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Abstract

The rapid proliferation of large-scale diffusion models has catalyzed significant advancements in
generative artificial intelligence, enabling high-fidelity synthesis across images, video, audio, and
multimodal domains. Despite their impressive capabilities, these models impose substantial com-
putational and memory demands, which pose critical challenges for deployment, scalability, and
energy efficiency. Quantization and low-precision techniques have emerged as essential strategies
for addressing these constraints by reducing numerical precision in model parameters, activations,
and intermediate computations. However, unlike conventional feedforward or discriminative net-
works, diffusion models exhibit unique sensitivity to quantization due to their iterative denoising
process, hierarchical architecture, and reliance on high-dimensional latent representations. Minor
perturbations in early timesteps or error-prone layers can accumulate across iterations, leading to
substantial degradation in generative quality, perceptual fidelity, and semantic consistency. This
survey provides a comprehensive examination of the state-of-the-art in quantization for diffusion
models, encompassing the mathematical foundations of error propagation, probabilistic modeling
of quantization effects, and theoretical frameworks for precision allocation. We systematically cat-
egorize quantization strategies, including post-training quantization, quantization-aware training,
mixed-precision approaches, timestep-adaptive schemes, and hybrid methodologies, highlighting
their respective advantages, limitations, and hardware implications. Architectural considerations are
explored in depth, focusing on layer-wise and module-specific sensitivities, attention mechanisms,
residual connections, normalization layers, and hierarchical feature scales, all of which influence the
optimal distribution of precision. Evaluation protocols and benchmarking strategies are discussed, in-
tegrating statistical, perceptual, and hardware-aware metrics, as well as sensitivity analyses that guide
informed bitwidth assignment and adaptive precision techniques. We also address open challenges
such as error accumulation, multimodal interactions, hardware co-design, integration with complemen-
tary compression techniques, and the development of robust, scalable, and task-specific quantization
frameworks. Finally, we outline emerging research directions, including dynamic and input-adaptive
quantization, architecture-aware methods, theoretical analysis of cumulative quantization error, and
real-time deployment considerations for foundation-scale models. By synthesizing insights from
algorithmic design, numerical analysis, hardware optimization, and evaluation methodologies, this
survey provides a unified perspective on the current landscape and future potential of low-precision
diffusion models, offering a roadmap for efficient, high-fidelity, and widely deployable generative AI
systems.

Keywords: diffusion models; generative AI; model quantization; low-precision computation; mixed-
precision techniques; adaptive quantization; large-scale foundation models; iterative denoising; layer-
wise sensitivity; hardware-aware optimization; memory-efficient generative models; high-fidelity
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1. Introduction
In recent years, the remarkable progress in large-scale generative modeling has been driven

by the advent of foundation models, with diffusion models standing out as a particularly powerful
class of generative architectures [1]. Diffusion models, which generate data by reversing a gradual
noising process, have emerged as the state-of-the-art across a broad spectrum of applications, in-
cluding high-fidelity image synthesis, text-to-image generation, video creation, molecular design,
medical imaging, and multimodal reasoning [2]. Their success is largely attributed to their theo-
retical grounding in probabilistic modeling, their scalability to massive datasets, and their ability
to capture complex, multimodal data distributions with unprecedented precision and realism [3].
However, the adoption and deployment of such models in large-scale real-world settings remain
severely constrained by their extreme computational and memory requirements [4]. Unlike earlier
generative models such as GANs and VAEs, diffusion-based generative models involve iterative
denoising steps, often requiring hundreds or thousands of neural function evaluations during infer-
ence, in addition to large parameter footprints that can range from hundreds of millions to tens of
billions of parameters [5]. This computational burden has raised critical concerns regarding their
training and deployment costs, latency, energy consumption, and accessibility, especially in the context
of ubiquitous generative AI services that demand scalability and efficiency [6,7]. To address these
challenges, the research community has increasingly focused on model compression techniques, with
quantization and low-precision computation emerging as pivotal strategies [8]. Quantization, in its
most general sense, refers to the mapping of high-precision numerical representations (e.g., 32-bit
floating point) to lower-bit representations (e.g., 16-bit, 8-bit, 4-bit, or even binary), thereby reducing
memory consumption and computational complexity while attempting to maintain acceptable levels
of performance. Low-precision computation encompasses a broader set of strategies aimed at reducing
the numerical resolution of weights, activations, gradients, and intermediate representations, enabling
efficient utilization of modern accelerators such as GPUs, TPUs, and emerging custom AI hardware [9].
While quantization has been extensively explored in the context of discriminative deep learning models
(e.g., convolutional networks for vision or transformers for language), its application to diffusion
models and large-scale foundation models introduces unique technical and theoretical challenges
[10]. Unlike discriminative models that primarily optimize for classification or regression accuracy,
generative diffusion models must preserve fine-grained probabilistic dynamics over iterative steps,
where even small numerical distortions can accumulate and propagate across hundreds of denoising
iterations, potentially degrading generative quality in subtle but significant ways [11]. The significance
of studying quantization and low-precision techniques for diffusion models in the era of foundation
models lies in several converging factors. First, the exponential growth in the size of generative models
has led to training costs measured in millions of GPU hours and deployment costs that are infeasible
for smaller research groups or industry players outside a handful of technology giants [12]. By enabling
reduced precision, it becomes possible to dramatically lower the memory footprint, thereby increasing
hardware utilization efficiency, improving inference throughput, and reducing the energy footprint
of generative AI systems [13]. Second, the democratization of generative models depends on the
ability to make them deployable on resource-constrained environments, such as edge devices, mobile
platforms, and personal workstations. Quantization represents a primary enabler of this transition,
reducing the gap between high-performance research prototypes and practical, accessible generative
AI applications. Third, low-precision optimization offers critical opportunities for scaling future
foundation models even further, as memory and bandwidth constraints represent the most significant
bottlenecks in training trillion-parameter-scale generative systems. Despite these promises, quantizing
diffusion models remains an open and complex research frontier. The iterative structure of diffusion
inference pipelines makes them uniquely sensitive to numerical perturbations, as quantization-induced
errors can accumulate across timesteps, leading to distributional shifts and degradation in sample
quality. Furthermore, the multimodal nature of generative outputs (e.g., images, videos, and audio
conditioned on language or other modalities) demands that quantization preserve not only task-level

