Pre prints.org

Article Not peer-reviewed version

A Heuristics for Graph Coloring Based
on the Ising Model

Omkar Bihani and Janez Zerovnik -

Posted Date: 21 August 2025
doi: 10.20944/preprints202508.1583.v1

Keywords: randomized algorithm; graph coloring; chromatic number; generalized Boltzmann machine

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4736512
https://sciprofiles.com/profile/928679

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
A Heuristics for Graph Coloring Based on the Ising
Model

Omkar Bihani 1©© and Janez Zerovnik 1%*

1
2

Rudolfovo—Science and Technology Centre, Novo mesto, Slovenia

Faculty of Mechanical Engineering, University of Ljubljana, Slovenia

* Correspondence: janez.zerovnik@fs.uni-lj.si

Abstract

We propose a dynamic extension of the Petford-Welsh coloring algorithm that estimates the chromatic
number of a graph without requiring k as an input. The basic algorithm is based on the model that is
closely related to the Boltzmann machines that minimize the Ising model Hamiltonian. The method
begins with a minimal coloring and adaptively adjusts the number of colors based on solution quality.
We evaluate our approach on a variety of graphs from the DIMACS benchmark suite using different
initialization strategies. The results show that the algorithm designed is not only capable of providing
near optimal solutions but also is very robust. We demonstrate that our approach can be surprisingly
effective on real-world instances, although more adaptive or problem-specific strategies may be needed
for harder cases. The main advantage of the proposed randomized algorithm is its inherent parallelism
that may be explored in future studies.

Keywords: randomized algorithm; graph coloring; chromatic number; generalized Boltzmann machine

MSC: 05C15, 68R10, 68W20

1. Introduction

Graph coloring problem is among the most popular NP-hard problems [1] in combinatorial
optimization both due to its esthetic appeal as a simple yet very hard combinatorial challenge and
because of its many applications in science and real life. The first is demonstrated, for example,
by more than a century long story of the famous four color map theorem [2]. As an example of
applicability, let us just mention that the graph coloring problem is implicitly present in any nontrivial
scheduling problem, c.f. timetabling [3]. Due to recent popularity of the quantum computing model
that may hopefully answer questions of practical importance that may remain out of reach for classical
computation [4,5], we also wish to note that graph coloring is closely related to the quantum computing.
On one hand, it can be used for optimization of design of computing machines, for example depth
optimization of quantum circuit is shown to be reducible to vertex coloring problem [6]. On the
other hand, graph coloring is among the challenging problems on which the potential strengths of
the quantum computation is studied [7-10]. Although there are high expectations that the model
of quantum computing may provide means to solve problems that are beyond reach of the classical
model, years or even decades of research and development are likely to be needed to achieve this [11].
An interesting avenue of research are quantum inspired algorithms that were shown to have an
exponential asymptotic speedup compared to previously known classical methods [12]. Roughly
speaking, it may be possible to use the quantum model, and with a clever dequantization obtain a
competitive algorithm for the classical model of computation [13], or make use of a combination of
both [14].

Due to intractability of the graph coloring, many algorithms including various heuristics and
metaheuristics have been designed and applied, see, for example, [15]. Back in 1989, likely inspired

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0002-3185-264X
https://orcid.org/0000-0002-6041-1106
https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

20f16

by the Ising model in statistical mechanics, Petford and Welsh [16] proposed a simple randomized
heuristic algorithm for coloring a graph with three colors that “does seem to work well in a wide variety
of graph cases”. The Ising model (or Lenz-Ising model) is a mathematical model of ferromagnetism
in statistical mechanics. In the model spins are arranged in a graph, usually a lattice, and a spin
that can be in one of two states (+1 or -1) is assigned to each vertex. Each spin interacts with its
neighbors. Neighboring spins that agree have a lower energy than those that disagree; the system
tends to the lowest energy but heat disturbs this tendency, thus creating the possibility of different
structural phases. Usually, minimal energy states are considered. Looking at the high energy states,
the maximal arrangement clearly corresponds to a proper two coloring of a bipartite graph. If the
graph is not bipartite, the high energy states correspond to colorings with few monochromatic edges.
This observation may have led to the idea that a generalization allowing the spins to have more than
two states might provide a model that would be useful as a mechanism that naturally converges
to proper colorings of the underlying graph. Based on previous studies of the voter and antivoter
models by Donnely and Welsh [17], Petford and Welsh proposed a 3-coloring algorithm [16]. Later
experiments with slightly adopted versions of the algorithm have shown very competitive results on
k-coloring problem [18], on channel allocation problem [19], and recently on clustering problems [20].
The basic algorithm [16] aims to solve the decision problem “is the given graph G k-colorable ?”,
given G and k by hopefully providing a witness, i.e., a proper k-coloring of G. Another version of the
coloring problem is to answer the question “what is the minimal k such that G is k-colorable ?”, or
equivalently “what is the chromatic number x(G) of G ?”. In [21], the algorithm of Petford and Welsh
was generalized to solve this optimization problem, showing good performance on several samples
of randomly generated graphs. The algorithm is known [22] to in close relation to the Boltzmann
machine [23]. More precisely, the algorithm of Petford and Welsh is equivalent to the operation of the
generalized Boltzmann machine, and the energy that is aimed to be minimized is a generalization of
the Ising Hamiltonian used in the classical model.

In this paper, we build upon the ideas of [21] to design and implement a randomized algorithm
that gives an estimate (upper bound) for the chromatic number. In contrast to the original algorithm
of Petford and Welsh, our algorithm does not need the number of colors as input, which makes it much
more useful in various applications where the target number of colors is not known. In particular, we

¢ design and implement a randomized algorithm that is based on analogy to the Ising model in
statistical mechanics;

* we test the performance on random graphs and on a subset of DIMACS that is a standard library
of benchmark instances for graph coloring;

¢ we show that the algorithm designed is not only able to provide near optimal (or, even opti-
mal) solutions, but it is also very robust in the sense that it is not very sensitive to the choice
of parameter(s);

In summary, the main contribution of the work reported is a “proof of concept”, in other words, our
aim was to show that the simple heuristics based on a generalization of the Ising model works. In
conclusions we discuss some natural avenues of future research.

The rest of paper is organized as follows. In Section 2 we recall some preliminary information,
including the definitions of graph coloring problems, the original algorithm of Petford and Welsh, and
its relation to the Boltzmann machines and the Ising model. In Section 3 we define the new algorithm
for estimating the chromatic number. Section 4 provides a report on the experiments. In the last section
we write concluding remarks.

2. The Graph Coloring Problem and the Basic Algorithm

We say a mapping ¢ : V(G) — N is a proper coloring of G if it assigns different colors to adjacent
vertices. Any mapping ¢ : V(G) — N will be called a coloring, and will be considered as one of the
feasible solutions of the problem.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

3o0f16

2.1. Graph Coloring Problems

Coloring of the vertices of a graph is usually asked either in the form of optimization or in the
form of decision problem. The first asks for the chromatic number, i.e., the minimal number of colors
that allows a proper coloring.

