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Abstract 

Artificial Intelligence (AI) and Machine Learning (ML), especially deep learning, have 

revolutionized genomics and protein structure prediction, advancing precision medicine 

and drug discovery. This review focuses on the most widely used AI and ML algorithms 

including deep learning models, from early neural networks to advanced transformer 

architectures and Large Language Models (LLMs), are transforming our ability to interpret 

genomic data, predict gene function, and accurately determine protein structures and 

interactions. We highlight key breakthroughs such as AlphaFold and DeepBind and discuss 

their impact on understanding complex biological systems. Furthermore, we address the 

inherent connections between genomics and protein structure prediction, emphasizing how 

insights from one field often inform and accelerate progress in the other. We also discuss 

recent advancements, such as single-cell analysis using graph neural networks (e.g., 

scGNN). The review classifies deep learning methods (CNNs, RNNs, transformers), 

evaluating their strengths, limitations, and suitable applications. We also delve into the 

challenges, including data quality, model interpretability, and computational demands, and 

explore future directions, such as the integration of multi-omics data and the development 

of hybrid models. Future directions, such as integrating multi-omics data and developing 

hybrid models, aim to enhance scalability and clinical utility. This review provides insights 

for researchers applying AI and ML in these fields, outlining current progress and emerging 

opportunities. 

Keywords: Artificial Intelligence; Machine learning; Genomics; deep learning; protein structure 

prediction; precision medicine; convolutional neural networks; future directions 

 

1. Introduction 

1.1. Genomics and Protein Structure Prediction: A Unified Frontier Enabled by Deep Learning 

Computational biology combines advanced computing with biological research to explore 

complex living systems, particularly in genomics and protein structure prediction [1]. Within this 

interdisciplinary realm, genomics and protein structure prediction represent two pivotal, yet 

intrinsically linked, areas of research. The journey from genetic information encoded in DNA to the 

functional machinery of proteins is a central dogma of molecular biology: DNA is transcribed into 

RNA, which is then translated into protein sequences. The linear sequence of amino acids in a protein 
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subsequently folds into a unique 3D structure, which in turn determines its biological activity. 

Understanding this intricate flow of information from gene to protein structure to function is 

paramount for advancing our knowledge of biological systems and developing novel therapeutic 

interventions. This review combines genomics and protein structure prediction into a single, cohesive 

narrative due to their inherent biological interconnectedness and the synergistic role AI and ML plays 

in bridging these domains. The rationale is rooted in the central dogma of molecular biology: genomic 

information (DNA/RNA sequences) directly encodes the amino acid sequences of proteins, and these 

sequences, in turn, determine the protein's three-dimensional structure, which is crucial for its 

function. AI and ML provide the computational framework to traverse this biological pathway, 

enabling a holistic understanding of biological systems from the genetic blueprint to the functional 

molecular machinery. By treating these fields jointly, we can better illustrate how advancements in 

one area, driven by deep learning, often directly impact and accelerate progress in the other, leading 

to a more comprehensive and integrated view of biological processes and disease mechanisms. Since 

the 1990s, machine learning has evolved from basic neural networks analysing gene expression data 

to sophisticated deep learning algorithms. Models such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and transformers now detect complex patterns in genomic and 

proteomic datasets, enabling accurate predictions [2]. 

 In 2015, researchers from Harvard and MIT developed DeepBind, a groundbreaking deep 

learning algorithm that identifies RNA-binding protein sites, revealing previously unknown 

regulatory elements in the genome [3]. Scientists increasingly rely on such algorithms to address 

biological challenges, from predicting protein structures to identifying disease-causing mutations. 

For example, DeepMind’s AlphaFold uses advanced neural networks to accurately predict proteins’ 

three-dimensional structures, opening new frontiers in structural biology [38]. These advancements 

have driven significant progress in genomics, medical diagnosis, and drug discovery. The use of AI 

and ML in computational biology has resulted in noteworthy breakthroughs spanning diverse niches, 

like genomics, medical diagnosis, and drug discovery. AI enables precise analysis of genomic data, 

identifying disease-causing mutations and supporting the development of personalized treatments. 

It also predicts functional pathways for new drugs, streamlining target identification and reducing 

reliance on trial-and-error experiments. By analyzing vast genomic, proteomic, and other biological 

datasets, deep learning uncovers subtle patterns often missed by traditional statistical methods, 

enhancing our understanding of biological systems. 

The growing demand for personalized medicine and efficient drug discovery drives the 

adoption of AI in life sciences [4]. However, challenges remain. AI  algorithms require large, high-

quality datasets, which can be scarce in some biological fields [3]. Additionally, interpreting their 

results is complex, as they detect subtle patterns that may not align with traditional biological models. 

Despite these challenges, AI has the potential to transform computational biology by deepening 

our understanding of biological systems and improving healthcare outcomes. This review explores 

its applications, addresses associated challenges, and highlights key advancements, such as 

AlphaFold and DeepBind, and their potential impact on personalized medicine and drug discovery 

in the coming years. 

1.2. Brief History and Evolution of Deep Learning 

The journey of deep learning, from its theoretical origins to its current state as a transformative 

technology, is marked by periods of intense research and significant breakthroughs. Rina Dechter 

introduced the term "deep learning" to the machine learning community in 1986, and Igor Aizenberg 

and colleagues applied it to artificial neural networks in 2000, focusing on Boolean threshold neurons 

[5]. The concept originated in 1943, when Warren McCulloch and Walter Pitts developed a computer 

model based on human neural networks, using "threshold logic" to simulate cognitive processes [6]. 

Since then, deep learning has evolved continuously, with brief setbacks during the "AI Winters" 

(periods of reduced funding and interest in AI research) [5]. Table 1 outlines the history and 

evolution of deep learning. In 1943, Warren McCulloch and Walter Pitts pioneered neural networks 
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with a computational model called threshold logic, using mathematical algorithms to mimic 

cognitive processes [6]. In 1958, Frank Rosenblatt developed the perceptron, a two-layer neural 

network for pattern recognition based on simple arithmetic operations. He also proposed adding 

more layers, though practical implementation was delayed until 1975. 

In 1980, Kunihiko Fukushima introduced the Neocognitron, a hierarchical, multilayered neural 

network that excelled in handwriting and pattern recognition tasks. By 1989, researchers developed 

algorithms for deep neural networks, though their lengthy training times (often days) limited 

practicality. In 1992, Juyang Weng’s Cresceptron enabled automated 3D object recognition in 

complex scenes, advancing neural network applications. 

In the mid-2000s, Geoffrey Hinton and Ruslan Salakhutdinov’s seminal paper popularized deep 

learning by demonstrating the effectiveness of layer-by-layer neural network training [5]. In 2009, the 

NIPS Workshop on Deep Learning for Speech Recognition showed that pre-training could be skipped 

with large datasets, significantly reducing error rates. By 2012, deep learning algorithms achieved 

human-level performance in pattern recognition tasks, marking a major milestone in the field. 

