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Abstract

Hash functions are fundamental components in both cryptographic and non-cryptographic systems,
supporting secure authentication, data integrity, fingerprinting, and indexing. While the Ascon fam-
ily, selected by NIST in 2023 for lightweight cryptography, has been extensively evaluated in its
authenticated encryption mode, its hashing and extendable-output variants, namely Ascon-Hash256,
Ascon-XOF128, and Ascon-CXOF128, have not received the same level of empirical attention. This
paper presents a structured benchmarking study of these hash variants using both the SMHasher
framework and custom Python-based simulation environments. SMHasher is used to evaluate sta-
tistical and structural robustness under constrained, patterned, and low-entropy input conditions,
while Python-based experiments assess application-specific performance in Bloom filter based replay
detection at the network edge, Merkle tree aggregation for blockchain transaction integrity, lightweight
device fingerprinting for IoT identity management, and tamper-evident logging for distributed ledgers.
We compare the performance of Ascon hashes with widely used cryptographic functions such as
SHA3 and BLAKEZ2s, as well as high-speed non-cryptographic hashes including MurmurHash3 and
xxHash. We assess avalanche behavior, diffusion consistency, output bias, and keyset sensitivity,
while also examining Ascon-XOF’s variable-length output capabilities relative to SHAKE for use cases
such as domain-separated hashing and lightweight key derivation. Experimental results indicate that
Ascon hash functions offer strong diffusion, low statistical bias, and competitive performance across
both cryptographic and application-specific domains. These properties make them well suited for
deployment in resource-constrained systems, including Internet-of-Things (IoT) devices, blockchain
indexing frameworks, and probabilistic authentication architectures. This study provides the first com-
prehensive empirical evaluation of Ascon hashing modes and offers new insights into their potential
as lightweight, structurally resilient alternatives to established hash functions.

Keywords: Ascon-hash256; Ascon-XOF; benchmarking; IoT security; blockchain-enabled IoT; post-
quantum cryptography

1. Introduction

Hash functions are foundational tools in modern computing systems. They enable a wide range of
functionalities across both security-critical and performance-oriented domains, including data integrity
verification, message authentication, digital signatures, deduplication, and secure indexing [1,2]. In
cryptographic applications, key properties such as collision resistance, preimage resistance, and
diffusion play a central role in maintaining the integrity and confidentiality of data. Meanwhile, in
non-cryptographic contexts, such as hash tables, Bloom filters, fingerprinting systems, and memory-
efficient data structures, metrics like uniform distribution, speed, and lightweight implementation
are prioritized [3-5]. As computing environments evolve to span low-power devices, embedded
systems, and resource-constrained Internet-of-Things (IoT) networks, there is a growing demand for
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hash functions that can simultaneously offer strong security guarantees and efficient implementation
across diverse platforms.

The Ascon family of lightweight cryptographic algorithms, standardized by National Institute
of Standards and Technology (NIST) in 2023 [6], offers a promising set of hashing and authenticated
encryption primitives optimized for constrained devices. Among its hash variants, Ascon-Hash256,
Ascon-XOF128, and Ascon-CXOF128, adopt a sponge-based structure with a compact, hardware-
friendly design, making them attractive for applications that demand both structural integrity and
lightweight implementation.

Despite their inclusion in the final NIST LWC standard portfolio, empirical benchmarking of Ascon
hash variants remains limited. While Ascon-AEAD128, the Authenticated Encryption with Associated
Data (AEAD) variant, has been extensively evaluated in software and hardware implementations across
8-bit, 32-bit, and 64-bit microcontrollers, as well as in FPGA and ASIC platforms [7,8], the hash variants
have not received similar benchmarking attention. Public benchmarking platforms such as SUPERCOP
and eBACS do not currently include these variants by default [9,10]. Furthermore, there is a notable
lack of published comparisons involving Ascon hashes and other widely deployed cryptographic hash
functions such as SHA3 [11], SHAKE256 [12], and BLAKE2s [13]. Even fewer studies have explored
their performance in structural or low-entropy input domains, where non-cryptographic hashes like
MurmurHash3 [14] and xxHash [15] are commonly used.

Although formal security proofs and design rationale for Ascon hash functions are available
through the NIST standardization process [6], there remains a gap in understanding their empirical
behavior under real-world input patterns. Structural properties such as avalanche diffusion, output
bias, collision distribution under sparse or patterned inputs, and variable-length adaptability are
increasingly relevant in emerging applications such as packet fingerprinting [3], Bloom filter-based re-
play detection [16], blockchain transaction indexing [17], and lightweight key derivation in embedded
systems [18]. For example, Ascon-XOF’s support for variable-length output makes it directly compara-
ble to the SHAKE family of extendable-output functions, in applications involving domain-separated
hashing, key derivation, and extendable identifiers within post-quantum secure protocols.

This paper addresses the above gaps by presenting the first structured empirical benchmarking of
the Ascon hash variants, with a focus on their statistical and structural behavior under practical input
conditions. We use the SMHasher test suite to evaluate structural properties such as avalanche bias,
permutation sensitivity, and keyset diffusion. While SMHasher was originally developed to assess non-
cryptographic hash functions [19], it remains a valuable framework for quantifying bit-mixing quality,
output uniformity, and resistance to structural bias under diverse input patterns. We emphasize that
SMHasher is not a cryptanalytic tool and does not replace formal security evaluation; rather, its tests
complement traditional analysis by exposing structural weaknesses that may impact performance
or correctness in practical applications. These metrics are particularly relevant in constrained or
application-specific scenarios, such as Bloom filters, replay detection, and indexing, where statistical
uniformity and diffusion directly influence system behavior.

In addition to statistical analysis, we evaluate the applicability of Ascon hash variants in structural
and applied domains, including Bloom filters, secure indexing frameworks, post-quantum digital
signatures, IoT fingerprinting, and blockchain-based integrity verification. These domains are highly
sensitive to properties such as collision behavior, false positive rate, bit-level diffusion, and output
distribution bias, which directly affect system performance and correctness. Our benchmarking com-
pares Ascon-Hash256 against established cryptographic hash functions such as SHA3-256, SHAKE256,
and BLAKE?2s, as well as widely used non-cryptographic alternatives including MurmurHash3 and
xxHash. This comparative evaluation highlights the untapped versatility of Ascon hashes beyond
AEAD use cases, demonstrating their suitability for both security-critical protocols and resource-aware
structural operations. Our evaluation highlights the unique combination of efficiency, diffusion, and
structural robustness that Ascon hash functions provide.

In summary, this paper makes the following key contributions:
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1. It presents the first comprehensive empirical benchmarking of Ascon-Hash using SMHasher,
covering both cryptographic and structural test categories.

2. It compares the performance and statistical behavior of Ascon hashes against cryptographic
standards such as SHA3-256, SHAKE256, and BLAKE2s, as well as high-speed non-cryptographic
hashes.

3. It demonstrates the practical utility of Ascon hashes in lightweight applications, including Bloom
filters, structural hashing, and secure indexing for embedded and IoT systems.

These findings underscore the untapped potential of Ascon hash functions and provide new
insights into their practical relevance across domains that require a balance of cryptographic strength,
lightweight design, and structural integrity [3,20,21]. The remainder of this paper is organized as
follows. Section 2 reviews related work, followed by an overview of the Ascon hashing algorithm in
Section 3. Section 4 details the methodology, including the benchmarking environment, comparison
scope, and both SMHasher and Python-based evaluation frameworks. Section 5 presents results across
structural benchmarking, replay prevention, post-quantum integration, fingerprinting applications,
and Merkle tree diffusion. Section 6 discusses the broader implications of these findings, and Section 7
concludes the paper.

2. Related Work

Hash functions are foundational to modern cryptographic systems, providing compact represen-
tations of data that are essential for integrity verification, authentication, and digital signatures [22,23].
A hash function takes an input of arbitrary length and maps it to a fixed-size bit string known as the
message digest or fingerprint. Formally, a hash function & is defined as:

h:{0,1}* — {0,1}"

where 7 is typically between 256 and 512 bits. Unlike encryption schemes, hash functions are keyless
and non-reversible, making them ideal for applications where verification rather than confidentiality
is required [24].