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2025 doi:10.20944/preprints202508.1753.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1753.v1
http://creativecommons.org/licenses/by/4.0/


3 of 20

fidelity but also subtle perceptual characteristics such as texture sharpness, color distribution, and
semantic consistency. Standard quantization strategies developed for classification models often fail to
transfer directly, motivating the need for specialized methods such as timestep-adaptive quantization,
error-resilient noise schedulers, quantization-aware training for iterative generative processes, and
hybrid approaches that selectively allocate precision across different components of the model (e.g.,
denoising networks, attention modules, and sampling schedules). Moreover, quantization interacts in
non-trivial ways with other efficiency techniques such as pruning, distillation, and accelerator-aware
kernel design, raising questions about composability and trade-offs in integrated model compression
pipelines. The emergence of foundation models adds further complexity to this landscape. Unlike
domain-specific generative models, foundation models are trained on massive, heterogeneous datasets
and are designed to generalize across modalities and tasks with minimal fine-tuning [14]. This general-
ity introduces stricter requirements for quantization and low-precision methods, as errors induced by
reduced precision can propagate differently depending on the downstream task or modality, making
robustness a central challenge. At the same time, foundation models create unique opportunities: their
sheer scale may offer redundancy that can be exploited for aggressive quantization without significant
loss of performance, while their modular architectures open avenues for heterogeneous precision allo-
cation [15]. The study of quantization in this context is therefore not only about improving efficiency,
but also about rethinking the design principles of foundation-scale generative systems, potentially
leading to architectures that are explicitly co-designed for low-precision computation from the ground
up [16]. This survey undertakes a comprehensive review of the emerging field of quantization and
low-precision strategies for diffusion models in the context of large foundation models. Our goal is to
provide a detailed account of the theoretical motivations, algorithmic innovations, empirical results,
and open challenges that define this research space. We systematically examine existing quantization
approaches as applied to diffusion and foundation models, analyze their trade-offs in terms of quality,
efficiency, and robustness, and highlight the key challenges that remain unsolved. Furthermore, we
situate quantization within the broader landscape of efficiency-oriented methods for large generative
models, emphasizing synergies and tensions with related techniques such as distillation, pruning,
caching, adaptive sampling, and hardware-aware co-design [17]. By consolidating insights from across
the rapidly growing literature, we aim to provide both a roadmap for researchers entering the field
and a critical foundation for future innovation at the intersection of generative modeling, numerical
optimization, and scalable AI systems. Ultimately, understanding and advancing quantization for
diffusion models in foundation-scale contexts is central to unlocking the next generation of generative
AI systems that are not only powerful and versatile, but also efficient, sustainable, and accessible to
the global community [18].

2. Mathematical Foundations of Quantization for Diffusion Models
The study of quantization in the context of diffusion models requires a rigorous mathematical

formalization of both the diffusion generative process and the underlying numerical approximations
introduced by reduced-precision computation. In this section, we provide a detailed mathematical
treatment of the fundamental principles governing quantization and its interaction with diffusion-
based generative modeling. By expressing these ideas explicitly in terms of probability distributions,
stochastic differential equations, and quantization operators, we aim to establish a formal foundation
for analyzing the accuracy, stability, and robustness of low-precision generative modeling.

2.1. Diffusion Model Formulation

Let x0 ∈ Rd denote a data sample drawn from an unknown data distribution pdata(x0) [19].
The forward diffusion process gradually perturbs x0 with additive Gaussian noise according to a
predefined variance schedule {βt}T

t=1, where T denotes the number of timesteps [20]. The forward
process is defined as a Markov chain:

q(xt | xt−1) = N
(
xt;

√
1 − βt xt−1, βtI

)
, (1)
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for t = 1, . . . , T. The marginal distribution of xt can be expressed in closed form as:

q(xt | x0) = N
(
xt;

√
ᾱt x0, (1 − ᾱt)I

)
, (2)

where αt = 1 − βt and ᾱt = ∏t
s=1 αs [21]. The reverse process is parameterized by a neural network,

typically denoted ϵθ(xt, t), which approximates the noise ϵ added at step t [22]. The reverse transition
distribution is modeled as:

pθ(xt−1 | xt) = N
(

xt−1; µθ(xt, t), Σθ(xt, t)
)

, (3)

where the mean µθ depends on ϵθ and the noise variance schedule. Sampling from the model requires
iteratively applying these reverse transitions from t = T down to t = 1, a process that can be
computationally intensive due to the repeated evaluations of ϵθ [23].

2.2. Quantization as a Mapping Operator

Quantization can be mathematically formulated as a mapping function Q : R → C, where C ⊂ R
is a finite set of representable values determined by the bitwidth b. A generic uniform quantizer for a
scalar x with scale factor s > 0 and integer precision b can be expressed as:

Q(x) = clip
(⌊ x

s

⌉
,−2b−1, 2b−1 − 1

)
· s, (4)

where ⌊·⌉ denotes rounding to the nearest integer, and clip ensures values remain within the repre-
sentable dynamic range [24]. Extending this operator elementwise to vectors, matrices, or tensors
yields:

Q(X) = (Q(xij)) ∀xij ∈ X. (5)

The quantization error for a scalar can be defined as:

e(x) = Q(x)− x, (6)

and for a tensor X we define the error distribution as:

E = Q(X)− X. (7)

This error distribution can be modeled as a stochastic perturbation if the rounding scheme is stochastic
(e.g., randomized rounding), or as a deterministic bias if rounding is always toward the nearest
representable value [25].

2.3. Interaction Between Quantization and Diffusion Processes

In the context of diffusion models, quantization affects multiple components simultaneously,
including:

• Model parameters: The neural network parameters θ are quantized to θ̂ = Q(θ), altering the
learned function ϵθ̂(·) [26].

