these sequences, in turn, determine protein
structures and functions. Deep learning provides the computational framework to traverse this
biological pathway, enabling a holistic understanding of biological systems from the genetic
blueprint to the functional molecular machinery. This section review combines genomics and protein
structure prediction into a single narrative due to their biological interdependence and the synergistic
advancements driven by deep learning.

3.1. Role of Deep Learning in Genomic Variant Detection and Precision Medicine

Deep learning has transformed genomic variant detection and gene expression analysis.
Genomics, encompassing an organism’s entire genetic makeup, provides critical insights into
biological processes, diseases, and individual differences. Deep neural networks enable researchers
to analyze gene expression profiles and genetic variations, advancing personalized medicine, drug
discovery, and disease mechanism understanding [24]. Specifically, these algorithms accurately
classify variants to identify disease-causing mutations and support gene expression studies, such as
splicing-code analysis and long noncoding RNA identification [24].

The use of deep learning in genomic variant detection has enabled the prediction of the
organization and functionality of various genomic elements such as promoters, enhancers, and gene
expression levels [25]. Deep learning detects gene variants to predict their effects on disease risk and
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gene expression. To accomplish this, a genome is split into optimal, non-overlapping fragments using
fragmentation and windowing techniques [26]. A three-step procedure—fragmenting, model
training for forecasting variant effects, and evaluating with test data—constitutes deep learning-
based identification of genetic variations [26]. A deep learning model demonstrated favorable
precision in distinguishing patients from controls and the ability to identify individuals with multiple
disorders during research on genetic variants in non-coding areas [27]. These regions were enriched
with pathways related to immune responses, antigen binding, chemokine signaling, and G-protein
receptor activities, offering insights into mental illness mechanisms [27]. By utilizing deep neural
networks, researchers have gained insights into gene expression profiles, genetic variations, and
single-cell RNA sequencing data, advancing personalized medicine and drug discovery [18]. For
genomic variant detection, algorithms precisely classify variants to identify disease-causing
mutations [24]. In single-cell transcriptomics, graph neural networks (GNNs) like scGNN model cell-
type interactions and gene regulation [84]. Additionally, genome language models (gLMs),
leveraging transformer-based architectures, have emerged in 2024 to predict gene co-regulation in
single-cell data, enhancing precision medicine applications [118].

Deep learning methods, such as convolutional neural networks (CNNs), predict genetic
variations that may cause diseases [25]. A CNN-based model outperformed traditional methods in
forecasting the functional impacts of non-coding genomic variants, achieving high accuracy in
variant classification but requiring large datasets to prevent overfitting (Table 2, [79]). Recurrent
neural networks (RNNs) model sequential dependencies for gene expression prediction, though they
struggle with long-range interactions [80]. Deep learning also identifies single-nucleotide
polymorphisms (SNPs) affecting gene expression levels, revealing new variants linked to expression
changes [28].

Gene expression relies on transcriptional regulators, such as pre-mRNA splicing,
polyadenylation, and transcription, to produce functional proteins. While high-throughput screening
provides quantitative data on gene expression, traditional experimental and computational methods
struggle to analyze large genomic regions. Deep learning overcomes this limitation, accurately
predicting gene expression levels and identifying enhancer-promoter interactions. For example, the
Enformer model, described in Nature Genetics, improved gene expression predictions by integrating
long-range genomic interactions (up to 100 kb) using massive parallel assays [29].

Deep generative models (DGMs) enhance gene expression analysis by identifying underlying
structures, such as pathways or gene programmers, from omics data [30]. These models provide a
framework to account for latent and observable variables, effectively analyzing high-dimensional
SNP data to understand multigenic diseases. DGMs also predict how nucleotide changes affect DNA
beyond gene expression datasets, offering new insights into genetic regulation [30]. Deep learning
has transformed our understanding of genetics by identifying genomic variants and analyzing gene
expression, accelerating the discovery of disease-related genes, drug targets, and therapies [24]. It
enables clinicians to make precise decisions based on individual genomic profiles. Despite challenges
like overfitting and interpretability, deep learning often outperforms traditional methods, supported
by robust computational pipelines for genomics research.

Table 2. Al algorithms (CNNs, RNNs, transformers) and their applications in genomics, protein structure

prediction, and single-cell omics analysis.