To be cryptographically secure, hash functions must satisfy three main properties [1]. First, preim-
age resistance ensures that it is computationally infeasible to recover the original message given only
its hash. Second, the property of second preimage resistance means that it is computationally infeasible
to find a different input with the same hash as a given message. Finally, collision resistance makes
it infeasible to find any two distinct messages that produce the same hash output. These properties
underpin many cryptographic protocols, including digital signatures and message authentication
codes [25].

Early dedicated hash functions such as MD4 [26] and MD5 [27], designed by Ronald Rivest, were
optimized for software efficiency using 32-bit word operations and Boolean logic. Although widely
adopted, both functions eventually proved vulnerable to collision attacks [28]. For instance, collisions
in MD5 were discovered in 2004, undermining its use in critical security protocols. To address these
weaknesses, NIST introduced the Secure Hash Algorithm (SHA) family, beginning with SHA-0 in
1993, followed by SHA-1 in 1995 [29]. However, SHA-1 too was eventually broken, with a collision
discovered in 293 steps [30].

This led to the development of the SHA-2 family, comprising SHA-224, SHA-256, SHA-384,
and SHA-512, which remain widely used and are currently considered secure [31]. Seeking further
diversification, NIST launched a public competition in 2007 to design a new hash function with
a different internal structure [32]. The winner, Keccak, became the basis for SHA-3, which was
standardized in 2015 [11]. Unlike earlier Merkle-Damgard constructions, SHA-3 relies on the sponge
construction [33], which consists of an absorbing phase (input processing) and a squeezing phase
(output generation). This flexible architecture allows the creation of both traditional hash functions
and extendable-output functions (XOFs), such as SHAKE128 and SHAKE256 [11].
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In addition to dedicated designs, hash functions can also be constructed from block cipher primi-
tives. The Matyas-Meyer—Oseas (MMO) construction, for example, derives a compression function
from an existing block cipher [22]. Since the Advanced Encryption Standard (AES) (originally Rijndael)
became a global standard with widespread hardware acceleration [34,35], numerous proposals have
leveraged AES to build hash functions that exploit this speed and availability [36]. These approaches
avoid the need to implement a new primitive in hardware and instead reuse AES, thereby reducing
both area and power consumption in constrained devices.

With the rise of the Internet of Things (IoT), there has been growing interest in lightweight hash
functions that balance security with efficiency on resource-constrained platforms [37,38]. In August
2025, the NIST Lightweight Cryptography (LWC) project finalized the Ascon family as the standard
for protecting small and resource-limited devices [6]. While Ascon is primarily recommended for
authenticated encryption with associated data (AEAD), the family also includes Ascon-Hash256,
Ascon-XOF128, and Ascon-CX0F128, which inherit the sponge-based structure of Keccak but are
optimized for lightweight use [39]. These functions provide excellent avalanche characteristics, uniform
output distribution, and low implementation cost in hardware [16], making them promising candidates
for IoT authentication, probabilistic data structures such as Bloom filters, and Merkle tree-based
applications.

Quantum computing presents a significant challenge to existing cryptographic schemes. Peter
Shor’s breakthrough algorithms in the mid-1990s showed that RSA and elliptic-curve cryptosystems
could be broken in polynomial time on quantum computers [40]. Shor’s period-finding and discrete
logarithm algorithms render all widely used public-key systems insecure in the quantum setting.
Additionally, Grover’s algorithm reduces the brute-force complexity of symmetric-key operations from
2" to 2""/2, necessitating longer key and hash lengths for adequate protection [41].

As a result, the field of post-quantum cryptography (PQC) has expanded to include alternatives
resilient to quantum attacks [42]. These include lattice-based (e.g., Kyber, Dilithium), code-based (e.g.,
BIKE, McEliece), and hash-based schemes [1]. Hash-based digital signatures, such as SPHINCS+, rely
solely on the properties of cryptographic hash functions and are regarded as strong candidates for
long-term post-quantum security [43].

Figure 1 provides a visual timeline of cryptographic hash function adoption. It highlights the
trajectory from early designs (e.g., MD5, SHA-1), which are now deprecated, to more modern, domain-
optimized alternatives like SHAKE256, BLAKE3, and Ascon-Hash. The recent standardization of
Ascon by NIST marks a shift toward lightweight and structurally secure hash functions, motivating
the need for empirical benchmarking as presented in this work.

The versatile nature of hash functions has led to their widespread use in digital signatures,
message authentication codes, password hashing, blockchain transaction validation, pseudorandom
number generation, and replay detection mechanisms [2,16,20]. In many of these domains, especially
in constrained or adversarial settings such as edge computing or decentralized systems, the demand
for efficient, secure, and adaptable hash functions is growing [44,45].

While prior work has explored classical and quantum-safe hash designs [46], there is limited empir-
ical evaluation of the domain-specific benefits of sponge-based lightweight hash functions like Ascon.
This work addresses that gap by benchmarking Ascon-Hash in cryptographic and structural applica-
tions, examining their potential to replace or complement SHA-3, BLAKE2s, and non-cryptographic
hashes in secure indexing, fingerprinting, and blockchain-based aggregation.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1633.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2025 d0i:10.20944/preprints202508.1633.v1

5o0f24

Evolution of Cryptographic Hash Functions: From Legacy Algorithms to the Post-Quantum Era
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Figure 1. Timeline illustrating the evolution of cryptographic hash functions from legacy algorithms (e.g., MD5,
SHA-1) through modern constructions (e.g., SHA-2, SHA-3, BLAKE2/3, Ascon-Hash) to the emerging post-
quantum cryptography (PQC) era. Categories are distinguished by color as follows: legacy/insecure (deprecated
designs no longer recommended for security use), modern secure (currently standardized and widely deployed),
lightweight (optimized for constrained devices and IoT), and PQC-ready (designed or adapted for quantum-
resistant applications). This categorization highlights each function’s security role, application domain, and
relevance in current cryptographic standards.

3. Overview of the Ascon Hashing Algorithm

The Ascon hashing functions are derived from the Ascon family of lightweight cryptographic
primitives, selected as the primary standard in the NIST-LWC competition in 2023 [6]. While originally
proposed for AEAD, the design was later extended to include sponge-based hash functions: Ascon-
Hash256, Ascon-XOF128, and Ascon-CXOF128. These variants aim to combine strong cryptographic
properties with low implementation cost, making them ideal for applications in embedded systems,
secure indexing, and constrained IoT environments.

All Ascon hash variants are built upon a sponge construction that processes data in two phases:
the absorbing phase, where input blocks are XORed into the internal state, and the squeezing phase,
which produces the output hash digest. The internal state of all Ascon’s hashing variants are 320 bits,
divided into a 64-bit rate (r = 64) and a 256-bit capacity (c = 256). The number of permutation rounds
applied per block is 12 for all three variants to maximize diffusion.

The mode of operation for Ascon-Hash256 and Ascon-XOF128, illustrated in Figure 2, consists
of three primary phases: initialization, message absorption, and output squeezing. The construction
takes a variable-length message M as input. For Ascon-Hash256, the output length L is fixed at
256 bits, whereas in Ascon-XOF128 the output length is variable. The initialization vector (IV) for
Ascon-Hash256 is 0x0000080100cc0002, while that for Ascon-XOF128 is 0x0000080000cc0003. In Ascon-
XOF128 and Ascon-CXOF128, the suffix “128” denotes the intended security strength rather than the

output size.
~— | | ' W Y A Y A
My M:"-' ) M, 4HD Huse -1y
2| ) == —= -l
p'2 ) p'2 ) p2 ) p'2 ) p'2 )
258 » | 258 258 256, o | o256
|"."||:'25E
| | | S
Initialize Absorb Squeeze
k J J 7 J
' ' '

Figure 2. Hashing mode for Ascon-Hash256, Ascon-XOF128
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The customized variant of Ascon-XOF128, referred to as Ascon-CXOF128, is shown in Figure 3 and
extends the base functionality by allowing the inclusion of a customization string Z in the computation.
For the same input message, two customized XOF instances using different customization strings will
yield distinct outputs.