• Intermediate activations: During inference, intermediate feature maps ht are quantized to
ĥt = Q(ht) [27].

• Noise predictions: The predicted noise ϵθ(xt, t) is quantized, introducing additional bias to the
reverse denoising process.

Let p̂θ denote the distribution defined by a quantized diffusion model. The Kullback–Leibler
divergence between the quantized generative process p̂θ(x0) and the original data distribution pdata(x0)

provides a measure of generative fidelity [28]:

DKL
(

pdata(x0) ∥ p̂θ(x0)
)
. (8)
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This divergence can be decomposed into contributions from timestep-dependent quantization errors.
Specifically, if et denotes the quantization error introduced at timestep t, then the cumulative error
after T steps can be approximated by:

Ecumulative =
T

∑
t=1

Jtet, (9)

where Jt is the Jacobian of the denoising function with respect to the quantized components at step t.
This formulation reveals that even small quantization errors may accumulate exponentially due to the
iterative structure of diffusion sampling [29].

2.4. Precision-Performance Trade-Offs

The central challenge in quantizing diffusion models is to balance the efficiency gains from
reduced precision against the degradation in generative quality. Let Lfull denote the training objective
in full precision, typically a weighted mean-squared error between the true noise ϵ and the predicted
noise ϵθ [30]:

Lfull(θ) = Et,x0,ϵ

[ ∥∥ϵ − ϵθ(
√

ᾱtx0 +
√

1 − ᾱtϵ, t)
∥∥2

2

]
. (10)

Under quantization, this objective becomes:

Lquant(θ̂) = Et,x0,ϵ

[ ∥∥ϵ − Q(ϵθ̂(Q(xt), t))
∥∥2

2

]
, (11)

which explicitly incorporates quantization into both inputs and outputs. The difference

∆L = Lquant(θ̂)−Lfull(θ) (12)

quantifies the penalty introduced by reduced precision. The efficiency gains can be expressed as
functions of bitwidth b. For instance, memory footprint M(b) scales as:

M(b) ∝
b

32
, (13)

while computational throughput on modern hardware accelerators often scales superlinearly due
to specialized low-precision units (e.g., tensor cores). Thus, the optimization objective in practice
becomes a multi-objective trade-off:

min
b,θ̂

∆L(b, θ̂) subject to C(b) ≤ Cbudget, M(b) ≤ Mbudget, (14)

where C(b) denotes computational cost, M(b) denotes memory cost, and Cbudget, Mbudget are hardware
constraints [31].

2.5. Summary of Mathematical Insights

This mathematical formulation underscores that quantization in diffusion models is not merely an
engineering optimization but a deeply probabilistic challenge [32]. The accumulation of quantization
errors across iterative stochastic steps, the high sensitivity of generative quality to subtle numerical dis-
tortions, and the tight coupling between efficiency and fidelity all demand principled approaches [33].
By leveraging formal error models, divergence measures, and optimization frameworks, researchers
can better understand and mitigate the trade-offs inherent in low-precision generative modeling for
large foundation models.

3. Quantization Techniques for Diffusion Models
Quantization techniques for diffusion models encompass a diverse set of strategies that aim to

reduce precision in a way that balances computational efficiency with the preservation of generative
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fidelity. Unlike conventional discriminative models, where quantization often affects a single feedfor-
ward pass, diffusion models involve iterative denoising across multiple timesteps, which amplifies
the influence of even minor quantization errors. Consequently, specialized methods are required to
adapt quantization techniques to the unique structure and sensitivity of diffusion-based generative
processes. In this section, we provide an extensive discussion of several prominent quantization
approaches, ranging from uniform and non-uniform quantization schemes to adaptive precision
strategies that explicitly account for timestep dynamics and feature distributions. We also present
a taxonomy of methods that distinguishes between post-training quantization, quantization-aware
training, mixed-precision quantization, and hybrid approaches that combine quantization with other
efficiency-oriented techniques. The discussion is further supplemented by a comprehensive com-
parative table summarizing the key characteristics, advantages, and challenges of each technique
[34]. A fundamental distinction in quantization arises between uniform and non-uniform schemes
[35]. Uniform quantization employs evenly spaced quantization levels across the representable range,
making it hardware-friendly and efficient for accelerator deployment. In this setting, each real-valued
parameter x is mapped to its nearest representable value according to a fixed scale factor. While
uniform quantization is widely adopted due to its simplicity and compatibility with integer arithmetic,
it is often suboptimal for diffusion models, where parameter and activation distributions can be highly
skewed or heavy-tailed [36]. Non-uniform quantization, on the other hand, allocates quantization
levels more densely in regions of higher probability density, thereby reducing quantization error for
typical values while sacrificing representation capacity for extreme values. This property is particularly
relevant for diffusion models, where the noise prediction function frequently operates in regimes
dominated by Gaussian-distributed signals, suggesting that logarithmic or learned quantization levels
may offer significant advantages [37]. However, non-uniform schemes are more difficult to implement
efficiently in hardware, as they require additional lookup operations or nonlinear mapping functions
[38]. Another major axis of differentiation is the training strategy employed. Post-training quantization
(PTQ) involves quantizing a pre-trained diffusion model without additional fine-tuning. PTQ is
attractive because it eliminates the need for costly retraining, making it a practical approach for large
foundation-scale diffusion models where retraining can be prohibitively expensive. Nevertheless, PTQ
can introduce significant degradation in generative fidelity, particularly under aggressive quantization
(e.g., 4-bit or lower). Quantization-aware training (QAT), in contrast, integrates quantization effects into
the training loop by simulating quantized computations during forward passes and backpropagation
[39]. This allows the model to adapt its parameters to compensate for quantization errors, leading
to better robustness at low precision [40]. The cost of QAT, however, is that it requires extensive
computational resources, as training large diffusion models from scratch or even fine-tuning them
with QAT is nontrivial. Hybrid approaches, such as lightweight QAT applied to specific sensitive
modules (e.g., attention layers) while keeping the remainder of the model quantized with PTQ, have
recently gained attention as a promising middle ground [41]. Beyond these standard techniques,
diffusion models also motivate novel precision-adaptive methods. For instance, timestep-adaptive
quantization allocates higher precision to early or late stages of the reverse diffusion process, where
error sensitivity is highest, while aggressively quantizing intermediate stages [42]. Similarly, mixed-
precision quantization assigns different bitwidths to different network components, such as using
higher precision for attention matrices while quantizing feedforward layers more aggressively. This
strategy leverages the observation that not all modules contribute equally to generative fidelity, and
thus resource allocation can be optimized accordingly. Furthermore, dynamic quantization strategies
that adjust precision on the fly depending on input statistics or intermediate feature norms provide
another frontier for efficiency optimization. These techniques highlight the increasingly sophisticated
interplay between algorithm design, numerical representation, and the stochastic structure of diffusion
processes [43]. To summarize the landscape of quantization techniques for diffusion models, we
present Table 1, which provides a structured comparison across several key dimensions, including
precision allocation strategy, training requirements, hardware compatibility, and impact on generative
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quality. This table is designed to provide both a quick reference and a foundation for more detailed
discussion in subsequent sections