No Deep Learning Application in References
Algorithm Computational Biology
01. Gene expression analysis 78
Convolutional Neural
Networks
(CNN)
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02. Recurrent Neural DNA sequence analysis 79
Networks (RNN)
03. Generative Adversarial Synthetic biology and 80
Networks (GAN) protein design
04. Deep Belief Networks Protein structure prediction 81
(DBN)
05. Reinforcement Learning Drug discovery and 82
(RL) optimization
06. Transformer Networks RNA structure prediction 83
07. Autoencoders Disease diagnosis and 84
prognosis
08. Graph Neural Networks Protein-protein interaction 85
(GNN) prediction
09. Variational Autoencoders Single-cell genomics analysis 86
(VAE)
10. Deep Reinforcement Drug target identification 87
Learning
11. Capsule Networks Protein structure 88
classification
12. Adversarial Gene expression imputation 89
Autoencoders
13. Deep Boltzmann Epigenetic data analysis 90
Machines (DBM)
14. Application in 91
Deep Learning Computational Biology
Algorithm
15. Attention Mechanism Single-cell RNA sequencing 92
analysis
16. Deep Q- Networks Drug toxicity prediction 93
(DQN)
17. Capsule Networks Protein-protein interaction 94

prediction
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18. Deep Generative Models DNA sequence generation 95
19. Graph Convolutional Drug-target interaction 9%
Networks (GCN) prediction
20. Deep Survival Analysis Cancer survival prediction 97
21. Transformer Networks Transcriptomics analysis 98
22. Graph Neural Networks Drug repurposing 99
(GNN)
23. Adversarial Networks Image-based phenotypic 100
screening
24. Deep Transfer Learning Drug response prediction 101
25. Generative Adversarial Synthetic data generation 101
Networks (GAN)
26. Deep Reinforcement Protein folding 102
Learning
27. Variational Graph Disease-gene prioritization 103
Autoencoders (VGAE)
28. Deep Neural Networks Metagenomic analysis 104
(DNN)
29. Convolutional Recurrent Chromatin state prediction 105
Neural Networks
(CRNN)
30. Deep Clustering Cell type identification 106
31. Deep Reinforcement Protein-ligand binding 107
Learning affinity prediction
32. Graph Convolutional Drug response prediction 108
Networks (GCN)
33. Long Short- Term RNA splicing prediction 109
Memory (LSTM)
34. Deep Reinforcement Antibiotic resistance 110
Learning prediction
35. Capsule Networks Protein function prediction 111
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36. Autoencoders Single-cell epigenomics 112
analysis
37. Deep Belief Networks Genetic variant classification 113
(DBN)
38. Transformer Networks Protein-protein interaction 114
network analysis
39. Drug-target interaction 115
Graph Convolutional
network analysis
Networks
(GCN)
40. Recurrent Neural Protein secondary structure 116
Networks (RNN) & prediction, Gene co-regulation
Genome Language prediction
Models (gLMs)
41. Deep Reinforcement Gene regulatory network 117
Learning inference
42. Variational Autoencoders Metabolomics data analysis 118
(VAE)
43. Deep Belief Networks Drug side effect prediction 119
(DBN)
44. Capsule Networks Cancer subtype classification 120
45. Convolutional Neural Histopathology image 121
Networks (CNN) analysis
46. Generative Adversarial Synthetic biology and gene 122
Networks (GAN) synthesis
47. Transformer Networks Protein contact prediction 123
48. Deep Reinforcement Genome sequence assembly 124
Learning
49. Graph Neural Networks Cell type classification in 125
(GNN) single-cell transcriptomics
50. Autoencoders DNA motif discovery 126

3.2. Advancements in Deep Learning for Epigenetic Data Analysis
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Recent advancements in deep learning have enhanced the analysis of epigenetic data, deepening
our understanding of gene expression and chromatin dynamics regulation [31]. These methods
extract critical insights into how genetic and environmental factors, such as nutrition and lifestyle,
influence epigenetic modifications, particularly in obesity and metabolic diseases [31]. Convolutional
neural networks (CNNs) have advanced epigenetic analysis by capturing spatial dependencies in
DNA methylation patterns. For example, DeepCpG, developed by Angermueller et al. [2017], uses
CNNs to predict methylation states across genomes, outperforming traditional methods but
requiring high-quality, well-annotated data [32]. Similarly, transformers model long-range
interactions in chromatin dynamics, though they are computationally intensive (Table 2, [99]).

Epigenetic alterations significantly impact health, influenced by environmental factors like
exercise, stress, and diet [31]. Deep learning enables rapid analysis of large epigenetic datasets, with
applications like DNA methylation ageing clocks. For instance, DeepMAge, trained on 4,930 blood
DNA profiles, predicts age with a median error of 2.77 years, outperforming linear regression-based
clocks [34]. Deep generative models (DGMs) have also advanced epigenetic analysis in 2024,
identifying latent structures in DNA methylation data to uncover regulatory mechanisms [122].
Additionally, the analysis of histone modification data has been explored using deep learning
techniques. Key markers for gene activity and chromatin structure include various modifications
such as acetylation and methylation. To unravel the intricate connection between patterns in these
modifications and gene expression, neural networks like attention-based ones or those based on deep
belief have proven effective. In particular, Yin [2019] introduced their model called
DeepHistone, which leverages multiple profiles from different histones to predict levels of gene
expression with high precision, leading to new insights into epigenetic mechanisms previously
unknown [33].