In 2014, Google acquired DeepMind, a UK-based AI startup, for £400 million, accelerating AI 

research advancements. In 2015, Facebook implemented DeepFace, a deep learning system with 120 

million parameters, enabling accurate automatic tagging and identification in photographs. In 2016, 

DeepMind’s AlphaGo defeated professional Go player Lee Sedol in a highly publicized Seoul 

tournament, showcasing deep learning’s capabilities. By 2024, transformer-based models like 

AlphaFold3 predicted protein complexes and ligand interactions, while genomic language models 

(gLMs) forecasted gene co-regulation in single-cell data, advancing precision medicine [38,99]. These 

developments, driven by large datasets and enhanced computational power, highlight deep 

learning’s transformative impact on biological research (Table 2).  

Deep learning uses artificial neural networks (ANNs) to perform complex computations on large 

datasets. These networks consist of interconnected neuron layers that process and extract patterns 

from input data. Deep learning processes data through multiple layers of neural networks, with each 

layer extracting and transforming features before passing them to the next. A fully connected deep 

neural network includes an input layer, several hidden layers, and an output layer. Neurons in each 

layer receive inputs from the previous layer, process them, and pass outputs forward, ultimately 

producing the final result. Through nonlinear transformations, these layers learn complex patterns 

and representations from the input data [7].  

Deep learning employs various algorithms, each suited to specific tasks. These include radial 

basis function networks, multilayer perceptron, self-organizing maps, convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), long short-term memory networks (LSTMs), and 

transformers. CNNs excel in genomics, as demonstrated by DeepBind for RNA-binding protein site 

prediction and DeepCpG for DNA methylation analysis [32]. RNNs and LSTMs handle sequential 

data effectively, while transformers, used in AlphaFold3, model complex protein interactions and 

genomic sequences [38]. These algorithms drive advancements in precision medicine and drug 

discovery by detecting subtle patterns in large biological datasets (Table 2). More recently, by 2024, 

transformer-based models like AlphaFold3 have advanced to predict protein complexes and ligand 

interactions with unprecedented accuracy, while genomic language models (gLMs) have emerged to 

forecast gene coregulation in single-cell data, significantly advancing precision medicine. These 

continuous developments, driven by the availability of massive datasets and enhanced 

computational power, underscore deep learning’s transformative influence across diverse scientific 

disciplines, including biological research. 

Table 1. Timeline of AI history and evolution, highlighting key milestones from 1943 to 2024. 

Date Developed by Evolution 
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1873 A. Bain The earliest models of 

neural networks, called 

Neural Groupings, were 

introduced and were 

inspired by the Hebbian 

Learning Rule. 

1943 McCulloch & Pitts The MCP Model was 

introduced, which is considered 

the precursor to Artificial Neural 

Models. 

1949  

D. Hebb 

Considered as the father of 

neural networks, he introduced 

the Hebbian Learning Rule, 

which formed the basis for 

modern neural networks. 

1958 F. Rosenblatt The first perceptron, which 

closely resembles modern 

perceptron, was introduced. 

1969 Minsky and Papert Publish Perceptron, which 

criticizes the perceptron and 

limits the potential of neural 

networks 

1974 P. Werbos Introduced Backpropagation 

1980 T. Kohonen 

 

K. Fukushima 

Introduced Self Organizing Map 

Neocogitron was introduced, 

which served as inspiration for 

Convolutional Neural 

Networks. 

Date Developed by Evolution 

1982 J. Hopheld The Hopfield Network was 

introduced 

1985 Hilton & Sejnowski The Hopfield Network was 

introduced 

1986 P.Smolensky 

 

 

M. I. Jordan 

Introduced Harmonium, which 

is later known as Restricted 

Boltzmann Machine 

Defined and introduced 
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Recurrent Neural Network 

1990 Y. LeCun LeNet was introduced, 

demonstrating the practical 

potential of deep neural 

networks. 

1997 Schuster & Paliwal 

Hochreiter& 

Schmidhuber 

Introduced Bidirectional 

Recurrent Neural Network 

Long Short-Term Memory 

(LSTM) networks solved the 

vanishing gradient problem in 

recurrent neural networks 

 

2006 

 

G. Hinton 

Deep Belief Networks 

were introduced, along 

with the layer-wise 

pretraining technique, 

which marked the 

beginning of the current 

deep learning era. 

2009 Salakhutdinov & 

Hinton 

Deep Boltzmann Machines were 

introduced. 

2012 G. Hinton Dropout, an efficient method for 

training neural networks, was 

introduced. 

2012 Alex Krizhevsky, Ilya 

Sutskever, and 

Geoffrey Hinton 

 

Convolutional neural network 

(CNN) for Image classification 

2014 Ian Goodfellow, 

Yoshua Bengio, and 

Aaron Courville 

  

(GAN) for image generation 

2020  Deep learning continues to 

evolve and is used for a wider 

range of tasks, including self-

driving cars, medical diagnosis, 

and financial trading etc. 
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2. Advantages and Challenges of Using Deep Learning in 

Computational Biology 

Advancements in genomics and imaging technologies have generated vast molecular and 

cellular profiling data from numerous global sources. This data surge challenges traditional analysis 

methods [8]. Deep learning, a subset of machine learning, has emerged as a powerful tool for 

bioinformatics, extracting insights from large datasets by identifying patterns and making accurate 

predictions [10]. For instance, DeepBind uses convolutional neural networks (CNNs) to predict RNA-

binding protein sites, while AlphaFold employs transformers for precise protein structure prediction 

[32,38]. These applications demonstrate deep learning’s transformative potential in biology and 

medicine, though challenges persist (Figure 1). 

 

Figure 1. Overview of deep learning applications in computational biology, illustrating key algorithms (CNNs, 

RNNs, transformers) and their roles in genomics and protein structure prediction. 

2.1. Advantages of Using Deep Learning 

Deep learning enhances disease diagnosis and prediction. Ching et al. [11] highlights its ability 

to develop accurate, data-driven diagnostic tools that identify pathological samples. It also rapidly 

screens large datasets, reducing drug discovery costs by identifying targets and predicting responses 

[11]. Furthermore, deep learning supports drug repositioning by analyzing transcriptomic data to 

identify new therapeutic targets [12]. Deep learning supports precision medicine by developing 

personalized treatments [13]. It integrates patient-specific data, including genomic profiles, clinical 

records, and lifestyle factors, to tailor therapies [14]. By analyzing large datasets with high accuracy, 

deep learning identifies genetic markers, variations, drug efficacy, protein interactions, and clinical 

prognoses, optimizing treatment selection and disease monitoring [15]. For example, Dinov et al. [16] 

developed a deep learning protocol for Parkinson’s disease diagnosis, achieving high accuracy and 

demonstrating potential for drug discovery and personalized medicine. 

Deep learning models efficiently handle large, complex biological datasets [8]. These algorithms 

extract intricate patterns, improving the accuracy of predictions and data classification. By learning 

relevant features from vast datasets, they minimize the need for human intervention [17]. This is 
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particularly valuable in biomedicine and molecular biology, where complex, heterogeneous data 

often pose analytical challenges. The scalability and transferability of deep learning models enable 

efficient handling of large, complex datasets [18]. These models can be trained in specific biological 

tasks with minimal modifications, reducing resource demands and improving generalization of new 

data. Additionally, deep learning identifies novel patterns that conventional methods may miss. For 

example, Liu et al. [25] used deep learning to predict functional implications of non-coding genomic 

variations with greater accuracy than traditional approaches. 