Table 1. Comparison of quantization techniques for diffusion models, highlighting differences in precision
allocation, training strategy, hardware compatibility, advantages, and challenges.

Technique Precision
Allocation

Training
Strategy

Hardware
Compatibility Advantages Challenges

Uniform PTQ Fixed, evenly
spaced levels

Post-training
only

Very high
(efficient
integer ops)

Simple,
hardware-
friendly, no
retraining

Poor quality
under low
bitwidths

Non-uniform
PTQ

Adaptive,
density-based

Post-training
only

Moderate
(requires LUTs
or nonlinear
ops)

Lower
quantization
error, preserves
distributions

Higher
hardware
complexity

Quantization-
Aware Training
(QAT)

Flexible,
learned during
training

Retraining or
fine-tuning

High (depends
on hard-
ware/software
stack)

High
robustness at
low bitwidths

Requires heavy
retraining

Hybrid
PTQ+QAT

Selective,
per-module
precision

Limited
fine-tuning High

Balance of
efficiency and
robustness

Complex
design, tuning
required

Mixed-
Precision
Quantization

Per-layer or
per-module
bitwidths

Post-training or
QAT

High (widely
supported)

Exploits
sensitivity
heterogeneity

Requires
careful
profiling

Timestep-
Adaptive
Quantization

Stage-
dependent
bitwidths

QAT or
post-hoc
adjustments

Moderate

Matches error
sensitivity
across
timesteps

Complex
scheduling, less
hardware
support

Dynamic
Quantization

Input-
dependent
bitwidths

On-the-fly,
runtime
adjustment

Low to
moderate

Highly
adaptive,
efficient in
practice

High runtime
overhead, less
predictable

The table emphasizes that no single quantization technique provides a universally optimal
solution for diffusion models in the foundation model regime. Instead, the appropriate choice depends
heavily on the deployment context, hardware constraints, and fidelity requirements of the target
application [44]. For example, uniform PTQ may be sufficient for lightweight deployment on edge
devices where computational simplicity is paramount, whereas QAT or mixed-precision schemes may
be necessary to preserve fidelity in high-end generative tasks such as photorealistic image synthesis
or scientific simulations. Furthermore, as diffusion models evolve toward larger and more modular
architectures, the potential for integrating multiple quantization strategies within a single model
becomes increasingly attractive, suggesting that the future of quantization lies in compositional
and adaptive approaches rather than monolithic schemes [45]. This realization motivates further
exploration into precision allocation strategies that are not only hardware-aware but also explicitly
tailored to the iterative generative dynamics of diffusion processes [46].

4. Architectural Considerations and Layer-wise Sensitivity in Quantized Diffusion
Models

The process of quantizing diffusion models is inextricably linked to the architectural composition
of the model itself [47]. Unlike simpler feedforward networks, diffusion models typically consist
of multi-scale convolutional blocks, self-attention layers, residual connections, and normalization
modules, organized in a manner that reflects the iterative nature of the denoising process [48]. Each ar-
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chitectural component exhibits varying sensitivity to low-precision representation, which necessitates
a layer-wise or module-wise analysis to determine optimal quantization strategies [49]. For example,
attention mechanisms, which aggregate global information across spatial or temporal dimensions,
often dominate the overall error budget due to the accumulation of small quantization errors over high-
dimensional operations [50]. Conversely, pointwise feedforward layers may tolerate more aggressive
quantization with minimal impact on generative quality [51]. Similarly, normalization layers, which
stabilize the distribution of intermediate features, are particularly sensitive to quantization because
small shifts in mean or variance can propagate across multiple denoising steps, leading to compound-
ing distortions in the generated output. Understanding these sensitivities is critical for designing
mixed-precision or adaptive quantization schemes that exploit the redundancy and error resilience
inherent in certain components while preserving high fidelity in critical modules [52]. Layer-wise
sensitivity analysis can be formalized using gradient-based or Hessian-based metrics that quantify
the impact of perturbations in each parameter block on the model’s output distribution. Let L(θ)
denote the training loss of a diffusion model, typically a denoising score matching objective [53]. The
sensitivity Sl of layer l to quantization can be defined as the expected squared gradient with respect to
the layer parameters θl [54]:

Sl = Ex0,t,ϵ

[∥∥∥∂L(θ)
∂θl

∥∥∥2

2

]
. (15)

