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Abstract

Personalized neurological care in hospital settings leverages artificial intelligence (Al) to enhance the
quantification of structural and functional biomarkers using magnetic resonance imaging (MRI) and
electrophysiological techniques (EEG, MEG, evoked potentials). This comprehensive review
examines magnetic resonance imaging (MRI) and electrophysiological techniques (EEG, MEG,
evoked potentials) across multiple sclerosis (MS), spinal cord injury (SCI), Alzheimer’s disease (AD),
and Parkinson’s disease (PD). MRI delivers superior spatial resolution (0.5-1 mm) for anatomical
quantification through standardized protocols and automated tools (FreeSurfer, FSL), enabling
reproducible measurement of lesion volume, cortical thinning, and microstructural integrity.
Electrophysiological methods provide millisecond temporal resolution for functional assessment but
face quantification challenges from signal noise and processing complexity. This represents the first
systematic comparison of MRI and electrophysiological quantification in CNS disorders conducted
under PRISMA 2020 guidelines, synthesizing evidence from 417 included studies identified through
rigorous screening of 12,543 records across 15 years of research. Our integrated analysis reveals MRI's
advantage in quantification reproducibility (ICC = 0.92 vs. EEG’s 0.76) and diagnostic yield for
structural pathologies (70.6% vs. 0% in first seizures), while electrophysiology excels in dynamic
monitoring (VEP delays in MS; beta oscillations in PD). Critically, these modalities demonstrate
complementarity: Combined EEG-fMRI improves epileptogenic zone localization by 32%, and Al-
driven fusion achieves 94% accuracy in AD classification. The path forward requires harmonized
quantification standards, portable hybrid technologies, and validated multimodal biomarkers to
advance personalized neurology.

Keywords: quantitative MRI; quantitative EEG; neuroimaging biomarkers; electrophysiological
monitoring; multimodal integration; hospital-based

1. Introduction

The quantification of neuropathological changes represents a cornerstone in the evolving
paradigm of personalized neurology. Central nervous system (CNS) disorders —including multiple
sclerosis, Alzheimer’s disease, Parkinson’s disease, and spinal cord injuries—manifest through
complex interplays of structural degeneration and functional disruption that demand precise
measurement for diagnosis, prognostication, and therapeutic monitoring (Barkhof et al., 2021). Two
technological pillars dominate this landscape: magnetic resonance imaging (MRI) for anatomical
evaluation and electrophysiological techniques (EEG, MEG, evoked potentials) for functional
assessment. Despite their complementary potential, these modalities differ fundamentally in
quantification methodologies, standardization frameworks, and clinical translation pathways,
creating a critical knowledge gap in optimized biomarker deployment (Koutsojannis &
Chrysanthakopoulou, 2025).

MRI has revolutionized structural assessment through its unparalleled spatial resolution
(submillimeter for T1l-weighted sequences) and multiparametric capabilities. Quantitative MRI
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(QMRI) encompasses volumetric analyses, diffusion tensor imaging (DTI), functional MRI (fMRI),
and magnetic resonance spectroscopy (MRS), collectively enabling comprehensive tissue
characterization (Gibson & Monje, 2021). The advent of automated pipelines like FreeSurfer and FSL
has transformed clinical workflows, allowing reproducible quantification of hippocampal atrophy in
Alzheimer’s (Jack et al., 2018), lesion load in MS (Barkhof et al., 2021), and nigrosomal degeneration
in Parkinson’s (Schwarz et al., 2014). Standardization initiatives such as the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and MAGNIMS criteria provide robust frameworks for multicenter
consistency, yet challenges persist in accessibility, cost, and motion-related artifacts that limit real-
world implementation (Mayo Clinic, 2025).

Electrophysiological techniques offer a fundamentally different lens: the millisecond-scale
observation of neural dynamics. Electroencephalography (EEG) captures cortical electrical activity,
magnetoencephalography (MEG) records magnetic fields from neuronal currents, and evoked
potentials (EPs) measure stimulus-locked responses (Puce & Hamaldinen, 2013). These modalities
excel in detecting functional aberrations—spectral slowing in encephalopathies, interictal spikes in
epilepsy, or delayed visual evoked potentials (VEPs) in MS optic neuritis (Mele et al 2019). However,
quantification faces significant hurdles: low spatial resolution (cm-scale for EEG), vulnerability to
biological artifacts (muscle, ocular), and complex signal processing requirements that hinder
standardization (Nuwer et al., 2020). This operational dichotomy between structural and functional
quantification frames a pivotal clinical question: How can neurologists leverage these
complementary technologies to optimize personalized assessment?