2.2. Challenges of Using Deep Learning 

A key challenge in applying deep learning to computational biology is interpretability [11]. 

Complex model architecture often functions as "black boxes," making it difficult for researchers to 

understand how predictions reflect biological mechanisms. Interpretability is critical for building 

trust among clinicians and stakeholders, particularly in medical diagnostics, where decisions must 

rely on reliable factors rather than data artefacts. Ongoing efforts aim to develop techniques that 

clarify deep learning’s decision-making processes [8]. Deep learning enhances diagnostic accuracy in 

medicine but raises ethical and regulatory concerns, particularly regarding patient privacy [20]. 

Robust guidelines on informed consent and data protection can mitigate these issues. Additionally, 

biased diagnostic reports risk discriminating between patient groups, potentially leading to incorrect 

diagnoses or unequal treatment access [20,21]. Transparent and ethical use of deep learning models 

promotes accountability in biomedical research and healthcare. 

Although deep learning models handle large datasets effectively, they require high-quality, 

labelled data for training [22]. In healthcare and biomedicine, obtaining such data is challenging due 

to privacy regulations and data heterogeneity. Moreover, biological data from sources like electronic 

health records and pathological reports often vary in format and standards, reducing model 

performance and generalization. Deep learning models, despite their advanced capabilities, demand 

significant computational resources and specialized hardware for training and deployment [23]. 

High-performance computing infrastructure is essential, posing challenges for small non-profit 

organizations and research institutions with limited resources. 

3. Interconnecting Genomics and Protein Structure Prediction through Deep 

Learning 

The central dogma of molecular biology—DNA to RNA to protein—establishes a direct link: 

genomic information dictates protein sequences, and these sequences, in turn, determine protein 

structures and functions. Deep learning provides the computational framework to traverse this 

biological pathway, enabling a holistic understanding of biological systems from the genetic 

blueprint to the functional molecular machinery. This section review combines genomics and protein 

structure prediction into a single narrative due to their biological interdependence and the synergistic 

advancements driven by deep learning. 

3.1. Role of Deep Learning in Genomic Variant Detection and Precision Medicine 

Deep learning has transformed genomic variant detection and gene expression analysis. 

Genomics, encompassing an organism’s entire genetic makeup, provides critical insights into 

biological processes, diseases, and individual differences. Deep neural networks enable researchers 

to analyze gene expression profiles and genetic variations, advancing personalized medicine, drug 

discovery, and disease mechanism understanding [24]. Specifically, these algorithms accurately 

classify variants to identify disease-causing mutations and support gene expression studies, such as 

splicing-code analysis and long noncoding RNA identification [24]. 

The use of deep learning in genomic variant detection has enabled the prediction of the 

organization and functionality of various genomic elements such as promoters, enhancers, and gene 

expression levels [25]. Deep learning detects gene variants to predict their effects on disease risk and 
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gene expression. To accomplish this, a genome is split into optimal, non-overlapping fragments using 

fragmentation and windowing techniques [26]. A three-step procedure—fragmenting, model 

training for forecasting variant effects, and evaluating with test data—constitutes deep learning-

based identification of genetic variations [26]. A deep learning model demonstrated favorable 

precision in distinguishing patients from controls and the ability to identify individuals with multiple 

disorders during research on genetic variants in non-coding areas [27]. These regions were enriched 

with pathways related to immune responses, antigen binding, chemokine signaling, and G-protein 

receptor activities, offering insights into mental illness mechanisms [27].  By utilizing deep neural 

networks, researchers have gained insights into gene expression profiles, genetic variations, and 

single-cell RNA sequencing data, advancing personalized medicine and drug discovery [18]. For 

genomic variant detection, algorithms precisely classify variants to identify disease-causing 

mutations [24]. In single-cell transcriptomics, graph neural networks (GNNs) like scGNN model cell-

type interactions and gene regulation [84]. Additionally, genome language models (gLMs), 

leveraging transformer-based architectures, have emerged in 2024 to predict gene co-regulation in 

single-cell data, enhancing precision medicine applications [118]. 

Deep learning methods, such as convolutional neural networks (CNNs), predict genetic 

variations that may cause diseases [25]. A CNN-based model outperformed traditional methods in 

forecasting the functional impacts of non-coding genomic variants, achieving high accuracy in 

variant classification but requiring large datasets to prevent overfitting (Table 2, [79]). Recurrent 

neural networks (RNNs) model sequential dependencies for gene expression prediction, though they 

struggle with long-range interactions [80]. Deep learning also identifies single-nucleotide 

polymorphisms (SNPs) affecting gene expression levels, revealing new variants linked to expression 

changes [28]. 

Gene expression relies on transcriptional regulators, such as pre-mRNA splicing, 

polyadenylation, and transcription, to produce functional proteins. While high-throughput screening 

provides quantitative data on gene expression, traditional experimental and computational methods 

struggle to analyze large genomic regions. Deep learning overcomes this limitation, accurately 

predicting gene expression levels and identifying enhancer-promoter interactions. For example, the 

Enformer model, described in Nature Genetics, improved gene expression predictions by integrating 

long-range genomic interactions (up to 100 kb) using massive parallel assays [29]. 

Deep generative models (DGMs) enhance gene expression analysis by identifying underlying 

structures, such as pathways or gene programmers, from omics data [30]. These models provide a 

framework to account for latent and observable variables, effectively analyzing high-dimensional 

SNP data to understand multigenic diseases. DGMs also predict how nucleotide changes affect DNA 

beyond gene expression datasets, offering new insights into genetic regulation [30]. Deep learning 

has transformed our understanding of genetics by identifying genomic variants and analyzing gene 

expression, accelerating the discovery of disease-related genes, drug targets, and therapies [24]. It 

enables clinicians to make precise decisions based on individual genomic profiles. Despite challenges 

like overfitting and interpretability, deep learning often outperforms traditional methods, supported 

by robust computational pipelines for genomics research. 

Table 2. AI algorithms (CNNs, RNNs, transformers) and their applications in genomics, protein structure 

prediction, and single-cell omics analysis. 

No Deep Learning 

Algorithm 

Application in 

Computational Biology 

References 

01. 
Convolutional Neural 

Networks 

(CNN) 

Gene expression analysis 78 
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02. Recurrent Neural 

Networks (RNN) 

DNA sequence analysis 79 

03. Generative Adversarial 

Networks (GAN) 

Synthetic biology and 

protein design 

80 

04. Deep Belief Networks 

(DBN) 

Protein structure prediction 81 

05. Reinforcement Learning 

(RL) 

Drug discovery and 

optimization 

82 

06. Transformer Networks RNA structure prediction 83 

07. Autoencoders Disease diagnosis and 

prognosis 

84 

08. Graph Neural Networks 

(GNN) 

Protein-protein interaction 

prediction 

85 

09. Variational Autoencoders 

(VAE) 

Single-cell genomics analysis 86 

10. Deep Reinforcement 

Learning 

Drug target identification 87 

11. Capsule Networks Protein structure 

classification 

88 

12. Adversarial 

Autoencoders 

Gene expression imputation 89 

13. 

 

14. 