A
Hugs 1)

> -
pl2 12

> o

Iv]j0258
| ____/

Initiali Customi; Absorb
nianze i STOMmiZe Y Y Tty i SQUBEZE J
v 'S ' v

Figure 3. Hashing mode for Ascon-CXOF128

Ascon-CXOF128 differs from Ascon-XOF128 in the following aspects [47]:

*  Domain separation: Ascon-CXOF128 uses a different initialization vector (IV) from Ascon-
XOF128 and supports user-defined customization strings. The IV for Ascon-CXOF128 is
0x0000080000cc0004. For instance, Ascon-CXOF128 enables domain separation by allowing
parameters such as output lengths or application-specific identifiers to be encoded into the cus-
tomization string. This guarantees that outputs derived in different contexts (e.g., key derivation,
Merkle tree hashing, or protocol identifiers) remain distinct, even if the same input message is
used.

* Additional input: Alongside the message, Ascon-CXOF128 accepts a customization string Z
whose length is at most 2048 bits (256 bytes).

* Input formatting: The customization string Z is prepended to the message blocks as:

Zol| Zoll - (1 Zm [ Mo || - - (| M1 [| M,

where 7 is a 64-bit integer denoting the bit-length of the customization string, and Z, ..., Z;,
are 64-bit blocks obtained by parsing and padding Z.

3.1. Ascon Permutation

In Ascon’s sponge construction, the core primitive is a permutation on a 320-bit internal state:
§="SollS1 15211531 Sar

where each S; is a 64-bit word (0 < i < 4). Each round consists of three sequential layers: constant
addition (p.), substitution (pg), and linear diffusion (pr ).

(i) Constant Addition Layer (p.): A round-dependent constant const;, listed in Table 1, is XORed
into the least significant bits of one state word to break symmetry between rounds and prevent slide
attacks, ensuring distinct evolution of the state across different rounds. The standard specifies round
constants for up to 16 rounds to accommodate potential functionality extensions in the future [6].

Figure 4. Constant addition layer (p.) where a round constant const; is XORed into one state word [47]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 1. Round constants C; for Ascon permutation rounds [6].

i const; i const;

0 0x000000000000003¢ 8  0x00000000000000b4
1 0x000000000000002d 9  0x00000000000000a5
2 0x000000000000001e 10 0x0000000000000096
3 0x000000000000000f 11  0x0000000000000087
4 (0x00000000000000f0 12  (0x0000000000000078
5 0x00000000000000el 13  0x0000000000000069
6 0x00000000000000d2 14 0x000000000000005a
7 0x00000000000000c3 15  0x000000000000004b

(ii) Substitution Layer (ps): This layer applies a single 5-bit S-box in parallel to each of the 64
bit-slices of the 5 x 64-bit state:

s4,j) — SBox(so, 51, - - 0<j<o64

(80,j,51,jr- -+ s /54,7),

It is hardware efficient, requiring only XOR, AND, and NOT operations, yet providing strong nonlin-
earity. A circuit representation of the S-Box is shown in Figure 5, while its lookup-table mapping is
given in Table 2.

Xo =D y T
l’@’@\ v
X1 v D V1
| 1»@»% }
X2 —p l>EV ]/? =?=Y2
 J
X3 v D> l=)/3
! 1»@»@{ j
X4 =<> vy ~D =.y4
1

Figure 5. The 5-bit S-Box used in the Ascon permutation [48]

Table 2. Lookup table for Ascon’s 5-bit S-box.

X o0 1 2 3 4 5 6 7 8 9 a b ¢ d e f
SBox(x) | 4 b 1f 14 1la 15 9 2 1 5 8 12 1d 3 6 Ic

X 10 11 12 13 14 15 16 17 18 19 la 1b 1lc 1d 1le 1f
SBox(x) | 1le 13 7 e 0 d 11 18 10 ¢ 1 19 16 a f 17

(iii) Linear Diffusion Layer (pr): This layer improves avalanche properties by XORing each word
with rotated versions of itself, using constants specific to each word index. The transformations are
illustrated in Figure 6 and defined as follows:

20(S0) = So & (Sp >>19) & (Sp > 28),
21(51) = S1® (51> 61) ® (51> 39),
2(S2) =S2® (S2>> 1)@ (S2>>6),
Y3(S3) = S3® (S3>>10) @ (S3 > 17),
Y4(S4) =Sa® (Sa>>7) & (Sq > 41)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where > denotes rotation to the right.

% > Sp
« = 54
+ > Sa
< » Sa
< i Sy

Figure 6. Linear diffusion layer (p;) where each word is XORed with two rotated versions of itself [47]

Each layer is constant time to mitigate timing-based side-channel attacks. The combination of
symmetry-breaking constants, strong nonlinearity, and rapid diffusion provides robust security for
constrained and adversarial environments [48].

The functional characteristics of each hash variant are summarized in Table 3. Ascon-Hash is
designed for fixed-length output (256 bits) and is ideal for message authentication, fingerprinting,
and digital signature schemes. Ascon-XOF supports variable-length output and is therefore suitable
for applications like key derivation, hierarchical hashing, and domain-separated protocol identifiers.
Ascon-CXOF further introduces a context string during initialization to provide built-in domain
separation, enabling cryptographic agility across protocols or device layers.

Table 3. Ascon Hash Variants and their potential applications.

Variant Output Type Potential Applications

Ascon-Hash Fixed (256-bit) Message authentication, digital signatures
Ascon-XOF Extendable Key derivation, Merkle trees, PRFs
Ascon-CXOF | Extendable w/ context | Domain-separated hashing

From an implementation standpoint, Ascon hashing functions are optimized for compactness and
performance. The sponge-based structure combined with the lightweight permutation core enables
very small hardware footprints in ASIC designs [49] and efficient implementations on microcontrollers
with limited instruction sets [50]. The algorithm uses only bitwise operations (AND, XOR, NOT) and
shift/rotation logic, which are naturally suited to embedded systems and FPGA platforms.

Security wise, Ascon hash variants maintain strong bounds on preimage and collision resistance.
The 256-bit digest in Ascon-Hash provides a classical security margin of 2128 against collisions. All
variants employ a sponge capacity of 256 bits, ensuring that Grover-style quantum attacks cannot
reduce preimage resistance below 2128 [41]. Moreover, all operations are constant-time and avoid
data-dependent branching, providing built-in protection against timing and side-channel attacks.

Together, these characteristics make Ascon hash functions attractive not only for classical crypto-
graphic use cases but also for emerging domains that demand low-power, side-channel-resistant, and
structurally sound hashing primitives.

4. Methodology

This study aims to evaluate the statistical robustness, structural diffusion, and practical applicabil-
ity of the Ascon hash family in comparison with both cryptographic and non-cryptographic alternatives.
To achieve this, we adopted a twofold methodology combining empirical benchmarking and targeted
simulations. First, we used the SMHasher framework to provide a standardized and reproducible
evaluation of avalanche behavior, output bias, and resistance to structured or low-entropy inputs.
These tests were applied uniformly across a set of six representative hash functions to ensure fair
comparison. Second, we complemented the SMHasher results with custom Python-based simulations
designed to explore application-driven scenarios such as Bloom-filter indexing, log fingerprinting, and
Merkle-tree diffusion. This dual approach allows us to capture both the baseline statistical properties
of the candidate hash functions and their performance in practical, domain-relevant contexts.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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4.1. Benchmarking Framework and Environment

All evaluations were conducted using the SMHasher framework [19], a widely used benchmarking
suite designed to assess the statistical properties, structural robustness, and runtime behavior of hash
functions. While originally designed for non-cryptographic hash functions, SMHasher includes tests
that are equally informative for lightweight and cryptographic hash functions, especially in scenarios
involving structured, adversarial, or low-entropy inputs.

Benchmarks were performed on a Linux workstation equipped with an Intel Core i7-1165G7 CPU
running at 2.91 GHz. The SMHasher suite was compiled using g++ with the —~03 optimization flag
to ensure consistent high-performance execution. All tests were conducted under Ubuntu 22.04 LTS
(64-bit). All hash outputs were standardized to 256 bits to ensure fair comparisons.