Higher values of Sl indicate that small perturbations, such as quantization errors, have a greater
influence on the model’s overall loss [55]. This metric provides a principled way to prioritize precision
allocation, suggesting that layers with high Sl should be assigned higher bitwidths, whereas layers
with low Sl can be aggressively quantized without significant degradation. From an architectural
perspective, modern diffusion models often employ hierarchical U-Net structures with multiple
downsampling and upsampling stages, interleaved with residual and attention blocks [56]. Each stage
of the hierarchy corresponds to a different spatial scale, and errors introduced at higher-resolution
stages tend to have a more pronounced perceptual impact on the final generated image [57]. Therefore,
precision allocation strategies that are aware of the hierarchical structure can substantially improve
performance. Additionally, the iterative nature of the reverse diffusion process means that early
timesteps, which correspond to coarse-grained reconstruction, may tolerate slightly lower precision,
while later timesteps, responsible for fine-grained detail refinement, require higher fidelity. This
temporal sensitivity interacts with architectural considerations, suggesting that layer-wise, stage-wise,
and timestep-wise precision allocation must be considered simultaneously for optimal quantization.
To illustrate the hierarchical and layer-wise structure of a typical diffusion model, Figure 1 presents a
simplified schematic using TikZ [58]. The figure emphasizes the vertical organization of stages and
highlights key modules that are often targeted for precision-aware optimization [59]. The vertical
layout aligns with the natural progression of feature resolutions from coarse to fine, facilitating clear
visualization of the components most sensitive to quantization [60].

This vertical schematic also conveys the sequential propagation of quantization errors throughout
the model. Quantization applied in the early downsampling layers affects subsequent attention
computations, which in turn influence the bottleneck and decoder stages. Consequently, naive uniform
quantization across all layers can result in error amplification and degraded generative quality. The
vertical representation emphasizes the importance of both stage-wise and module-wise precision
planning, which, when combined with timestep-adaptive strategies, can achieve an optimized balance
between efficiency and fidelity. In practice, this necessitates careful profiling of each module, simulation
of quantization effects, and iterative adjustment of bitwidth allocation guided by empirical performance
metrics such as FID, IS, or perceptual similarity scores. Collectively, these architectural insights provide
a framework for designing quantization schemes that are both theoretically informed and practically
effective for large-scale diffusion models.
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Input xT (Noisy Data)

Downsampling Block 1
(Residual + Conv)

Attention Block 1

Downsampling Block 2
(Residual + Conv)

Attention Block 2

Bottleneck
(Residual + Attention)

Upsampling Block 2
(Residual + Conv)

Attention Block 3

Upsampling Block 1
(Residual + Conv)

Attention Block 4

Output x0 (Denoised Data)

Figure 1. Simplified vertical schematic of a diffusion model architecture, highlighting downsampling, attention,
bottleneck, and upsampling stages [61]. Each stage may exhibit different sensitivity to quantization, motivating
layer-wise precision allocation.

5. Challenges and Open Problems in Quantizing Large-Scale Diffusion Models
Despite the significant advances in quantization techniques for diffusion models, a number of

formidable challenges remain, particularly in the context of large-scale foundation models [62]. The
complexity of these challenges arises from the interplay between model scale, iterative generative
dynamics, hardware constraints, and the stochastic nature of the data distributions. Large diffusion
models often contain billions or even tens of billions of parameters, with intricate hierarchical architec-
tures that include multi-resolution convolutional blocks, attention mechanisms, and normalization
layers [63]. Each of these components exhibits different sensitivities to numerical precision, and the
iterative nature of the reverse diffusion process amplifies even small quantization errors, making naive
approaches ineffective [64]. Consequently, a critical open problem is the development of quantization
strategies that can maintain high generative fidelity across all stages of the model while simultaneously
reducing memory footprint and computational cost. This challenge is compounded by the diversity of
downstream tasks and modalities, ranging from high-resolution image synthesis to text-conditioned
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video generation, each of which imposes unique fidelity requirements and tolerances for numerical
perturbation. One of the most fundamental challenges lies in understanding and mitigating error accu-
mulation across diffusion timesteps [65]. In a standard T-step reverse diffusion process, the output of
timestep t becomes the input to timestep t − 1, such that quantization errors et introduced at each step
propagate nonlinearly through the subsequent steps. Formally, if xt−1 = fθ̂(xt) + et, the cumulative
error after T steps can be represented as a telescoping sum of Jacobian-weighted perturbations:

Ecumulative =
T

∑
t=1

Jt:Tet, Jt:T =
T

∏
k=t

∂ fθ̂(xk)

∂xk
. (16)

This formalization highlights the exponential sensitivity of generative quality to early-stage quan-
tization errors, especially in high-dimensional spaces. Theoretical analysis and empirical studies
indicate that certain layers and stages disproportionately contribute to this cumulative error, moti-
vating research into adaptive quantization schemes that allocate higher precision to error-sensitive
layers or timesteps. However, identifying these sensitivities in models with billions of parameters is
computationally expensive and remains a largely unsolved problem [66]. Another significant challenge
is the interaction between quantization and multimodal generative tasks. Many modern diffusion
models are conditioned on rich auxiliary inputs, such as text, audio, or semantic maps. These con-
ditioning inputs introduce additional pathways for error propagation and can magnify the effects
of low-precision representation. For instance, in text-to-image diffusion models, errors in quantized
attention mechanisms that integrate text embeddings may lead to semantically inconsistent or visually
incoherent outputs. Similarly, in video or 3D generative tasks, quantization errors can accumulate
across spatial and temporal dimensions, producing artifacts that are perceptually noticeable even if
traditional statistical metrics such as mean squared error remain low. Designing quantization strategies
that preserve semantic and perceptual fidelity across multiple modalities is therefore a critical open
problem, requiring the development of novel error metrics, perceptually-aware quantization schemes,
and task-specific adaptive methods [67]. The hardware constraints associated with low-precision
computation also present nontrivial challenges [68]. While modern accelerators, including GPUs and
TPUs, support mixed-precision arithmetic and integer operations, the effective utilization of these
units depends on careful alignment of model architecture, memory layout, and computational kernels.
Large-scale diffusion models exacerbate these challenges due to their enormous parameter count
and the high memory bandwidth demands of iterative denoising [69]. For example, implementing
aggressive 4-bit quantization across all layers may reduce memory usage but could trigger ineffi-
cient kernel execution or increased overhead due to dequantization and re-quantization operations.
Additionally, the heterogeneity of hardware platforms means that a quantization scheme optimized
for one accelerator may perform poorly on another, necessitating hardware-aware or co-designed
approaches [70]. Balancing hardware efficiency, cross-platform portability, and generative fidelity
remains an ongoing and highly complex challenge. Finally, the integration of quantization with other
model compression techniques, such as pruning, knowledge distillation, and low-rank approxima-
tion, introduces additional layers of complexity [71]. While these methods individually contribute
to memory and computational savings, their interactions with quantization are nontrivial and can
lead to unforeseen degradations in generative quality. For instance, pruning a subset of network
weights followed by low-bit quantization can produce instabilities in the reverse diffusion dynamics,
as the reduced parameter space may be insufficient to compensate for numerical errors introduced by
quantization [72]. Similarly, distillation methods that rely on teacher-student training may propagate
quantization artifacts if the student model is trained under low-precision constraints. Developing prin-
cipled frameworks for combining multiple compression techniques in a way that preserves the delicate
probabilistic structure of diffusion models is therefore an open research frontier. In summary, the chal-
lenges associated with quantizing large-scale diffusion models are multi-faceted, encompassing error
accumulation, layer- and timestep-specific sensitivity, multimodal interactions, hardware constraints,
and the integration with other compression strategies [73]. Addressing these challenges requires not
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only sophisticated algorithmic and mathematical tools but also extensive empirical validation across
diverse tasks and datasets. The open problems outlined above underscore the need for continued
research into adaptive, hardware-aware, and task-specific quantization strategies that can unlock the
full potential of diffusion-based generative models in large-scale, foundation-model contexts.