Moreover, studies conducted on animals have shown that epigenetic modifications are linked to
metabolic health outcomes in humans. Animal models provide ideal opportunities for rigorously
controlled studies that can offer insight into the roles of specific epigenetic marks in indicating
present metabolic conditions and predicting future risks of obesity and metabolic diseases [31].
Examples include maternal nutritional supplementation, undernutrition, or overnutrition during
pregnancy, resulting in altered fat deposition and energy homeostasis among offspring.
Corresponding changes in DNA methylation, histone post-translational alterations, and gene
expression were observed, primarily affecting genes regulating insulin signaling and fatty acid
metabolism [31]. Recent studies indicate paternal nutrition levels also affect their children's fat
disposition, with corresponding detrimental effects on their bodies' epigenetic characterizations [31].

Although deep learning-based techniques demonstrate potential in epigenetic data analysis,
they possess constraints. Substantial amounts of top-notch data are necessary for these models to
train adequately. Additionally, interpreting results from deep learning can be challenging; thus,
understanding biological mechanisms leading to model predictions is difficult. Thus, evaluating
input quality and model performance is critical before endorsing results. The latest advancements
underscore the promise of deep learning methods for scrutinizing epigenetic data. Neural networks'
potency allows scientists to discern concealed patterns, grasp far-reaching relationships, and make
precise forecasts from extensive epigenomic datasets. These progressions offer significant
enlightenment into gene expression's regulatory mechanisms, which can aid in comprehending
diseases and designing specific treatments. The initiatives undertaken by these experts are merely a
few illustrations of the thrilling headway attained within this domain, sparking further innovations in
research on epigenetics.

3.3. Applications of Deep Learning in Protein Structure Prediction

Deep learning has transformed protein structure prediction by accurately determining proteins’
three-dimensional shapes. This capability is critical for understanding protein functions, advancing
drug discovery, and designing therapeutics. Deep learning models effectively capture complex
patterns in protein sequences, enabling precise structure predictions [38].
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Predicting the structure of a protein with precision, based solely on its sequence, proves to be
challenging, but deep learning presents itself as a viable solution. Recent applications employing this
approach have successfully predicted both three-state and eight-state secondary structures in
proteins [35]. Protein secondary structure prediction serves as an intermediate process, linking the
primary sequence and tertiary structure predictions. The three traditional classifications of secondary
structures include helix, strand, and coil. However, predicting 8-state secondary structures from
protein sequences is a much more intricate task referred to as the Q8 problem- which offers greater
precision in providing structural information for varied applications. Thus, several techniques of deep
learning such as SC-GSN network, bidirectional long short-term memory (BLSTM) approach, a
conditional neural field with multiple layers, and DCRNN have been employed to forecast the eight-
state secondary structures [35]. In addition, a next step conditioned convolutional neural network
(CNN) was utilized to identify sequence motifs linked with particular secondary structure elements
by analyzing the amino acid sequences. For instance, in 2019, AlQuraishi's research introduced
"Alphafold," a CNN-powered model that accurately forecasted protein secondary structure. Its
competence in capturing sequence-structure connections resulted in better forecasts when weighed
against conventional means [36].

Deep learning significantly impacts protein-protein interactions and binding site prediction.
Convolutional neural networks (CNNs) and transformers analyze protein sequences and structures,
detecting intricate interactions (e.g., DeepPPl, AlphaFold) [37,38]. CNNs excel in capturing local
structural patterns, ideal for binding site prediction, but require extensive training data (Table 2,
[95]). Transformers model long-range dependencies, enabling accurate protein complex predictions,
though computationally demanding [116]. DeepPPI predicts interactions from sequence data,
enhancing understanding of protein networks [37].

Significant advancements have been made in the tertiary structure prediction of proteins using
deep learning. Abriata et al., employed a deep learning contact-map approach to achieve a notable
breakthrough in the 13th Critical Assessment of Techniques for Protein Structure Prediction
(CASP13) [38]. To determine protein folding accurately, predicting residue-residue contacts is crucial.
Deep learning approaches leverage vast protein databases to capture intricate patterns and
dependencies between residues. This aids in long-range contact prediction by developing deep-
learning models that guide the assembly of protein structures with greater precision. Wang et
al.'s [2021] method utilized a deep residual network which proved effective in anticipating residue-
residue interactions for precise folding predictions through their model's accuracy improvement [39].
Meanwhile, the "AlphaFold 2" model created by Senior et al. [2020] is another significant illustration
worth noting. Through the integration of RNNs and attention mechanisms, AlphaFold 2 achieved
extraordinary precision in prognosticating protein tertiary structures, surpassing other techniques in
the Critical Assessment of Structure Prediction (CASP) competition as well. In 2024, AlphaFold 3
extended these capabilities by predicting protein complexes and ligand interactions with high
accuracy, further advancing its utility in drug discovery and structural biology [117]. Such success
can be attributed to how RNNs effortlessly capture long-range dependencies within protein
sequences without issue. [40].