PROBLEM : Graph coloring optimization problem
Input: graph G,
Task: find the chromatic problem of G.

The k-coloring decision problem is a well known NP-complete problem for k > 3. It reads as
follows:

PROBLEM : Graph coloring (decision problem).
Input: graph G, integer k

Question: is there a proper k-coloring of G?

2.2. The Algorithm of Petford and Welsh for k-Coloring Decision Problem

We start by defining the cost function E(c) as the number of bad edges, i.e., edges whose endpoints
receive the same color under a coloring c. A coloring is valid when E(c) = 0. Thus, finding a coloring
with E(c) = 0 solves the decision problem, with the resulting coloring serving as a witness that verifies
the solution.

The algorithm of Petford and Welsh [16] begins with a random 3-coloring of the input graph and
then iteratively improves it. In each iteration, a vertex involved in a conflict (a bad vertex) is chosen
uniformly at random. This vertex is then recolored according to a probability distribution that favors
colors less common in its neighborhood, as given in equation (1).

This procedure naturally extends to the general k-coloring problem [18], with the special case
k = 3 recovering the original algorithm.

The algorithm can be expressed in pseudocode as follows:

Algorithm 1 Petford-Welsh algorithm for k-coloring

1: color vertices randomly with colors 1,2,...,k
2: while not stopping condition do

3: v < Randomly select bad vertex

4 assign a new color to v

5: end while

The probability distribution for recoloring is defined as follows. Let S; denote the number of
edges incident to v whose other endpoint has color i. Then the probability p; of recoloring v with color
i is approximately

pi ~exp(=S;/T),)

where T is a parameter called temperature, for reasons explained later. Note that the newly
chosen color may coincide with the current color of v; in fact, if other colors are heavily represented in
the neighborhood, retaining the current color may be the most probable outcome.

2.3. The Algorithm of Petford and Welsh and Generalized Boltzmann Machine

It was shown in [22] that the Petford Welsh algorithm is in close correspondence to the operation
of the generalized Boltzmann machine when applied to graph coloring. Generalized Boltzmann
machine is a neural network that is defined [22] as follows. Let A be a finite alphabet of k symbols and
G(V,E) any graph with vertex set V and edge set E. A generalized Boltzmann machine B(G, A) is
specified by a mapping w from the set of edges E into the set of matrices with real entries indexed by
A x A and a mapping z from the set of vertices V to vectors indexed by A. The matrices are called

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

40f16

weights and the vectors are thresholds. A state of the machine is an assignment o which specifies for
each vertex a symbol from A. The energy of a state ¢ is given by

E(B, (7') =-0.5 Z ZU(M, U)o(u),o(v) + Z z(u)a(u).

(u,0)€E uev

The update rule, as with the standard Boltzmann machine, depends on a real parameter T,
referred as the temperature of the system. For a randomly selected vertex, the state of the vertex is
changed from o (u) to b with probability

e—EBolu—b])/T

Yaca e—E(Bolu—al)/T

p(u)y =

where o[u — b| denotes the state obtained from ¢ by setting the value o (u) to b. In [22] it has been
shown that

1. the generalized Boltzmann machine indeed generalizes the standard model and that probability
P(o) of state o converges to
P(0) = pe /T

as the number of steps tends to infinity (y is a normalizing constant).
2. the update rule of the model corresponds to the Petford Welsh algorithm when the problem
considered is graph coloring.

It may be informative to recall that the generalization to a finite alphabet A from the usual case
A ={0,1} (or, A = {—1,1}) in classical Boltzmann machine [23] was motivated in [22] by the idea to
handle the graph coloring problem more naturally. Furthermore note that the energy of the generalized
Boltzmann machine generalizes the Ising model Hamiltonian used in the classical Boltzmann machine.

The algorithm of Petford and Welsh operates at fixed value of parameter T. They used 4%
which is equivalent to using T ~ 0.72 in (1). (Because exp(—x/T) = 4~ implies T ~ 0.72.) This
corresponds to the operation of the generalized Boltzmann machine at fixed temperature. As there is
no annealing schedule, the stopping criteria is either reaching a time limit (in terms of the number of
calls to the function which computes a new color) or the event when a proper coloring is found. If no
proper coloring is found, the solution with minimal cost E(c) is reported and can be regarded as an
approximate solution to the problem.

As already explained, the original algorithm of Petford and Welsh uses probabilities proportional
to 475, which corresponds to T = 0.72. Larger values of T result in higher probability of accepting
a move which increases the number of bad edges. Clearly, a very high T results in chaotic behavior
similar to a pure random walk among the colorings ignoring the their energy. On the other hand, with
low values of T, the algorithm behaves very much like iterative improvement, quickly converging
to a local minimum. We do not intend to discuss the annealing schedules here. Just note that it is
known that in order to assure convergence, the annealing schedule must be sufficiently slow [24]. In
the experiments below we rather restrict attention to a selection of fixed temperatures that seemingly
behave well.

3. The New DYNAMIC Algorithm for Estimating O(G)

Here we generalize Petford-Welsh algorithm to dynamically adjust the number of colors, following
and extending the ideas of [21]. The Dynamic k - Coloring Algorithm (Algorithm 2) incrementally tries
to find a proper coloring of the graph. It begins with an initial coloring possibly using a small number
of colors (e.g., two), and iteratively improves the coloring by randomly selecting a bad vertex and
assigning it a new color based on neighborhood color frequencies. A temporary color expansion is
allowed via a switch mechanism, enabling the algorithm to escape local conflicts as in Algorithm 3.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

50f 16

Once a valid coloring is found, the algorithm proceeds to the next phase, where it stores the
solution and attempts to reduce the number of colors by decrementing max_color and recoloring
weakly bad vertices (i.e., vertices colored with max_color). This process continues until the iteration
limit is reached. This dynamic approach adapts the number of colors during execution and can be
used to approximate the chromatic number of the graph.

Algorithm 2 Dynamic k-Coloring Algorithm

1: Gipit < INITIALIZECOLORING

2: Set max_color < max_color(G;y;), switch < 1

3: while not valid coloring or iteration limit not reached do
4: v <~ Randomly select bad vertex

5. Recolor v using CHOOSECOLOR(v, switch = 1)

6: end while

7: switch <~ 0

8: while iteration limit not reached do

9 if coloring is valid then

10: Save current solution

11: max_color < max_color — 1

12: for all weakly bad vertices do

13: Recolor vertex using CHOOSECOLOR(vertex, switch=0)
14: end for

15: else

16: v < Randomly select bad vertex

17: Recolor v using CHOOSECOLOR(v, switch = 0)

18: end if

19: end while

Algorithm 3 Procedure: CHOOSECOLOR

1: function CHOOSECOLOR(node, switch)

2 C <« {1,...,max_color + switch}

3 Compute neighborhood color frequencies S;
4: w; + base % foralli € C

5 return random color from C using weights w;
6: end function

4. Experiments

In this section we first give information on the instances used in the experiments. Then we outline
the results on random graphs, emphasizing some phenomena that were observed. Lastly, we provide
the results on all small and medium size DIMACS graphs.