The present review addresses this question through three interconnected objectives (Figure 1):

First, we conduct a systematic comparison of quantification methodologies, examining technical
foundations, standardization frameworks, and analytical workflows.

Second, we evaluate disease-specific performance across four major CNS disorders, highlighting
contexts where each modality excels or underperforms.

Finally, we synthesize emerging integration strategies—from simultaneous EEG-fMRI to
artificial intelligence (Al)-driven fusion—that promise to transcend traditional modality boundaries.

By bridging neuroimaging and neurophysiology literatures, this work aims to establish a
roadmap for next-generation quantification in personalized neurology.

2. Methods

A systematic literature review was conducted following PRISMA-S guidelines, encompassing
PubMed, IEEE Xplore, ScienceDirect, and Cochrane databases (January 2010-March 2025). Search
strings combined modality-specific terms (“quantitative MRI,” “qEEG,” “evoked potentials”),

I u

disease terms (“multiple sclerosis,” “Alzheimer’s,” “Parkinson’s,” “spinal cord injury”), and

o

methodological terms (“quantification,” “standardization,” “biomarker validation”).

Inclusion Criteria:
e Original research or meta-analyses comparing MRI and electrophysiological quantification
e Studies reporting quantitative metrics (e.g., sensitivity, ICC, AUC)
¢ Human subjects with specified CNS pathologies
e English-language publications
Exclusion Criteria:
e Animal studies
e Single-case reports
¢ Non-quantitative methodologies

Data extraction utilized a structured framework documenting:

Technical Parameters: Spatial/temporal resolution, acquisition protocols

Analytical Workflows: Preprocessing steps, software tools, computational demands
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e  Performance Metrics: Diagnostic accuracy (sensitivity/specificity), reliability (ICC), predictive
value

. Clinical Utility: Implementation barriers, accessibility, cost-effectiveness

Statistical synthesis employed narrative analysis due to methodological heterogeneity, with
evidence graded using the Oxford Centre for Evidence-Based Medicine levels.

Protocol (PRISMA-Compliant)

This systematic review followed PRISMA 2020 guidelines (Page et al., 2021). Full protocol is
available at PROSPERO (CRD420251109475).

Eligibility Criteria (PICOS Framework).

Element Inclusion Criteria Exclusion Criteria
Population Humans with MS, SCI, AD, or PD Animal studies, healthy controls
Intervention Quantitative MRI Qualitative imaging

(volumetry/DTI/fMRI/MRS)

Comparator Electrophysiology (EEG/MEG/EPs) Non-electrophysiological methods

Quantitative metrics (AUC, ICC,

Outcomes e
sensitivity)

Subjective/non-quantified measures

Study Design Original research, meta-analyses Case reports (<10 subjects), reviews

Information Sources

Databases (2010-2025): PubMed, IEEE Xplore, ScienceDirect, Cochrane
Gray Literature: ClinicalTrials.gov, WHO ICTRP, conference abstracts
Manual Search: Citation tracking of included studies

Search Strategy

We present here the PubMed Example:

sql

(

(“quantitative MRI” OR “gMRI” OR “volumetry”)

AND

(“quantitative EEG” OR “gqEEG” OR “evoked potentials”)

AND

(“multiple sclerosis” OR “Alzheimer’s” OR “Parkinson’s”)

)

NOT (“animal” OR “pediatric”)

Protocol deviations:

None

Selection Process

1. Deduplication: EndNote X20 — Rayyan

2. Screening:

0 Phase 1: Title/abstract screening (2 reviewers, k=0.82)

0 Phase 2: Full-text review (discrepancies resolved by senior author)
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Identification\nRecords
identified from:\n- Databases
(n=12,543)\n- Registers (n=42)

'

Deduplication\nRecords
removed (n=3,622)

'

Screening\nRecords screened

(n=8,921)
Excluded\nRecords excluded
(n=7,102)\nReasons:\n- Eligibility\nFull-text articles
Irrelevant (n=5,200)\n- No assessed (n=1,819)
comparator (n=1,902)

Excluded\nFull-text excluded
(n=1,402)\nReasons:\n- No
quantification (n=900)\n-
Wrong outcomes (n=502)

Included\nStudies in synthesis
(n=417)\n- MRI: 284\n- EEG:
100\n- Combined: 33

Figure 1. PRISMA 2020 flow diagram of study selection .

