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Abstract

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder triggered by volatile anesthetics
and succinylcholine, most often linked to pathogenic variants in RYR1, CACNALIS, and STAC3. The
advent of next-generation sequencing (NGS) has transformed MH diagnostics, offering new
opportunities for perioperative risk assessment as caffeine-halothane contracture testing declines.
However, challenges remain, including incomplete penetrance, variable pathogenicity of variants,
limited access to confirmatory testing, and cost. Genetic testing also raises important questions. What
is the clinical utility of finding a variant of unknown significance? What are the broader implications
of MH susceptibility beyond the operating room? Emerging evidence connects MH susceptibility loci
to exertional heat illness and heat-related mortality, highlighting the need for a broader framework
for genetic risk assessment. This review synthesizes historical advances, current consensus, and
future directions concerning MH to guide anesthesiologists and perioperative clinicians in leveraging
molecular diagnostics for personalized care and improved patient safety.
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Introduction

The completion of the Human Genome Project in 2003 marked a turning point in the medical
community's quest towards developing advanced diagnostics [1-3]. Assembly of the initial build,
while certainly a feat in and of itself, more importantly laid the groundwork for building tools to
mine this biomolecular treasure trove and enhance our understanding of human disease. Next-
generation sequencing (NGS) technologies eventually emerged as a high-throughput and high-
resolution methodology capable of exponentially expanding our understanding of human diversity
as it pertains to health and disease [4-9]. Unsurprisingly, deployment of NGS technologies for clinical
diagnostics has offered great insight into the molecular pathogenesis of various disease processes, in
both somatic and germline contexts [10-14]. The proliferation of NGS technologies has however
produced unanticipated off-target effects on the healthcare ecosystem. Commoditization through
direct-to-consumer testing has raised serious questions about intellectual property frameworks, data
privacy, and patient education as it pertains to genetic testing [15,16]. The boom-and-bust cycles of
commercial entities that offer direct-to-consumer testing further confound our consensus on where
NGS technologies fall on the spectrum between asset and liability [17]. While NGS technologies have
certainly reframed our expectations of what constitutes an advanced diagnostic, the question
remains: what is the value proposition of threading the needles within the vast haystack of the human
genome and unearthing them for interrogation through NGS methodologies?

Enter RYRI, one of the many needles that NGS technologies can thread to offer a strong value
proposition for diagnostic interrogation. RYR1 encodes ryanodine receptor 1 (RYR1), a calcium
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channel protein expressed primarily in the sarcoplasmic reticulum of skeletal muscle [12,13,18]. The
RYR1 channel normally opens in response to a propagated action potential, releasing calcium into
the myoplasm, thereby initiating skeletal muscle contraction. Polymorphisms in RYR1 are implicated
in malignant hyperthermia (MH), a rare hypermetabolic disorder characterized by constitutive
activation of the RYR1 channel in response to a subset of anesthetic medications, producing
prolonged skeletal muscle contraction [12,18-22]. Signs of an MH trigger include hyperthermia,
hypercarbia, metabolic acidosis, tachycardia, and rigidity refractory to non-depolarizing
neuromuscular blockade [20-24]. If left untreated with dantrolene, which blocks calcium release
through the ryanodine receptor, an MH crisis can lead to hyperkalemia, rhabdomyolysis,
disseminated intravascular coagulation (DIC), arrythmias, and death [20-25]. As close to 50 million
anesthetics are delivered annually in the United States, preventing life-threatening complications
through preoperative identification of patients who harbor RYRI polymorphisms appears to be an
obvious value proposition for NGS diagnostics [26].

However, this value proposition is called into question by a few issues: low MH incidence,
limitations in genetic testing sensitivity, limited provider education on genetic testing,
decommissioning of confirmatory testing (muscle biopsy) centers, and lack of insurance
reimbursement. Furthermore, the advent of dantrolene as a mortality reducing “silver bullet” for an
MH crisis dampens testing necessity [20,27-29]. So, we now contextualize the question asked above:
what is the value proposition of leveraging NGS technologies for reducing morbidity and mortality
from conditions like MH? In this review, we will delve into the history of MH diagnostics,
emphasizing the entrance of NGS methodologies into this domain. We will draw from evidence-
based perspectives established by societies in both the United States and Europe who have
protocolized our understanding of the genetic underpinnings that drive MH. We will pay special
attention to the nonsurgical implications of a genetic diagnosis of MH, with a discussion of evolving
epidemiologic trends that have potential links to MH risk loci. Most importantly, our review will
facilitate educating the medical community on leveraging the latest developments in advanced
diagnostics to genetically assess preoperative risk of life-threatening conditions like MH.