These applications showcased the extensive range and influence of deep learning in predicting
protein structure. With its adeptness at identifying complex patterns and connections within protein
sequences and structures, deep learning has enabled significant progress in comprehending aspects
such as folding, function, and interactions related to proteins. Although there may be upcoming
challenges and opportunities, the extensive implications of deep learning's capability to reveal fresh
insights regarding proteins are immense in terms of comprehending basic life processes, personalized
medicine, as well as drug discovery.

4. Deep Learning Models for Prediction of Protein Structure from Sequence Data

Deep learning, a subset of machine learning, has significantly advanced computational biology,
particularly in protein structure and interaction prediction [41]. These algorithms process large,
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complex datasets, learning abstract features for tasks like data augmentation in bioinformatics [42,43].
Deep learning architectures accept diverse inputs, including protein sequences, 3D structures, and
network topologies, for applications like structure prediction and text mining. Key neural network
components include fully connected, convolutional, and recurrent layers [44,45].

Deep learning architectures, including convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and transformers, accept diverse inputs like protein sequences and 3D structures
[44,45]. CNNs extract local features for secondary structure prediction, offering high accuracy but
needing large datasets (Table 2, [79]). RNNs model sequential dependencies, suitable for residue
contact prediction, but struggle with long sequences [80]. Transformers, used in AlphaFold, capture
global interactions for tertiary structure prediction, though resource-intensive [38,116]. These
methods drive advancements in protein modeling.

4.1. Applications of Deep Learning in Protein-Protein Interaction Prediction and Drug Discovery

The latest deep learning techniques that are employed in PPl models may include Deep
convolutional neural networks. This technique is widely used due to its potential to extract features
from structural data. For instance, based on Torrisi et al [44], the structural network information along
with the sequence-based features predicts the interactions between proteins. Besides that, in order to
extract structural information from 2D volumetric representations of proteins, the pre- trained
ResNet50 model was used. The results indicate that methodologies for image-related tasks can be
extended to work on protein structures [45]. However, these techniques of analyzing molecular
structure have drawbacks such as elevated computational expenses and as well as interpretability
[45].

There are various deep learning methods that could be utilized for protein-protein interaction
networks. First, the DeepPPI is a multilayer perception learning structure that requires protein
sequences as its source of input features [46]. The encoding method utilized by this method is the
seven sequence-based features which use concatenation as its combining method. Moving on to the
second method which is DPP], is a convolutional neural network structure that also uses protein
sequences as its source of input features [47]. protein-positioning specific scoring matrices, PSSM
which is derived by PSI-BLAST is used as the encoding method for this deep earning method. Next,
the DeePFE-PPI is also a method that was created in 2019 using multilayer prescription which uses
protein sequences as an input. The encoding method that is utilized in this method is pre-trained
model embedding (Word2vec) [48]. Besides that, S-VGAE is also an example of graph convolutional
Neural networks which utilize protein sequences and topology information of protein-protein
interaction networks. The encoding method employed in this technique is a conjoint method and it
is combined via the concatenation method [49].

Besides protein-protein interaction, Deep learning is also utilized in drug discovery for
optimizing the properties of drugs, determining new drugs as well as predicting drug-target
interactions. In addition, deep learning is also employed in predicting the molecular properties of
drugs such as solubility, bioactivity, toxicity, and many more [50]. In addition, it is also used to
produce novel molecules that have preferred properties. Next, in QSAR studies for drug discovery, the
deep neural network is used to predict the bioactivity of the drugs and their chemical structures [50].

Moreover, deep learning methods are also applied to lead to optimized integration of traditional
in silico drug discovery methods." This clarifies the intent and improves flow. Based on the research,
which is entitled, (AtomNet from Atomwise company, the first major application of deep learning into
DTI prediction) clearly shows the application of convolutional neural networks which is a type of
deep learning technique to predict the molecular bioactivity in proteins [51]. In addition, in terms of
docking, deep learning techniques have been employed to improve the accuracy of both traditional
docking modules and scoring functions. For instance, the docking proved that the application of deep
learning had improved the binding mode prediction accuracy over the baseline docking process.
Besides that, this paper had also proven the fact that Deep learning could be successfully utilized in
the rational docking process [52].
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4.2. Recent Developments in Deep Learning-Based Techniques for Analyzing Protein Function and
Evolution

Recently, there were a few developments that are used in protein analysis by incorporating deep
learning algorithms. An example of it would be combining deep learning with homology modelling.
Furthermore, Homology modelling is the most popular protein structure prediction method that is
utilized to generate the 3D structure of a protein. This is based on two principles which are the amino
acid that is used to determine the 3D structure, and the 3D structure that is preserved regarding the
primary structure [53]. Therefore, it is convenient and an effective way to build a 3D model using
known structures of homologous proteins that have a certain sequence similarity. However, it does
have some challenges when using this method such as weak sequence structures, modelling of the
rigid body shifts and many more [53]. However, incorporating deep learning models has resulted in
great improvement in the protein’s model accuracy.