Data Collection & Analysis

e Extraction Form: REDCap template capturing:

o Study design, MRI/EEG protocols, quantitative outcomes
o Risk of bias (QUADAS-2 for diagnostic studies)

% Synthesis:

o Narrative synthesis by disease domain

0 Meta-analysis (RevMan 5.4) where feasible (12 <50%)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.1607.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1607.v1

5 of 14

MRI
_No-— >
i Structural Assessment o Patient Factors
Lesions/Atrophy Contraindications?
. Electrophysiol
Yoo—o P Y‘* oy
Portable EEG
/ B Yes—»
Clinical Question Functional Dynamics Patient Factors
> >
Primary Objective? Seizures/Oscillations Movement Disorder?
~ Full EEG/MEG
NoO——=»
EEG-fMRI/Al Fusion
_Yes—e»
Combined Assessment . Resources
Presurgical Planning Available?
Prioritize by
No—»

Clinical Question

Figure 2. Integrated Modality Selection Framework for CNS Disorders. This decision tree guides optimal
selection of quantitative neuro-assessment tools based on clinical priorities (structural, functional, or combined
evaluation) and patient-specific factors (contraindications, movement disorders, resource constraints). MRI
pathways (blue) dominate structural assessment, electrophysiological pathways (orange) excel in functional
dynamics, and integrated approaches (purple) combine strengths for complex cases. Icons represent modality-

specific quantification outputs.

Study Characteristics (PRISMA-Compliant Findings):
(1] Included Studies: 417 (MRI: 68%, EEG: 24%, Combined: 8%)

(Il Geographic Distribution: 78% high-income countries
Study Characteristics (PRISMA-Compliant Findings):
(1] Included Studies: 417 (MRI: 68%, EEG: 24%, Combined: 8%)

(1] Geographic Distribution: 78% high-income countries

Key Quantification Metrics:

Modality Reproducibility (ICC) Diagnostic Yield Processing Time
MRI 0.92 (0.89-0.95) 70.6% (MS lesions) 15 £ 3 min
EEG 0.76 (0.71-0.82) 89% (PD oscillations) 47 £ 12 min

3. Results

3.1. Quantification Methodologies: Divergent Foundations (Tablew 1, 2)

MRI quantification leverages physics-based signal contrasts (T1/T2 relaxation, diffusion,
susceptibility) to generate intrinsically quantitative biomarkers. Volumetric analyses measure
structural changes with high reproducibility (ICC >0.90 for hippocampal segmentation), while DTI-
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derived fractional anisotropy (FA) quantifies white matter integrity at 2-3 mm resolution (Barkhof et
al., 2021). Critically, automation through tools like FreeSurfer enables batch processing of cortical
thickness or lesion volume within 15+3 minutes per scan (Gibson & Monje, 2021). Standardized
protocols further enhance consistency: MAGNIMS criteria standardize MS lesion quantification,
while ADNI protocols harmonize hippocampal measurements across centers (Cleveland Clinic,
2025).

Electrophysiological quantification confronts greater complexity. EEG signals represent cortical
electrical dipoles attenuated by skull and scalp, requiring sophisticated preprocessing: 30-47% of
analysis time is devoted to artifact removal (ocular, muscular, environmental) before spectral
decomposition or source localization (Mele et al, 2019). Evoked potential quantification adds
temporal precision—VEP latency measures optic nerve conduction with millisecond accuracy —but
suffers from inter-lab variability in electrode placement and filtering (Sharma & Sharma, 2020). MEG
partially resolves spatial limitations (5-8 mm resolution) but remains constrained by cost and
immobility (Dinh et al., 2015). Consequently, electrophysiological reliability trails MRI (mean ICC =
0.76 vs. 0.92).

3.2. Disease-Specific Performance

Multiple Sclerosis: MRI quantification demonstrates 95% sensitivity for lesion detection using
T2/FLAIR sequences, with lesion volume correlating strongly with EDSS disability scores (r=0.82,
p<0.001) (Barkhof et al., 2021). DTI metrics (FA reduction) detect occult white matter damage months
before clinical manifestation. By contrast, VEPs quantify functional deficits in optic neuritis with 75%
sensitivity but show poor inter-session reproducibility (ICC=0.65) (van Graan & Vulliemoz, 2022).
The clinical implication is clear: MRI serves as the gold standard for diagnostic quantification, while
VEPs provide adjunctive functional insights.

Alzheimer’s Disease: MRI hippocampal volumetry achieves outstanding diagnostic accuracy
(AUC=0.91 for mild cognitive impairment conversion), with automated tools generating reports in
<20 minutes (Gauthier et al., 2019). Longitudinal quantification detects 3-5% annual atrophy rates
predictive of cognitive decline. qEEG reveals earlier functional changes —theta power increases and
alpha decreases precede structural atrophy by 6-12 months—but demonstrates lower diagnostic
specificity (AUC=0.76) (Thatcher, 2020). This temporal hierarchy suggests a biomarker sequence:
qEEG changes flag initial dysfunction, while MRI quantifies progressive neurodegeneration.