Diagnostic Testing for MH

Though fever, convulsions, and sudden death from anesthesia had been documented as early as
the days of ether and chloroform administration in the early 1900s, the first breakthroughs in
understanding the heritable nature of these reports arose in 1960 [21,30]. Michael Denborough, an
anesthesiologist in Melbourne, Australia, described the case of a young man with a combined fracture
of the tibia and fibula expressing heightened concern for receiving a general anesthetic due to a
significant family history of morbidity and mortality from ether administration. During a halothane
based general anesthetic, the young man displayed signs of hypermetabolic derangement including
tachycardia, hypotension, and hyperthermia [30]. Early recognition, discontinuation of halothane
administration, supportive care, and expeditious completion of surgery fortunately facilitated an
uneventful recovery. Subsequent evaluation of the proband’s pedigree revealed autosomal dominant
inheritance of death from anesthesia, with all deceased relatives having exhibited a similar
constellation of symptoms after receiving ether or ethyl chloride.

The subsequent six decades spawned active community engagement and rigorous
investigations into triggering agents, diagnostic testing strategies, genetic underpinnings, disease
epidemiology, and bedside therapeutics to guide management of what became known as malignant
hyperthermia (MH). Professional societies like the Malignant Hyperthermia Association of the
United States (MHAUS) and European Malignant Hyperthermia Group (EMHG) were established to
raise awareness and drive progress on disease characterization [31-36]. Halogenated hydrocarbons
(volatile anesthetics) and succinylcholine were added to the list of agents known to trigger an MH
crisis [37—40]. The caffeine halothane contracture test (CHCT), a contracture assessment of biopsied
muscle tissue, became the gold standard for diagnosing MH, a significant advance from the
utilization of clinical signs and basic laboratory testing alone [21,41,42]. RYRI alterations were
identified as the first genetic loci implicated in the inheritance and pathogenesis of the disease
[12,13,18]. While the prevalence of RYR drivers is as high as 1:800, only 1:10,000 to 1:150,000
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anesthetics manifests as an MH crisis [43—45]. Yet if untreated, mortality from MH is as high as 80%
[46]. The Food and Drug Administration’s (FDA) approval of dantrolene in 1979 and widespread
education and hospital regulation centered MH recognition and treatment, shifted the mortality
curve dramatically [27-29,47]. Today, estimated mortality from MH ranges from 3 to 10% in high and
middle income countries [27,46].

Intriguingly, the identification of RYRI alterations as pathogenic drivers of MH came after the
very measurable impact of dantrolene therapy on disease morbidity and mortality. While molecular
genetics did not necessarily inform the development and approval of dantrolene for MH, it has
certainly provided necessary context to further inform patients and providers about the
pharmacogenomic drivers of disease. At the turn of the century, CACNA1S was identified as another
locus that conferred MH susceptibility (MHS) [48]. CACNA1S encodes another calcium channel in
the sarcoplasmic reticulum that mechanistically supports the function of the ryanodine receptor.
Unsurprisingly, a subset of alterations in CACNA1S phenocopy RYR1 polymorphisms in the presence
of triggering agents [48]. Similarly, STAC3, a gene that encodes a structural protein integral for
skeletal muscle contraction, has also been linked to MHS [49,50]. These loci have now been included
in NGS testing panels that are offered to aid in diagnosing patients with high suspicion of having
triggered an MH episode [51,52]. With the progressive closure of testing facilities equipped to
perform the CHCT, the utility of NGS technologies for MH diagnostics is likely to grow [53,54].