4.2. Hash Function Selection and Comparison Scope

This study evaluates six hash functions, including both cryptographic and non-cryptographic
types. The cryptographic group consists of Ascon-Hash256, SHA3-256, SHAKE256, and BLAKE2?s. Five
of these hash functions were empirically benchmarked using the SMHasher framework, as supported
by the actively maintained repository by rurban [19]. SHA3-256 and BLAKE2s were selected for
their standardized status and relevance to post-quantum and lightweight cryptographic applications.
While SHAKE256 and Ascon-XOF are not natively supported in SMHasher, they are included in a
comparative conceptual analysis due to their sponge-based structure and functional similarity to
SHA3-256 and Ascon-Hash256, respectively.

The non-cryptographic group comprises MurmurHash3 and xxHash, both widely adopted in
performance-critical domains such as hash tables, Bloom filters, and software indexing. These were
included to emphasize statistical and structural differences between cryptographic and high-speed hash
functions, particularly in terms of diffusion, bias resistance, and collision behavior under structured
inputs.

Although the primary focus of this study is the empirical evaluation of Ascon-Hash256 using
SMHasher, a complementary conceptual comparison between Ascon-XOF128 and SHAKE256 is also
included, based on their official specifications and prior literature. Since all Ascon hash variants
share the same sponge structure and permutation, only differing in rate, output format, and optional
customization, Ascon-CXOF128 is not separately analyzed here. Because SMHasher does not support
variable-length output functions, runtime metrics for SHAKE256 and Ascon-XOF could not be collected
directly. Instead, their architectural features, extensibility, and suitability for applications such as
domain-separated hashing, key derivation, and hierarchical tree hashing are discussed in a dedicated
section.

4.3. Test Categories in SMHasher

The following SMHasher test categories were used to evaluate the statistical and structural
robustness of each hash function:

*  Avalanche Test: This test measures the bit diffusion strength of a hash function by evaluating
how a single-bit change in the input affects the output [51]. For each input length, thousands
of input pairs differing by exactly one bit are hashed. The percentage of output bits that flip is
recorded for each case. Ideally, each output bit should flip with 50% probability, indicating perfect
avalanche behavior. SMHasher reports the worst-case output bit bias, defined as the maximum
deviation from this ideal across all output bits. A low bias indicates strong mixing and good
diffusion properties.

e Keyset Tests: SMHasher includes several structured key categories, namely Sparse, Permutation,
and Cyclic inputs, that simulate constrained, low-entropy, or patterned input conditions [19].
These tests evaluate how well a hash function maintains uniformity, diffusion, and collision
resistance in adversarial or real-world scenarios.
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Sparse Test: This test simulates low-entropy input conditions by generating keys with only a
few active bits. It models use cases such as feature flags, protocol identifiers, and sparse data
encodings. A robust hash function should diffuse these small changes evenly and avoid output
bias or clustering.
Permutation Test: Keys are generated by selecting up to seven values from a pool of eight fixed
blocks, simulating structured inputs often seen in memory-constrained systems, cryptographic
identifiers, or header formats. This test reveals how the hash function handles repeated structures
and limited entropy sources.
Cyclic Test: This test evaluates the hash function’s behavior on periodic and repeating input
patterns, such as those found in network packet headers, sensor data streams, or protocol padding.
The hash function must maintain randomness and collision resistance, even when input entropy
is low or highly regular.
Zeroes Test: This test detects output bias by measuring the frequency of zero bits across all hash
outputs. A well-designed hash function should exhibit a near-random distribution of zeros and
ones. Excessive zeroes may indicate insufficient diffusion or predictable output bits, especially in
the most or least significant positions.

e  Bit Distribution and Bias: This test evaluates whether the hash function’s output bits are uniformly
distributed across different input conditions. It identifies skewed or biased bits that may reduce
the randomness or security of the hash output.

All'hash functions were tested under identical system configurations and repeated across sufficient
trials to ensure statistical reliability. To enable uniform comparison across functions with different
output lengths, all hash outputs were truncated or zero-padded to 256 bits where applicable.

4.4. Python Simulation Framework

All custom simulations were implemented in Python 3.10. Ascon-Hash256 and Ascon-XOF were
instantiated using the xof1ib package, while the Bloom filter was managed with the bloom_filter
library. For baseline comparisons, SHA3-256 and BLAKE2s were obtained from the Python standard
library hashlib, whereas SHAKE256 and an alternative SHA3-256 implementation were sourced from
PyCryptodome (Crypto.Hash). MurmurHash3 was provided by the mmh3 package, and xxHash by
the xxhash package. Supporting utilities included itertools, random, and statistics from the
Python standard library.

In the Bloom-filter experiments (Section 5.2), we instantiated a filter of size m = 10° bits with
k = 10 independent hash indices, following standard Bloom filter notation [52]. Each 128-bit nonce
was expanded by Ascon-XOF128 (rate = 64, capacity = 256) using the standard 12-round permutation
to derive ten 32-bit pseudorandom indices, with parallel experiments conducted using SHA3-256,
MurmurHash3, and xxHash for comparison. A total of n = 200,000 sequential nonces were inserted,
and the false-positive rate (FPR) was measured after every 10,000 insertions. Results, averaged over
five independent runs, were compared against the theoretical Bloom filter model:

FPR (1, m, k) ~ (1 - e*""/’”)k,

which served as a baseline for evaluating how different hash functions affect Bloom filter saturation
and FPR stability.

For log fingerprinting [53] (Section 5.4), ten structured log messages (L1-L10) differing by single-
field edits (e.g., temperature, timestamp, status) were hashed using Ascon-Hash256, SHA3-256,
SHAKE256, BLAKE2s-256, xxHash and MurmurHash3 with all outputs standardized to 256 bits
by truncation or zero-padding for uniform comparison. Avalanche scores for each adjacent log pair
were computed with:

def bit_diff (hl, h2):

return sum(bin(a ”~ b).count ("1") for a, b in zip(hl, h2))

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1633.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2025 d0i:10.20944/preprints202508.1633.v1

11 0of 24

The average bit difference across all nine pairs was reported.

For Merkle-tree diffusion (Section 5.5), we generated full binary trees of depths 4, 6, 8, and 10 (i.e.,
24,26 28 210 Jeaves) [54]. In each of 1,000 trials per tree size, a single leaf bit was flipped at a random
position, and the tree was hashed bottom-up using Ascon-Hash256, SHA3-256, SHAKE256 (truncated
to 256 bits), BLAKE2s-256, xxHash, and MurmurHash3 (standardized to 256 bits by truncation or
zero-padding). Using the same bit_diff function, we recorded the mean, variance, minimum, and
maximum of root bit-differences at each depth.

5. Results
5.1. Structural Benchmarking Using SMHasher Suite

To assess the suitability of Ascon hash variants for structural applications such as hash tables,
Bloom filters, and sensor fingerprinting, we evaluated its statistical robustness using keyset-based
tests from the SMHasher suite [19]. These tests simulate adversarial or structured input patterns that
are commonly encountered in real-world systems relying on hash-based indexing.

Table 4 consolidates the key results across five dimensions: worst-case avalanche bias, sensitivity
to sparse inputs, resilience to structural bias (permutation and cyclic tests), and bit uniformity (zeroes
test). Compared to other cryptographic hashes (SHA3-256 and BLAKE2s) and widely-used non-
cryptographic hashes (MurmurHash3 and xxHash), Ascon-Hash256 consistently exhibits stronger or
comparable behavior across all metrics.