4.1. Datasets
4.1.1. Random k-Colorable Graphs

Petford and Welsh originally tested their algorithm on random graphs G(N, k, p) that are gener-
ated as follows. The vertices are divided in k sets of size N/k ([{] and | ¥ | when N is not a multiple
of k), and for each pair of vertices from different sets, an edge is added with probability p. The resulting
graphs are clearly k-colorable, and k is an upper bound for the chromatic number x(G).

We generate k-partite random graphs, where each partition consists of 20 vertices, following the
method described earlier. Each graph is labeled in the format balanced_N_k_P_i, where:

. N is the total number of vertices,

e kis the number of partitions,

* Pis the edge probability between vertices in different partitions, expressed as a percentage (e.g.,
P = 10 means probability 0.1),

* iisthe instance number.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

6 of 16

For example, balanced_60_3_10_4 refers to the fourth instance of a graph with 60 vertices, 3
partitions, and inter-partition edge probability of 0.1.

We generate 5 instances each for N € {60,100,140}, with edge probabilities p € {0.1,0.25,0.5,0.75}.
The corresponding graph family is denoted mathematically as BGI(\?k, o used in figures and discussions
for clarity. While table entries use the compact balanced_. .. naming scheme for space efficiency, the

same graphs are referred to as BGl(\?k, 0 in plots and analysis.

4.1.2. DIMACS Graphs

In addition to the randomly generated k-partite graphs, we test our method on several graphs
from the DIMACS dataset. The DIMACS dataset of benchmark instances for graph coloring was
used in the Second DIMACS Challenge: Cliques, Coloring, and Satisfiability [25]. Since then, graphs
have been used frequently for studies of graph coloring heuristics [26,27]. There are several sites with
DIMACS graphs, the instances for this study were downloaded from [28-30].

4.1.3. Some More Info on Experiments

To experiment with Algorithm 2, we consider four different values of bases, i.e., b € {4,10,16,20}.

Based on the original idea of the heuristics, it may seem obvious that a random initial coloring is
the most natural to start with. Already Petford and Welsh [16] observe that a small number of bad
vertices at the beginning does not contribute to the speed of convergence. They offer the explanation
that such a nearly good coloring can be regarded as being a solution close to a local optimum that can
be a long way from the true optimum in the metrics of exchanges. Nevertheless, we have decided to
test two other initialization strategies besides the random initial coloring. We used three initialization
strategies:

e Random2: Coloring the vertices randomly with 2 colors.

e Greedy: Coloring the graph with greedy algorithm which colors the “largest first” strategy, i.e.,
nodes are colored in descending order of degree. Note that this method always yields a proper
coloring.

* GreedyProp2: A local propagation-based coloring method that starts from a random node and
greedily colors neighbors using the least frequent color in their neighborhood. Uses 2 colors and
aims to minimize conflicts.

We set the maximum number of iterations to 500 N, where N is the number of vertices in the graph.

For random k-colorable graphs, with each combination of bases and initial coloring methods,
we run 100 repetitions of Algorithm 2 for each graph and note the best coloring found. Similarly, for
DIMACS graphs, we run the algorithm 10 times and report the best result.

We test Algorithm 2 with its Python implementation [31] on the HPC cluster at the Faculty of
Mechanical Engineering, University of Ljubljana.

4.2. Experiment on k—Colorable Random Graphs

We first illustrate the behavior of Algorithm 2 on a representative graph instance using base b = 4
and initialization method Random?2. As shown in Figure 1, the number of colors initially increases as
the number of bad vertices decreases - this corresponds to Phase I of the algorithm. Once the coloring
becomes proper (i.e., zero bad vertices), the algorithm enters Phase II, attempting to reduce the number
of colors while trying to find another proper coloring with less colors.

Table 1 reports results with base b = 10 across three initialization strategies. For each case, we show
the upper bound on the chromatic number (x;), the best value found (kp;), how often this value was
reached over 100 runs (Triesy,), and the average number of iterations to achieve it.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025

d0i:10.20944/preprints202508.1583.v1

7 of 16

—— Num bad vertices ——— Num colors
12.5
50 - \V
10.0 A
7.5 1
40 -
5.0
2.5 1
30 -
0.0 1 i : i i
20 40 60
20 -
10 'v'“fH
N w
0 50 100 150 200 250 300 350 400

Iterations

Figure 1. Convergence to the chromatic number for the graph “balanced_60_3_10_3" using Random?2 at base = 4.

Table 1. Table showing the ks found, Triesy, ,, and mean iters. from different initial coloring methods at
base = 10 for balanced k-partite graphs. The total number of tries was 100.

(kpest Triesy, , mean iters.)

