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Abstract

Spasticity, a complex consequence of upper motor neuron lesions, poses challenges for clinical
assessment due to its neural and mechanical origins. Traditional scales like the Modified Ashworth
and Tardieu Scales provide subjective, context-limited insights, often missing spasticity’s dynamic
nature. Neuromusculoskeletal (NMS) modeling offers objective, quantitative insights by integrating
patient-specific muscle-tendon properties, reflex dynamics, and multi-joint biomechanics. This
scoping review examines advancements in spasticity modeling, comparing mechanical, neurological,
and integrated approaches, and their applications in conditions like cerebral palsy and stroke. We
highlight barriers to clinical translation, including computational demands and regulatory
challenges, and propose future directions, such as real-time simulation and machine learning
integration, to enhance personalized assessment and treatment.

Keywords: spasticity; neuromusculoskeletal modeling; reflex hyperexcitability; muscle-tendon
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1. Introduction

Spasticity is a complex sensorimotor disorder characterized by involuntary muscle hyperactivity
in the presence of central paresis. While historically defined as a velocity-dependent increase in
muscle tone due to hyperexcitable stretch reflexes, more recent frameworks broaden this concept to
include rigidity, dystonia, spasms, and sensory abnormalities, reflecting the multifaceted nature of
motor dysfunction following upper motor neuron injury [1-3]. This involuntary overactivity results
not only from altered spinal reflex pathways but also from impaired voluntary motor control,
maladaptive plasticity, and sensory disinhibition due to cortical and subcortical damage [1].

Spasticity is prevalent across a spectrum of neurological conditions, affecting approximately 25—
40% of stroke survivors, 84-86% of individuals with multiple sclerosis (MS), 48-87% of those with
spinal cord injury (SCI), and 69-80% of people with cerebral palsy (CP) [4,5]. A significant proportion
develop severe or disabling spasticity, up to 79% in SCI, 47% in MS, and 9-10% post-stroke, resulting
in complications such as pain, contractures, joint deformities, pressure ulcers, impaired mobility,
falls, and sleep disturbances. These issues contribute to increased healthcare utilization, long-term
disability, and reduced quality of life [4-6].

Functionally, spasticity impairs both posture and movement, often limiting independence. In
CP, for instance, it can cause crouch gait and restrict ambulation, while in stroke survivors, it
frequently affects upper limb function, interfering with activities of daily living such as dressing,
grooming, and feeding. Despite its clinical significance and widespread impact, the pathophysiology
of spasticity remains only partially understood, posing ongoing challenges for the development of
effective and individualized interventions. However, emerging definitions that encompass its full
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clinical spectrum and recognize its neuroplastic and sensory components offer a more comprehensive
foundation for therapeutic targeting and patient-centered management.

The complexity of spasticity arises from its dual neural and mechanical origins. Neural factors
include hyperexcitability of stretch reflex pathways, reduced inhibitory control, and altered
proprioceptive feedback, while mechanical factors encompass increased intrinsic muscle stiffness,
altered tendon compliance, changes in the extracellular matrix, and joint contractures. These factors
interact dynamically, varying across individuals, conditions, and even specific tasks, making
standardized assessment and treatment difficult. Traditional clinical tools, such as the Modified
Ashworth Score (MAS) and Tardieu Scale, rely on subjective evaluations of muscle tone and reflex
responses, often failing to differentiate neural from biomechanical contributions (i.e., distinguishing
passive tissue resistance from reflex-mediated active muscle force), and struggling to clearly separate
spasticity from related but distinct motor impairments like rigidity or fixed contractures. This
subjectivity can compromise treatment planning. For example, suboptimal botulinum toxin dosing
or imprecise injection site selection may reduce treatment effectiveness and increase the risk of
functional decline. Incorporating objective biomechanical modeling approaches may help address
these challenges by providing more detailed insights into the underlying neural and mechanical
impairments. When used alongside clinical judgment, such models have the potential to enhance
assessment precision and support more informed intervention strategies ([6]).

To overcome these limitations, computational modeling has become a pivotal tool in spasticity
research. Early modeling efforts included mechanical models focusing on passive tissue properties,
neurological models simulating reflex pathways, and threshold control models quantifying reflex
triggers like the Tonic Stretch Reflex Threshold (TSRT) and Dynamic Stretch Reflex Threshold
(DSRT). While these approaches provided valuable insights, they often operated in isolation, lacking
the integration needed to capture spasticity’s complexity during functional tasks like walking or
reaching. For instance, mechanical models could not replicate neural-driven phenomena like clonus,
while neurological models often ignored biomechanical constraints (e.g., realistic muscle force-
generating capacities, moment arms, or segmental inertial properties), reducing their clinical
applicability.

The advent of NMS modeling has marked a significant leap forward, enabling integrated
simulations of neural control and musculoskeletal dynamics. These models generate physiologically
realistic representations of movement, reflex behavior, and resistance to stretch, offering a
comprehensive framework to study spasticity. By incorporating patient-specific data, such as muscle
geometry, reflex thresholds, and biomechanical properties (e.g., muscle optimal fiber lengths, tendon
slack lengths, pennation angles, and segment inertial parameters), NMS models support personalized
simulations that enhance clinical relevance. For example, a personalized model for a child with CP
might simulate how increased gastrocnemius stiffness and heightened reflex sensitivity contribute to
crouch gait, guiding targeted interventions like botulinum toxin injections or selective dorsal
rhizotomy.

Computational platforms such as OpenSim (open-source; [7,8]) and the AnyBody Modeling
System (commercial; [9]) have laid the groundwork for biomechanical simulation by enabling the
estimation of joint kinematics, muscle forces, and movement dynamics across a variety of tasks.
Building on these foundations, open-source frameworks like Moco [10] and SCONE [11] have
introduced predictive simulation and optimal control capabilities, allowing researchers to simulate
how movement might change in response to altered neuromuscular or musculoskeletal conditions.
These tools have enhanced the ability to model impaired motor control and optimize interventions
virtually. To address the specific complexities of spasticity, more targeted platforms have emerged.
The Neuromusculoskeletal Modeling (NMSM) Pipeline, for example, integrates physics-based
modeling with patient-specific parameter estimation and predictive simulations to replicate stretch-
induced responses with high fidelity. Similarly, the Calibrated EMG-Informed
Neuromusculoskeletal Modeling System (CEINMS; [12]) and its real-time extension CEINMS-RT [13]
fuse EMG data with biomechanical modeling to enable personalized, real-time assessments of
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neuromuscular dynamics. These platforms support the extraction of spasticity-specific metrics such
as impedance-based joint stiffness and damping, as well as reflex thresholds like TSRT and DSRT.
These quantitative biomarkers exceed the diagnostic granularity of traditional clinical scales,
enabling precise assessment and individualized treatment planning. For instance, impedance-based
metrics can quantify dynamic joint resistance during gait, informing orthotic design and guiding
targeted interventions.