Deep Boltzmann 

Machines (DBM) 

Epigenetic data analysis 90 

 

Deep Learning 

Algorithm 

Application in 

Computational Biology 

91 

    

15. Attention Mechanism Single-cell RNA sequencing 

analysis 

92 

16. Deep Q- Networks 

(DQN) 

Drug toxicity prediction 93 

17. Capsule Networks Protein-protein interaction 

prediction 

94 
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18. Deep Generative Models DNA sequence generation 95 

19. Graph Convolutional 

Networks (GCN) 

Drug-target interaction 

prediction 

96 

20. Deep Survival Analysis Cancer survival prediction 97 

21. Transformer Networks Transcriptomics analysis 98 

22. Graph Neural Networks 

(GNN) 

Drug repurposing 99 

23. Adversarial Networks Image-based phenotypic 

screening 

100 

24. Deep Transfer Learning Drug response prediction 101 

25. Generative Adversarial 

Networks (GAN) 

Synthetic data generation 101 

26. Deep Reinforcement 

Learning 

Protein folding 102 

27. Variational Graph 

Autoencoders (VGAE) 

Disease-gene prioritization 103 

28. Deep Neural Networks 

(DNN) 

Metagenomic analysis 104 

29. Convolutional Recurrent 

Neural Networks 

(CRNN) 

Chromatin state prediction 105 

30. Deep Clustering Cell type identification 106 

31. Deep Reinforcement 

Learning 

Protein-ligand binding 

affinity prediction 

107 

32. Graph Convolutional 

Networks (GCN) 

Drug response prediction 108 

33. Long Short- Term 

Memory (LSTM) 

RNA splicing prediction 109 

34. Deep Reinforcement 

Learning 

Antibiotic resistance 

prediction 

110 

35. Capsule Networks Protein function prediction 111 
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36. Autoencoders Single-cell epigenomics 

analysis 

112 

37. Deep Belief Networks 

(DBN) 

Genetic variant classification 113 

38. Transformer Networks Protein-protein interaction 

network analysis 

114 

39. 
Graph Convolutional 

Networks 

(GCN) 

Drug-target interaction 

network analysis 

115 

40. Recurrent Neural 

Networks (RNN) & 

Genome Language 

Models (gLMs) 

Protein secondary structure 

prediction, Gene co-regulation 

prediction 

 

116 

41. Deep Reinforcement 

Learning 

Gene regulatory network 

inference 

117 

42. Variational Autoencoders 

(VAE) 

Metabolomics data analysis 118 

43. Deep Belief Networks 

(DBN) 

Drug side effect prediction 119 

44. Capsule Networks Cancer subtype classification 120 

45. Convolutional Neural 

Networks (CNN) 

Histopathology image 

analysis 

121 

46. Generative Adversarial 

Networks (GAN) 

Synthetic biology and gene 

synthesis 

122 

47. Transformer Networks Protein contact prediction 123 

48. Deep Reinforcement 

Learning 

Genome sequence assembly 124 

49. Graph Neural Networks 

(GNN) 

Cell type classification in 

single-cell transcriptomics 

125 

50. Autoencoders DNA motif discovery 126 

 

3.2. Advancements in Deep Learning for Epigenetic Data Analysis 
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Recent advancements in deep learning have enhanced the analysis of epigenetic data, deepening 

our understanding of gene expression and chromatin dynamics regulation [31]. These methods 

extract critical insights into how genetic and environmental factors, such as nutrition and lifestyle, 

influence epigenetic modifications, particularly in obesity and metabolic diseases [31]. Convolutional 

neural networks (CNNs) have advanced epigenetic analysis by capturing spatial dependencies in 

DNA methylation patterns. For example, DeepCpG, developed by Angermueller et al. [2017], uses 

CNNs to predict methylation states across genomes, outperforming traditional methods but 

requiring high-quality, well-annotated data [32]. Similarly, transformers model long-range 

interactions in chromatin dynamics, though they are computationally intensive (Table 2, [99]). 

Epigenetic alterations significantly impact health, influenced by environmental factors like 

exercise, stress, and diet [31]. Deep learning enables rapid analysis of large epigenetic datasets, with 

applications like DNA methylation ageing clocks. For instance, DeepMAge, trained on 4,930 blood 

DNA profiles, predicts age with a median error of 2.77 years, outperforming linear regression-based 

clocks [34]. Deep generative models (DGMs) have also advanced epigenetic analysis in 2024, 

identifying latent structures in DNA methylation data to uncover regulatory mechanisms [122]. 

Additionally, the analysis of histone modification data has been explored using deep learning 

techniques. Key markers for gene activity and chromatin structure include various modifications 

such as acetylation and methylation. To unravel the intricate connection between patterns in these 

modifications and gene expression, neural networks like attention-based ones or those based on deep 

belief have proven effective. In particular, Yin [2019] introduced their model called 

DeepHistone, which leverages multiple profiles from different histones to predict levels of gene 

expression with high precision, leading to new insights into epigenetic mechanisms previously 

unknown [33]. 

Moreover, studies conducted on animals have shown that epigenetic modifications are linked to 

metabolic health outcomes in humans. Animal models provide ideal opportunities for rigorously 

controlled studies that can offer insight into the roles of specific epigenetic marks in indicating 

present metabolic conditions and predicting future risks of obesity and metabolic diseases [31]. 

Examples include maternal nutritional supplementation, undernutrition, or overnutrition during 

pregnancy, resulting in altered fat deposition and energy homeostasis among offspring. 

Corresponding changes in DNA methylation, histone post-translational alterations, and gene 

expression were observed, primarily affecting genes regulating insulin signaling and fatty acid 

metabolism [31]. Recent studies indicate paternal nutrition levels also affect their children's fat 

disposition, with corresponding detrimental effects on their bodies' epigenetic characterizations [31]. 

Although deep learning-based techniques demonstrate potential in epigenetic data analysis, 

they possess constraints. Substantial amounts of top-notch data are necessary for these models to 

train adequately. Additionally, interpreting results from deep learning can be challenging; thus, 

understanding biological mechanisms leading to model predictions is difficult. Thus, evaluating 

input quality and model performance is critical before endorsing results. The latest advancements 

underscore the promise of deep learning methods for scrutinizing epigenetic data. Neural networks' 

potency allows scientists to discern concealed patterns, grasp far-reaching relationships, and make 

precise forecasts from extensive epigenomic datasets. These progressions offer significant 

enlightenment into gene expression's regulatory mechanisms, which can aid in comprehending 

diseases and designing specific treatments. The initiatives undertaken by these experts are merely a 

few illustrations of the thrilling headway attained within this domain, sparking further innovations in 

research on epigenetics. 