Graph N B

Greedy GreedyProp2 RandomProp2
balanced_60_3_10_1 60 141 3 (3,100,642.68) (3,100,1302.94) (3,99,1821.76)
balanced_60_3_10_2 60 113 3 (3,100, 106.49) (3,100, 465.34) (3,100, 569.14)
balanced_60_3_10_3 60 133 3 (3,74,10190.38) (3,93, 7186.72) (3,94, 6029.05)
balanced_60_3_10_4 60 130 3 (3,100, 1530.08) (3,100,1029.23) (3,100, 1176.21)
balanced_60_3_10_5 60 118 3 (3,100, 459.19) (3,100, 541.94) (3,100, 977.8)
balanced_60_3_25_1 60 286 3 (3,100, 138.41) (3, 100, 244.05) (3,100, 310.88)
balanced_60_3_25_2 60 294 3 (3,100, 75.15) (3,100, 313.53) (3,100, 375.84)
balanced_60_3_25_3 60 307 3 (3,100, 780.74) (3,100, 253.35) (3,100, 347.57)
balanced_60_3_25_4 60 290 3 (3,100, 42.57) (3,100, 312.86) (3,100, 343.8)
balanced_60_3_25_5 60 305 3 (3,100, 416.05) (3,100, 380.13) (3,100, 366.63)
balanced_60_3_50_1 60 617 3 (3,100, 0.0) (3,100, 134.96) (3,100, 167.42)
balanced_60_3_50_2 60 620 3 (3,100, 12.45) (3,100, 139.09) (3,100, 161.89)
balanced_60_3_50_3 60 615 3 (3,100, 0.0) (3,100, 139.67) (3,100, 167.31)
balanced_60_3_50_4 60 607 3 (3,100, 101.06) (3,100, 140.56) (3,100, 155.89)
balanced_60_3_50_5 60 585 3 (3,100, 13.14) (3,100, 151.34) (3,100, 162.3)
balanced_60_3_75_1 60 922 3 (3,100, 18.46) (3, 100, 123.56) (3,100, 144.42)
balanced_60_3_75_2 60 887 3 (3, 100, 0.0) (3,100,132.12) (3,100, 141.11)
balanced_60_3_75_3 60 873 3 (3,100, 0.0) (3,100,127.72) (3,100, 148.82)
balanced_60_3_75_4 60 895 3 (3,100, 0.0) (3,100, 122.42) (3,100, 145.22)
balanced_60_3_75_5 60 886 3 (3,100, 0.0) (3,100, 125.22) (3,100, 145.73)
balanced_100_5_10_1 100 401 5 (4,87,13128.01) (4, 86,16060.19) (4, 81, 16753.02)
balanced_100_5_10_2 100 415 5 (5, 100, 20.55) (5,100, 240.4) (5,100, 264.25)
balanced_100_5_10_3 100 437 5 (5, 100, 55.58) (5, 100, 306.05) (5,100, 321.21)
balanced_100_5_10_4 100 394 5 (4,78,11475.01) (4, 51,20058.78) (4, 55, 21395.64)
balanced_100_5_10_5 100 365 5 (4,100, 2782.52) (4,100, 4984.56) (4, 100,5133.19)
balanced_100_5_25_1 100 997 5 (5,100,983.59) (5,100,1649.32) (5,100, 1906.21)
balanced_100_5_25_2 100 955 5 (5,100, 5284.42) (5,100, 2634.18) (5,100, 2838.9)
balanced_100_5_25_3 100 1007 5 (5,100, 564.73) (5,100,2511.9) (5,100, 2338.59)
balanced_100_5_25_4 100 1026 5 (5,100, 1221.94) (5,100, 1570.72) (5,100, 1549.94)
balanced_100_5_25_5 100 1047 5 (5,100, 2068.82) (5,100, 1785.53) (5,100, 1672.43)
balanced_100_5_50_1 100 2032 5 (5,100, 286.49) (5, 100, 358.45) (5,100, 360.32)
balanced_100_5_50_2 100 2021 5 (5,100, 103.01) (5,100, 357.99) (5,100, 364.16)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025

d0i:10.20944/preprints202508.1583.v1

8 of 16
Table 1. Cont.

Graph N IE| Yus (Kpest, Triesy,,, mean iters.)

Greedy GreedyProp2 RandomProp2
balanced_100_5_50_3 100 2005 5 (5,100, 196.63) (5,100, 368.24) (5,100, 367.94)
balanced_100_5_50_4 100 2014 5 (5,100, 154.58) (5, 100, 351.25) (5,100, 380.66)
balanced_100_5_50_5 100 2086 5 (5,100, 139.04) (5,100, 356.6) (5,100, 357.76)
balanced_100.5 751 100 2993 5 (5,100, 179.48) (5,100, 284.43) (5,100, 277.5)
balanced_100_5_75_2 100 2990 5 (5,100, 88.3) (5, 100, 278.52) (5,100, 286.92)
balanced_100_5_753 100 3004 5 (5,100, 44.88) (5,100, 270.54) (5,100, 288.61)
balanced_100.5 754 100 2994 5 (5,100, 0.0) (5, 100, 273.09) (5,100, 270.02)
balanced_100_5_75_5 100 3042 5 (5,100, 0.0) (5, 100, 269.09) (5,100, 273.38)
balanced_140_7_10_1 140 826 7 (5,95, 18607.58) (5,94, 25152.38) (5,93, 24742.58)
balanced_140_7_10_2 140 837 7 (5, 66, 34506.83) (5, 67,33209.18) (5, 53, 27958.49)
balanced_140_7_10_3 140 836 7 (5, 89, 25239.54) (5, 83, 24031.25) (5, 89, 29304.94)
balanced_140_7_10_4 140 880 7 (6,100, 411.99) (6, 100, 706.27) (6,100, 732.43)
balanced_140_7_10_5 140 866 7 (5,21,41444.86) (5,20,34369.45) (5,27, 34863.89)
balanced_140_7_25_1 140 2079 7 (7,100, 8915.54) (7,100, 11801.03) (7, 100, 10159.86)
balanced_140_7_25_2 140 2101 7 (7, 100, 6355.96) (7,100, 10853.21) (7, 100, 10400.25)
balanced_140_7 253 140 2099 7 (7,100, 8596.3) (7,100,8723.64) (7,100, 8021.37)
balanced_140_7_25_4 140 2073 7 (7,100, 16328.22) (7,100, 11899.88) (7,100, 11190.06)
balanced_140_7_25_5 140 2081 7 (7,100, 11418.61) (7,99, 15249.36) (7,98, 15336.41)
balanced_140_7 50_1 140 4151 7 (7,100, 262.65) (7, 100, 690.69) (7, 100, 690.55)
balanced_140_7_50_2 140 4210 7 (7,100, 370.72) (7, 100, 661.65) (7, 100, 679.32)
balanced_140_7_50_3 140 4263 7 (7,100, 492.75) (7,100, 637.24) (7, 100, 675.79)
balanced_140_7 50_4 140 4125 7 (7,100, 467.31) (7,100, 694.28) (7,100, 691.0)
balanced_140_7_50_5 140 4157 7 (7,100, 495.34) (7,100, 677.32) (7,100, 680.06)
balanced_140_7_75_1 140 6320 7 (7, 100, 60.02) (7, 100, 433.22) (7,100, 437.48)
balanced_140_7_75.2 140 6193 7 (7,100, 73.96) (7,100, 445.82) (7, 100, 446.87)
balanced_140_7 753 140 6315 7 (7,100,0.0) (7,100, 436.23) (7,100, 437.4)
balanced_140_7_75_4 140 6288 7 (7, 100, 0.0) (7, 100, 440.22) (7,100, 434.73)
balanced_140_7_ 755 140 6327 7 (7,100, 51.28) (7,100, 427.07) (7, 100, 437.93)

Overall, we observe that on the instances tested, the algorithm performs reliably, with ky.ss < kizp
in all cases. Recall that the graphs are generated in a way that the upper bound for the number of
colors is known, and for sparse graphs (small p) it is possible that fewer colors are needed, which the
algorithm indeed proves in some cases. So we conclude that the performance of the algorithm on the
random k-colorable graphs is very good and we now provide some evidence that the algorithm is also
very robust, both to the change of parameter base and to the variation of the initialization method.

In the experiments performed, Greedy initialization typically leads to faster convergence com-
pared to GreedyProp2 and Random?. In several graphs, Greedy even yields kj.;; immediately, which
means that there is no improvement in the refinement phase. That said, Random2 occasionally
outperforms Greedy in terms of convergence speed, e.g., in B Gég,)B,o.lf B Gég,)a,o.w and BGSE),ZOJ.

We also compare performance across base values under different initialization methods. The
results for Random? initialization method are shown in Table 2.

Table 2. Table showing the ks, found, Triesy, ,, and mean iters. at different bases for Random2 initial coloring
method for balanced k-partite graphs. The total number of tries was 100.