Despite these advancements, clinical adoption remains limited by several barriers: the
computational complexity of high-fidelity models, the need for extensive validation across diverse
patient populations and clinical contexts, the lack of user-friendly interfaces for clinicians, and
regulatory hurdles related to medical device approval and risk classification. These challenges hinder
the transition from research to practice, perpetuating reliance on subjective assessment tools and
reducing diagnostic and therapeutic precision. For instance, in the absence of clinically accessible
modeling tools, clinicians may struggle to anticipate patient-specific treatment responses, such as
functional improvements following interventions. Emerging technologies, including machine
learning, wearable sensors, and multiscale modeling, offer promising solutions to enhance model
scalability, usability, and clinical integration.

This review synthesizes the current state of spasticity modeling, identifies key methodological
advancements, and proposes future directions, with a focus on personalized NMS approaches. We
aim to differentiate these models from traditional frameworks, highlight their capacity for patient-
specific simulation, and explore their potential to advance clinical assessment and treatment. Key
enabling technologies, such as hybrid modeling, real-time sensor integration, and artificial
intelligence (Al)-driven personalization, are discussed, alongside future directions like regulatory
validation and translational applications in rehabilitation robotics. By contextualizing these
advancements, we underscore the transformative potential of personalized NMS modeling in
improving diagnostic accuracy, therapeutic precision, and patient outcomes across diverse
neurological conditions.

Table 1. Modified Ashworth Scale.

Grade Description

0 No increase in muscle tone

1 Slight increase in muscle tone, minimal resistance at end of range of motion (ROM)

1+ Slight increase in muscle tone, catch followed by minimal resistance through less than half
of ROM

5 More marked increase in muscle tone through most of ROM, but affected part easily
moved

3 Considerable increase in muscle tone, passive movement difficult

4 Affected part rigid in flexion or extension

Table 2. Tardieu Scale: The Tardieu Scale assesses spasticity by evaluating muscle responses to passive
movements at varying velocities. V1 (slow) measures passive range of motion without triggering the stretch
reflex, V2 (medium, limb falling under gravity) detects mild spastic responses, and V3 (fast) elicits velocity-
dependent spasticity. Muscle reaction is graded 04, from no resistance (0) to sustained clonus (4), with a “catch”
indicating a sudden increase in tone at a specific angle. The angle of catch, measured in degrees via goniometer
during V2 or V3, quantifies the spastic threshold. Fatigable clonus (Grade 3, <10s) or non-fatigable clonus (Grade
4, >10s) indicates severe spasticity.

Velocity of Quality of Muscle
Movement Reaction (Grade)

Angle of Catch

Description (R1) / PROM (R2)
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V1: Slow (as N/A (or “No Basel'ine measuremen.t of R2 (Angle o.f full

slow as spastic reaction passive range of motion PROM) is
. ., (PROM) under minimal recorded. No R1
possible) expected”) . .

stretch reflex activation. (catch) is expected.

V2: Medium A. grade (0-4) is Assesses muscle response to R1 (Angle of catch)

(limb fallin assigned based on stretch at a moderate speed. is recorded if

. & the observed A catch (R1) indicates
under gravity) L present.
muscle response. spasticity.

V3: Fast (as A grade (0-4) is Assesses muscle response to R1 (Angle of catch
f-ast as assigned based on stretch at a fast speed. Elicits or clonus) is
ossible) the observed velocity-dependent recorded if

P muscle response. spasticity (catch/clonus). present.

Section 1: Overview of Spasticity Modeling Approaches
1.1. Mechanical, Neurological, and Threshold Control Modeling

Computational modeling of spasticity has historically followed three primary paths: mechanical,
neurological, and threshold control models. Each approach targets distinct aspects of spasticity,
passive biomechanical properties, reflex-mediated neural responses, and reflex thresholds,
respectively, offering valuable insights but facing limitations when applied in isolation, particularly
for simulating complex spastic behavior across diverse individuals and functional tasks.

Mechanical models represent muscle-tendon units and joints using simplified elements like
springs and dampers to capture stiffness, viscosity, and resistance. Foundational studies by He et al.
(1991) [14], Fee and Foulds (2004) [15] , and Alibiglou et al. (2008) [16] employed viscoelastic analogs
in pendulum tests, quantifying increased muscle tone and altered damping in spastic limbs. More
recent advancements by Wu et al. (2018) [17], Le Cavorzin et al. (2001) [18], and He et al. (1997) [19]
incorporated nonlinear tissue behaviors to reflect responses under varied movement velocities and
joint angles, enhancing accuracy for passive assessments ([20]), with some models even attempting
to characterize the distinct phases of a spastic catch (e.g., pre-catch, catch, and post-catch) to better
represent the dynamic joint resistance. These models excel in simulating static or low-velocity
conditions, such as joint resistance during clinical exams, but fail to capture neural-driven
phenomena like velocity-dependent reflex contractions or clonus. For example, mechanical models
cannot replicate the dynamic interplay of reflex hyperexcitability and muscle activation during gait,
limiting their utility for functional tasks.

Neurological models focus on the central and peripheral mechanisms underlying reflex
responses, modeling stretch reflexes with threshold-based activation and neural gain parameters.
Koo and Mak (2006) [21], de Vlugt et al. (2010) [22], and Shin et al. (2020) [23] advanced these models
by incorporating muscle spindle feedback and reflex loop delays, improving simulations of velocity-
dependent behaviors. These models have elucidated how altered reflex thresholds and delayed
inhibitory responses contribute to spastic movement dysfunction, such as exaggerated elbow flexion
in stroke survivors. However, their reliance on idealized or population-averaged parameters often
overlooks individual variability. Moreover, by neglecting biomechanical context, such as joint
mechanics, muscle-tendon compliance, or segmental inertia, neurological models produce abstract
simulations that lack biomechanical fidelity for tasks like reaching or stair climbing, limiting their
ability to predict how neural changes manifest as altered joint torques or movement patterns.

Threshold control models, developed by Levin and Feldman (1994) [24], Calota et al. (2008) [25]
, and Bar-On et al. (2013) [26], emphasize reflex thresholds like TSRT and DSRT, which quantify the
joint angle or velocity at which reflex activity is triggered. Applied in stroke and CP ([27-29]), these
models provide insights into neural hyperexcitability and have been used to assess spasticity during
passive and active movements. For instance, TSRT measurements can identify the elbow angle at

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1608.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2025 d0i:10.20944/preprints202508.1608.v1

5 of 20

which a reflex is elicited, helping clinicians determine which muscles exhibit heightened reflex
sensitivity and should be targeted for botulinum toxin injections to maximize therapeutic effect.
Conceptually, these thresholds can define a patient-specific ‘spastic joint space,” illustrating the range
of motion compromised by hyperreflexia. However, these models require integration with
biomechanical data to simulate functional tasks accurately. Without accounting for muscle-tendon
dynamics, joint constraints, and the inertial properties of the limb segments, they may not fully
capture spastic behavior during complex movements like gait.