Table 4. Consolidated SMHasher Results: Avalanche, Keyset, and Bit Distribution Metrics

Algorithm Avalanche Bias (%) | Sparse (%) | Perm. (%) | Cyclic (%) | Zeroes (%)
Ascon-Hash256 0.823 0.968 0.081 0.151 0.322
SHA3-256 1.013 0.581 0.093 0.182 0.330
BLAKE25-256 0.855 0.594 0.099 0.204 0.424
MurmurHash3 0.787 0.594 0.088 0.183 0.243
xxHash 0.780 0.649 0.084 0.134 0.332

Ascon-Hash256 achieves the highest score in the Sparse Test (0.968%), indicating strong sensitivity
to low-entropy inputs, which is a desirable property for systems that rely on fine-grained feature
differentiation, such as Bloom filters or compressed data matching [5]. It also exhibits the lowest
structural bias in the Permutation Test (0.081%) and one of the lowest scores in the Cyclic Test (0.151%),
demonstrating robust randomness and collision resistance even under highly repetitive input patterns.

In the Zeroes Test, Ascon-Hash256 maintains a balanced output distribution (0.322%), on par with
SHA3-256 and significantly more uniform than BLAKE2s. Finally, the worst-case avalanche bias [39]
for Ascon-Hash256 remains below 0.83%, validating its strong bit diffusion characteristics across all
key sizes. This is superior to SHA3-256 (1.01%) and BLAKE2s (0.85%) and comparable to optimized
non-cryptographic hashes, without sacrificing cryptographic integrity.

These results suggest that Ascon-Hash256 offers a compelling alternative to non-cryptographic
hashes for indexing and distribution tasks, particularly in applications requiring lightweight imple-
mentation, structural robustness, and moderate security guarantees. Its performance reinforces its
viability in constrained domains such as embedded systems, sensor networks, and blockchain-based
data structures where uniformity and low collision rates are critical [55,56].

Moreover, Ascon-Hash256 exhibits low output bias, strong avalanche characteristics, and uniform
output distributions, as validated through SMHasher evaluations conducted over 300,000 input
variants, systematically generated by the test suite through single-bit toggling and structured key
patterns across varying input lengths. These properties align with the stringent mixing requirements
for pseudorandom string derivation (e.g., R = Hash(SKp,¢||OptRand|[M)) and multi-layer Merkle
hashing (e.g., Digest = XOF (R||PKgeeq||PKroot||M)) [46,54], ensuring cryptographic robustness while
maintaining implementation efficiency.
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5.2. Blockchain-Enabled Replay Attack Mitigation for IoT Edge Devices

In blockchain-enabled IoT environments, replay attacks pose a critical threat to both device
security and ledger integrity. Adversaries may attempt to reuse valid authentication messages, which
can not only grant unauthorized access to IoT nodes but also pollute distributed ledgers with duplicated
or fraudulent entries. Such attacks undermine consensus mechanisms, inflate storage requirements,
and weaken the trust model that blockchain is designed to provide. To mitigate this risk, we previously
proposed a replay protection mechanism for Ascon-AEAD128 [6], integrating a Bloom filter with
cryptographically secure hashing using Ascon-XOF128 [16]. In this design, each incoming nonce is
processed by the Ascon-XOF128 hashing stage, producing a 256-bit digest that is partitioned into
k fixed-width indices for bit setting in a BRAM-based Bloom filter. This ensures that duplicate or
replayed packets are rejected at the IoT edge before they are forwarded to blockchain storage, thereby
preserving ledger consistency while minimizing overhead on resource-constrained devices.

The statistical robustness of Ascon-Hash256, as established in Section 5.1 through SMHasher
keyset evaluations, further supports this design choice. Its low avalanche bias (0.823%) and minimal
structural bias in permutation (0.081%) and cyclic (0.151%) tests confirm near-uniform index generation
even under adversarially structured nonce patterns. This statistical strength is reflected in the Bloom
filter’s stable FPR trajectory, shown in Figure 7, which compares Ascon-Hash256 against SHA3-256,
MurmurHash, and xxHash using a filter of size m = 220 bits, k = 10 indices, and n = 10° inserted
elements. All trajectories were obtained through a Python-based simulation, where sequential nonces
were inserted and the running false positive rate (FPR) was recorded every 1,000 insertions and
averaged across five trials.

Running-average FPR during fill

0.0012 1 —e— Ascon-Hash-256
—@— S5HA3-256
—8— Murmur(2x128)

0.0010 7' _g— yxHash(2x128)
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Figure 7. Running-average false positive rate (FPR) during Bloom filter fill for Ascon-Hash256, SHA3-256,
MurmurHash, and xxHash with m = 220, k = 10, and n = 10° insertions. The Ascon-Hash256 trajectory closely
follows that of the fastest non-cryptographic hashes while preserving cryptographic security guarantees. In the
context of blockchain-enabled IoT systems, this stability ensures that replayed or duplicate messages are filtered
at the edge before being committed to distributed ledgers, thereby reducing ledger pollution and strengthening
transaction integrity.

The FPR trajectory for Ascon-Hash256 closely follows that of the fastest non-cryptographic hashes,
demonstrating that adopting a cryptographic primitive incurs no measurable penalty in Bloom filter
efficiency. The gradual rise in FPR with higher insertion counts reflects the natural saturation behavior
predicted by the Bloom filter model, rather than any deficiency in the hash function’s diffusion [52].

While MurmurHash and xxHash achieve comparable FPRs in benign conditions, their SMHasher
profiles reveal higher susceptibility to certain structured input patterns, particularly in the Sparse and
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Cyclic tests (Table 4). Such weaknesses can be exploited in adversarial environments, where an attacker
may deliberately craft nonces to bias bit setting within the Bloom filter, increasing collision probability
and degrading replay-detection reliability. In contrast, Ascon-Hash256 combines consistently low
avalanche bias (0.823%) with the highest Sparse Test score (0.968%) and minimal structural bias in
the Permutation (0.081%) and Cyclic (0.151%) tests, ensuring near-uniform index generation even
under hostile input conditions. These statistical guarantees, validated through SMHasher evaluations,
directly explain the stable FPR curve observed in Figure 7.

Furthermore, Ascon-based hashing inherits the NIST LWC-standardized security properties
of the Ascon permutation, offering collision resistance, preimage resistance, and robustness against
targeted bit-flooding attacks [21]. This combination of statistical uniformity, operational efficiency,
and cryptographic strength makes it a compelling choice not only for adversarial IoT edge environ-
ments but also for blockchain-enabled IoT systems, where preventing replayed transactions before
ledger commitment is critical to maintaining consensus integrity and avoiding ledger pollution [57].
By filtering duplicates and adversarial inputs at the edge, Ascon-based replay prevention reduces
computational overhead on blockchain nodes, ensuring scalability and energy efficiency in secure
IoT-blockchain deployments.

5.3. Lightweight Hash Integration in PQC Signatures and Blockchain-Enabled IoT Authentication

Recent research efforts have explored hybridizing post-quantum digital signatures with
lightweight hashing to improve efficiency on resource-constrained platforms. SPHINCS+ has been
selected as a finalist in the NIST post-quantum cryptography standardization process, reinforcing
the importance of optimizing its components for constrained platforms. Notably, Magyari et al. [58]
proposed a variant of SPHINCS+ known as Ascon-5Sign, where the default SHAKE256-based hashing
components were replaced with Ascon-Hash and Ascon-XOF. Their design retained SPHINCS+’s struc-
tural components, including pseudorandom string generation, FORS tree traversal, and XMSS-based
hyper-tree authentication, while substituting the message digest and tree node hashing functions with
Ascon primitives.

A comparison of Ascon-Sign against SPHINCS+ and SPHINCS-256 in FPGA deployments is
shown in Table 5. Ascon-Sign achieves the lowest resource footprint, requiring only 7.0k LUTs and 1
BRAM block on an Artix-7, compared to the 48-51k LUTs and 11.5-22.5 BRAMs needed by SPHINCS+
variants. Although the signing latency of Ascon-Sign is higher (822.3 ms at 100 MHz), its energy
consumption (Egign = 170 mWs) remains competitive for low-duty-cycle IoT applications.