(Kpest, Triesy, , mean iters.)

Graph N |E| Xus

4 10 16 20
balanced 603101 60 141 3 (3,100,69542) (3,99,1821.76) (3,84,27643) (3,89, 3865.74)
balanced 60 3 102 60 113 3 (3,100,5152) (3,100,569.14) (3,100,89356) (3,100, 1006.98)
balanced_60_3_10_3 60 133 3 (3,99, 4693.02) (3, 94, 6029.05) (3,71, 8626.0) (3, 83, 8887.23)
balanced_60_3_10_4 60 130 3 (3,100,943.75) (3,100, 1176.21) (3,99, 1645.39) (3,96, 2417.18)
balanced 60 3.10.5 60 118 3 (3,100,642.64) (3,100,977.8) (3,100,1192.56) (3,100, 1638.29)
balanced_60_3_25_1 60 286 3 (3,100, 381.43) (3,100, 310.88) (3,100, 369.22) (3, 100, 370.98)
balanced_60_3_25_2 60 294 3 (3,100, 395.92) (3,100, 375.84) (3,100, 465.47) (3,100, 377.13)
balanced_60_3_25_3 60 307 3 (3,100, 360.63) (3,100, 347.57) (3,100, 350.03) (3, 100, 398.08)
balanced 60 3 25 4 60 290 3 (3,100,422.08) (3,100,343.8) (3,100,403.84) (3,100, 520.77)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025

d0i:10.20944/preprints202508.1583.v1

9of 16
Table 2. Cont.

Graph N El xus (kpest, Triesy, , mean iters.)

4 10 16 20
balanced_60_3_25_5 60 305 3 (3, 100, 397.65) (3,100, 366.63) (3,100, 525.41) (3, 100, 367.76)
balanced_60_3_50_1 60 617 3 (3, 100, 195.69) (3,100, 167.42) (3,100, 159.6) (3,100, 153.43)
balanced_60_3_50_2 60 620 3 (3,100, 188.98) (3,100, 161.89) (3, 100, 156.33) (3,100, 155.23)
balanced_60_3_50_3 60 615 3 (3, 100, 203.25) (3,100, 167.31) (3,100, 161.82) (3,100, 160.19)
balanced_60_3_50_4 60 607 3 (3,100, 191.83) (3,100, 155.89) (3,100, 156.58) (3,100, 155.55)
balanced_60_3_50_5 60 585 3 (3, 100, 205.22) (3,100, 162.3) (3, 100, 165.02) (3,100, 162.7)
balanced_60_3_75_1 60 922 3 (3,100, 168.98) (3,100, 144.42) (3,100, 134.4) (3,100, 128.55)
balanced_60_3_75_2 60 887 3 (3,100, 170.32) (3,100, 141.11) (3,100, 134.14) (3,100, 139.94)
balanced_60_3_75_3 60 873 3 (3,100, 169.04) (3,100, 148.82) (3,100, 139.94) (3,100, 134.79)
balanced_60_3_75_4 60 895 3 (3,100, 172.41) (3,100, 145.22) (3,100, 139.99) (3,100, 133.7)
balanced_60_3_75_5 60 886 3 (3, 100, 167.05) (3,100, 145.73) (3, 100, 140.89) (3, 100, 143.09)
balanced_100_5_10_1 100 401 5 (4,97,13190.37) (4, 81, 16753.02) (4,53,16991.64) (4, 46,22098.61)
balanced_100_5_10_2 100 415 5 (5, 100, 398.44) (5, 100, 264.25) (5,100, 254.16) (5, 100, 302.62)
balanced_100_5_10_3 100 437 5 (5,100, 511.94) (5,100, 321.21) (5,100, 344.07) (5,100, 341.93)
balanced_100_5 104 100 394 5 (4,74,17104.27) (4, 55, 21395.64) (4,36,15245.31) (4, 36, 18423.08)
balanced_100_5_10_5 100 365 5 (4, 100, 6756.25) (4,100, 5133.19) (4,92,7948.3) (4,90, 9283.31)
balanced_100_5_25_1 100 997 5 (5,100, 1912.59) (5,100, 1906.21) (5,100, 3172.81) (5,100, 2970.73)
balanced_100_5_25 2 100 955 5 (5, 100, 2399.05) (5, 100, 2838.9) (5,100, 4031.06) (5,98, 4129.43)
balanced_100_5_25_.3 100 1007 5 (5, 100, 2155.09) (5,100, 2338.59) (5,100, 3491.09) (5,100, 4366.11)
balanced_100_5_25_4 100 1026 5 (5,100, 1738.32) (5,100, 1549.94) (5,100, 2120.71) (5,99, 2405.43)
balanced_100_5_25 5 100 1047 5 (5,100, 1879.04) (5,100, 1672.43) (5,100, 2205.61) (5,99, 2809.86)
balanced_100_5_.50_1 100 2032 5 (5,100, 494.76) (5, 100, 360.32) (5,100, 353.94) (5, 100, 363.79)
balanced_100_5_50_2 100 2021 5 (5,100, 486.64) (5, 100, 364.16) (5, 100, 356.96) (5,100, 362.47)
balanced_100_5_50_3 100 2005 5 (5, 100, 500.43) (5,100, 367.94) (5, 100, 355.03) (5,100, 342.84)
balanced_100_5_50_4 100 2014 5 (5, 100, 496.93) (5, 100, 380.66) (5, 100, 363.29) (5,100, 368.81)
balanced_100_5_50_5 100 2086 5 (5,100, 468.94) (5, 100, 357.76) (5,100, 352.61) (5,100, 343.38)
balanced_100_5_75_1 100 2993 5 (5,100, 364.13) (5, 100, 277.5) (5, 100, 265.89) (5, 100, 258.95)
balanced_100_5_75_2 100 2990 5 (5,100, 360.49) (5,100, 286.92) (5, 100, 265.55) (5, 100, 268.35)
balanced_100_5_75_3 100 3004 5 (5, 100, 366.07) (5,100, 288.61) (5, 100, 268.0) (5, 100, 266.7)
balanced_100_5_75.4 100 2994 5 (5,100, 355.45) (5, 100, 270.02) (5, 100, 270.02) (5,100, 251.35)
balanced_100_5_75_5 100 3042 5 (5,100, 371.88) (5, 100, 273.38) (5, 100, 258.92) (5,100, 257.87)
balanced_140_7_10_1 140 826 7 (5, 18, 35862.94) (5,93, 24742.58) (5, 64, 28914.0) (5,49, 35911.02)
balanced_140_7_10_2 140 837 7 (5,1, 57864.0) (5,53, 27958.49) (5,29,35530.97) (5, 14, 33685.79)
balanced_140_7_10_3 140 836 7 (5,13, 36733.54) (5, 89, 29304.94) (5,55,35117.38) (5,41, 27400.78)
balanced_140_7_10_4 140 880 7 (6,100, 1512.85) (6,100, 732.43) (6,100, 784.11) (6,100, 773.35)
balanced_140_7_10_5 140 866 7 (5,1, 16516.0) (5,27, 34863.89) (5,12, 46650.42) (5, 3,41211.67)
balanced_140_7_25_1 140 2079 7 (7,100, 11995.24) (7,100, 10159.86) (7, 100, 18648.95) (7,93,20292.3)
balanced_140_7_25 2 140 2101 7 (7,100, 10610.82) (7,100, 10400.25) (7, 95,17490.02) (7, 89, 19993.64)
balanced_140_7_25_3 140 2099 7 (7,100,12229.11) (7,100, 8021.37) (7,96,15969.44) (7,91, 18847.48)
balanced_140_7 25 4 140 2073 7 (7,100, 18558.72) (7,100,11190.06) (7,92,19471.47) (7, 81, 23240.46)
balanced_140_7_25 5 140 2081 7 (7,97, 21587.37) (7,98, 15336.41) (7,87,24726.77) (7,75,25699.41)
balanced_140_7 50_1 140 4151 7 (7,100, 1008.77) (7, 100, 690.55) (7, 100, 668.54) (7,100, 621.5)
balanced_140_7_50_2 140 4210 7 (7,100, 982.48) (7,100, 679.32) (7,100, 633.29) (7,100, 621.91)
balanced_140_7_50_3 140 4263 7 (7,100, 949.27) (7, 100, 675.79) (7,100, 637.21) (7, 100, 586.59)
balanced_140_7_50_4 140 4125 7 (7,100, 989.17) (7,100, 691.0) (7,100, 672.0) (7,100, 652.75)
balanced_140_7_50_5 140 4157 7 (7,100, 1004.81) (7, 100, 680.06) (7,100, 641.17) (7,100, 648.6)
balanced_140_7 751 140 6320 7 (7,100, 615.39) (7,100, 437.48) (7,100, 414.44) (7,100, 401.85)
balanced_140_7_75 2 140 6193 7 (7,100, 632.38) (7,100, 446.87) (7,100, 412.05) (7,100, 402.7)
balanced_140_7_75 3 140 6315 7 (7,100, 610.55) (7,100, 437.4) (7,100, 414.22) (7,100, 393.11)
balanced_140_7_75 4 140 6288 7 (7,100, 619.77) (7,100, 434.73) (7,100, 411.04) (7,100, 395.9)
balanced_140_7_755 140 6327 7 (7,100, 631.73) (7,100, 437.93) (7, 100, 396.85) (7,100, 397.37)