3.3. Applications of Deep Learning in Protein Structure Prediction 

Deep learning has transformed protein structure prediction by accurately determining proteins’ 

three-dimensional shapes. This capability is critical for understanding protein functions, advancing 

drug discovery, and designing therapeutics. Deep learning models effectively capture complex 

patterns in protein sequences, enabling precise structure predictions [38]. 
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Predicting the structure of a protein with precision, based solely on its sequence, proves to be 

challenging, but deep learning presents itself as a viable solution. Recent applications employing this 

approach have successfully predicted both three-state and eight-state secondary structures in 

proteins [35]. Protein secondary structure prediction serves as an intermediate process, linking the 

primary sequence and tertiary structure predictions. The three traditional classifications of secondary 

structures include helix, strand, and coil. However, predicting 8-state secondary structures from 

protein sequences is a much more intricate task referred to as the Q8 problem- which offers greater 

precision in providing structural information for varied applications. Thus, several techniques of deep 

learning such as SC-GSN network, bidirectional long short-term memory (BLSTM) approach, a 

conditional neural field with multiple layers, and DCRNN have been employed to forecast the eight-

state secondary structures [35]. In addition, a next step conditioned convolutional neural network 

(CNN) was utilized to identify sequence motifs linked with particular secondary structure elements 

by analyzing the amino acid sequences. For instance, in 2019, AlQuraishi's research introduced 

"Alphafold," a CNN-powered model that accurately forecasted protein secondary structure. Its 

competence in capturing sequence-structure connections resulted in better forecasts when weighed 

against conventional means [36]. 

Deep learning significantly impacts protein-protein interactions and binding site prediction. 

Convolutional neural networks (CNNs) and transformers analyze protein sequences and structures, 

detecting intricate interactions (e.g., DeepPPI, AlphaFold) [37,38]. CNNs excel in capturing local 

structural patterns, ideal for binding site prediction, but require extensive training data (Table 2, 

[95]). Transformers model long-range dependencies, enabling accurate protein complex predictions, 

though computationally demanding [116]. DeepPPI predicts interactions from sequence data, 

enhancing understanding of protein networks [37]. 

Significant advancements have been made in the tertiary structure prediction of proteins using 

deep learning. Abriata et al., employed a deep learning contact-map approach to achieve a notable 

breakthrough in the 13th Critical Assessment of Techniques for Protein Structure Prediction 

(CASP13) [38]. To determine protein folding accurately, predicting residue-residue contacts is crucial. 

Deep learning approaches leverage vast protein databases to capture intricate patterns and 

dependencies between residues. This aids in long-range contact prediction by developing deep-

learning models that guide the assembly of protein structures with greater precision. Wang et 

al.'s [2021] method utilized a deep residual network which proved effective in anticipating residue-

residue interactions for precise folding predictions through their model's accuracy improvement [39]. 

Meanwhile, the "AlphaFold 2" model created by Senior et al. [2020] is another significant illustration 

worth noting. Through the integration of RNNs and attention mechanisms, AlphaFold 2 achieved 

extraordinary precision in prognosticating protein tertiary structures, surpassing other techniques in 

the Critical Assessment of Structure Prediction (CASP) competition as well. In 2024, AlphaFold 3 

extended these capabilities by predicting protein complexes and ligand interactions with high 

accuracy, further advancing its utility in drug discovery and structural biology [117]. Such success 

can be attributed to how RNNs effortlessly capture long-range dependencies within protein 

sequences without issue. [40]. 

These applications showcased the extensive range and influence of deep learning in predicting 

protein structure. With its adeptness at identifying complex patterns and connections within protein 

sequences and structures, deep learning has enabled significant progress in comprehending aspects 

such as folding, function, and interactions related to proteins. Although there may be upcoming 

challenges and opportunities, the extensive implications of deep learning's capability to reveal fresh 

insights regarding proteins are immense in terms of comprehending basic life processes, personalized 

medicine, as well as drug discovery. 

4. Deep Learning Models for Prediction of Protein Structure from Sequence Data 

Deep learning, a subset of machine learning, has significantly advanced computational biology, 

particularly in protein structure and interaction prediction [41]. These algorithms process large, 
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complex datasets, learning abstract features for tasks like data augmentation in bioinformatics [42,43]. 

Deep learning architectures accept diverse inputs, including protein sequences, 3D structures, and 

network topologies, for applications like structure prediction and text mining. Key neural network 

components include fully connected, convolutional, and recurrent layers [44,45]. 

Deep learning architectures, including convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and transformers, accept diverse inputs like protein sequences and 3D structures 

[44,45]. CNNs extract local features for secondary structure prediction, offering high accuracy but 

needing large datasets (Table 2, [79]). RNNs model sequential dependencies, suitable for residue 

contact prediction, but struggle with long sequences [80]. Transformers, used in AlphaFold, capture 

global interactions for tertiary structure prediction, though resource-intensive [38,116]. These 

methods drive advancements in protein modeling. 

4.1. Applications of Deep Learning in Protein-Protein Interaction Prediction and Drug Discovery 

The latest deep learning techniques that are employed in PPI models may include Deep 

convolutional neural networks. This technique is widely used due to its potential to extract features 

from structural data. For instance, based on Torrisi et al [44], the structural network information along 

with the sequence-based features predicts the interactions between proteins. Besides that, in order to 

extract structural information from 2D volumetric representations of proteins, the pre- trained 

ResNet50 model was used. The results indicate that methodologies for image-related tasks can be 

extended to work on protein structures [45]. However, these techniques of analyzing molecular 

structure have drawbacks such as elevated computational expenses and as well as interpretability 

[45]. 

There are various deep learning methods that could be utilized for protein-protein interaction 

networks. First, the DeepPPI is a multilayer perception learning structure that requires protein 

sequences as its source of input features [46]. The encoding method utilized by this method is the 

seven sequence-based features which use concatenation as its combining method. Moving on to the 

second method which is DPPI, is a convolutional neural network structure that also uses protein 

sequences as its source of input features [47]. protein-positioning specific scoring matrices, PSSM 

which is derived by PSI-BLAST is used as the encoding method for this deep earning method. Next, 

the DeePFE-PPI is also a method that was created in 2019 using multilayer prescription which uses 

protein sequences as an input. The encoding method that is utilized in this method is pre-trained 

model embedding (Word2vec) [48]. Besides that, S-VGAE is also an example of graph convolutional 

Neural networks which utilize protein sequences and topology information of protein-protein 

interaction networks. The encoding method employed in this technique is a conjoint method and it 

is combined via the concatenation method [49]. 

Besides protein-protein interaction, Deep learning is also utilized in drug discovery for 

optimizing the properties of drugs, determining new drugs as well as predicting drug-target 

interactions. In addition, deep learning is also employed in predicting the molecular properties of 

drugs such as solubility, bioactivity, toxicity, and many more [50]. In addition, it is also used to 

produce novel molecules that have preferred properties. Next, in QSAR studies for drug discovery, the 

deep neural network is used to predict the bioactivity of the drugs and their chemical structures [50]. 

Moreover, deep learning methods are also applied to lead to optimized integration of traditional 

in silico drug discovery methods." This clarifies the intent and improves flow. Based on the research, 

which is entitled, (AtomNet from Atomwise company, the first major application of deep learning into 

DTI prediction) clearly shows the application of convolutional neural networks which is a type of 

deep learning technique to predict the molecular bioactivity in proteins [51]. In addition, in terms of 

docking, deep learning techniques have been employed to improve the accuracy of both traditional 

docking modules and scoring functions. For instance, the docking proved that the application of deep 

learning had improved the binding mode prediction accuracy over the baseline docking process. 