Recognizing these limitations, early hybrid models sought to combine mechanical and neural
elements. Kamper et al. (2001) [30] integrated stretch reflex thresholds with intrinsic muscle stiffness
to simulate reflex-mediated torques during limb motion, demonstrating how increased reflex gain
amplifies joint resistance. These models highlighted the value of integration but were low-
dimensional and lacked personalization, restricting their application to simple test scenarios, such as
single-joint pendulum tests. More advanced hybrids have since emerged, incorporating multi-joint
dynamics and patient-specific parameters, but early efforts laid critical groundwork.

The limitations of isolated modeling approaches have significant clinical implications.
Mechanical models” inability to simulate neural dynamics can lead to incomplete assessments,
missing critical reflex contributions to spasticity. Neurological models’ lack of biomechanical
grounding may result in unrealistic predictions, reducing their utility for treatment planning. While
precise in quantifying reflex triggers, threshold control models require biomechanical integration to
inform functional interventions. These gaps can lead to suboptimal diagnoses and one-size-fits-all
treatments, such as generic botulinum toxin targeting or orthotic design, ultimately compromising
patient outcomes. The shift toward personalized NMS modeling addresses these challenges, offering
a comprehensive platform for simulating spastic behavior under realistic movement conditions and
supporting precision rehabilitation.

In summary, mechanical, neurological, and threshold control models have provided
foundational insights into spasticity but are constrained by their partial perspectives. Mechanical
models excel in passive assessments but miss neural dynamics; neurological models capture reflex
behavior but lack biomechanical context; threshold control models quantify reflex triggers but need
biomechanical integration. The evolution toward integrated, personalized NMS modeling bridges
these domains, enabling clinically meaningful simulations that enhance diagnostic accuracy and
therapeutic precision across diverse patient populations.

Section 2: Neuromusculoskeletal Modeling in Spasticity

NMS modeling represents a paradigm shift in spasticity research, offering a comprehensive
framework to simulate the interactions among neural control, musculoskeletal structure, and
biomechanical response in both healthy and pathological states. Unlike isolated mechanical or
neurological models, NMS approaches integrate anatomical fidelity, muscle dynamics, and reflex
behavior within a unified computational environment, making them ideally suited to address
spasticity’s multifactorial nature. These models account for the complex interplay of neural
hyperexcitability, altered muscle-tendon properties, and joint mechanics, providing a robust
platform for studying spasticity across conditions. The recent shift toward personalized NMS
simulations, which incorporate patient-specific parameters, has further enhanced their potential to
predict individual motor responses and guide clinical decisions [23,31-33]. For example, simulations
have been used to identify which muscles contribute most to gait abnormalities in cerebral palsy,
demonstrating the potential to influence decisions on targeted botulinum toxin injections or orthotic
prescriptions [26,34]. Such applications support more individualized and effective treatment
planning.

2.1. Dynamic Neuromuscular Models

Early NMS models laid the groundwork for dynamic neuromuscular simulations, focusing on
reflex responses and intrinsic muscle properties during limb motion. He et al. (1997) [19] developed
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one of the first models to incorporate reflex thresholds and gain parameters in pendulum test
simulations, capturing the abnormal oscillations characteristic of spastic limbs. These early efforts
demonstrated the feasibility of combining biomechanics with neural feedback in a closed-loop
system, setting the stage for more sophisticated models.

Subsequent advancements by Fee and Foulds (2004) [15] introduced velocity-dependent
feedback mechanisms to simulate muscle responses to rapid stretch, a defining feature of spasticity.
These models replicated the dynamic behavior of spastic muscles during clinical assessments, such
as the sudden “catch” observed in the Tardieu Scale. More recent work by Koo and Mak (2006) [21]
and Falisse et al. (2018) [35] expanded this architecture to include proprioceptive inputs from muscle
spindles and Golgi tendon organs, enabling simulations of both excitatory and inhibitory influences
on muscle activation. These additions improved the realism of simulated behaviors, allowing models
to reproduce nuanced spastic responses under varying movement speeds and joint configurations.

Modern dynamic neuromuscular models emphasize personalization, incorporating subject-
specific muscle geometry, activation profiles, and reflex characteristics. For example, a personalized
model for a stroke survivor might simulate how heightened reflex sensitivity in the biceps affects
elbow flexion during reaching tasks, guiding targeted interventions like botulinum toxin injections.
By embedding reflex pathways within the context of muscle-tendon mechanics and segmental inertia,
these models achieve greater anatomical and physiological fidelity. This integration is critical, as
reflex responses depend not only on neural thresholds but also on the instantaneous length and
velocity of the muscle-tendon unit, which are influenced by joint kinematics, external forces, and the
muscle’s own force-length-velocity properties, and potentially its force-generating state, as recent
evidence suggests muscle spindle firing can be strongly correlated with muscle force (e.g., [36]).

The clinical relevance of dynamic neuromuscular models lies in their ability to bridge theoretical
constructs and practical applications. These models support diagnostics by quantifying reflex
hyperexcitability, aid treatment planning by predicting intervention outcomes, and facilitate outcome
prediction by simulating functional improvements. For instance, a model might predict how
reducing reflex gain through pharmacological intervention affects gait symmetry in CP, informing
dosage adjustments. As personalization techniques advance, these models are becoming
indispensable tools for personalized rehabilitation, offering tailored insights into spasticity
assessment and management across diverse patient populations.

2.2. Physics-Based Simulations

Physics-based simulations have significantly enhanced the fidelity of NMS modeling, enabling
accurate representations of muscle and joint behavior under physiological conditions. These models
leverage fundamental principles, such as Newton-Euler equations of motion, muscle activation-
contraction dynamics, tissue constitutive laws, force balance, torque generation, and material
deformation, to simulate spastic responses across a range of joint configurations, movement speeds,
and loading conditions. Unlike empirical or heuristic models, physics-based approaches are
inherently adaptable, making them ideal for simulating complex functional tasks like walking,
reaching, or postural transitions.

Falisse et al. (2020) [23] utilized personalized physics-based models to simulate crouch gait in
children with CP, revealing that altered muscle-tendon properties, such as reduced compliance or
excessive passive stiffness, often contribute more to functional impairments than spasticity alone.
These insights help clinicians differentiate neural and mechanical contributors to abnormal
movement, guiding decisions about interventions like tendon lengthening or orthotic support. Van
der Krogt et al. (2016) [34] employed subject-specific neuromusculoskeletal simulations of
instrumented hamstring stretch tests in children with CP, enabling the separation of neural
contributions (spasticity) from mechanical factors (contracture-related stiffness) in torque responses.