Parkinson’s Disease: MRI susceptibility-weighted imaging (SWI) quantifies nigrosome-1
degeneration with 90% sensitivity for dopaminergic loss, yet head motion during tremor
compromises 30% of scans (Schwarz et al., 2014). Electrophysiological methods circumvent this
limitation: Resting EEG beta oscillations (13-30 Hz) over sensorimotor cortex predict medication
response with 89% accuracy (Toga & Mazziotta, 2011). MEG further localizes pathological beta
synchronization to subthalamic nuclei, guiding deep brain stimulation targeting.

Spinal Cord Injury: MRI quantifies cord compression ratios and DTI-derived fractional
anisotropy correlates with ASIA motor scores (r=0.78) (Gibson & Monje, 2021, Koutsojannis &
Chrysanthakopoulou 2025). Somatosensory evoked potentials (SSEPs) provide complementary
functional data but exhibit poor signal-to-noise ratios in ICU environments, with 40% of recordings
requiring repeat acquisition (Mele et al, 2019).

3.3. Integration Paradigms and Performance

Simultaneous EEG-fMRI exemplifies synergistic quantification, combining temporal precision
(1 ms EEG) with spatial accuracy (3 mm fMRI). In epilepsy evaluation, this integration improves
epileptogenic zone localization by 32% versus unimodal assessment (Formaggio et al, 2011). For
cognitive studies, EEG-informed fMRI analysis reveals BOLD correlates of alpha desynchronization
during working memory tasks.
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Parameter

Multiple Sclerosis
(MS)

Alzheimer’s (AD)

Parkinson’s (PD)

Overall (95% CI)

Spatial Resolution

MRI: 0.7 mm (0.5—
1.0)*
EEG:** 15 mm
(10-20)

MRI: 0.5 mm (0.3—
0.8)*
EEG:** 18 mm (12—
25)

MRI: 0.6 mm (0.4—
0.9)*
EEG:** 12 mm (8-15)

MRI: 0.6 mm (0.5—
0.7)*
EEG: 15 mm (12-18)

MRI: 95% (93—

Diagnostic 97%)* MRI: 91% (88-94%)*  MRI: 90% (85-93%)  MRI: 92% (90-94%)*
Sensitivity VEPs: 75% (70— EEG: 76% (72-80%)  EEG: 89% (86-92%)*  EEG: 80% (77-83%)
80%)
MRI: 0.94 (0.91— MRI: 0.93 (0.90— MRI: 0.89 (0.85—
Reproducibility 0.97)* 0.96)* 0.93) MRI: 0.92 (0.89-0.95)*
(ICC) EEG:** 0.68 (0.62—  EEG:** 0.71 (0.65— EEG:** 0.82 (0.78—  EEG: 0.76 (0.72-0.80)
0.74) 0.77) 0.86)*

Processing Time
(min)

MRI: 14 + 2*
EEG:** 45+ 10

MRI: 16 + 3*
EEG:** 50 + 12

MRI: 15 + 4%
EEG:** 42+ 8

MRI: 15 + 3*
EEG: 47 £ 12

Al Enhancement
(AUC A%)

MRI+EEG: +28%
(25-31%)*

MRI+EEG: +18%
(15-21%)*

MRI+EEG: +22%
(19-25%)*

+23% (21-25%)*

Bold = Superior modality per disease (p<0.05); * = Statistically significant advantage (95% CI not

overlapping); ** = p<0.01 for inter-modality comparison (paired t-tests).

Al-driven fusion represents a transformative frontier: Deep learning architectures (e.g.,
convolutional neural networks) integrating MRI volumetry and qEEG spectral features achieve 94%
accuracy in Alzheimer’s classification (Martinez-Torteya A et al, 2015). Cross-modal transfer learning
further enhances performance —pretraining on MRI data improves EEG-based Parkinson’s detection
when sample sizes are limited.

A conceptual model for modality selection based on clinical context (Figure 1):

~ Structural Focus (e.g., lesion load, atrophy): Prioritize MRI
~ Functional Dynamics (e.g., seizures, network oscillations): Prioritize EEG/MEG

~+ Combined Assessment (e.g., presurgical evaluation): Employ EEG-fMRI or Al fusion

Decision nodes incorporate patient factors: MRI contraindications (e.g., implants) favor
electrophysiology; tremor states favor EEG over MRI; acute settings favor portable EEG.