Table 5. Comparison of Hash-Based PQC Signature Schemes on FPGA

Scheme Security Device Sig. Size | LUT | FF | Area (BRAM) | DSP Fclk (MHz) Tsign (ms) | Power (W) Esign (mWs)
Ascon-Sign-128s [59] 1 Artix-7 7.8 kB 7.0k | 5.9k 1.0 0 100 822.3 0.208 170
SPHINCS+-128s [60] 1 Artix-7 8.1 kB 48k | 73k 115 0 500 124 9.71 120
SPHINCS+-256s [60] 5 Artix-7 29.8kB | 51k | 75k 22.5 1 500 193 9.80 188
SPHINCS-256 [61] N/A Kintex-7 41 kB 19k | 38k - 36 525 1.53 497 7.6

The security of post-quantum hash-based signatures is tightly coupled with the diffusion and
randomness properties of the underlying hash functions. Table 6 summarizes the collision, preimage,
and second preimage resistance of the Ascon hash variants [6]and SHA3/SHAKE functions [12], which
are commonly used in SPHINCS+ and other PQC signature schemes.

The theoretical security bounds of Ascon-Hash256 and Ascon-XOF128 match those of SHA3-
256 and SHAKE128 for 128-bit security category applications, making them viable replacements in
SPHINCS+ 128s and similar PQC signature schemes. Ascon-XOF128's variable-length output preserves
the flexibility of SHAKE while significantly reducing FPGA resource usage. However, its security
ceiling of 128-bit preimage resistance limits applicability in higher security categories (e.g., SPHINCS+
192s/256s), where SHA3-256 and SHAKE256 offer up to 256-bit resistance.

The combined theoretical and hardware evidence reinforces the case for integrating Ascon-
Hash256 and Ascon-XOF128 into post-quantum signature schemes. From a security perspective, both
match SHA3-256 and SHAKE128 for category-1 Post Quantum Cryptographic(PQC) applications while
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maintaining flexibility through variable-length outputs. From a hardware perspective, FPGA results
demonstrate that Ascon-based designs can reduce LUT usage by over 85% and BRAM requirements
by more than 90% compared to SHAKE256-based SPHINCS+, while keeping energy consumption
competitive. This balance of security and implementation efficiency positions Ascon as a strong
candidate for low-power, resource-constrained PQC deployments, provided that its use is targeted at
security levels where its 128-bit preimage bound remains sufficient.

Table 6. Security strengths of Ascon hash variants and SHA3 functions

Function Output size (bits) Collision Preimage  2nd Preimage
Ascon-Hash256 256 128 128 128
Ascon-XOF128 L min(L/2,128) min(L, 128) min(L, 128)
Ascon-CXOF128 L min(L/2,128) min(L, 128) min(L, 128)
SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512
SHAKE128 L min(L/2,128) min(L, 128) min(L, 128)
SHAKE256 L min(L/2, 256) min(L, 256) min(L, 256)

Empirical SMHasher evaluations further confirm that Ascon hash outputs maintain uniformity
and low bias under structured inputs relevant to SPHINCS+ workloads. While not a formal security
proof, these results complement the theoretical bounds in Table 6 by demonstrating practical mixing
behavior suitable for pseudorandom string derivation and multi-layer Merkle hashing.

5.4. Blockchain-Backed Fingerprinting and Tamper-Evident Logging for loT Devices

In embedded and IoT systems, compact and secure fingerprinting mechanisms are essential for
software versioning, device identity, and event stream validation [3]. Traditional cryptographic hashes
such as SHA-2 or SHA-3 offer strong security guarantees but often incur prohibitive performance or
area costs in constrained environments [62]. Ascon-Hash, with its lightweight sponge construction
and constant-time permutation, is particularly well suited for these tasks.

To evaluate its suitability for fingerprinting applications, we considered both synthetic and
realistic input structures. From the synthetic perspective, the SMHasher suite (Section 5.1) showed that
Ascon-Hash256 exhibits a worst-case avalanche bias of only 0.823%, along with minimal structural
degradation under permutation (0.081%) and cyclic (0.151%) keyset tests. These metrics indicate strong
diffusion even for low-entropy or repetitive inputs, which is essential for fingerprinting firmware
binaries, configuration states, or sensor logs.

From a practical perspective, we simulated a log-fingerprinting scenario in Python to illustrate
how Ascon-Hash behaves under realistic structured data changes. Ten short log entries (Table 7) were
created with minor variations in temperature, timestamp, and status fields to emulate sensor reports
or audit entries.

We selected ten adjacent log pairs (e.g., L1 vs. L2, L1 vs. L3, etc.) and computed the Hamming
distance between their 256-bit hash outputs [39]. For non-cryptographic hashes (MurmurHash3 and
xxHash), which naturally output 128 bits, a fair 256-bit construction was used:

Hpse(m) = Hipg(m || 0) || Hizg(m || 1)

This avoids the avalanche underestimation caused by zero-padding, which fixes half the bits and
artificially reduces observed diffusion.

For each pair of adjacent log entries (Table 7), we computed the Hamming distance between
their 256-bit hash outputs. We evaluated Ascon-Hash256, SHA3-256, SHAKE256 (32-byte output),
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BLAKE2s-256, and two non-cryptographic hashes (MurmurHash3 and xxHash) lifted to 256 bits via
the domain-separated construction.

def bit_diff (hl: bytes, h2: bytes) -> int:
assert len(hl) == len(h2), "hash lengths must match"
return sum((a * b).bit_count() for a, b in zip(hl, h2))

A cryptographically sound 256-bit hash should flip roughly half its output bits under small input
changes; the reference distribution is Binomial(256, 0.5) with mean 128 and standard deviation ~ 8
[63,64]. We report mean =+ standard deviation (and 95% ClIs where noted) over the ten structured log
pairs.

Table 7. Structured log entries used in fingerprinting evaluation.

Log ID | Log Entry

L1 Temp:22C;Time:123456

L2 Temp:23C;Time:123456

L3 Temp:22C;Time:123457

L4 Temp:22C;Time:123456;Status:OK
L5 Temp:22C;Time:123456;Status:FAIL
L6 Temp:23C;Time:123457

L7 Temp:23C;Time:123456;Status:OK
L8 Temp:23C;Time:123456;Status:FAIL
L9 Temp:22C;Time:123457;Status:OK
L10 Temp:22C;Time:123457;Status:FAIL

The results in Table 8 show the mean and standard deviation of bit flips across all ten pairs
for each algorithm, alongside the Binomial(256,0.5) expectation of mean ~ 128 bits and ¢ ~ 8. All
cryptographic hashes and the fair-256-bit non-cryptographic hashes produced means within £3 bits
of the theoretical expectation, with Ascon-Hash-256 matching it exactly. This real-data test visually
and statistically confirms the strong avalanche property of Ascon-Hash-256 in practical scenarios. For
example, changing Temp: 22C to Temp: 23C (a single character) resulted in 124-139 bit flips out of 256
in our tests, consistent with the SMHasher-reported low avalanche bias (0.823%). Such robustness
ensures that even minor field changes in logs yield unpredictable and uniformly distributed digests.

Table 8. Mean Hamming distances for structured log pairs (256-bit outputs). Non-cryptographic hashes were
evaluated using a fair 256-bit construction: Hypg(m || 0) || Hipg(m || 1). Binomial(256,0.5) expectation: mean =

128, 0 =~ 8.
Algorithm Mean bits flipped | Std. dew.
Ascon-Hash256 128.0 6.08
BLAKE2s-256 127.8 4.45
MurmurHash3-256 (fair) 127.6 6.41
SHA3-256 126.4 6.83
SHAKE256-256 126.0 6.69
xxHash-256 (fair) 125.0 5.73

In addition to fingerprinting, Ascon-Hash supports hash chaining for tamper-evident logs [65]:
H; = AsconHash(M; || H;_1)

where M; denotes the i-th log entry and H; is the corresponding hash chain value (with Hj initialized
to a fixed constant or system seed). This structure prevents reordering, insertion, or deletion attacks
without requiring digital signatures. Because Ascon-Hash outputs exhibit uniform bit distribution
(Zeroes Test: 0.322% in SMHasher), chained digests retain high entropy, minimizing bias in audit
trails. Such constructions are well suited for offline-capable devices, distributed sensor networks, and
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ledger-based storage systems, and can naturally extend to Merkle tree commitments for secure data
aggregation [66,67].