6. Evaluation Metrics and Benchmarking Strategies for Quantized Diffusion
Models

Evaluating the performance of quantized diffusion models is a multidimensional challenge that
extends beyond traditional machine learning metrics [74]. The iterative, stochastic nature of diffusion
processes, coupled with the sensitivity of generative quality to low-precision computation, necessitates
careful selection of evaluation protocols, quantitative metrics, and benchmarking strategies [75].
Unlike standard discriminative tasks, where accuracy or cross-entropy loss provides a straightforward
measure of performance, generative models require metrics that capture both statistical fidelity and
perceptual quality [76]. Furthermore, the introduction of quantization introduces new sources of
variation, such as numerical rounding errors, bitwidth-dependent noise, and precision-induced bias in
feature representations, all of which can affect model outputs in subtle ways. Evaluating these effects
demands a combination of conventional probabilistic metrics, perceptual measures, hardware-aware
performance metrics, and systematic ablation studies that isolate the impact of reduced precision on
different components of the model. A key class of metrics for assessing generative fidelity includes
distributional similarity measures such as the Fréchet Inception Distance (FID), Kernel Inception
Distance (KID), and Maximum Mean Discrepancy (MMD) [77]. The FID, for instance, computes the
Wasserstein-2 distance between the statistics of generated samples and real data embeddings in a
feature space defined by a pretrained classifier:

FID(Xgen, Xreal) = ∥µgen − µreal∥2
2 + Tr

(
Σgen + Σreal − 2(ΣgenΣreal)

1/2
)

, (17)

where µ and Σ are the mean and covariance of the embeddings, respectively. This metric is sensitive
to both global structure and fine-grained features, making it particularly relevant for assessing the
degradation introduced by quantization [78]. KID and MMD provide complementary perspectives by
measuring kernel-based discrepancies between distributions, which can capture different aspects of
statistical similarity that may not be fully reflected by FID alone [79]. Importantly, all of these metrics
must be interpreted carefully in the context of low-precision models, as quantization can introduce
subtle biases that disproportionately affect certain modes or features in the output distribution, leading
to metrics that may exaggerate or underestimate perceptual degradation [80]. Perceptual and task-
specific metrics provide another critical axis for evaluation. For image synthesis tasks, metrics such
as the Learned Perceptual Image Patch Similarity (LPIPS) and Structural Similarity Index Measure
(SSIM) capture human-perceptible differences that are not necessarily reflected in pixel-wise errors [81].
LPIPS, for example, computes the distance between features extracted by a pretrained deep network:

LPIPS(x0, x̂0) = ∑
l

1
HlWl

∑
h,w

∥wl ⊙ (ϕl(x0)h,w − ϕl(x̂0)h,w)∥2
2, (18)

where ϕl represents the features at layer l, wl are learned weights, and Hl , Wl are spatial dimensions
[82]. These metrics are especially useful for assessing the impact of quantization on fine-grained texture,
edge sharpness, and perceptual consistency. In multimodal generation tasks, additional evaluation
protocols may include semantic consistency between modalities (e.g., text-image alignment scores in
text-conditioned generation) and temporal coherence metrics for video or 3D generation. Quantization
can adversely affect these task-specific characteristics, necessitating the development of evaluation
pipelines that jointly capture generative fidelity, perceptual quality, and semantic alignment under
low-precision computation. Benchmarking strategies for quantized diffusion models also require
careful attention to hardware-aware performance metrics. Memory footprint, throughput, latency, and
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energy efficiency are all critical considerations when assessing the practical benefits of low-precision
deployment [83]. Let M(b) denote the memory usage at bitwidth b, C(b) denote computational cost,
and T(b) the inference time. Quantization reduces M(b) approximately linearly with decreasing
bitwidth, but the effective throughput improvement is often nonlinear due to hardware-specific con-
straints such as kernel vectorization, memory alignment, and integer computation pipelines. Therefore,
comprehensive benchmarking must include end-to-end evaluation on target hardware platforms,
encompassing both the efficiency gains and any degradation in generative quality. Profiling tools and
automated pipelines that record per-layer memory usage, operation counts, and latency distributions
provide additional granularity, enabling the identification of bottlenecks and opportunities for further
optimization [84]. Another key aspect of evaluation is sensitivity analysis and ablation studies, which
disentangle the effects of quantization across layers, timesteps, and modules [85]. By selectively
varying bitwidths or applying quantization to specific components while keeping the rest of the model
at full precision, researchers can systematically quantify the contribution of each component to overall
generative performance. Formally, let θ̂(l,b) denote the parameters of layer l quantized at bitwidth b,
and define a per-layer performance metric Pl(b) as:

Pl(b) = Metric
(
x0, fθ̂(l,b)(xT)

)
, (19)

where Metric can be FID, LPIPS, or another relevant score. Analyzing the curve Pl(b) across layers
and bitwidths informs adaptive precision strategies, guiding allocation of higher precision to layers
with steep performance degradation [86]. Similarly, timestep-dependent evaluation, where quanti-
zation is applied selectively at different stages of the reverse diffusion process, allows researchers to
understand temporal sensitivity and design timestep-adaptive schemes [87]. Finally, reproducibility
and standardized benchmarks are essential for meaningful comparison across quantization methods
[88]. Large-scale diffusion models are often trained on diverse and proprietary datasets, making direct
comparison difficult [89]. Efforts to establish publicly available datasets, pre-trained checkpoints,
and standardized evaluation protocols facilitate fair and rigorous benchmarking [90]. By combining
statistical, perceptual, hardware-aware, and sensitivity-focused metrics, the community can build a
comprehensive understanding of the trade-offs involved in quantizing diffusion models [91]. Such a
multi-faceted evaluation paradigm is critical for guiding both theoretical development and practical
deployment of low-precision foundation-scale generative models [92].

7. Future Directions and Emerging Research Opportunities in Quantized
Diffusion Models

The landscape of quantization for large-scale diffusion models is still nascent, and numerous av-
enues for future research and innovation remain open. As generative AI continues to expand into more
complex, multimodal, and foundation-scale applications, the need for highly efficient, low-precision
diffusion models will only intensify. Future research directions can be broadly categorized into algo-
rithmic innovations, theoretical analysis, hardware co-design, and applications-oriented studies, each
of which offers unique opportunities and challenges for advancing the state of the art. From an algo-
rithmic perspective, one promising direction is the development of adaptive and dynamic quantization
schemes that adjust precision not only across layers and timesteps but also based on input content or
intermediate feature statistics. Current mixed-precision approaches largely rely on static assignment
of bitwidths determined via empirical profiling or gradient-based sensitivity analysis [93]. However,
in large-scale foundation models that are deployed in dynamic environments, input distributions can
vary significantly, resulting in variable error sensitivity across different samples or modalities [94].
Adaptive quantization mechanisms, potentially informed by reinforcement learning, meta-learning,
or attention-based controllers, could dynamically allocate precision in a manner that optimizes both
fidelity and efficiency on a per-sample basis. Such methods would require new frameworks for ef-
ficient runtime monitoring of quantization-induced error and for real-time adjustment of precision
without introducing prohibitive overhead [95]. Another key direction is the integration of quantization
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with novel diffusion architectures and generative paradigms. The majority of current research focuses on
U-Net style hierarchical diffusion models with residual and attention blocks [96]. However, emerging
architectures, such as transformer-based diffusion networks, latent diffusion models, and score-based
generative models operating in compressed latent spaces, present new opportunities and challenges
for low-precision optimization. Transformers, for instance, are dominated by attention and MLP
modules, whose scaling properties and numerical sensitivity differ substantially from convolutional
structures. Latent diffusion models, by operating in lower-dimensional spaces, reduce memory and
computation costs but introduce nontrivial interactions between quantization error and the learned
latent space representation [97]. Future work could explore architecture-aware quantization strategies
that are co-designed with the generative model itself, optimizing both model structure and numerical
representation in tandem. Theoretical analysis of quantization in diffusion models represents another
fertile area for research [98]. While empirical studies provide valuable insight into the practical effects
of low-precision computation, a rigorous understanding of how quantization errors propagate through
iterative denoising processes is still limited. Developing formal error bounds, stability guarantees, and
probabilistic models of quantization-induced perturbations would significantly enhance the reliability
and predictability of quantized diffusion models [99]. For example, understanding the conditions
under which cumulative quantization error remains bounded across T reverse diffusion steps, or
deriving the relationship between bitwidth allocation and divergence metrics such as Kullback–Leibler
divergence or Wasserstein distance, could guide principled design of quantization schemes [100]. Such
theoretical contributions would be particularly impactful in high-stakes applications, such as medical
imaging or scientific simulations, where output fidelity and reproducibility are critical. Hardware
co-design is another crucial frontier [101]. Efficient deployment of low-precision diffusion models
requires not only algorithmic optimization but also alignment with the capabilities and limitations
of modern accelerators [102]. Future research may explore custom numerical formats, tensor core
optimization, and hardware-aware layer fusion to maximize the efficiency gains of quantization.
Emerging AI-specific accelerators that support ultra-low precision operations (e.g., 4-bit or 2-bit integer
formats, block floating point) provide both opportunities and constraints that can shape the design of
next-generation diffusion models. Co-design approaches that simultaneously optimize model architec-
ture, numerical precision, and hardware utilization could unlock unprecedented levels of efficiency
while maintaining high fidelity in foundation-scale generative tasks. Finally, applications-driven
research will increasingly shape the evolution of quantized diffusion models. As diffusion models are
deployed in real-world systems, questions of robustness, fairness, and reliability under low-precision
computation will become increasingly important. For instance, quantization may interact with domain
shifts, rare events, or adversarial inputs in unpredictable ways, highlighting the need for evaluation
frameworks and mitigation strategies that account for real-world variability [103]. Additionally, in-
tegrating quantized diffusion models into interactive or real-time systems, such as mobile AR/VR
applications, robotics, or large-scale content generation platforms, will require end-to-end optimization
encompassing both algorithmic fidelity and system-level constraints [104]. Addressing these challenges
will necessitate interdisciplinary collaboration across machine learning, numerical analysis, hardware
engineering, and application domains [7]. In conclusion, the future of quantization in diffusion models
is characterized by a rich interplay of algorithmic, theoretical, hardware, and application-oriented
considerations [105]. Emerging research opportunities span adaptive and dynamic precision schemes,
architecture-aware and latent-space-aware quantization strategies, formal error analysis, hardware
co-design, and real-world deployment studies. By addressing these frontiers, the research community
can unlock the full potential of low-precision, large-scale generative models, enabling efficient, scal-
able, and robust diffusion-based foundation models that are accessible to both academia and industry.
The confluence of these efforts promises not only to reduce the computational and memory costs of
generative AI but also to expand its applicability across a diverse range of domains, ultimately shaping
the next generation of efficient, high-fidelity generative systems.
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8. Conclusions and Synthesis of Insights on Quantization for Diffusion Models
The exploration of quantization and low-precision strategies for diffusion models in the context