The deep learning-based methods are employed to improve accuracy in each step of template-
based modelling of protein. For instance, DLPAlign is an example of a deep learning technique that
is combined with sequence alignment [53]. This straightforward and beneficial approach may aid to
increase the accuracy of the progressive multiple sequence analysis method by basically providing
training to the model based on convolutional neural networks CNNs [53]. Besides that, DESTINI is
also a recent method which applies deep learning techniques algorithm, for protein residue and
residue contact prediction along with template-based structure modelling [55].

In short, Deep Learning techniques have provided various achievements in collaborative sectors,
namely model quality assessment (QA), a subsequent stage in protein structure prediction. Basically,
QA is followed by structure predictions to quantify the deviation from the natively folded protein
structures in both template-based and template-free techniques.

4.3. Challenges and Future Directions

There are various challenges when using Deep learning techniques when analyzing biological-
related specimens such as protein structure prediction. First, deep learning requires a large amount of
high-quality data. Hence, only biological analysis could be done if only a large amount of data is
gathered [56]. Next, the deep learning model is incapable of multitasking when it is applied in an
analysis procedure. Deep learning models are capable of handling one issue at a time. Furthermore,
the interpretability of deep learning models is also a challenge of interest for many researchers to
overcome. This is because it is difficult to understand and identify how they obtain their predictions.
New techniques are being developed by researchers to overcome this problem. The future direction
of deep learning is to create hybrid models by incorporating other machine learning techniques to
improve performance and interpretability [56].

5. Key Challenges and Future Directions

As mentioned in the previous section, high-quality data, the inability to multi-task and data
interpretability are some of the key challenges experienced in the application of Al systems such as
deep learning into biological data. There are several other challenges, especially in terms of ethics
and social implications which are addressed in the sub-sections below. Addressing these challenges
of deep learning requires specific and innovative approaches specific to the types of biological data
used. Thus, overcoming these challenges would ultimately pave a path to improvement in biological
research.

5.1. Emerging Areas of Research and Potential Applications

Computational biology is defined as an interdisciplinary field which involves the use of
techniques from various other fields such as biology, mathematics, statistics, computer science and
more. Applications of deep learning in computational biology can be seen in various areas including
in the study of genomics and proteomics. There are many major achievements that are obtained
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specifically in areas such as protein structure prediction, and rapid advancement in other areas of
research from the traditional approaches including genomic engineering, multi-omics, and
phylogenetics can also be seen [57].

The study of genomes and their interaction with other genes and external factors is commonly
known as genomics. One of the primary studies conducted in genomics is the study of regulatory
mechanisms and non-coding transcription factors [58]. One of the major current applications
of deep learning research of genomics and transcriptomics is one of the emerging areas of research
in deep learning. Deep learning is used to identify variations in genomic data, this includes DNA
sequencing and gene expression. For example, itis used to predict the functions of genes, discover gene
regulatory networks, and identify biomarkers in diseases. As a result of this application, the
metabolic pathways can also be optimized. A study identified several challenges in genomics
including mapping the effects of mutation within a population and the DNA sequence prediction in
a genome which has complex interactions and variations. To combat these challenges, deep learning
methods are employed in genomic studies. Deep learning is used to identify variations in genomic data,
including DNA sequencing, gene expression, and drug perturbation effects. For example, it predicts gene
functions, discovers regulatory networks, and identifies disease biomarkers, optimizing metabolic pathways
[59].

In single-cell transcriptomics, graph neural networks (GNNs) like scGNN analyze cell-type
classification and gene co-regulation [84]. In 2024, scGNN has further advanced, modelling cell-type
interactions and gene regulation with high precision, driving progress in precision medicine [119]. In
drug perturbation analysis, deep learning models predict molecular responses to drug treatments,
aiding drug discovery [18]. Deep Neural Networks (DNNs) and Convolutional Neural Networks
(CNNs) address challenges like mapping mutation effects and predicting DNA sequence functions
[59]. DNNSs, trained on DNA sequence datasets, identify protein-binding sites and predict splicing
outcomes, while CNNs analyze mutation effects in single nucleotide variants [58]. Deep Neural
Networks (DNN) and Convolutional Neural Networks (CNN) are algorithms of deep learning that
are employed in genomic studies [59]. Deep Neural Networks (DNNs) solve DNA sequence
prediction by training on sequence datasets and the corresponding protein structures. This enables
the identification of the proteins which are specific and binds to a particular DNA sequence.

The DNN models are also able to predict splicing outcomes for new DNA sequences based on
the training of splicing patterns. CNN, on the other hand, addresses the remaining issue; the
prediction of mutation effects [58]. This model can analyze and identify the potential causes of
mutation in a DNA sequence and determine the mutation or disease on the single nucleotide variant
that is affected. Both CNN and DNN are powerful tools of deep learning which can provide valuable
information on the complex structures of genomes. The application of the algorithm in the field of
genomics would greatly improve the analysis of complex structures, functions and interactions of
genomes.