4. Discussion
4.1. The Quantification Divide: Technical and Philosophical Foundations

The chasm between MRI and electrophysiological quantification extends beyond technical
specifications to epistemological distinctions. MRI quantifies the brain’s morphological substrate—
static anatomical features governed by biophysical properties measurable across spatial scales. This
engenders intrinsically quantitative biomarkers: T1 relaxation times (ms), hippocampal volumes
(mm?), or fractional anisotropy (0-1 scale) represent absolute physical properties (Barkhof et al., 2021).
Consequently, MRI benefits from physics-based standardization; a 1% change in hippocampal
volume carries equivalent meaning across Siemens or GE platforms when acquisition protocols are
harmonized (Martinez-Torteya A et al, 2015).
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Electrophysiological quantification, conversely, interprets dynamic neural processes through
bioelectrical proxies. EEG microvolts reflect summed postsynaptic potentials filtered through tissue
layers, not direct neuronal activity (Nuwer et al., 2020). This mediation introduces relativity:
Theta/beta ratios lack universal pathological thresholds, and spectral power depends on reference
schemes. As van Graan and Vulliemoz (2022) note, “Electrophysiological quantification measures
brain states more than brain traits.” This fundamental difference explains why MRI biomarkers
transitioned more rapidly to clinical practice—automated hippocampal volumetry now supports
diagnostic decisions in Alzheimer’s, while qEEG remains largely investigational despite decades of
validation.

4.2. Disease-Specific Hierarchies: Contextualizing Modality Performance

Our analysis reveals distinct disease-specific hierarchies in quantification efficacy:

In multiple sclerosis, MRI's supremacy in lesion quantification is unequivocal. The MAGNIMS
criteria provide a standardized framework for lesion counting, volume measurement, and
gadolinium-enhancement assessment that underpins therapeutic trials (Barkhof et al., 2021).
Electrophysiological methods play adjunctive roles: VEPs quantify optic nerve function when visual
symptoms are equivocal, and qEEG connectivity analysis reveals network disintegration preceding
cognitive decline. Nevertheless, the 70.6% vs. 0% diagnostic yield for structural etiologies in first
seizures (Sharma & Sharma, 2020) underscores MRI's primacy in initial workup.

For Alzheimer’s disease, a temporal stratification emerges: qEEG detects early functional
disruption (theta/alpha ratio shifts 6-12 months before symptoms), while MRI quantifies progressive
neurodegeneration (hippocampal atrophy rates predict conversion from MCI). This suggests a staged
quantification approach: qEEG for preclinical risk stratification, multimodal quantification (MRI +
qEEG) for prodromal diagnosis, and MRI volumetry alone for established disease monitoring. Al
fusion capitalizes on this synergy —combined MRI and qEEG features improve diagnostic accuracy
by 18% versus unimodal analysis (Martinez-Torteya A et al, 2015).

Parkinson’s disease reverses the hierarchy: Electrophysiological quantification outperforms
MRI in therapeutic monitoring. Resting beta oscillations (13-30 Hz) quantified from motor cortex
predict levodopa response with 89% accuracy (Toga & Mazziotta, 2011), while MRI nigrosome
imaging suffers from motion artifacts during tremor. This exemplifies a cardinal principle:
Quantification efficacy depends on the biomarker’s physiological relevance to the clinical question. Where
functional dynamics drive symptoms (tremor, fluctuations), electrophysiology prevails; where
structural integrity dominates (atrophy, lesions), MRI excels (Koutsojannis & Chrysanthakopoulou,
2025).

4.3. Integration Frontiers: Beyond Multimodality to Synthesis

True quantification integration transcends sequential testing toward synergistic synthesis. Three
paradigms show particular promise:

Temporal-Spatial Fusion (EEG-fMRI): Simultaneous acquisition compensates for each
modality’s limitations. EEG’s millisecond resolution detects epileptiform events that fMRI localizes
spatially (Formaggio et al., 2011). For cognitive studies, EEG-informed fMRI analysis reveals BOLD
correlates of transient neural processes (e.g., gamma bursts during memory encoding).

AI-Driven Feature Fusion: Convolutional neural networks extract latent features from MRI and
EEG datasets, creating hybrid biomarkers. In Alzheimer’s, integrated MRI hippocampal volume and
qEEG spectral entropy improve classification accuracy to 94% (Martinez-Torteya A et al, 2015). Cross-
modal transfer learning further enhances efficiency —models pretrained on large MRI datasets boost
qEEG performance when electrophysiological samples are limited.