To study the effect of base value b in relation to graph density, we compute Kendall’s T correlation

between b and the average number of convergence iterations. Kendall’s T is a measure of rank correlation:

* A positive T indicates that as b increases, the number of iterations tends to increase (i.e., slower

convergence).

* A negative T implies that higher base values are associated with fewer iterations (i.e., faster

convergence).

Figure 2 shows these values, annotated with statistical significance: p < 0.001 (% %), p < 0.01 (*x),
p < 0.05 (*); unmarked values are not statistically significant.

A clear trend emerges for Random?2 and GreedyProp2 initialization methods, the the case of

denser graphs (p > 0.5). Larger bases are more effective (negative T), often with high significance. For

r(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

10 of 16

graphs with p = 0.25 and N > 100, smaller bases tend to converge faster (positive 7). This supports

the idea that the optimal base should be tuned based on density.
In contrast, the Greedy initialization exhibits no consistent pattern, indicating its performance is

relatively insensitive to the base.

Greedy -

GreedyProp2 - *

Initialization Method
Kendall's 7

Random2- *

I
I
L
s
=)
i

G60,3,10) =
(60,3,25) =
BG140.7,10) -

BG(140,7,50)

BG(140,7,75)

BG(100,5,75)

g2

:
o)
A

BGi60,3,75)
BG100,5,10) -
BG(100,5,25) -

2
o)
A

B
BG
BG

Graphs class

Figure 2. Kendall’s T correlation between base b and average convergence iterations across varying densities.

Asterisks indicate statistical significance.

Figures 3 and 4 visualize convergence behavior. The first shows how convergence varies with
base values, while the second compares initialization strategies at fixed base b = 10. In each case, the

curves represent averages over 100 runs.

Avg. Bad Vertices over lterations (Random?2)
— b=s
b=10

101
— b=16 501 — b=16
— b=20

Avg. Used Colors over lterations (Random?)
— b=s

404

41
101

0 200 400 600 800 1000 0 200 400 600
Iteration

Used Colors
Bad Vertices

800 1000

Iteration
Figure 3. Effect of base b on convergence for BGéé)S 0.1 under Random?2 initialization.

Figure 5 shows the best k found among all the bases considered with respect to the initialization
methods. The xp is also plotted. We can see that in two cases, the value of Kpes; is less than that of
Xxup- This is because a randomly generated k—partite sparse graph can be colored with fewer than

k colors.

4.3. Experiments on DIMACS Graphs

We evaluate our approach on a variety of graphs from the DIMACS benchmark suite using
different initialization strategies. Table 3 and Table 4 report the best chromatic number (k) found
and the corresponding mean number of iterations across different base values. For certain DIMACS
instances, we found that the number of nodes in the graphs is less than the reported nodes. This
is due to the existence of isolated vertices in the graph. We report these values with an asterisk in

Tables 3 and 4.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025

d0i:10.20944/preprints202508.1583.v1

110f16

Average Colors Used Over lterations (b = 10) Average Bad Vertices Over lterations (b = 10)

104 Random2 Random?2
GreedyProp2 50 GreedyProp2
9 —— Greedy —— Greedy
81 40
o 71 3
§) £ 301
4
>
E 3
DO 54 o0 204
4<
104
N [—
. o |
0 200 400 600 800 1000 0 200 400 600 800 1000
Iteration Iteration
Figure 4. Comparison of initialization strategies for BGéO)3 0 at base b = 10.
k per Graph
709 @ Greedy 00000000000000000000
. A GreedyProp2
6.51 @ Random2
604 © &
5.5
2 5.0 00000000000000000000000 ¢
451
101 e oo
3.5
301 ©0000000000000000000

1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
1
2
1
14
14

i o L B i
B R R R R R R R R R MR R LR R RN RN MR E R R R R E R R A
D Ao B o O s o o QN o
SR R R R R R R e R R R R AR AR AR RRRRERERR
BB BB B e B B B B B B B B
AP BB s s s s s s s g G A A G A A A A
g8888288822888888888888288888358388888889999888858555555888¢8¢
555858 8888855555588858888888888585858588888833333333333333555588%
pepepepeipriprp NN NN MEEEEEEEEEEELLLLL LR LR b b b b b b k)
20000000000 OOOOOO0OPIPTVTV VY TTYYYYYYTYYYWYYYTYTYTYTYTTTYYYYYYUYYYYYYI
B i I i i Y i i i i yYYYYYY i i i iy yYYYIIIEEEEEEEIILY
SEEECEEiEEC i iEl iR T TR R R IT R R R IR R R IIRRRRIIIRTRIIIIIRY
R R S5 55 A AAAiiiiEEEEEEEEEEEEEEEEA
REEEE R R R R R R bR R R R R EEEEEE EEERRRRRRRE EEERRRRRRE EEERRRRRRE LEE!
LA0000000000000000000ddddAddddddddddddoddddddddddddddddddddddddad

i FEEEEEEEEEEEEEEEEE R EEEEEEEE

Figure 5. Best value of k among all the bases, Kpest, using different initialization methods.