A cornerstone of physics-based NMS modeling is the ability to quantify joint impedance, which
encompasses stiffness (resistance to displacement) and damping (resistance to velocity). These
metrics provide objective measures of spasticity’s mechanical impact, surpassing the subjectivity of
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clinical scales like MAS. Joint stiffness and damping are calculated using partial derivatives of muscle
force in relation to muscle length and velocity, respectively, offering precise insights into mechanical
behavior. These are often referred to as “true” stiffness and damping, as they are derived from first
principles, isolating mechanical contributions from neural activation. Specifically, ‘true’ stiffness and
damping, obtained from the partial derivatives of muscle force concerning muscle-tendon unit
(MTU) length and velocity at a given level of muscle activation, capture the intrinsic mechanical
properties and their contribution to joint torque. In contrast, “quasi-stiffness” and “quasi-damping”
are empirical approximations derived from joint angle-torque relationships during movement, which
may conflate neural and mechanical effects, reducing specificity. For example, quasi-stiffness might
overestimate resistance by including reflex-driven torque, while true stiffness focuses solely on
passive and active intrinsic muscle-tendon properties at a specific activation state.

Joint Stiffness

Joint stiffness and damping quantify the resistance of spastic muscles to stretch and movement,
critical for understanding dynamic impairments. Stiffness reflects resistance to displacement (e.g.,
muscle lengthening), while damping reflects resistance to velocity (e.g., rapid joint motion). These
metrics, derived from muscle-tendon forces and joint kinematics, provide objective measures of
spasticity’s mechanical impact, surpassing subjective scales like MAS.

oM n
- J _ T
k;=-— 50 where M —ngFi (1)
J i=1
Carrying out the partial derivative and employing the chain rule for differentiation leads to
n [ or. orr
k== EE" k" == )
e %
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if the muscle model is assumed to have noncompliant tendon [37-39], tendon stiffness
approaches infinity, and MT stiffness will become equal to the muscle stiffness, kiMT = kiM , in which

case it can be formed analytically [40]. Assuming a noncompliant tendon (infinite stiffness) simplifies
calculations, though in spasticity, tendon compliance may contribute significantly to joint resistance.
In the above equations, k; is stiffness of jointj, M isjoint moment, 6 isjoint angle, r is the moment

FMT

arm of muscle-tendon (MT) unit i about joint j, is force of the muscle-tendon unit.

Joint Damping
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representing the damping of the muscle-tendon unit, can be calculated analytically, similar to the
stiffness case, if the tendon is assumed to be noncompliant.

Quasi-Stiffness and Damping

k __ M, (10)
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M, (11)
¢; uasi =- A
J-q de/

These equations enable dynamic estimation of joint impedance across tasks, speeds, and muscle
activation states, capturing spasticity’s variable presentation. For instance, a model might quantify
increased knee stiffness in a CP patient during stair climbing, informing orthotic adjustments.
Complementing these mechanical metrics, neural metrics like TSRT and DSRT, introduced earlier as
measures of reflex thresholds, quantify the joint angle and velocity at which stretch-induced muscle
activation occurs. TSRT represents the tonic threshold for reflex activation during slow stretches,
while DSRT captures dynamic thresholds during rapid movements, both critical for understanding
spasticity’s neural drivers. By integrating TSRT and DSRT with these biomechanically derived
impedance metrics, NMS models provide a comprehensive simulation of spasticity, accounting for
both intrinsic mechanical changes (e.g., increased passive muscle fiber stiffness, altered tendon
properties) and neurophysiological (reflex thresholds) contributors.

2.3. Clinical Applications

Translation of NMS modeling into clinical practice is an emerging area with growing interest
and early-stage implementation. Personalized simulations are increasingly supporting assessment,
intervention planning, and treatment monitoring, particularly in research settings and pilot clinical
applications (e.g., [17,35]). These models offer objective, quantitative measures of spasticity-related
impairments, surpassing the limitations of subjective scales like MAS and providing clinicians with
actionable insights.

Ang et al. (2018) [17] developed an upper limb model that combined motion capture data with
surface electromyography (sEMG) to estimate muscle activation patterns in stroke survivors. By
comparing simulated results with clinical spasticity scores, they demonstrated that NMS modeling
could produce precise motor dysfunction measures, such as abnormal co-contraction during
reaching, that align with but exceed traditional scales’ diagnostic resolution. sSEMG has proven
particularly valuable for validating reflex thresholds like the Tonic Stretch Reflex Threshold (TSRT)
and Dynamic Stretch Reflex Threshold (DSRT), which were originally conceptualized by Levin and
Feldman (1994) [24] and further developed in later methodological and clinical studies ([25,41,42]).
These approaches quantify the joint angle and velocity at which reflex activity is triggered, offering
an objective means of assessing neural hyperexcitability beyond traditional scales. For example,
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sEMG can detect the onset of reflex activity in the quadriceps during a knee extension test, guiding
targeted interventions.

Other laboratory measurements enhance the objectivity of NMS models. Kinematic data from
inertial measurement units (IMUs) and electrogoniometers capture joint motion in real time, while
torque measurements from dynamometers quantify resistance during both passive and active
movements ([28]). Advanced imaging techniques, such as magnetic resonance imaging (MRI) and
ultrasound elastography, provide detailed insights into muscle stiffness, cross-sectional area, and
tissue composition. For example, Barber et al. (2011) [43] combined ultrasound and dynamometer
assessments to show that young adults with spastic cerebral palsy exhibit significantly increased
ankle joint stiffness, reduced gastrocnemius fascicle strain, and smaller muscle cross-sectional area
compared to typically developing individuals. Similarly, Lacourpaille et al. (2014) [44] demonstrated
the potential of ultrasound shear-wave elastography to quantify in vivo muscle stiffness, establishing
its clinical applicability for neuromuscular disorders and providing a methodological foundation for
its later use in conditions such as cerebral palsy. These objective data sources reduce reliance on
subjective clinical scales, enhance diagnostic accuracy, and support more personalized and effective
treatment planning.

NMS simulations also play a critical role in predicting intervention outcomes. Personalized
models have been used to evaluate the effects of orthopedic surgeries (e.g., tendon lengthening or
transfers) ([23]), pharmacological treatments (e.g., botulinum toxin injections) ([45]), and
rehabilitative strategies (e.g., robotic-assisted therapy) ([46,47]). For example, a model might predict
how reducing spasticity in the hamstrings affects knee extension during gait, informing decisions
about whether to pursue surgical options or alternative interventions. Indeed, quantitative metrics
derived from such models, like estimated changes in muscle viscosity or reflex thresholds (DSRT),
have been used to objectively track the efficacy of treatments like botulinum toxin, sometimes
revealing improvements not captured by subjective clinical scales ([16,27]). These simulations help
clinicians identify interventions likely to yield functional gains while avoiding those that may
exacerbate impairments due to individual biomechanical constraints, such as excessive passive
stiffness.

Spasticity manifests differently across neurological conditions, and neuromuscular simulation
models can capture these condition-specific profiles [34,48]. In stroke, increased stiffness can be
accompanied by reduced damping, leading to joint instability and exaggerated oscillations during
movement [49-51]. In contrast, cerebral palsy (CP) may involve abnormal co-contraction patterns and
excessive reflex gain, resulting in stiff, uncoordinated movements [52,53]. By modeling these profiles
accurately, clinicians can design targeted therapies that address the underlying causes of motor
dysfunction [23]. For instance, a model for a CP patient might recommend selective dorsal rhizotomy
to reduce reflex hyperexcitability [54], while a stroke model might prioritize botulinum toxin to
address reflex-mediated activity and intrinsic stiffness [55].