Portable Hybrid Systems: Wearable dry-electrode EEG coupled with low-field portable MRI
(e.g., 0.055T Hyperfine scanners) could democratize quantitative neuroassessment. Early prototypes
demonstrate feasibility for home-based tremor quantification in Parkinson’s and seizure detection in

epilepsy.
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4.4. Persistent Barriers to Clinical Translation

Despite these advances, formidable obstacles impede quantification translation:

Standardization Deficits: While MRI benefits from ADNI/MAGNIMS frameworks,
electrophysiology lacks equivalent consensus. qEEG preprocessing pipelines vary significantly
across labs—artifact rejection thresholds, spectral parameters, and reference schemes impact
reproducibility (Nuwer et al., 2020). An international effort to establish “QUANT-EP” standards is
urgently needed.

Economic and Access Constraints: MRI's high cost ($500-$1500/scan) and limited access in
resource-poor regions restrict implementation (Mayo Clinic, 2025). Electrophysiology offers lower-
cost alternatives but requires technical expertise scarce outside specialized centers. Portable
technologies could bridge this gap but need validation against gold standards.

Computational Demands: Al-enhanced quantification requires substantial processing
resources. Training multimodal neural networks demands GPU clusters impractical for routine
clinics. Cloud-based solutions offer scalability but raise data privacy concerns.

4.5. Theoretical Implications: Toward a Unified Quantification Framework

Our analysis suggests a reconceptualization of neuroquantification as a hierarchical process:
o Tier 1: Structural Integrity (MRI-dominant): Quantifies permanent tissue changes
o Tier 2: Functional State (EEG/MEG-dominant): Measures dynamic neural activity
o Tier 3: Network Dynamics (Integrated): Assesses system-level interactions
This model aligns with the NIH “B.R.A.LLN.” initiative’s emphasis on multiscale neural
mapping. Future quantification tools should generate unified metrics—e.g., a “Neuro-Integrity
Index” combining DTI connectivity and EEG coherence —to simplify clinical interpretation.
PRISMA-Adherent Limitations*
1.  Selection Bias: 78% of studies from high-income settings (n=325/417) limit generalizability.
2. Heterogeneity: MRI field strengths (1.5T-7T) and EEG montages varied widely (I = 67%).
3. Risk of Bias**: 62% of EEG studies had high bias in patient selection (QUADAS-2 Domain 1).

*First systematic comparison using PRISMA 2020. **Protocol-driven analysis reduces reporting bias.

4.6. Critical Evaluation of Study Limitations

Assessing the robustness of quantitative MRI and electrophysiological studies reveals several
methodological limitations that impact the generalizability and clinical translation of findings. First,
many studies suffer from small sample sizes, particularly in electrophysiological research. For
instance, MEG-based source localization studies often include fewer than 50 participants due to
equipment costs and availability, limiting statistical power and generalizability (Dinh et al, 2015).
MRI studies, while benefiting from larger cohorts through initiatives like ADNI, frequently face
selection bias, as participants are often recruited from tertiary care centers, potentially skewing
disease severity or demographic representation (Jack et al., 2017). Second, protocol variability poses
a significant challenge. MRI acquisition parameters (e.g., field strength, slice thickness) vary across
studies, affecting volumetric and DTI outcomes, with reported inter-scanner variability up to 5% for
hippocampal measurements (Barkhof et al., 2021). Electrophysiological studies exhibit even greater
heterogeneity, with differences in electrode montages, sampling rates (256—2048 Hz), and filtering
techniques (e.g., 0.5-70 Hz vs. 1-100 Hz) leading to inconsistent spectral power estimates (Nuwer et
al.,, 2020). Third, longitudinal data gaps limit prognostic insights. While MRI excels in tracking
structural changes (e.g., 3-5% annual hippocampal atrophy in AD), electrophysiological studies
rarely extend beyond single-session recordings, constraining their ability to capture dynamic disease
progression (Thatcher, 2020). Finally, validation in diverse populations is lacking. Most studies are
conducted in high-income countries, with minimal representation of non-Caucasian or low-resource
populations, potentially limiting applicability in global clinical settings (Martinez-Torteya A et al,
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2015). Addressing these limitations requires larger, more diverse cohorts, standardized acquisition
protocols, and longitudinal designs to ensure robust biomarker validation.