Besides that, this paper had also proven the fact that Deep learning could be successfully utilized in 

the rational docking process [52]. 
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4.2. Recent Developments in Deep Learning-Based Techniques for Analyzing Protein Function and 

Evolution 

Recently, there were a few developments that are used in protein analysis by incorporating deep 

learning algorithms. An example of it would be combining deep learning with homology modelling. 

Furthermore, Homology modelling is the most popular protein structure prediction method that is 

utilized to generate the 3D structure of a protein. This is based on two principles which are the amino 

acid that is used to determine the 3D structure, and the 3D structure that is preserved regarding the 

primary structure [53]. Therefore, it is convenient and an effective way to build a 3D model using 

known structures of homologous proteins that have a certain sequence similarity. However, it does 

have some challenges when using this method such as weak sequence structures, modelling of the 

rigid body shifts and many more [53]. However, incorporating deep learning models has resulted in 

great improvement in the protein’s model accuracy. 

The deep learning-based methods are employed to improve accuracy in each step of template- 

based modelling of protein. For instance, DLPAlign is an example of a deep learning technique that 

is combined with sequence alignment [53]. This straightforward and beneficial approach may aid to 

increase the accuracy of the progressive multiple sequence analysis method by basically providing 

training to the model based on convolutional neural networks CNNs [53]. Besides that, DESTINI is 

also a recent method which applies deep learning techniques algorithm, for protein residue and 

residue contact prediction along with template-based structure modelling [55]. 

In short, Deep Learning techniques have provided various achievements in collaborative sectors, 

namely model quality assessment (QA), a subsequent stage in protein structure prediction. Basically, 

QA is followed by structure predictions to quantify the deviation from the natively folded protein 

structures in both template-based and template-free techniques. 

4.3. Challenges and Future Directions 

There are various challenges when using Deep learning techniques when analyzing biological- 

related specimens such as protein structure prediction. First, deep learning requires a large amount of 

high-quality data. Hence, only biological analysis could be done if only a large amount of data is 

gathered [56]. Next, the deep learning model is incapable of multitasking when it is applied in an 

analysis procedure. Deep learning models are capable of handling one issue at a time. Furthermore, 

the interpretability of deep learning models is also a challenge of interest for many researchers to 

overcome. This is because it is difficult to understand and identify how they obtain their predictions. 

New techniques are being developed by researchers to overcome this problem. The future direction 

of deep learning is to create hybrid models by incorporating other machine learning techniques to 

improve performance and interpretability [56]. 

5. Key Challenges and Future Directions 

As mentioned in the previous section, high-quality data, the inability to multi-task and data 

interpretability are some of the key challenges experienced in the application of AI systems such as 

deep learning into biological data. There are several other challenges, especially in terms of ethics 

and social implications which are addressed in the sub-sections below. Addressing these challenges 

of deep learning requires specific and innovative approaches specific to the types of biological data 

used. Thus, overcoming these challenges would ultimately pave a path to improvement in biological 

research. 

5.1. Emerging Areas of Research and Potential Applications 

Computational biology is defined as an interdisciplinary field which involves the use of 

techniques from various other fields such as biology, mathematics, statistics, computer science and 

more. Applications of deep learning in computational biology can be seen in various areas including 

in the study of genomics and proteomics. There are many major achievements that are obtained 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.1952.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1952.v1
http://creativecommons.org/licenses/by/4.0/


 16 of 28 

 

specifically in areas such as protein structure prediction, and rapid advancement in other areas of 

research from the traditional approaches including genomic engineering, multi-omics, and 

phylogenetics can also be seen [57]. 

The study of genomes and their interaction with other genes and external factors is commonly 

known as genomics. One of the primary studies conducted in genomics is the study of regulatory 

mechanisms and non-coding transcription factors [58]. One of the major current applications 

of deep learning research of genomics and transcriptomics is one of the emerging areas of research 

in deep learning. Deep learning is used to identify variations in genomic data, this includes DNA 

sequencing and gene expression. For example, it is used to predict the functions of genes, discover gene 

regulatory networks, and identify biomarkers in diseases. As a result of this application, the 

metabolic pathways can also be optimized. A study identified several challenges in genomics 

including mapping the effects of mutation within a population and the DNA sequence prediction in 

a genome which has complex interactions and variations. To combat these challenges, deep learning 

methods are employed in genomic studies. Deep learning is used to identify variations in genomic data, 

including DNA sequencing, gene expression, and drug perturbation effects. For example, it predicts gene 

functions, discovers regulatory networks, and identifies disease biomarkers, optimizing metabolic pathways 

[59].  

In single-cell transcriptomics, graph neural networks (GNNs) like scGNN analyze cell-type 

classification and gene co-regulation [84]. In 2024, scGNN has further advanced, modelling cell-type 

interactions and gene regulation with high precision, driving progress in precision medicine [119]. In 

drug perturbation analysis, deep learning models predict molecular responses to drug treatments, 

aiding drug discovery [18]. Deep Neural Networks (DNNs) and Convolutional Neural Networks 

(CNNs) address challenges like mapping mutation effects and predicting DNA sequence functions 

[59]. DNNs, trained on DNA sequence datasets, identify protein-binding sites and predict splicing 

outcomes, while CNNs analyze mutation effects in single nucleotide variants [58]. Deep Neural 

Networks (DNN) and Convolutional Neural Networks (CNN) are algorithms of deep learning that 

are employed in genomic studies [59]. Deep Neural Networks (DNNs) solve DNA sequence 

prediction by training on sequence datasets and the corresponding protein structures. This enables 

the identification of the proteins which are specific and binds to a particular DNA sequence.  

The DNN models are also able to predict splicing outcomes for new DNA sequences based on 

the training of splicing patterns. CNN, on the other hand, addresses the remaining issue; the 

prediction of mutation effects [58]. This model can analyze and identify the potential causes of 

mutation in a DNA sequence and determine the mutation or disease on the single nucleotide variant 

that is affected. Both CNN and DNN are powerful tools of deep learning which can provide valuable 

information on the complex structures of genomes. The application of the algorithm in the field of 

genomics would greatly improve the analysis of complex structures, functions and interactions of 

genomes. 

In the field of biological image analysis, the deep learning algorithm CNN is found to be an 

efficient tool that is able to undertake several tasks such as classification, feature detection, pattern 

recognition and feature extraction (58). Since the CNN models are effective in processing grid-like 

data such as images, it is commonly utilized in image analysis [59]. Staking more convolutional layers 

in the model aids in detecting complex and abstract features in biological images. The CNN model is 

able to learn and identify delicate patterns and subtle differences in biological images which improve 

the accuracy of a diagnosis. DeLTA is an example of a deep learning tool used to analyze biological 

images, specifically, time-lapse microscopy images [60]. The Deep Learning for Time-lapse Analysis 

(DeLTA) is able to analyze the growth of a single cell and the gene expressions in microscopy images. 

It was found to be able to process and capture microscopy images with high accuracy and without 

the need for human interventions. Furthermore, deep learning is incorporated into healthcare, 

specifically radiology. Tasks such as classifying patients based on chest X-rays diagnosis and nodule 

detection in computed tomography images are done using deep learning [61]. The analysis of a large 

number of radiology data depends on the efficiency of the powerful deep learning algorithms. Thus, 
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deep learning algorithms have the potential to revolutionize biological image analysis by providing 

automated and accurate analysis. 