Table 3. Table showing the kg found, Triesy, ,, and mean iters. from different initial coloring methods at
base = 10 for DIMACS graphs. The total number of tries was 10.

(kpest, Triesy, , mean iters.)

Graph N |E]| X

Greedy GreedyProp2 RandomProp2
queenl0_10 100 1470 11 (12,10, 2424.0) (12,10, 4409.7) (12, 10, 6195.8)
games120 120 638 9 (9,10,0.0) (9,10, 130.4) (9,10, 134.4)
queenll_11 121 1980 11 (13,9,20870.7) (13,9,27059.1) (13,10, 32604.3)
r125.1 (122, 125%) 209 5 (5,10, 0.0) (5,10, 90.7) (5,10, 104.4)
dsjc125.1 125 736 5 (5,8,34609.1) (5,8,29797.5) (5,7,20002.1)
dsjc125.5 125 3891 17 (18,1,20353.0) (19,10, 7272.5) (18,1, 17936.0)
dsjc125.9 125 6961 44 (48,9,17507.1) (48,8,19232.4) (47, 1,42144.0)
miles250 (125, 128*) 387 8 (8, 10, 0.0) (8,10, 182.7) (8, 10, 248.2)
r125.1¢ 125 7501 46 (46,10,1130.9) (46,10,7622.2) (46,10, 8777.6)
r125.5 125 3838 36 (38,2, 72.0) (40, 10, 20087.7) (40, 10, 21611.7)
zeroin.i.1 (126, 211%) 4100 49 (49, 10, 0.0) (49,4,35532.0) (49,7, 24083.0)
miles1000 128 3216 42 (42,5,11994.6) (42,3, 38704.3) (42, 6,20584.8)
miles1500 128 5198 73 (73,10, 0.0) (73,10, 2960.7) (73,10, 2937.4)
miles500 128 1170 20 (20,10, 0.0) (20,10, 739.0) (20,10, 708.7)
miles750 128 2113 31 (31,8,6198.0) (31,9,20833.4) (31,8, 24205.4)
anna 138 493 11 (11, 10, 0.0) (11, 10, 393.7) (11, 10, 386.9)
mulsol.i.1 (138, 197%) 3925 49 (49, 10, 0.0) (49, 10,10602.4) (49, 10, 8138.3)
queenl2_12 144 2596 12 (14,2,61455.0) (14,2, 37436.5) (14, 2, 31584.0)
zeroin.i.2 (157, 211%) 3541 30 (30, 10, 0.0) (31,1, 76718.0) (32, 3,37033.3)
zeroin.i.3 (157, 206%) 3540 30 (30, 10, 0.0) (32, 3, 28664.7) (31, 1, 28682.0)
queenl3_13 169 3328 13 (16,10, 3766.9) (16,10, 3931.6) (16, 10, 2236.1)
mulsoli2 (173,188%) 3885 31 (31, 10, 0.0) (32,2,217745) (33, 6,20340.2)
mulsol.i.3 (174, 184*) 3916 31 (31, 10, 0.0) (31, 1, 66168.0) (32, 2,53135.5)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025

d0i:10.20944/preprints202508.1583.v1

12 0of 16
Table 3. Cont.

Graph N IE| p (kpest, Triesy, , mean iters.)

Greedy GreedyProp2 RandomProp2
mulsolid (175,185%) 3946 31 (31, 10, 0.0) (33,7, 36817.3) (32,2, 71797.5)
mulsol.i.5 (176, 186*) 3973 31 (31, 10, 0.0) (32, 2,46180.0) (31, 1, 80600.0)
myciel7 191 2360 8 (8,10, 0.0) (8, 10, 444.9) (8,10, 838.4)
queenl4_14 196 4186 14 (17,10,16586.2) (17,10,6326.1) (17,10, 12055.2)
queenl5_15 225 5180 15 (18, 6, 31860.2) (18, 8, 42906.9) (18,5, 46113.6)
dsjc250.9 250 27897 72 (81, 1, 85070.0) (82,1, 10028.0) (81, 1, 69051.0)
1250.1 250 867 8 (8,10, 0.0) (8,10, 261.9) (8, 10, 269.6)
r250.1¢c 250 30227 64 (64,9, 36834.7) (64, 9, 30456.6) (64,7, 34651.6)
r250.5 250 14849 65 (70, 10, 0.0) (76,1, 121885.0) (77,5, 68487 .4)
fpsol2.i.1 (269,496%) 11654 65 (65, 10, 0.0) (65,7, 77886.9) (65, 9, 88497.9)
flat300_28_0 300 21695 28 (36,1,135010.0) (36,2, 93484.0) (36, 6,102437.5)
schooll_nsh 352 14612 14 (14, 9, 21266.3) (14, 9, 8520.3) (14, 8, 14151.0)
fpsol2.i.2 (363,451%) 8691 30 (30, 10, 0.0) (38, 2, 83531.0) (38, 1, 90906.0)
fpsol2.i.3 (363, 425%) 8688 30 (30, 10, 0.0) (38, 2, 102963.5) (36,1, 141087.0)
schooll 385 19095 14 (14, 9, 23410.7) (14, 9, 6986.8) (14, 10, 11152.2)
1e450_15a 450 8168 15 (16,1,173285.0) (17,10, 6486.9) (17, 10, 6299.5)
le450_15b 450 8169 15 (17,10, 9.7) (17,10,7481.9) (16,2, 136735.0)
le450_15¢ 450 16680 15 (16, 1,187434.0) (17,9, 154051.8) (16, 1, 123032.0)
le450_15d 450 16750 15 (17,7,139141.7) (17,10, 134227.2) (16,1, 175603.0)
1e450_25¢ 450 17343 25 (29, 6,101.0) (29,1, 185791.0) (30, 10, 87136.5)
le450_25d 450 17425 25 (29, 6,178.5) (30, 10, 78094.9) (30,9, 41700.2)
1e450_5a 450 5714 5 (6, 3, 96363.3) (6, 5, 28477.6) (6, 6, 79516.3)
1e450_5b 450 5734 5 (6,4, 144962.2) (6,4, 72683.5) (6,5, 89260.0)
dsjr500.1 500 3555 12 (12, 10, 127.6) (12, 10, 1596.9) (12,10, 1672.4)
dsjr500.1c 500 121275 85 (86, 5,123670.8) (86,2, 192601.5) (87, 6, 145665.0)
dsjr500.5 500 58862 122 (133, 3,11.3) (149,1,7558.0) (150, 3,127779.3)
inithx.i.1 (519, 864*) 18707 54 (54, 10, 0.0) (56, 1, 216367.0) (55, 1, 201835.0)
inithx.i.2 (558, 645%) 13979 31 (31, 10, 0.0) (40, 1, 217881.0) (43,1, 218428.0)
inithxi.3 (559, 621*) 13969 31 (31, 10, 0.0) (42, 1,154076.0) (43,1, 25165.0)

Table 4. Table showing the kp,; found, Triesy, ,, and mean iters. at different bases for Random2 initial coloring
method for DIMACS graphs. The total number of tries was 10.