of large-scale foundation models represents both a critical challenge and a transformative opportunity
within generative artificial intelligence [106]. Over the course of this survey, we have examined the
multifaceted nature of this problem, beginning with the mathematical underpinnings of diffusion
processes and their sensitivity to numerical perturbations, proceeding through the taxonomy of
quantization methods, architectural considerations, evaluation metrics, and finally the open research
directions that define the frontier of the field. One of the most salient insights is that diffusion
models, due to their iterative denoising pipelines and high-dimensional latent representations, are
inherently more sensitive to quantization errors than traditional feedforward networks [107]. Even
minor reductions in precision can propagate and amplify across timesteps, affecting both the statistical
fidelity of generated outputs and their perceptual quality [108]. This unique characteristic necessitates
precision-aware strategies that are adaptive, layer-sensitive, and in many cases, timestep-dependent,
moving beyond naive or uniform quantization schemes. A second key observation relates to the
interplay between architectural complexity and quantization sensitivity. Modern diffusion models,
particularly those at the scale of foundation models, are composed of hierarchical U-Net architectures,
attention mechanisms, residual blocks, normalization layers, and latent-space embeddings [109]. Each
of these components exhibits distinct numerical properties: attention modules and normalization
layers are particularly error-sensitive, while certain feedforward convolutional blocks can tolerate
aggressive quantization [110]. The hierarchical and iterative nature of these architectures further
complicates the picture, as quantization errors in early stages can cascade and affect downstream
modules. This insight underscores the necessity of mixed-precision, adaptive, and hardware-aware
quantization strategies that leverage layer-wise and module-wise sensitivity profiling to allocate
computational resources optimally [111]. Such an approach not only preserves generative fidelity but
also maximizes memory efficiency and throughput, particularly important when deploying models
with billions of parameters on constrained hardware. Third, the convergence of algorithmic and
hardware considerations emerges as a defining theme in the design of quantized diffusion models.
While algorithmic innovations such as quantization-aware training, timestep-adaptive quantization,
and mixed-precision allocation can substantially mitigate performance loss, the realization of these
benefits in practice requires careful co-design with modern AI accelerators. Hardware constraints,
including memory bandwidth, kernel execution patterns, integer operation support, and low-bit
precision optimizations, interact non-trivially with quantization schemes. For example, aggressive
4-bit quantization may reduce memory consumption significantly but can introduce runtime overhead
due to repeated dequantization and quantization cycles if not supported efficiently by hardware.
Conversely, hardware-aware precision allocation that aligns with the native capabilities of tensor cores
or specialized AI units can unlock both throughput and energy efficiency gains without sacrificing
output quality [112]. The synthesis of algorithmic, architectural, and hardware perspectives thus
forms the backbone of effective quantization strategies for large-scale diffusion models. Evaluation
and benchmarking constitute a fourth crucial dimension of this field. Quantized generative models
cannot be assessed solely through traditional metrics such as loss functions or accuracy, as these
measures fail to capture the nuanced impact of low-precision computation on sample quality and
fidelity [113]. Metrics like Fréchet Inception Distance (FID), Kernel Inception Distance (KID), Structural
Similarity Index Measure (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) provide
quantitative and perceptual evaluations, while task-specific and multimodal metrics assess semantic
coherence and cross-modal fidelity [114]. Layer-wise and timestep-dependent ablation studies further
elucidate which components are most sensitive to quantization and where precision can be reduced
without compromising generative quality. Benchmarking must also incorporate hardware-aware
performance metrics, including memory footprint, latency, and energy consumption, to provide a
holistic view of trade-offs. Only through such comprehensive evaluation frameworks can researchers
and practitioners make informed decisions about quantization strategies in real-world deployment
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contexts [115]. Finally, the future research trajectory for quantized diffusion models is expansive
and interdisciplinary [116]. Emerging opportunities include dynamic, sample-adaptive quantization,
integration with novel transformer-based or latent diffusion architectures, formal theoretical analysis of
error propagation, and robust, hardware-co-designed systems. Multimodal generative tasks and real-
time applications impose additional constraints that necessitate adaptive, task-specific quantization
schemes capable of preserving semantic fidelity under low-precision computation. At the intersection
of these challenges lies the promise of democratizing large-scale generative AI, making high-quality
diffusion models accessible beyond the limited computational resources of a few technology giants. By
synthesizing insights from mathematics, architecture, algorithmic design, hardware optimization, and
evaluation, the research community is poised to advance the efficiency, scalability, and robustness of
diffusion-based foundation models in a principled and systematic manner [117].

In conclusion, quantization for diffusion models is a deeply complex yet profoundly impactful
domain, offering the potential to transform the deployment and accessibility of large-scale generative
systems. The key principles elucidated in this survey—sensitivity-aware precision allocation, iterative
error mitigation, hardware-aligned computation, rigorous evaluation, and integration with novel
architectures—constitute a cohesive framework for future research and practical implementation.
Achieving this vision requires not only incremental improvements in existing techniques but also
bold exploration into adaptive, theory-driven, and co-designed quantization paradigms. As the
field progresses, these efforts will be instrumental in realizing efficient, high-fidelity, and widely
deployable generative models, shaping the next generation of foundation-scale AI systems that are
both sustainable and broadly accessible.
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