Wearable technologies and real-time feedback systems are further expanding the clinical
applications of NMS modeling. Closed-loop therapy environments integrate models with sensor data
(e.g., sSEMG, kinematics, forces) to track spastic muscle behavior and provide clinicians or robotic
devices with actionable feedback. For example, a wearable system might update a model in real time
during a gait training session, adjusting robotic assistance to optimize muscle activation patterns
using frameworks such as CEINMS-RT [13]. While still largely in the research phase, this level of
personalization shows promise for accelerating rehabilitation, reducing clinician workload, and
enhancing patient engagement by providing immediate, task-specific feedback.

Emerging joint impedance formulations, derived from personalized simulations, offer clinicians
a new class of quantitative biomarkers. These metrics, dynamic stiffness and damping estimates,
supplement qualitative assessments like MAS, providing continuous, task-relevant measures of
spasticity that reflect both neural and mechanical contributions. For instance, impedance metrics can
quantify how spasticity affects elbow flexion during a reaching task, guiding the design of assistive
devices or therapy protocols. By embedding these formulations within NMS frameworks, clinicians
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gain access to high-resolution, interpretable metrics that support real-time decision-making and long-
term treatment planning, ultimately improving patient outcomes.

Section 3: Comparing and Evaluating Models

As spasticity models grow in complexity and diversity, a rigorous framework for comparison
and evaluation is essential to assess their utility and guide future development. Models range from
simple mechanical analogs to sophisticated, personalized NMS simulations, each judged by their
fidelity to real-world phenomena, predictive accuracy, clinical usability, and scalability across
populations. This section reviews the primary criteria for evaluating spasticity models, explores how
NMS models address these benchmarks, and discusses the implications of current limitations for
patient care. A summary comparison table (Table 3) is provided to highlight key characteristics,
strengths, and limitations of each modeling approach.

Table 3. Summary Comparison of Spasticity Modeling Approaches.

Clinical Example
Model Type Key Features Strengths Limitations . gens . p.
Applicability Applications
Simple to Pendulum
. . p Does not model Passive tests for
Spring-damper implement; .
. . . neural dynamics; assessments, elbow
Mechanical analogs, passive effective for . .
. . ) . limited to low- e.g., pendulum stiffness
tissue modeling capturing passive .
. velocity tasks tests
stiffness
Lacks Identifying
Simulates neural biomechanical reflex
Reflex pathways, oL . Understanding . .
. . contributions; realism; often triggers in
Neurological neural gain, . . reflex
useful for studying population- s stroke
feedback delays hyperexcitability
reflexes averaged
parameters
uantifies reflex Requires
TSRT/DSRT reflex Q . . q . Botulinum toxin Optimizing
triggers; biomechanical . o
Threshold thresholds based . . . . targeting; injection
.. applicable during integration for . L
Control on joint . spasticity sites in CP
. passive task-level L
angle/velocity . . quantification
movements simulation
Often low- Simulated Modelin,
Combines neural Simulates reflex- . . . &
. . . dimensional; not resistance elbow catch
Hybrid and mechanical mechanical . .. .
. . fully during clinical ~ in stroke
elements Interactions .
personalized tasks
Diagnosis
Patient-specific =~ High anatomical Computationally & ’ Gait
. A . . . treatment L
Personalized anatomy, EMG, fidelity; predicts intensive; lannin optimization
NMS multiscale functional requires technical P & in CP
. . outcome
modeling outcomes expertise L
prediction

3.1. Metrics for Evaluation

The primary goal of spasticity models is to accurately replicate clinical and experimental
observations, encompassing passive stretch responses, joint stiffness profiles, and complex dynamic
behaviors like gait deviations, co-contractions, and clonus. A key benchmark is the correlation
between model outputs and experimental data, particularly EMG activity, joint torques, and
kinematic trajectories. Falisse et al. (2018, 2020) [23,35] demonstrated strong concordance between
simulated and observed EMG patterns in CP patients during passive limb movement and gait,
highlighting the importance of neural feedback mechanisms in achieving realistic activation timing.
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Similarly, torque measurements from dynamometers and kinematic data from IMUs validate model
accuracy, ensuring simulations reflect real-world spastic responses across tasks like walking or
reaching.

Given the significant inter-individual variability in spasticity presentation, parameter sensitivity
and robustness are crucial for clinical applicability. Factors such as lesion location, severity, age,
muscle tone, and activity levels influence spastic behavior, requiring models to handle variations in
reflex gain, passive muscle stiffness, tendon slack length, and activation thresholds. Sensitivity
analyses, such as those by Kamper et al. (2001) [30], reveal how small changes in input parameters
can significantly affect model outputs, underscoring the need for accurate, individualized calibration.
For example, a model for a pediatric CP patient must account for developmental changes in muscle
architecture, while a stroke model must reflect age-related declines in neural control.

Scalability and generalizability pose additional challenges, particularly for early models
focusing on single joints or limbs. Modern NMS models have progressed in scaling up to simulate
full-body movement across diverse tasks, such as sit-to-stand transitions or stair climbing. However,
generalizability depends on diverse anatomical datasets and normative biomechanical parameters.
Population-specific differences, in muscle architecture (e.g., fiber lengths, pennation angles,
physiological cross-sectional areas), spasticity patterns, or neural compensation strategies, must be
accounted for to ensure clinical utility across pediatric and adult cohorts, and different neurological
diagnoses. Personalized NMS models, built around patient-specific data from motion capture, EMG,
and MR, offer a promising solution, providing faithful representations of individual spastic behavior
and intervention responses.

3.2. Integration of Neural and Biomechanical Components

The most effective spasticity models integrate neural dynamics and biomechanical properties
into a cohesive framework, reflecting the physiological reality of spastic movement. On the neural
side, features like TSRT, DSRT, feedback delays, and excitatory/inhibitory balance are essential for
simulating velocity-dependent behaviors. For instance, Falisse et al. (2018) [35] showed that
incorporating proprioceptive feedback improves the reproduction of clinically observed EMG
activation patterns, particularly for exaggerated stretch reflexes and clonus in spastic muscles. These
neural elements capture the dynamic interplay of reflex pathways and motor control, which is critical
for understanding spasticity’s neural origins.

An accurate representation of muscle-tendon stiffness (both active and passive components),
joint damping, and passive resistance is equally important biomechanically. Advances in
personalized simulation enable subject-specific estimation of these properties, moving beyond
generic approximations to clinically meaningful biomarkers. Impedance modeling, which defines
joint stiffness and damping as context-sensitive, time-varying quantities, has emerged as a powerful
method for quantifying spastic behavior during dynamic tasks. Unlike traditional quasi-stiffness
metrics, NMS-based formulations isolate mechanical contributions from neural activation, providing
interpretable measures of intrinsic muscle and joint properties.