4.7. Challenges and Solutions for Electrophysiological Standardization

The underdeveloped standardization of electrophysiological techniques, particularly EEG and
evoked potentials (EPs), represents a critical barrier to their clinical adoption. Unlike MRI, which
benefits from robust frameworks like MAGNIMS and ADNI, electrophysiological quantification
lacks universal consensus, resulting in a mean ICC of 0.76 compared to MRI’s 0.92 (Mele et al, 2019).
Specific challenges include:

1) Variability in electrode placement, where the 10-20 system is inconsistently applied across
labs, with deviations in electrode positioning (e.g., Cz placement errors up to 1 cm) affecting source
localization accuracy by 10-15% (Dinh et al., 2015).

2) Reference scheme heterogeneity, where choices between common average, linked mastoid,
or Laplacian references alter spectral power measurements, with theta/beta ratios varying by up to
20% across schemes (Nuwer et al., 2020).

3) Artifact rejection disparities, as manual versus automated artifact removal (e.g., for ocular or
muscular noise) leads to 3047% of analysis time devoted to preprocessing, with no standardized
thresholds for signal rejection (Mele et al, 2019).

4) Inter-lab variability in acquisition parameters, such as sampling rates or filter settings, which
complicates multicenter comparisons; for instance, VEP latency measurements for MS optic neuritis
vary by 5-10 ms across labs due to filter differences (van Graan & Vulliemoz, 2022). To address these,
interim solutions can build on existing guidelines, such as the International Federation of Clinical
Neurophysiology (IFCN) recommendations, which advocate standardized 10-20 electrode
placement and minimum sampling rates of 512 Hz.

The proposed QUANT-EP initiative could further establish:

a) universal preprocessing pipelines, specifying artifact rejection algorithms (e.g., independent
component analysis);

b) reference scheme consensus, prioritizing common average references for spectral analyses;
and

) open-access repositories for electrophysiological data to enable cross-lab validation, similar
to ADNI for MRI. Pilot studies implementing IFCN-compliant pipelines have shown improved ICCs
(0.82-0.85) for qEEG metrics, suggesting feasibility (Nuwer et al., 2020). Long-term, integrating dry-
electrode EEG systems with automated preprocessing could streamline standardization, enhancing
clinical accessibility.

4.8. Accessibility in Low-Resource Settings: Bridging the Gap

The deployment of quantitative MRI and electrophysiological biomarkers in low-resource
settings faces significant accessibility challenges, as highlighted in Table 1. Quantitative MRI’s high
cost ($500-$1500 per scan) and dependence on specialized infrastructure (e.g., 1.5T-3T scanners,
trained radiologists) severely limit its availability in resource-poor regions, where healthcare facilities
often lack the necessary equipment or funding (Mayo Clinic, 2025). For instance, sub-Saharan Africa
has fewer than 1 MRI scanner per million people, compared to 40 per million in high-income
countries, rendering MRI-based diagnostics like hippocampal volumetry or MS lesion quantification
infeasible for most patients (Gibson & Monje, 2021). Additional barriers include high maintenance
costs, power supply instability, and the need for patient transport to urban centers, further restricting
access for rural populations.
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Table 1. Comparative quantification metrics for MRI and electrophysiology in CNS disorders, with supporting

references. ADNI = Alzheimer’s Disease Neuroimaging Initiative; ICC = intraclass correlation coefficient; VEP
= visual evoked potential.

N Electrophysiology Clinical Supporting
Parameter Quantitative MRI (EEG/MEG/EPs) Implications References
Superior lesion (Barkhof et al.,
Spatial Resolution gi;lmr:lnnz é\szul(;gfrall)) ! ;)__g ?nr:lnrr(ll\(/[%%(;]) localization with 2021; Hamaildinen et
MRI al., 2021)
Seconds (fMRI) .. . (Gotman, 2019;
1{:;2}:1 Ot;.(?rll Minutes Milliseconds (1-5 ms) Cr1t1:;(l)lf§)tr()i¥1namlc Toga & Mazziotta,
(structural/DTT) & 2011)
o, 0.92 (0.89-0.95) (ADNI Consortium,
mtton Lo itons 70070 e QT
protocols P P 2020)
Standardization 5% inter-scanner 10-20% inter-lab MRI offers greater (ADNI Consortium,
R e S . 2023; Nuwer et al.,
Variability variability variability consistency 2020)
. Moderate: Automated High: Artifact removal (Gibson & Monje,
Computational pipelines (15+3 (47+12 min, GPU- MRI supports faster )| pikanen &
Demand . . . workflows
min/scan) intensive) Immonen, 2019)
Predominantly .
. . . . Small, specialized Need broader (Jack et al., 2018;
Population Diversity Caucasian cohorts Sl
(ADNT) cohorts validation Mele et al., 2019)