Deep learning in the proteomics field can mainly be shown in the protein-protein interactions 

predictions. Protein complexes can also be identified through deep learning. Protein structure and 

function can then be predicted from the data obtained and be used for various activities such as the 

identification of targeted proteins for drug development. Deep learning is applied in the study of 

phylogenetics where the limitation in the classification methods where the branch lengths of the 

phylogeny cannot be inferred is to be overcome [57]. 

While there are many applications of deep learning that bring significant advancements, there 

are other potential applications of deep learning in the biological field that can be further discussed 

and implied. For instance, deep learning is applied in the identification of protein-protein interactions. 

Therefore, a similar technique can be applied in drug design. In terms of drug design, the application 

and incorporation of deep learning have made the process more time and cost-effective as compared 

to traditional drug design methods [62]. The use of deep learning in drug design is identified to be 

more flexible due to the neural network architecture of the algorithm [63]. Especially in the current era, 

with the combat against COVID-19, deep learning has shown great potential in accelerating the drug 

design process. The deep learning models are able to identify antimicrobial compounds against a 

disease or a virus by training the model with the ability to identify molecules against the virus or 

bacteria. Similarly, another study showed the use of deep learning models in the use of de novo drug 

design where the model was trained to identify the physical and chemical properties of the drugs, 

classifying them based on their features and allowing automated extraction to create a novel ligand 

against the target protein [65]. Drug repurposing, which is a quicker method to achieve and complete 

drug designing for a disease or illness, is found to incorporate deep learning approaches. An article 

reported the use of network- based approaches in drug repurposing to identify the target molecule 

for known drugs to speed up the process [66]. Another study in relation to COVID-19, used the 

Molecule Transformer-Drug Target Interaction (MT-DTI), a deep learning model trained with 

chemical sequences and amino acids sequences to identify the commercially available antiviral drugs 

with similar properties of interaction with the SARS-CoV-2 virus [64]. These are just some examples 

of the emerging use of deep learning models in drug design. The appearance of the COVID-19 disease 

has boosted the application of AI systems in the field to improve the speed and efficiency of the 

process. 

To summarize, the deep learning algorithm is a powerful artificial intelligence tool that is widely 

used in the field of computational biology. The application of the tool is just in its beginning phase as 

there are more fields and complex challenges that are to be explored and tackled in the upcoming 

future. The application of this AI technology will help to shape the future of computational 

biology by improving the predictions and understanding biological processes. 

5.2. Ethical and Social Implications 

The advancements in digital technology allow the incorporation of Artificial Intelligence tools 

such as Machine Learning and Deep Learning in various fields of research. These techniques use 

various algorithms to identify complex and non-linear correlations in massive datasets and could 

improve prediction accuracy by learning from minor algorithmic errors encountered. Despite the use 

of a powerful machine learning tool, such as deep learning algorithms, in the field of research and 

healthcare is found to be revolutionary, it inevitably raises ethical concerns and social implications 

that require careful consideration [67]. 

Four major ethical issues were identified regarding the use of AI tools in the healthcare system; 

informed consent of data, safety and transparency, algorithmic fairness and biases and data privacy 

[68]. These concerns may be identified in the healthcare sector, but these concerns are also integrated 

in the usage of deep learning techniques in biological research which involves the use of deep neural 

networks to analyze and interpret volumes of biological data. 
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The field of biological research involves the use of various biological data which includes 

genomic sequences, protein structures, medical images and scans and more. The deep learning 

algorithm has access to this data, containing sensitive biological data, to aid in research. As medical 

records and genomic information of individuals are involved and used, it is critical to ensure the 

privacy of the individual, as well as the informed consent for data usage, is obtained [68]. As 

highlighted in 2024 reviews, these challenges persist, particularly in rare disease genomics, where 

data scarcity and ethical concerns around privacy and bias necessitate robust regulatory frameworks 

[120]. Privacy violations and mishandling of personal information are examples of invasion of data 

privacy without individual consent [70]. 

The potential bias in the algorithms of the deep learning tool is one of the main ethical concerns 

surrounding AI systems. The algorithms utilized in these systems can perpetuate biases and 

negatively impact marginalized groups [68]. This is because the training data is not representative of 

the diverse populations leading to biased results and disparities in research outcomes. The biases can 

be found in different stages of biological research, including data collection and annotation, if they 

are not addressed [71]. Therefore, efforts should be taken to address the bias in data collection to 

promote the inclusivity of all data regardless of population type, disease groups, diversity and other 

factors involved in research. 

It is also crucial to promote transparency and safety in the AI tools used in biological research. 

Deep learning models are opaque making it difficult to understand the process of prediction and 

decision in research. As deep learning models are made up of multiple layers of artificial neurons, 

where each layer corresponds to a different learning pattern, it poses a challenge to accurately identify 

the pattern learned by each layer functions to make a prediction. Lacking transparency in the 

algorithm decision-making process begins the questioning of the ability to scrutinize the AI results 

as a reasonable explanation leading to the data being unprovable and uninterpretable by humans 

[68,71]. Thus, transparent models are required to make sure the researchers can observe the 

prediction pattern to validate and understand the results obtained. This ensures the accountability of 

the scientific research process. However, it was discussed that full transparency may cause friction 

against certain ethical concerns as it may leak private and sensitive data into the open [69]. Hence, 

there should be limitations to the disclosure of the algorithms. 

Security in biological research not only involves maintaining the data and privacy of personal 

data, but it also involves the responsible use of technology. The technology at hand, deep learning, 

must be used responsibly and ethically in research. Scientists must incorporate ethical frameworks 

to avoid potential misuse and unintended consequences or risks that may occur [68]. Furthermore, 

risk assessments are to be conducted to aid in decision-making and reduce the possible negative 

impacts. The deployment and implementation of this technology must be considered well with 

proper safety measures, regular monitoring and evaluations. 

Moreover, there is the concern of liability and accountability where questions would arise to who 

would be the person to be held accountable towards any form of mistakes or errors caused by deep 

learning algorithms used in research [72]. As the algorithms are continually learning and evolving, it 

is difficult and complex to determine liability. Thus, legal frameworks are to be adapted with clear 

lines of responsibility to address the challenges faced by the AI system in biological research [73]. 

Ensuring equitable access to the deep learning tool is one of the social implications of AI systems 

in biological research. Promoting equitable access to scientists and researchers would be able to 

participate in the advancement of deep learning algorithms in biological research [74]. It would also 

prevent exacerbating disparities in biological research while promoting an inclusive and 

collaborative research environment. Fostering the exchange of ideas and knowledge of experts would 

further aid deep learning to be integrated into the biological research community.  

In a nutshell, these are some of the social implications and ethical concerns revolving around the 

use of AI systems such as Deep Learning in the field of biological research. Deep learning is the 

future of more efficient and advanced research; however, the ethical concern mentioned above 

should be addressed to ensure the responsibility and accuracy of the algorithm in biological research 
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6. Future Prospects and Potential Impact of Deep Learning on Biological 

Research and Clinical Practice 

Deep learning has significantly advanced computational biology, particularly in genomics and 

protein structure prediction, with breakthroughs like AlphaFold and DeepBind driving progress in 

precision medicine and drug discovery. The following sections summarize these advancements and 

their potential impact. Table 3 compares key deep learning models from 2020 to 2025, highlighting 

recent advancements in genomics and protein structure prediction, including AlphaFold 3 and 

genome language models. 