In the field of biological image analysis, the deep learning algorithm CNN is found to be an
efficient tool that is able to undertake several tasks such as classification, feature detection, pattern
recognition and feature extraction (58). Since the CNN models are effective in processing grid-like
data such as images, it is commonly utilized in image analysis [59]. Staking more convolutional layers
in the model aids in detecting complex and abstract features in biological images. The CNN model is
able to learn and identify delicate patterns and subtle differences in biological images which improve
the accuracy of a diagnosis. DeLTA is an example of a deep learning tool used to analyze biological
images, specifically, time-lapse microscopy images [60]. The Deep Learning for Time-lapse Analysis
(DeLTA) is able to analyze the growth of a single cell and the gene expressions in microscopy images.
It was found to be able to process and capture microscopy images with high accuracy and without
the need for human interventions. Furthermore, deep learning is incorporated into healthcare,
specifically radiology. Tasks such as classifying patients based on chest X-rays diagnosis and nodule
detection in computed tomography images are done using deep learning [61]. The analysis of a large
number of radiology data depends on the efficiency of the powerful deep learning algorithms. Thus,
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deep learning algorithms have the potential to revolutionize biological image analysis by providing
automated and accurate analysis.

Deep learning in the proteomics field can mainly be shown in the protein-protein interactions
predictions. Protein complexes can also be identified through deep learning. Protein structure and
function can then be predicted from the data obtained and be used for various activities such as the
identification of targeted proteins for drug development. Deep learning is applied in the study of
phylogenetics where the limitation in the classification methods where the branch lengths of the
phylogeny cannot be inferred is to be overcome [57].

While there are many applications of deep learning that bring significant advancements, there
are other potential applications of deep learning in the biological field that can be further discussed
and implied. For instance, deep learning is applied in the identification of protein-protein interactions.
Therefore, a similar technique can be applied in drug design. In terms of drug design, the application
and incorporation of deep learning have made the process more time and cost-effective as compared
to traditional drug design methods [62]. The use of deep learning in drug design is identified to be
more flexible due to the neural network architecture of the algorithm [63]. Especially in the current era,
with the combat against COVID-19, deep learning has shown great potential in accelerating the drug
design process. The deep learning models are able to identify antimicrobial compounds against a
disease or a virus by training the model with the ability to identify molecules against the virus or
bacteria. Similarly, another study showed the use of deep learning models in the use of de novo drug
design where the model was trained to identify the physical and chemical properties of the drugs,
classifying them based on their features and allowing automated extraction to create a novel ligand
against the target protein [65]. Drug repurposing, which is a quicker method to achieve and complete
drug designing for a disease or illness, is found to incorporate deep learning approaches. An article
reported the use of network- based approaches in drug repurposing to identify the target molecule
for known drugs to speed up the process [66]. Another study in relation to COVID-19, used the
Molecule Transformer-Drug Target Interaction (MT-DTI), a deep learning model trained with
chemical sequences and amino acids sequences to identify the commercially available antiviral drugs
with similar properties of interaction with the SARS-CoV-2 virus [64]. These are just some examples
of the emerging use of deep learning models in drug design. The appearance of the COVID-19 disease
has boosted the application of Al systems in the field to improve the speed and efficiency of the
process.

To summarize, the deep learning algorithm is a powerful artificial intelligence tool that is widely
used in the field of computational biology. The application of the tool is just in its beginning phase as
there are more fields and complex challenges that are to be explored and tackled in the upcoming
future. The application of this Al technology will help to shape the future of computational
biology by improving the predictions and understanding biological processes.

5.2. Ethical and Social Implications

The advancements in digital technology allow the incorporation of Artificial Intelligence tools
such as Machine Learning and Deep Learning in various fields of research. These techniques use
various algorithms to identify complex and non-linear correlations in massive datasets and could
improve prediction accuracy by learning from minor algorithmic errors encountered. Despite the use
of a powerful machine learning tool, such as deep learning algorithms, in the field of research and
healthcare is found to be revolutionary, it inevitably raises ethical concerns and social implications
that require careful consideration [67].

Four major ethical issues were identified regarding the use of Al tools in the healthcare system;
informed consent of data, safety and transparency, algorithmic fairness and biases and data privacy
[68]. These concerns may be identified in the healthcare sector, but these concerns are also integrated
in the usage of deep learning techniques in biological research which involves the use of deep neural
networks to analyze and interpret volumes of biological data.
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The field of biological research involves the use of various biological data which includes
genomic sequences, protein structures, medical images and scans and more. The deep learning
algorithm has access to this data, containing sensitive biological data, to aid in research. As medical
records and genomic information of individuals are involved and used, it is critical to ensure the
privacy of the individual, as well as the informed consent for data usage, is obtained [68]. As
highlighted in 2024 reviews, these challenges persist, particularly in rare disease genomics, where
data scarcity and ethical concerns around privacy and bias necessitate robust regulatory frameworks
[120]. Privacy violations and mishandling of personal information are examples of invasion of data
privacy without individual consent [70].