Al Integration

94% AD classification

32% epilepsy localization

Enhances diagnostic

(Martinez-Torteya et

! .. al., 2015; Thatcher,
accuracy improvement precision 2020)
o s (Barkhof et al.,
o 0 .
MS Diagnostic Yield 95% ST:SSi]:nVSI)ty (MS 89 /07(2)3/) ?\s]clélll)e;t)lons) l\gll; éf?;rsgi Zttlil(r)i’ 2021; van Graan &
° Vulliemoz, 2022)
R 0.91 (hippocampal . MRI preferred for (Jack et al., 2018;
Alzheimer’s AUC volumetry) 0.76 (theta/alpha ratio) early detection Thatcher, 2020)
. , (Schwarz et al.,
Pl?:;(slirll)si(l)irtl s 30% motion artifacts Unaffected by movement iﬁg(ietf;::sr 2014; Toga &
y p Mazziotta, 2011)
Cost per Assessment $500-$1,500 $100-$500 (portable EEG more (Mayo Clinic, 2025;
systems) accessible

Nuwer et al., 2020)

Key Limitations

Motion artifacts, high

Low spatial resolution,

Complementary use

(Schwarz et al.,

. 2014; Mele et al.,
cost artifacts recommended 2019)
Accessibility in . . Moderate (portable EEG EEG en ables (Mayo Clinic, 2025;
Low-Resource Limited (high cost) ) community-based
. viable) Nuwer et al., 2020)
Settings care
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*The values for are based on the article’s cost estimates and discussion of portable technologies (Mayo
Clinic, 2025; Nuwer et al., 2020).

Electrophysiological techniques, particularly EEG, offer a more viable alternative due to their
lower cost ($100-$500) and potential for portability (Nuwer et al., 2020). Portable EEG systems, such
as dry-electrode devices, can be deployed in community clinics or home settings, enabling
applications like seizure monitoring in epilepsy or tremor quantification in Parkinson’s disease. For
example, pilot studies using mobile EEG units in rural India achieved 85% sensitivity for epileptiform
activity detection, demonstrating feasibility in low-resource contexts (Mele et al., 2019). However,
accessibility is tempered by challenges: MEG remains impractical due to its high cost and immobility,
and EEG requires technical expertise for electrode placement and signal interpretation, which is
scarce outside specialized centers (Dinh et al, 2015). Furthermore, the lack of standardized
preprocessing pipelines (e.g., artifact rejection thresholds) complicates reliable deployment in
settings with limited computational resources.

To enhance accessibility, several strategies show promise. First, portable hybrid systems
combining low-field MRI (e.g., 0.055T Hyperfine scanners) with dry-electrode EEG could
democratize neuroassessment. Early prototypes have demonstrated feasibility for home-based
monitoring in Parkinson’s and epilepsy, though validation against gold-standard 3T MRI and high-
density EEG is ongoing (Martinez-Torteya, 2015). Second, capacity building through training
programs for local healthcare workers in EEG operation and interpretation could address expertise
shortages. Initiatives like the WHO’s Global Action Plan on Epilepsy have successfully trained non-
specialists in EEG use, increasing access in low-income countries (Nuwer et al., 2020). Third, open-
access data repositories and cloud-based processing platforms could reduce computational barriers,
allowing low-resource clinics to leverage preprocessed EEG data or Al-driven analyses without local
GPU infrastructure. However, these solutions must address data privacy concerns and ensure
compatibility with intermittent internet connectivity.

The clinical implications are clear: Electrophysiology’s portability and affordability position it
as a critical tool for scaling neurodiagnostic capacity in low-resource settings, while MRI remains a
gold standard reserved for well-equipped centers. Future efforts should prioritize validating portable
technologies, establishing regional neuroimaging hubs, and integrating cost-effective biomarkers
into primary care workflows to achieve equitable access to personalized neurology.

5. Conclusions

Quantitative MRI and electrophysiology offer complementary lenses into CNS disorders: MRI
excels in spatial quantification of structural pathology through standardized, automated pipelines,
while electrophysiology captures temporal dynamics of functional impairment despite
standardization challenges (Figure 1). Their integration represents not merely technical convergence
but a paradigm shift toward personalized neurophysiological assessment. Key priorities include:

(1) Developing unified quantification standards (QUANT-EP initiative),

(2) Validating portable hybrid devices for community deployment, and

(3) Implementing Al-curated multimodal biomarkers in clinical workflows.

This review highlights Al's potential to enhance MRI and EEG biomarker quantification, paving
the way for equitable, hospital-based neurological care. As these advances mature, neurologists will
increasingly quantify brain health through integrated structural-functional profiles, moving
decisively toward precision neurology.
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