Reflex threshold metrics, such as TSRT and DSRT complement these biomechanical measures,
offering a neural perspective on spasticity. Derived from EMG and kinematic data during passive
movement, these thresholds quantify the onset of reflex activity, providing insights into altered
neural control strategies. When integrated into NMS models, they enhance simulation fidelity,
enabling accurate predictions of how spasticity interacts with joint position, speed, and mechanical
loading. For instance, a model incorporating TSRT might simulate how reflex hyperexcitability
affects ankle dorsiflexion in a person with CP, guiding surgical or pharmacological interventions.

Integrating neural and biomechanical components in personalized NMS models represents a
significant advancement, enabling high-fidelity simulations that reflect the full spectrum of
physiological processes underlying spasticity. These models support a multidimensional
understanding of spastic behavior, facilitating precise diagnosis and tailored treatment planning
across diverse clinical scenarios.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1608.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 August 2025 d0i:10.20944/preprints202508.1608.v1

12 of 20

3.3. Limitations and Validation Challenges

Despite their promise, spasticity models face several limitations that constrain their widespread
adoption, particularly in clinical settings. These shortcomings directly impact patient care, diagnosis,
and treatment, perpetuating reliance on subjective assessments and limiting therapeutic efficacy.

Computational complexity is a major barrier to real-time applications. High-fidelity NMS
models, incorporating multiscale muscle properties (e.g., Hill-type models with detailed force-
length-velocity characteristics, or even fiber-level models), neural dynamics, and finite element
representations, are resource-intensive, requiring significant computational power and time. This
computational demand limits their use in fast-paced clinical environments, where timely decision-
making is critical. In the absence of accessible real-time tools, clinicians must often rely on coarse,
subjective measures like the MAS, which may not accurately differentiate between neural and
mechanical contributors to spasticity. For example, two patients may receive similar MAS scores
despite having different underlying impairments, such as reflex hyperexcitability in one and
increased passive stiffness in the other, leading to mismatched interventions, such as suboptimal
botulinum toxin targeting. Surrogate modeling and model-order reduction techniques are being
explored to approximate key model outputs more efficiently, but further refinement and validation
are necessary before these approaches can support real-time clinical decision-making.

Limited sample diversity in validation studies restricts model generalizability. Many
simulations are based on small, homogeneous datasets from single clinical centers or specific
subpopulations, limiting applicability across broader demographics. This lack of diversity can result
in models that fail to account for variations in spasticity presentation or underlying biomechanical
differences due to age, sex, or pathology, potentially leading to inaccurate characterization of
impairments or suboptimal treatment choices for underrepresented groups, such as pediatric patients
or those with atypical etiologies like SCI. Multicenter collaborations and open-access repositories are
essential to expand validation efforts, ensuring robust and inclusive models across age, sex, and
condition.

The usability gap between research-grade models and clinical practice is another significant
hurdle. While NMS modeling platforms are becoming more sophisticated, they often require
technical expertise in coding, musculoskeletal anatomy, and numerical optimization, making them
inaccessible to most clinicians. This gap prevents the adoption of objective, quantitative measures,
limiting the accuracy and consistency of clinical assessments and treatment decisions. For instance,
without user-friendly tools, clinicians cannot leverage NMS models to predict surgical outcomes or
tailor botulinum toxin injections, potentially exacerbating motor impairments. Developing intuitive
interfaces, automated data integration pipelines, and seamless sensor integration is critical to
bridging this gap and enhancing clinical utility.

Regulatory and standardization issues further complicate clinical adoption. For computational
models to be accepted as medical decision-support tools, they must undergo rigorous validation
against gold-standard clinical measures and comply with regulatory guidelines. The lack of
standardized benchmarks hinders model comparison and clinical trust, delaying integration into
practice. This regulatory gap perpetuates reliance on subjective scales, reducing treatment
effectiveness. For example, without standardized evaluation criteria, models cannot reliably predict
functional outcomes, limiting their use in treatment planning. Establishing benchmarks, such as
agreement with MAS or Tardieu scores, task-specific functional outcomes, and sensitivity to
therapeutic change, is essential for regulatory approval and clinical acceptance.

These limitations collectively impact patient care by hindering the adoption of objective,
simulation-informed tools. Subjective assessments like MAS fail to distinguish between neural and
biomechanical factors, leading to suboptimal treatment decisions, such as inappropriate surgical
timing or orthotic misdesign, which can reduce therapeutic effectiveness and quality of life. Similarly,
gaps in computational efficiency, validation diversity, usability, and standardization hinder precise
diagnosis and targeted treatment, delaying recovery and exacerbating motor impairments.
Addressing these challenges requires interdisciplinary collaboration, technological innovation, and
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large-scale validation efforts to translate NMS models into essential components of modern spasticity
care.

Section 4: Gaps and Future Directions

Despite advancements, several critical gaps in spasticity modeling remain and must be
addressed to fully realize its clinical and research potential. Personalized NMS modeling has made
meaningful progress in simulating spasticity and supporting early-stage clinical assessments.
However, its broader adoption as a routine clinical tool will require further improvements in model
fidelity, data acquisition workflows, computational efficiency, interdisciplinary collaboration, and
regulatory validation. This section identifies the most pressing limitations, examines their
implications for diagnosis and treatment, and proposes a roadmap to advance the field toward
broader clinical impact.

4.1. Personalized Modeling

Personalized NMS modeling represents a transformative approach that tailors simulations to
individual neuromechanical characteristics, thereby improving assessment accuracy and
intervention outcomes. A key priority is integrating advanced imaging data, such as MR, diffusion
tensor imaging (DTI), and ultrasound elastography, to inform anatomical and physiological
parameters. These techniques provide high-resolution insights into muscle architecture (e.g.,
volumes, optimal fiber lengths, pennation angles), tissue composition (e.g., fat infiltration, fibrosis),
passive mechanical properties (stiffness from elastography), and neural tract integrity, enabling
precise calibration of variables like muscle-tendon length, cross-sectional area, and stiffness. For
example, DTI can map neural connectivity in stroke patients, refining models of reflex
hyperexcitability, while ultrasound elastography quantifies muscle stiffness in CP, validating
impedance parameters and informing passive force components of muscle models.

Real-time integration of wearable sensor data is another critical area. Wearable technologies that
capture sEMG, joint kinematics, and ground reaction forces enable dynamic model updates that
support adaptive rehabilitation strategies. For instance, a wearable system might track sEMG signals
during gait training, updating a model to optimize robotic assistance in real time. Machine learning
algorithms can enhance this process by identifying trends in sensor data, predicting spasticity flare-
ups, or suggesting therapy adjustments. These capabilities are essential for continuous monitoring
and personalized intervention. However, gaps in sensor integration and data processing risk
incomplete personalization, leading to suboptimal outcomes, such as ineffective orthotic adjustments
or pharmacological dosing.