The potential bias in the algorithms of the deep learning tool is one of the main ethical concerns
surrounding Al systems. The algorithms utilized in these systems can perpetuate biases and
negatively impact marginalized groups [68]. This is because the training data is not representative of
the diverse populations leading to biased results and disparities in research outcomes. The biases can
be found in different stages of biological research, including data collection and annotation, if they
are not addressed [71]. Therefore, efforts should be taken to address the bias in data collection to
promote the inclusivity of all data regardless of population type, disease groups, diversity and other
factors involved in research.

It is also crucial to promote transparency and safety in the Al tools used in biological research.
Deep learning models are opaque making it difficult to understand the process of prediction and
decision in research. As deep learning models are made up of multiple layers of artificial neurons,
where each layer corresponds to a different learning pattern, it poses a challenge to accurately identify
the pattern learned by each layer functions to make a prediction. Lacking transparency in the
algorithm decision-making process begins the questioning of the ability to scrutinize the Al results
as a reasonable explanation leading to the data being unprovable and uninterpretable by humans
[68,71]. Thus, transparent models are required to make sure the researchers can observe the
prediction pattern to validate and understand the results obtained. This ensures the accountability of
the scientific research process. However, it was discussed that full transparency may cause friction
against certain ethical concerns as it may leak private and sensitive data into the open [69]. Hence,
there should be limitations to the disclosure of the algorithms.

Security in biological research not only involves maintaining the data and privacy of personal
data, but it also involves the responsible use of technology. The technology at hand, deep learning,
must be used responsibly and ethically in research. Scientists must incorporate ethical frameworks
to avoid potential misuse and unintended consequences or risks that may occur [68]. Furthermore,
risk assessments are to be conducted to aid in decision-making and reduce the possible negative
impacts. The deployment and implementation of this technology must be considered well with
proper safety measures, regular monitoring and evaluations.

Moreover, there is the concern of liability and accountability where questions would arise to who
would be the person to be held accountable towards any form of mistakes or errors caused by deep
learning algorithms used in research [72]. As the algorithms are continually learning and evolving, it
is difficult and complex to determine liability. Thus, legal frameworks are to be adapted with clear
lines of responsibility to address the challenges faced by the Al system in biological research [73].

Ensuring equitable access to the deep learning tool is one of the social implications of Al systems
in biological research. Promoting equitable access to scientists and researchers would be able to
participate in the advancement of deep learning algorithms in biological research [74]. It would also
prevent exacerbating disparities in biological research while promoting an inclusive and
collaborative research environment. Fostering the exchange of ideas and knowledge of experts would
further aid deep learning to be integrated into the biological research community.

In a nutshell, these are some of the social implications and ethical concerns revolving around the
use of Al systems such as Deep Learning in the field of biological research. Deep learning is the
future of more efficient and advanced research; however, the ethical concern mentioned above
should be addressed to ensure the responsibility and accuracy of the algorithm in biological research
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6. Future Prospects and Potential Impact of Deep Learning on Biological
Research and Clinical Practice

Deep learning has significantly advanced computational biology, particularly in genomics and
protein structure prediction, with breakthroughs like AlphaFold and DeepBind driving progress in
precision medicine and drug discovery. The following sections summarize these advancements and
their potential impact. Table 3 compares key deep learning models from 2020 to 2025, highlighting
recent advancements in genomics and protein structure prediction, including AlphaFold 3 and
genome language models.

The application of deep learning models is poised to have a substantial influence in the field of
biological research and clinical practices. With their ability to analyze large and intricate data, deep
learning models could be beneficial in assisting with pathological diagnosis, drug discovery, genomic
data identification or even personalized treatments. As noted in 2025, hybrid CNN-transformer
models are gaining traction for single-cell omics analysis, balancing local and global feature detection
to improve predictions [121]. By harnessing deep learning algorithms researchers can examine
biological data consisting of gene expression or protein structure to identify new patterns or
molecules which could yield an insight into the biological structure mechanisms. By harnessing deep
learning algorithms researchers can examine biological data consisting of gene expression or protein
structure to identify new patterns or molecules which could yield an insight into the biological
structure mechanisms. In addition to that, deep learning models are also being used to facilitate
accelerating new drug target development and research, developing new accurate diagnostic tests,
and aiding in improving clinical trial designs [75]. The future prospect of deep learning models in
both biological research and clinical practice are promising given that this technology and its
algorithms continue to be developed which could potentially catapult humanity into a new era of
making diagnosis for diseases or illnesses in addition to providing a more practical way for providing
better patient care with precise treatments and prevention of diseases [76].