Figure 8 visualizes the avalanche behavior per adjacent log pair: rows are hash algorithms and
columns are the pairs from Table 7. Each cell encodes the Hamming distance (bits flipped) between
the two 256-bit digests; the single-hue blue scale is fixed to 112-144 to emphasize variation around
the ideal 128 bits (Binomial(256,0.5)). All algorithms including the fair 256-bit constructions of
MurmurHash3 and xxHash exhibit mid-to-high intensities across pairs, with values largely in the
120-140 range. Ascon-Hash-256 aligns with the cryptographic baselines (e.g., high diffusion on L1 vs
L2 and consistently strong values elsewhere), and there are no persistent low-intensity bands across
any row or column, indicating no systematic weakness to particular structured changes. The heatmap
thus corroborates the aggregate means in Table 8 and supports the claim that Ascon Hash variants
delivers near-ideal diffusion on realistic log data.
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Figure 8. Per-pair avalanche heatmap (bits flipped) for 256-bit outputs across algorithms and adjacent log pairs
(Table 7). Non-cryptographic hashes use the fair 256-bit construction Hypg(m || 0) || Hipg(m || 1).

In summary, the combination of SMHasher-derived statistical strength and the real-world
log avalanche test demonstrates that Ascon hash variants deliver cryptographic-grade diffusion
at lightweight implementation cost. This makes it a compelling choice for secure fingerprinting,
tamper-evident logging, and integrity verification in resource-constrained IoT deployments.

5.5. Merkle Tree Diffusion Analysis for Blockchain Integrity in IoT Systems

Merkle trees are a fundamental structure in secure logging [54], firmware authentication, and
blockchain systems, enabling tamper-evident aggregation of records. At their core lies a hash function
that recursively compresses variable-length messages into fixed-size digests. To be effective in such a
role, a hash function must offer strong collision resistance, uniform diffusion, output unpredictability,
and computational efficiency.

Merkle tree-based aggregation refers to the process of recursively hashing individual data ele-
ments into a binary tree structure to produce a single root hash that represents the collective integrity
of all inputs [68]. This structure supports efficient batch verification, tamper-evidence, and inclu-
sion proofs, and is foundational in blockchain systems, post-quantum signatures, and authenticated
logging.

Ascon hash variants leverage a sponge-based architecture with a compact 320-bit internal permu-
tation, enabling flexible variable-length handling with minimal overhead. This lightweight, reusable
design, endorsed and standardized by NIST [6], makes them particularly well suited for Merkle tree
aggregation on resource-constrained platforms such as IoT nodes, edge devices, and FPGAs.
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Figure 9. SMHasher analysis of Ascon-Hash. Left: Avalanche bias across varying key sizes shows consistent
diffusion (< 0.83%). Right: Sparse test heatmap showing uniform bit activation in the 256-bit output.

We evaluated Ascon-Hash using SMHasher [19] to assess its diffusion behavior and structural
robustness. Avalanche testing confirmed that flipping a single input bit results in balanced output
changes. Sparse key testing, particularly relevant for structured logs or repetitive data, revealed strong
bit dispersion, which enhances collision resistance in real-world log chains.

To evaluate bit-level diffusion within the Merkle tree structure, we implemented a custom Python
simulation that perturbs each leaf node individually and computes the resulting bit differences in the
root digest. Table 9 summarizes statistical changes in output across different tree levels, highlighting
the sensitivity and diffusion strength of Ascon-based hashing.

Table 9. Bit-Diffusion Statistics per Merkle Tree Level (Ascon-Hash vs SHA3-256)

Level | Count Ascon-Hash SHA3-256
Mean Var Min Max StdDev | Mean Var Min Max StdDev
0 256 8.15 999.55 0 151 31.62 8.02 969.05 0 143 31.13

128 1595 1785.53 0 141 42.24 15.84 1768.46 0 143 42.03
64 3222  3128.11 0 141 55.91 32.08 3119.29 0 148 55.84
32 6391 412427 0 149 64.22 61.69  3829.78 0 135 61.90
16 126.62  68.73 103 140 8.29 130.00  33.00 121 146 5.74

B W N R

Notably, Ascon-Hash and SHA3-256 show almost identical variance profiles across levels 0-3,
indicating similar avalanche strength during internal propagation. At the root level (level 4), SHA3-256
exhibits a marginally higher mean and lower variance, suggesting tighter diffusion consistency at the
final aggregation point, as visualized in Figure 10.

Mean Bit Differences per Tree Level Variance of Bit Differences per Level
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Figure 10. Comparison of Ascon-Hash and SHA3-256 in Merkle trees: (left) mean bit differences per tree level;
(right) variance of bit differences across perturbed inputs. Both functions exhibit strong avalanche effects, with
Ascon-Hash showing slightly higher diffusion variance at intermediate levels.
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The presence of zero-bit differences in levels 0-3 stems from subtree isolation, only nodes along
the affected branch are impacted. This effect diminishes at the root level, where all perturbed leaves
contribute to observable changes.

To evaluate how this behavior scales, we extended the analysis across deeper Merkle trees with
24 26 28 and 219 leaves. For each tree size, we flipped one leaf input and measured the bit difference
in the root hash as shown in Figure 11.

Root-Level Diffusion (Mean) Root-Level Diffusion (Variance)

130.0 —8— Ascon-Hash (real)

129.5 4 —— SHA3-256

129.0 4
128.5 4
128.0 4
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127.0 4

Mean Root Bit Difference
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126.5 4
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Figure 11. Root-level diffusion behavior as a function of Merkle tree size for Ascon-Hash and SHA3-256. Left:

Mean bit difference in the root digest. Right: Variance of bit differences.

As shown in Table 10, both Ascon-Hash and SHA3-256 converge toward similar mean diffusion
values as the tree depth increases, though Ascon exhibits slightly higher variance for small and medium
tree sizes.

Table 10. Root-level Bit-Diffusion Comparison Across Tree Sizes

Tree Size | #Leaves Ascon-Hash SHA3-256
Mean Variance | Mean Variance
Small 24 126.31 68.69 130.00 33.00

Compact 26 125.95  49.05 | 12850  64.83
Medium 28 12860 6340 | 12829  57.94
Large 210 128.18  63.18 | 12810  62.88

Our Python-based simulation revealed several critical findings. First, both Ascon-Hash and SHA3-
256 exhibit a strong avalanche effect across varying tree sizes. Specifically, a single-bit perturbation
in a leaf node consistently produces a root-level bit difference close to 128 out of 256 bits, precisely
the expected value for an ideal cryptographic hash function with uniform diffusion. This behavior
confirms the robustness of Ascon-Hash in propagating changes throughout the tree structure.

Second, the variance of root-level bit differences stabilizes as tree depth increases. This indi-
cates that deeper Merkle trees exhibit more consistent and predictable behavior in their root digests.
Such consistency is essential for applications like blockchain integrity or tamper-evident logs, where
deterministic hash outcomes are required for reliable verification and inclusion proofs.

Finally, across all evaluated tree sizes, Ascon-Hash closely mirrors the performance of SHA3-256
in terms of both the mean and variance of diffusion. This suggests that Ascon-Hash can serve as a
competitive alternative for secure Merkle aggregation, particularly in constrained-resource platforms
such as IoT devices or FPGAs, where computational efficiency and low hardware footprint are critical.

These findings carry significant implications for real-world deployments. In IoT sensor networks,
where Merkle trees typically span 64 to 256 leaves, Ascon-Hash delivers cryptographically secure root
digests while maintaining minimal computational overhead. This makes it an ideal candidate for
lightweight device authentication [6] and secure data aggregation [68].
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For applications in blockchain systems or post-quantum digital signature schemes, such as
SPHINCS+, where trees with 512 to 1024 leaves are common, Ascon-Hash continues to maintain
uniform and predictable diffusion [58]. This ensures that even large-scale Merkle constructions can
benefit from Ascon-Hash’s security properties without sacrificing performance, making it a strong fit
for tamper-evident storage, ledger integrity, and quantum-resistant authentication protocols.