Reflex threshold-based modeling, such as TSRT and DSRT, further enriches personalization by
quantifying patient-specific reflex dynamics. These thresholds, derived from EMG and kinematic
data, define the onset of stretch reflexes on a per-muscle basis, enabling simulations that reflect
individual neural profiles. Embedding these thresholds within NMS models enhances fidelity,
supporting multidimensional spasticity assessments. Investigating these thresholds during both
passive and active movements can reveal crucial differences, as volitional effort can modulate reflex
sensitivity and the functional range of motion. For example, a model incorporating DSRT might
simulate how reflex hyperexcitability affects wrist extension in a stroke patient, guiding targeted
botulinum toxin injections. Furthermore, model refinements could also explicitly account for the
influence of the initial stretch level or joint position at the onset of movement, as this has been shown
to modulate spastic reflex responses but is not always incorporated into current models. Addressing
gaps in imaging, sensor integration, and comprehensive reflex characterization is crucial to ensure
accurate diagnosis and tailored treatments, maximizing therapeutic effectiveness.
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4.2. Bridging Research and Clinical Practice

The usability gap between research-grade NMS models and clinical practice limits their impact
on patient care. These models have the potential to revolutionize spasticity management by
improving diagnostic accuracy, predicting intervention outcomes, and tracking therapeutic progress.
For instance, NMS models can differentiate neural and biomechanical contributions to spasticity,
enabling precise diagnoses that prevent the misclassification of contractures (a primarily mechanical
limitation) as spasticity (a neural-driven phenomenon with mechanical consequences). They can also
predict the outcomes of interventions like tendon lengthening or botulinum toxin injections, ensuring
treatments are tailored to individual needs. Additionally, quantitative metrics from models can
objectively monitor changes in spasticity severity, guiding therapy adjustments and enhancing long-
term outcomes.

However, current shortcomings, reliance on subjective scales like MAS, computational
complexity, and limited clinical usability, hinder these benefits. Without objective tools, clinicians
may struggle to distinguish reflex-driven hyperactivity from passive stiffness, risking inappropriate
treatments such as mistargeted botulinum toxin injections or ineffective orthotic prescriptions. These
errors can exacerbate motor impairments, delay recovery, and diminish quality of life. Similarly,
complex models requiring technical expertise limit clinicians’ ability to utilize objective tools,
perpetuating reliance on less precise methods.

To enhance the clinical utility of NMS models, it is critical to balance their technical complexity
with accessibility for clinicians who may lack expertise in computational modeling or biomechanics.
The current technical focus of NMS models, while essential for researchers, risks alienating clinicians,
limiting adoption in routine practice. Incorporating clinical examples and case studies can illustrate
how models translate to actionable insights, making their value tangible. For instance, a personalized
NMS model for a 10-year-old with cerebral palsy (CP) might reveal that heightened gastrocnemius
reflex sensitivity contributes to crouch gait. By simulating the effects of botulinum toxin injections,
the model could predict optimal injection sites and dosages, reducing knee flexion by 15° and
improving gait symmetry, outcomes not discernible from subjective scales like the Modified
Ashworth Scale (MAS) alone. Such vignettes demonstrate how NMS models can guide precise
interventions, enhancing clinician confidence in their application.

Addressing computational complexity and usability also requires practical solutions, such as
developing user-friendly platforms or prototypes tailored to clinical workflows. Existing tools, like
simplified interfaces in OpenSim or prototype dashboards for the CEINMS-RT framework, offer
promising starting points. These platforms could integrate automated data processing (e.g., EMG,
motion capture) and provide intuitive visualizations, such as predicted joint torque profiles or reflex
threshold maps, to support real-time decision-making. For example, a clinician-facing dashboard
might display simulated outcomes of botulinum toxin injections, highlighting target muscles and
expected functional gains, while also suggesting complementary therapy strategies to maximize
effectiveness. By prioritizing intuitive design and automated workflows, these tools can reduce the
technical barrier, enabling clinicians to leverage NMS models for precise diagnosis, intervention
planning, and treatment monitoring.

Simplified computational frameworks are needed to retain predictive power while reducing
computational demands. Surrogate modeling offers a viable solution, where reduced-order models
are trained on outputs from complex simulations. These models approximate key biomechanical and
neural parameters with lower computational requirements, making them suitable for integrating
wearable devices or low-latency clinical systems. Machine learning techniques, such as supervised
regression and neural networks, can further enhance surrogate models by refining predictions based
on real-time sensor data, enabling adaptive treatment adjustments.

User interface design is equally critical. Current modeling tools require expertise in coding and
biomechanics, which limits their use in routine clinical care. Developing intuitive, clinician-facing
applications, with simplified data entry, automated integration of patient-specific data (e.g., EMG,
motion capture, imaging), interactive visualization dashboards, and decision-support modules, will
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lower adoption barriers. For example, a dashboard might display simulated outcomes of botulinum
toxin injections, helping clinicians not only select optimal muscles for injection but also personalize
accompanying therapy strategies. Since the effectiveness of botulinum toxin depends heavily on the
frequency, timing, and type of rehabilitation that follows [56-62], future extensions of NMS modeling
could support more integrated planning by incorporating therapy parameters alongside
pharmacological interventions. Interdisciplinary collaboration among engineers, clinicians,
neuroscientists, and data scientists is essential to define use cases, establish performance benchmarks,
and co-develop tools that meet clinical needs to ensure usability and sustainability in real-world
workflows.

4.3. Emerging Technologies

Emerging technologies are poised to reshape spasticity modeling, enhancing accuracy,
responsiveness, and scalability of personalized NMS approaches. Machine learning and Al offer
powerful tools for personalization and automation. Supervised learning models can estimate
parameters from sparse datasets, while reinforcement learning can optimize intervention strategies
in silico before clinical application. For example, a predictive model trained on longitudinal patient
data might anticipate spasticity changes, enabling proactive therapy adjustments to prevent
functional decline.

Multiscale modeling represents another frontier, bridging microscopic processes (e.g.,
sarcomere dynamics, cross-bridge cycling, neural firing patterns) and macroscopic outcomes (e.g.,
joint movement, gait). These models capture interactions across biological scales, providing insights
into how cellular abnormalities propagate to affect motor function. For instance, a multiscale model
might simulate how altered neural firing in CP contributes to muscle co-contraction, informing
targeted pharmacological therapies. While computationally complex, multiscale approaches enhance
the biological realism of NMS models, supporting precision medicine.

Augmented Reality (AR) and Virtual Reality (VR) technologies complement NMS modeling by
delivering immersive, context-specific motor tasks. Combined with personalized models, AR/VR
environments can simulate patient-specific movement challenges, offering therapists real-time
insights into motor deficits and adaptive strategies. For example, a VR system might simulate a CP
patient’s gait, allowing therapists to test orthotic adjustments virtually. These technologies are
particularly valuable in pediatric and post-stroke rehabilitation, where engagement and task realism
are critical to therapy success.