The application of deep learning models is poised to have a substantial influence in the field of 

biological research and clinical practices. With their ability to analyze large and intricate data, deep 

learning models could be beneficial in assisting with pathological diagnosis, drug discovery, genomic 

data identification or even personalized treatments. As noted in 2025, hybrid CNN-transformer 

models are gaining traction for single-cell omics analysis, balancing local and global feature detection 

to improve predictions [121]. By harnessing deep learning algorithms researchers can examine 

biological data consisting of gene expression or protein structure to identify new patterns or 

molecules which could yield an insight into the biological structure mechanisms. By harnessing deep 

learning algorithms researchers can examine biological data consisting of gene expression or protein 

structure to identify new patterns or molecules which could yield an insight into the biological 

structure mechanisms. In addition to that, deep learning models are also being used to facilitate 

accelerating new drug target development and research, developing new accurate diagnostic tests, 

and aiding in improving clinical trial designs [75]. The future prospect of deep learning models in 

both biological research and clinical practice are promising given that this technology and its 

algorithms continue to be developed which could potentially catapult humanity into a new era of 

making diagnosis for diseases or illnesses in addition to providing a more practical way for providing 

better patient care with precise treatments and prevention of diseases [76]. 

On top of that, deep learning models have the potential to be used to improve the efficiency and 

effectiveness of healthcare delivery systems by automating menial tasks and accelerated diagnostics 

tests [77]. Deep learning models possess the ability to integrate and analyze a variety of data types, 

including genomics, proteomics, imaging, and clinical data. This enables the exploration of concealed 

patterns and relationships within these datasets, empowering machine learning to offer a holistic 

comprehension of diseases and provide guidance for translational research endeavors. Besides that, 

deep learning has broad applicability in addressing diverse challenges. By training on extensive 

datasets, deep learning models excel at navigating tasks such as image classification, object detection, 

speech recognition, and machine translation aside from that, deep learning is a rapidly growing field, 

and it is being used in a variety of domains, including healthcare, computer vision, natural language 

processing, and robotics [78]. The summary of the recent advancements of deep learning in 

computational biology can be referred to Table 2. LLMs are emerging as powerful tools in 

computational biology. Models like Evo and other transformer-based architectures, originally 

developed for natural language processing, are being adapted to understand and generate biological 

sequences (DNA, RNA, protein). These models can learn complex patterns and relationships within 

biological data, enabling tasks such as de novo protein design, predicting the effects of genetic 

mutations, and even simulating\ biological processes. Their ability to handle multi-task processing 

addresses a limitation of earlier deep learning models and represents a significant hot spot and future 

development direction in the field. LLMs can bridge the gap between sequence information and 

functional outcomes, offering new avenues for discovery in both genomics and protein science. For 

instance, genomic language models (gLMs) trained on DNA sequences are advancing our 

understanding of genomes and can generalize across a plethora of genomic tasks.  

In protein science, protein language models (PLMs) are revolutionizing protein structure 

prediction, function annotation, and design by learning the probability distribution of amino acids 

within proteins. Evo, a genomic foundation model, exemplifies this trend, capable of both prediction 

and generative design from molecular to whole-genome scale, and can predict the effects of gene 
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mutations with unparalleled accuracy. This type of model not only has outstanding performance but 

also can be applied to multiple downstream tasks, solving the problem of multi-task processing 

mentioned in the article to a certain extent. Continued advancements in integrating diverse 

multiomics datasets (genomics, transcriptomics, proteomics, metabolomics, epigenomics) will 

provide a more comprehensive understanding of biological systems. Deep learning models capable 

of effectively processing and synthesizing these heterogeneous data types will be crucial for 

uncovering complex disease mechanisms and developing truly personalized medicine. Beyond 

prediction, generative deep learning models (e.g., GANs, VAEs) are increasingly being used for de 

novo design of biological molecules, including proteins with desired functions or novel drug 

compounds. This shift from analysis to design holds immense potential for accelerating therapeutic 

development and synthetic biology Continued research into explainable AI (XAI) will be vital to 

make deep learning models more transparent and trustworthy for biological and clinical 

applications. This includes developing methods to visualize learned features, identify influential 

input elements, and provide human-understandable explanations for model predictions. 

Table 3. Comparative Analysis of Deep Learning Models in Genomics and Protein Structure Prediction (2020–

2025). 

Model Type Primary 

Application 

Key 

Advancement 

(2020–2025) 

Performance 

Metrics 

Computational 

Requirements 

Limitations References 

CNNs DNA 

methylation 

analysis 

DeepCpG 

predicts 

methylation 

states with high 

accuracy (2017–

2024) 

AUC: 0.92 Moderate 

(GPU required) 

Requires large 

datasets, risk of 

overfitting 

[32,79] 

RNNs Gene 

expression 

prediction 

Improved 

sequential 

modeling, but 

limited by long-

range 

dependencies 

Accuracy: 

85% 

Moderate Struggles with 

long sequences 

[80,118] 

Transformers Protein 

structure 

prediction 

AlphaFold 3 

predicts protein 

complexes and 

ligand 

interactions 

(2024) 

RMSD: <1Å High 

(TPU/GPU 

clusters) 

Computationally 

intensive 

[38,117] 

GNNs Single-cell 

omics 

scGNN 

advances cell-

type interaction 

modeling (2024) 

F1 Score: 

0.89 

High Interpretability 

issues 

[84,119] 
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gLMs Gene co-

regulation 

prediction 

Transformer-

based gLMs 

predict single-

cell co-

regulation (2024) 

AUC: 0.90 High Limited to 

specific datasets 

[118] 
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Abbreviations 

The following abbreviations are used in this manuscript: 

LLMs Large Language Models 

scGNN single-cell analysis using graph neural networks 

CNNs Convolutional neural networks 

RNNs Recurrent neural networks 

DNA Deoxyribonucleic Acid 

RNA Ribonucleic Acid. 

ANNs Artificial neural networks 

gLMs genomic language models 

LSTMs Long short-term memory networks 

GAN Generative adversarial network 

GNNs Graph neural networks 

SNPs Single-nucleotide polymorphisms 

DGMs Deep generative models 

DBN Deep Belief Networks 

RL Reinforcement Learning 

VAE Variational Autoencoders 

DBM Deep Boltzmann Machines 

DQN Deep Q- Networks 

GCN Graph Convolutional Networks 

VGAE Variational Graph Autoencoders 

DNN Deep Neural Networks 

CRNN Convolutional Recurrent Neural Networks 

BLSTM Bidirectional long short-term memory 

CASP Critical Assessment of Structure Prediction 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2025 doi:10.20944/preprints202508.1952.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1952.v1
http://creativecommons.org/licenses/by/4.0/


 22 of 28 

 

PPI Protein-protein interaction 

PSSM Protein-positioning specific scoring matrices 

QA Quality assessment 

AI Artificial Intelligence 

PLMs Protein language models 
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