Translational Genetics of MH

While the growing demand for NGS technologies can certainly offset the decommissioning of
CHCT testing centers from a diagnostic standpoint, the practical limitations of NGS methodologies
have major implications on bedside decision making for providers. Moreover, the genetic principles
that drive the phenotypic presentation of disease add nuance to assessing the value proposition of
deploying NGS technologies in the perioperative arena. Both the practical and theoretical
considerations behind widespread use of NGS technologies can be summarized by framing the
discussion from the perspective of two foundational concepts in clinical genetics: pathogenicity and
penetrance.

Pathogenicity is defined as the inherent capacity of a genetic alteration to disrupt gene function,
thereby leading to a state of disease [55]. As it pertains to MH, not all variants in susceptibility loci
exhibit equal pathogenicity. In other words, not every alteration in RYR1, CACNA1S, or STAC3
equally disrupts gene function enough to manifest as an MH episode in response to a triggering
anesthetic [56]. As such, various national and international consortia have devised classification
systems to risk stratify known variants in MHS loci [32,52,57-59]. By characterizing variants as
pathogenic, likely pathogenic, benign, likely benign, or a variant of unknown significance (VUS),
bedside providers can triage test results to determine the safety margin of using triggering agents if
they are otherwise indicated. Genetic triage however has limited utility in situations where a patient
tests negative for known variants; a negative test does not necessarily mean that a patient is free of
pathogenic mutations that would be identified by way of methodologies with more comprehensive
genomic coverage [53]. Yet wider coverage may increase the false positive rate by identifying variants
outside of known susceptibility loci that play no mechanistic role in MH pathogenesis. Providers thus
have to weigh both the reported susceptibility loci and the testing methodology when interpreting
NGS test results at the bedside.

Even more harrowing than interpreting pathogenicity is predicting penetrance of a pathogenic
variant. Penetrance is defined as the proportion of patients with a known pathogenic variant who
exhibit the associated disease phenotype [60,61]. It is widely recognized that known pathogenic/likely
pathogenic variants for MHS display incomplete penetrance [51,53]. Often, an MH susceptible patient
exposed to a triggering anesthetic will not display signs of an MH episode, even over several
encounters, but are eventually found to have a pathogenic/likely pathogenic variant through NGS
testing after eventually succumbing to an MH event [53]. At present, there are no known predictive
factors that can aid bedside providers in determining whether a carrier of a pathogenic/likely
pathogenic variant will display signs of MH from a triggering anesthetic. It is exceedingly difficult to
assess likelihood of manifesting an MH crisis in the absence of triggering agents. The safest strategy
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during an encounter with a patient who reports a positive family history of MH or is incidentally
found to have a pathogenic/likely pathogenic variant from genetic testing is to avoid triggering
agents (volatile anesthetics and succinylcholine), also known as “running a non-triggering
anesthetic” [20,46,62].

Variable pathogenicity and incomplete penetrance present the most compelling value
propositions for conducting routine and wide-scale preoperative NGS testing for MHS loci to screen
for the proverbial needles in the genomic haystack. The NGS methodology that is used for universal
preoperative screening however will impact the overall value of testing [23,51]. Methods with wider
coverage like whole genome sequencing (WGS) are expensive and subject to higher false positive
rates, whereas cheaper, more targeted methods may have higher false negative rates. VUS’s would
also present providers with information that may not have otherwise had clinical consequences.
Insurance coverage for NGS screening in the preoperative setting is also not standardized currently.
Nevertheless, the variation in pathogenicity and penetrance for a disease with high morbidity (and
high mortality if unrecognized and untreated) provides a possible runway to justify perioperative
NGS screening to ensure safety and personalized care.

Beyond the Operating Theater

Because assessing pathogenicity and penetrance presents providers with the difficult task of
predicting the likelihood an MH crisis, it is worth paying consideration to emerging nonsurgical
epidemiologic trends that may prove useful in providing context to preoperative risk assessments
involving NGS technologies. A recent retrospective study highlighted an alarming rise in heat-related
deaths from 1999 to 2023 in the United States [63]. This rise was most prominent from 2016 to 2023.
While the authors of the study placed emphasis on the impact of rising global temperatures on the
increasing prevalence of heat-related deaths, they also noted that lack of data from vulnerable
subgroups may have introduced bias into the study. These vulnerable subgroups, while not explicitly
stated, may include individuals with genetic predisposition to hypermetabolic syndromes that are
unmasked in the presence of environmental triggers. This could include patients who have known
polymorphisms in MHS loci, where a triggering anesthetic would constitute an environmental
trigger.