4.4. Validation and Standardization Efforts

Validation and standardization are critical for clinical adoption, ensuring models are robust,
reliable, and trusted by clinicians and regulators. Limited validation diversity raises the risk of
inaccurate characterizations and poorly tailored interventions for underrepresented groups, such as
pediatric patients or those with SCI. Large-scale validation studies, testing NMS models across
diverse populations with varying etiologies, functional levels, and demographics, are essential.
Open-access datasets and multicenter collaborations will facilitate the sample sizes and heterogeneity
needed for robust validation.

Standardized benchmarks must be established to evaluate model performance, including
agreement with clinical scales (e.g., MAS, Tardieu), task-specific functional outcomes (e.g., changes
in gait speed, joint range of motion, or work done at a joint), responsiveness to intervention, and
computational efficiency. Standardized movement tasks, such as instrumented gait, reaching, or sit-
to-stand trials, can enable cross-study comparisons and inform best practices. For example, a
benchmark might require models to predict changes in gait symmetry post-intervention, ensuring
clinical relevance.

Regulatory compliance is equally crucial as computational models progress toward
classification as medical devices or decision-support systems. Adherence to Food and Drug
Administration (FDA) and European Medicines Agency (EMA) guidelines mandates transparent
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reporting of model assumptions, parameter ranges, validation procedures, and limitations. The lack
of regulatory validation impedes the integration of objective tools, obstructing accurate diagnosis and
targeted treatment. Coordinated efforts among developers, clinicians, and regulators are essential to
expedite the pathway from simulation to clinical impact, ensuring models promote equitable care
across diverse populations.

4.5. Key Clinical Takeaways

Neuromusculoskeletal modeling offers transformative potential for spasticity management by
providing objective, quantitative tools to enhance diagnostic accuracy, optimize interventions, and
improve patient outcomes. Below are key takeaways for clinicians:

Enhanced Diagnostic Precision: NMS models integrate patient-specific data (e.g., EMG,
kinematics, imaging) to differentiate neural (e.g., reflex hyperexcitability) from biomechanical (e.g.,
passive muscle stiffness) contributions to spasticity. This enables precise identification of impairment

mechanisms, reducing misdiagnoses, such as mistaking contractures for spasticity, compared to
subjective scales like the Modified Ashworth Scale (MAS).
Personalized Intervention Planning: Simulations predict individual responses to treatments

such as orthotic adjustments, botulinum toxin injections, or orthopedic surgeries. For example, a
model might identify optimal adjustments in gastrocnemius muscle-tendon properties to reduce
crouch gait in cerebral palsy (CP), leading to a more upright posture and measurable improvements
in knee extension, thereby guiding targeted therapy and minimizing ineffective interventions [23].
Objective Outcome Monitoring: Quantitative biomarkers, such as joint impedance (stiffness and
damping) or reflex thresholds (TSRT, DSRT), enable continuous, task-specific assessment of spasticity

severity and treatment efficacy. These metrics surpass the granularity of traditional scales,
supporting data-driven adjustments to pharmacological or rehabilitative strategies.

Reduced Healthcare Burden: By optimizing interventions and preventing mistargeted
treatments, NMS modeling can reduce complications (e.g., contractures, falls), lower healthcare
utilization, and enhance patient quality of life through improved mobility and independence.

Future Accessibility: Emerging clinician-friendly platforms, integrating automated data
processing and intuitive dashboards, promise to make NMS modeling accessible in routine practice.
These tools will provide real-time insights, such as predicted functional gains from interventions,

empowering clinicians to make informed decisions without requiring computational expertise.

By adopting NMS modeling, clinicians can transition from subjective assessments to simulation-
informed, patient-centered care, ultimately improving therapeutic precision and outcomes across
conditions like CP, stroke, and spinal cord injury.

Conclusions

Spasticity modeling has undergone a remarkable evolution, progressing from simplified
representations of passive resistance to sophisticated, integrative NMS frameworks that simulate the
dynamic interplay of neural control, muscle-tendon mechanics, and joint behavior. Personalized
NMS models represent a pinnacle of this evolution, capturing the multifactorial nature of spasticity
and supporting a paradigm shift toward objective, simulation-informed clinical decision-making.
These models enable detailed investigations into reflex thresholds, muscle stiffness, joint damping,
and proprioceptive feedback, facilitating precise diagnoses and tailored interventions across
conditions like CP, brain injury, stroke, and SCI.

The potential of personalized NMS modeling is vast, offering predictive simulations that guide
intervention outcomes, such as orthotic adjustments, botulinum toxin injections, or tendon surgeries.
Integrated with real-time data from wearable sensors and imaging systems, these models support
adaptive rehabilitation strategies that respond dynamically to changes in a patient’s condition,
enhancing therapeutic effectiveness. By providing quantitative biomarkers, such as impedance-based
stiffness and damping or estimates of individual muscle contributions to pathological movement,
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NMS models surpass the limitations of subjective scales like MAS, offering clinicians high-resolution,
task-specific metrics for real-time decision-making and long-term planning.

Despite these advances, significant challenges remain. High computational demands continue
to hinder real-time use, delaying the development of scalable diagnostic tools. Inadequate validation
across diverse populations limits generalizability, increasing the risk of overlooking condition-
specific or demographic nuances. The disconnect between research-grade tools and clinical
workflows slows adoption, while the absence of standardized benchmarks and regulatory validation
impedes formal integration. As a result, clinicians remain dependent on coarse, subjective
assessments, which can obscure root impairments, delay effective intervention, and ultimately
diminish patient quality of life.

The future of spasticity modeling lies in scalable, clinically accessible, and biologically grounded
frameworks. Emerging technologies, machine learning, multiscale modeling, and AR/VR
environments, promise to expand model reach while reducing barriers to adoption. Open-source
tools, shared datasets, and standardized benchmarks will foster trust among clinicians and
regulators, ensuring models are robust and inclusive. Interdisciplinary collaboration among
engineers, clinicians, neuroscientists, and data scientists is essential to translate these advancements
into practice, ensuring tools meet clinical needs and regulatory standards.

In summary, personalized NMS modeling has the potential to fundamentally reshape spasticity
management by uniting biomechanics, neuroscience, and computational modeling to deliver precise,
patient-centered care. By addressing current gaps and leveraging emerging technologies, the field
can advance toward a future where objective, simulation-informed tools are standard in clinical
practice, thereby improving diagnostic accuracy, therapeutic precision, and quality of life for
individuals with spastic motor impairments. Continued INNOVATION, collaboration, and
commitment to inclusivity will be critical to realizing this transformative vision.
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Abbreviations

The following abbreviations are used in this manuscript:

NMS Neuromusculoskeletal

MAS Modified Ashworth Scale
TSRT Tonic Stretch Reflex Threshold
DSRT Dynamic Stretch Reflex Threshold
EMG Electromyography

MU Inertial Measurement Unit
MRI Magnetic Resonance Imaging
DTI Diffusion Tensor Imaging

Al Artificial Intelligence

AR Augmented Reality

VR Virtual Reality

cp Cerebral Palsy

SCI Spinal Cord Injury

MS Multiple Sclerosis
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