Overall, Ascon-Hash matches the diffusion performance of SHA3-256 while offering superior
efficiency for hardware implementations, reinforcing its role as a viable and scalable solution for
Merkle tree-based applications in constrained environments [69].

6. Discussion

This study presents a multi-faceted empirical evaluation of the Ascon hash family, with an
emphasis on structural robustness, cryptographic diffusion, and practical applicability in constrained
environments. The results demonstrate that Ascon-Hash and Ascon-XOF consistently exhibit low
output bias, strong avalanche behavior, and excellent input sensitivity across both synthetic keyset
tests and real-world simulations. Compared to SHA3-256, SHAKE256, BLAKE?2s, and selected non-
cryptographic hashes, Ascon variants show highly competitive performance, particularly in resource-
aware deployments where lightweight implementation is critical.

The SMHasher suite analysis in Section 5.1 confirmed that Ascon-Hash delivers excellent bit
diffusion, especially under sparse, cyclic, and permutation keyset conditions. These tests model
common structural patterns in embedded systems, hash tables, and packet headers. Ascon-Hash
achieved the lowest permutation test bias (0.081%) and top-tier performance in sparse input conditions,
outperforming even SHA3-256 in some metrics [19]. These findings validate its robustness against
low-entropy or adversarial input structures, making it a strong candidate for secure indexing and
fingerprinting tasks.

In Section 5.2, we extended our evaluation to Bloom filter—based replay prevention under real-
istic nonce indexing scenarios [16]. The Python simulation showed that Ascon-XOF128 consistently
maintained the lowest FPR over 200,000 nonce insertions, outperforming SHA3-256, SHAKE256, and
MurmurHash3. This result underscores the importance of internal diffusion properties, particularly
for short fixed-length inputs common in edge devices [64]. The sponge structure of Ascon-XOF proved
especially effective in distributing entropy uniformly, reducing the likelihood of hash collisions within
the Bloom filter [39]. Ascon-XOF’s suitability for lightweight, stateless replay detection was thus
empirically validated, highlighting its relevance in CoAP, MQTT-SN, and secure telemetry pipelines
[16].

Section 5.3 explored Ascon’s integration into post-quantum signature schemes, specifically refer-
encing the Ascon-Sign proposal [58]. Compared to SPHINCS+-128s and SPHINCS-256, Ascon-Sign
demonstrated significantly lower hardware resource requirements and acceptable signing energy costs,
despite slightly higher latency. These findings are critical for secure IoT platforms where both memory
and power are constrained. The reuse of Ascon-XOF for pseudorandom generation and tree hashing
further simplifies hardware implementation and enables streaming-friendly digest computation. This
affirms that Ascon variants can serve as cryptographic drop-in replacements in PQC schemes without
compromising structural security.

As discussed in Section 5.4, Ascon-Hash proved highly effective for structured fingerprinting
scenarios. Simulations of log entries with minimal field changes revealed consistent avalanche scores
near 127 bits at par with SHA3-256 and BLAKEZ2s. Unlike MurmurHash3, which suffered from poor
avalanche behavior, Ascon-Hash maintained high sensitivity across input pairs, ensuring that minor
changes in logs or configuration files yield distinct fingerprints [53]. Furthermore, the support for
chained hashing enables forward-secure log construction without the need for full Merkle material-
ization [66]. This makes Ascon-Hash a strong candidate for secure audit trails, clone detection, and
software version tracking in embedded devices.
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Section 5.5 presented a detailed comparison of Ascon-Hash and SHA3-256 within Merkle tree
constructions. Root-level diffusion analysis, conducted using a Python simulation, revealed that both
hash functions maintain near-ideal avalanche behavior across tree depths from 24 to 210 leaves. While
SHA3-256 showed slightly tighter variance at the root level, Ascon-Hash exhibited similar mean
diffusion and stable variance trends, indicating reliable propagation of leaf-level changes through the
aggregation hierarchy. These results, aligned with SMHasher tests, reinforce Ascon-Hash’s viability
in Merkle-based systems such as blockchain ledgers, firmware authentication, and post-quantum
signature trees [20,43].

Taken together, these results underscore the versatility and efficiency of Ascon hash functions
across a range of structural, cryptographic, and embedded contexts. Their ability to simultaneously
deliver low overhead and strong diffusion while maintaining hardware friendliness positions them
as valuable tools for modern lightweight systems. Future research may focus on extending support
in cryptographic libraries, developing streaming interfaces, and verifying side-channel resistance in
hardware deployments.

While the empirical results demonstrate that Ascon’s hash variants are strong candidates for
lightweight, cryptographically secure applications, several practical limitations should be acknowl-
edged before advocating widespread adoption.

First, the Ascon hash variants are relatively new [6] and have not yet achieved widespread
integration into major cryptographic libraries such as OpenSSL, Libsodium, or BoringSSL. This limited
ecosystem support hinders seamless adoption in production environments that depend on mature,
standardized APIs, and may require developers to rely on standalone implementations or custom
wrappers.

Second, although the Ascon permutation has undergone public scrutiny as part of the NIST-LWC
competition, the hash-specific variants have not yet received the same level of cryptanalytic attention
as established hash functions like SHA3-256 or BLAKE2s. While no structural weaknesses are currently
known, caution is advised when deploying Ascon hashes in long-term or high-security infrastructure
until further independent analysis is available.

Third, while Ascon-XOF and Ascon-CXOF do support variable-length outputs similar to
SHAKE256, all Ascon hash variants use fixed-round permutations and fixed capacity-rate configura-
tions. This design choice simplifies implementation and reduces attack surfaces but limits flexibility in
tuning throughput or security margins for domain-specific performance goals. In contrast, SHAKE256
offers more configurability, allowing users to balance output length, digest size, and performance
according to application needs [11].

Fourth, due to the sponge-based architecture [39], Ascon hashes require careful handling of input
padding, domain separation, and context management to prevent unintended collisions or output
reuse in composite constructions such as key derivation functions (KDFs), message authentication
codes (MACs), or tree-based hashing. These concerns are not unique to Ascon but must be explicitly
addressed to ensure secure use in multi-stage cryptographic protocols.

Finally, compatibility with existing infrastructure presents a deployment hurdle. Many protocol
stacks, digital signature schemes, and secure bootloaders are tightly coupled with SHA2 or SHA3-based
primitives [70,71]. Substituting Ascon may require dual-hash compatibility, transitional wrappers, or
formal adoption through standards bodies such as ISO or IETF. Until these integrations mature, the
use of Ascon hash functions may be best suited for emerging systems, constrained environments, or
research-driven deployments where low overhead and lightweight properties are prioritized.

Despite these limitations, the Ascon hash family presents a compelling combination of efficiency,
structural robustness, and cryptographic soundness. Its inclusion in the NIST-LWC standard [6]
provides a strong foundation for further adoption and analysis, particularly in the growing landscape
of secure IoT and embedded applications.
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7. Conclusions

This study provides a comprehensive empirical evaluation of the Ascon hash family, highlighting
its strong diffusion characteristics, structural robustness, and practical applicability across a range
of lightweight security scenarios. Through SMHasher benchmarks and Python-based simulations,
we demonstrated that Ascon-Hash and Ascon-XOF offer competitive or superior performance com-
pared to established cryptographic and non-cryptographic hash functions in tasks such as Bloom
filter indexing, fingerprinting, Merkle tree aggregation, and post-quantum signature integration. De-
spite limitations related to ecosystem maturity, fixed parameter configurations, and current lack of
widespread standardization, Ascon’s sponge-based architecture and hardware-friendly design make
it a compelling candidate for secure, efficient deployment in constrained environments such as IoT
nodes, edge devices, and blockchain systems. These findings reinforce the untapped potential of
Ascon hashes as structurally resilient, cryptographically sound alternatives for modern lightweight
applications.
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The following abbreviations are used in this manuscript:
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XOF eXtendable Output Function
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LWC Lightweight Cryptography

SHA Secure Hash Algorithm

MMO  Matyas-Meyer—Oseas

AES Advanced Encryption Standard

FPR False Positive Rate
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