With the prevalence of RYRI alterations being as high as 1:800, the results from this retrospective
study come as no surprise. The link between MHS and exertional heat illnesses (EHI) has indeed been
previously reported and is well established [20,64-66]. Variants in MH susceptibility loci have known
association with a predisposition for EHI. Athletes with traumatic muscle contractures have been
shown to benefit from dantrolene, the medication that has drastically reduced mortality from MH
[67]. Personal history of MH is a medically disqualifying condition for service in the United States
military, owing to the risk of EHI if deployed into environmentally strenuous circumstances
[51,68,69].

The links between MHS and EHI provide an additional value proposition to conducting
preoperative NGS screening [54]. The preoperative arena can be leveraged not only for risk
stratification for surgery, but as a waypoint for screening for EHI, which has implications for patients
with documented heat intolerance, athletes, and military enlistees. In addition to previously
discussed considerations surrounding testing methodology and test performance, offering wide-
scale preoperative NGS testing would require clinical capacity to offer care to family members of
patients who test positive for MHS loci. Genetic counseling services would need to be made available
for instances where results from testing impact the livelihoods of patients and their families beyond
the operating room [51]. The role of medical geneticists is also important to consider, given the
domain expertise they can provide to support intraoperative providers who are not as familiar with
testing methodologies and the implications of a positive test [51,52]. While the value propositions for
wide-scale preoperative NGS screening for MHS are substantial, foresight will be necessary to ensure
that the implementation of screening is patient centered while attempting to thread the needles in the
haystack.

Final Thoughts
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As the cost of NGS testing continues to fall, educating providers who encounter heritable
syndromes like MH will be an essential aspect of ensuring a smooth transition to a “post-genomic”
era of perioperative medicine [53]. A comprehensive understanding of the genetic drivers of disease,
available testing modalities (and their interpretations), and the nonsurgical implications of
conducting NGS testing will best position bedside practitioners for favorable outcomes. As it pertains
to MH, evolving epidemiologic trends due to environmental changes reminds us that emerging
information on population disease profiles can profoundly impact previously held dogmas regarding
the value of routine screening. Professional societies with expertise in MH pathogenicity and
penetrance will be essential to devising algorithms that protocolize the shifting epidemiologic
landscape. Most importantly, cost-effectiveness analyses of performing preoperative NGS screening
for MH will be a critical component of obtaining buy-in from insurance companies who would
ultimately underwrite the cost of testing.

MHS loci however comprise only a handful of the needles within the haystack of the human
genome that can be thread through NGS testing methodologies. Pseudocholinesterase deficiency,
Factor V Leiden, and mitochondrial disorders represent additional examples of pharmacogenomic
conditions that like MH can be identified by way of NGS screening [70]. These syndromes all carry
increased risk of perioperative complications that impact morbidity and mortality. It is also important
to consider cytochrome P450 polymorphisms, which can alter drug metabolism, as part of the broader
spectrum of pharmacogenomic disorders that may affect patient outcomes. Screening for
“perioperative risk loci” collectively could thus enhance the value proposition for routine NGS
testing more so than screening for any one of these pharmacogenomic disorders individually.

While NGS testing has shifted our expectations of what constitutes an advanced diagnostic,
deployment at scale for perioperative risk stratification necessitates careful attention to limit
unintended consequences. With annual surgical volume expected to rise over the coming decade,
regulatory guard rails will be vital to ensuring that NGS repositories can withstand legal scrutiny
from the perspective of maintaining patient privacy. Nevertheless, these biomolecular treasure troves
are immensely valuable tools that have enhanced our understanding of human disease since the
completion of the Human Genome Project. Continued investment in these tools will be an
indispensable component in our quest towards enhancing patient safety and quality of care.
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