On top of that, deep learning models have the potential to be used to improve the efficiency and
effectiveness of healthcare delivery systems by automating menial tasks and accelerated diagnostics
tests [77]. Deep learning models possess the ability to integrate and analyze a variety of data types,
including genomics, proteomics, imaging, and clinical data. This enables the exploration of concealed
patterns and relationships within these datasets, empowering machine learning to offer a holistic
comprehension of diseases and provide guidance for translational research endeavors. Besides that,
deep learning has broad applicability in addressing diverse challenges. By training on extensive
datasets, deep learning models excel at navigating tasks such as image classification, object detection,
speech recognition, and machine translation aside from that, deep learning is a rapidly growing field,
and it is being used in a variety of domains, including healthcare, computer vision, natural language
processing, and robotics [78]. The summary of the recent advancements of deep learning in
computational biology can be referred to Table 2. LLMs are emerging as powerful tools in
computational biology. Models like Evo and other transformer-based architectures, originally
developed for natural language processing, are being adapted to understand and generate biological
sequences (DNA, RNA, protein). These models can learn complex patterns and relationships within
biological data, enabling tasks such as de novo protein design, predicting the effects of genetic
mutations, and even simulating\ biological processes. Their ability to handle multi-task processing
addresses a limitation of earlier deep learning models and represents a significant hot spot and future
development direction in the field. LLMs can bridge the gap between sequence information and
functional outcomes, offering new avenues for discovery in both genomics and protein science. For
instance, genomic language models (gLMs) trained on DNA sequences are advancing our
understanding of genomes and can generalize across a plethora of genomic tasks.

In protein science, protein language models (PLMs) are revolutionizing protein structure
prediction, function annotation, and design by learning the probability distribution of amino acids
within proteins. Evo, a genomic foundation model, exemplifies this trend, capable of both prediction
and generative design from molecular to whole-genome scale, and can predict the effects of gene
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mutations with unparalleled accuracy. This type of model not only has outstanding performance but
also can be applied to multiple downstream tasks, solving the problem of multi-task processing
mentioned in the article to a certain extent. Continued advancements in integrating diverse
multiomics datasets (genomics, transcriptomics, proteomics, metabolomics, epigenomics) will
provide a more comprehensive understanding of biological systems. Deep learning models capable
of effectively processing and synthesizing these heterogeneous data types will be crucial for
uncovering complex disease mechanisms and developing truly personalized medicine. Beyond
prediction, generative deep learning models (e.g., GANs, VAEs) are increasingly being used for de
novo design of biological molecules, including proteins with desired functions or novel drug
compounds. This shift from analysis to design holds immense potential for accelerating therapeutic
development and synthetic biology Continued research into explainable AI (XAI) will be vital to
make deep learning models more transparent and trustworthy for biological and clinical
applications. This includes developing methods to visualize learned features, identify influential
input elements, and provide human-understandable explanations for model predictions.

Table 3. Comparative Analysis of Deep Learning Models in Genomics and Protein Structure Prediction (2020-

2025).
Model Type Primary Key Performance Computational Limitations References
Application  Advancement Metrics Requirements
(2020-2025)
CNNs DNA DeepCpG AUC: 0.92 Moderate Requires large [32,79]
methylation predicts (GPU required) datasets, risk of
analysis methylation overfitting
states with high
accuracy (2017-
2024)
RNNs Gene Improved Accuracy: Moderate Struggles  with [80,118]
expression sequential 85% long sequences
prediction modeling, but
limited by long-
range
dependencies
Transformers Protein AlphaFold 3 RMSD: <1A High Computationally [38,117]
structure predicts protein (TPU/GPU intensive
prediction complexes and clusters)
ligand
interactions
(2024)
GNNs Single-cell scGNN F1 Score: High Interpretability [84,119]
omics advances cell- 0.89 issues

type interaction

modeling (2024)
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gLMs Gene co- Transformer- AUC: 0.90 High Limited to [118]
regulation based gL.Ms specific datasets
prediction predict single-
cell co-
regulation (2024)
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Abbreviations

The following abbreviations are used in this manuscript:

LLMs Large Language Models
scGNN single-cell analysis using graph neural networks

CNNs Convolutional neural networks
RNNs Recurrent neural networks

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid.

ANNs Artificial neural networks

gLMs genomic language models

LSTMs Long short-term memory networks
GAN Generative adversarial network
GNNs Graph neural networks

SNPs Single-nucleotide polymorphisms
DGMs Deep generative models

DBN Deep Belief Networks

RL Reinforcement Learning

VAE Variational Autoencoders

DBM Deep Boltzmann Machines

DQN Deep Q- Networks

GCN Graph Convolutional Networks

VGAE Variational Graph Autoencoders
DNN Deep Neural Networks

CRNN Convolutional Recurrent Neural Networks
BLSTM Bidirectional long short-term memory
CASP Critical Assessment of Structure Prediction
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PPI Protein-protein interaction
PSSM Protein-positioning specific scoring matrices
QA Quality assessment
Al Artificial Intelligence
PLMs Protein language models
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