(kpest, Triesy, , mean iters.)

Graph N |E| X

4 10 16 20
games120 120 638 9 (9,10, 177.3) (9, 10, 134.4) (9,10, 126.9) (9,10, 128.1)
queenll_11 121 1980 11 (15, 10, 2769.0) (13, 10, 32604.3) (13, 10, 4902.1) (13,10, 2155.5)
r125.1 (122,125%) 209 5 (5,10, 121.9) (5,10, 104.4) (5,10, 104.2) (5,10, 97.0)
dsjc125.1 125 736 5 (5,1, 33786.0) (5,7,200021) (5,6, 18344.8) (5,1, 10833.0)
miles250 (125, 128%*) 387 8 (8,10,317.3) (8,10, 248.2) (8,10, 243.8) (8,10, 148.8)
r125.1¢ 125 7501 46 (50,1,59577.0) (46,10,8777.6) (46,10,9069.3) (46,9,15232.7)
dsjc125.9 125 6961 44 (55,1, 6142.0) (47,1,42144.0) (45,1, 4447.0) (45, 2, 28926.0)
dsjc125.5 125 3891 17 (22,10, 24273.1) (18,1, 17936.0) (18,10,16079.5) (18,10, 15916.4)
r125.5 125 3838 36 (43, 6, 19662.5) (40, 10, 21611.7) (39, 10, 18904.4) (38, 2,31847.5)
zeroin.i.1 (126, 211%*) 4100 49 (49, 10, 18571.4) (49, 7, 24083.0) (49, 2, 38714.5) (49, 1, 14981.0)
miles500 128 1170 20 (20, 10, 4683.0) (20, 10, 708.7) (20, 10, 582.5) (20, 10, 648.7)
miles1500 128 5198 73 (73,3,275367) (73,10,2937.4) (73,10,2347.4) (73,10,2365.5)
miles750 128 2113 31 (31,1,58027.0) (31,8,242054) (31,10,9100.0) (31,10, 6223.3)
miles1000 128 3216 42 (43,1, 16999.0) (42, 6,20584.8) (42, 8, 11433.0) (42,10, 18577.8)
mulsolil (138,197%) 3925 49 (49,10,3733.0) (49,10,8138.3) (49,10,11425.8) (49,10, 5581.1)
anna 138 493 11 (11,10,372.8) (11,10,386.9) (11,10,433.7) (11,10, 4241.2)
queenl2_12 144 2596 12 (16, 10, 23088.2) (14, 2, 31584.0) (14, 10, 10706.6) (14, 10,4711.0)
zeroin.i.2 (157, 211%) 3541 30 (30, 3, 47465.0) (32, 3,37033.3) (32,1, 27708.0) (32,1, 40091.0)
Zeroin.i.3 (157,206*) 3540 30 (30,4,45605.8) (31,1,28682.0) (32,1,41272.0) (32,2,55011.0)
queen13_13 169 3328 13 (18,10,2047.7) (16,10,2236.1) (15,8,21428.2) (15,10, 7008.4)
mulsol.i.2 (173, 188%) 3885 31 (31, 4, 27328.5) (33, 6,20340.2) (33, 3,37431.0) (33, 6, 34503.5)
mulsol.i.3 (174, 184*) 3916 31 (31, 4, 60165.0) (32,2,53135.5) (33, 4,31618.5) (33, 4, 60413.5)
mulsolid (175,185%) 3946 31 (31,540779.6) (32,2,71797.5) (32,1,20705.0) (33, 4,47436.8)
mulsoli5 (176,186%) 3973 31 (31,2,21881.0) (31,1,80600.0) (32,2,41175.0) (33,4, 61435.2)
myciel7 191 2360 8 (8,10,490.2) (8,10, 838.4) (8,9,768.7) (8,10, 4736.4)
queenl4_14 196 4186 14 (19,10,170205) (17,10,12055.2) (16,1,13392.0) (16, 6, 35802.7)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025

d0i:10.20944/preprints202508.1583.v1

13 of 16
Table 4. Cont.

Graph N IE| p (kpest, Triesy, , mean iters.)

4 10 16 20
queenl5_15 225 5180 15 (20,1, 112258.0) (18, 5,46113.6) (18,10, 3611.6) (17,2, 59238.0)
r250.1c 250 30227 64 (68,1, 39166.0) (64,7, 34651.6) (64,7, 47749.0) (64, 6, 48614.7)
r250.1 250 867 8 (8,10, 382.2) (8, 10, 269.6) (8,10, 261.3) (8,10,337.1)
dsjc250.9 250 27897 72 (107, 1, 47221.0) (81,1, 69051.0) (79, 3, 43635.7) (78, 6,79146.7)
r250.5 250 14849 65 (83,2, 88465.5) (77,5, 68487.4) (74, 2, 65300.5) (74, 5, 48315.4)
fpsol2.i.1 (269,496*) 11654 65 (65,10, 31441.9) (65,9, 88497.9) (65, 5,105803.4) (65,2,102137.0)
flat300_28_0 300 21695 28 (45, 4, 50999.5) (36, 6,102437.5) (33,1, 143072.0) (32,1, 88643.0)
schooll_nsh 352 14612 14 (14, 10, 10003.8) (14, 8, 14151.0) (14, 5, 63549.0) (14, 6, 27482.8)
fpsol2.i.3 (363,425*) 8688 30 (35, 2, 119802.0) (36,1, 141087.0) (39, 1, 98128.0) (40, 1, 162869.0)
fpsol2.i.2 (363,451*) 8691 30 (34, 2,109884.0) (38, 1,90906.0) (37,1, 145146.0) (40,1, 66835.0)
schooll 385 19095 14 (14, 10, 7080.2) (14, 10, 11152.2) (14,9, 17417.0) (14, 10, 11591.4)
1e450_5b 450 5734 5 (6,10, 17455.8) (6, 5, 89260.0) (7,10, 19146 .4) (7,10, 52126.6)
le450_5a 450 5714 5 (5,1, 169416.0) (6, 6,79516.3) (6,1,137162.0) (6, 4, 100053.0)
le450_15d 450 16750 15 (28,1, 23854.0) (16, 1, 175603.0) (19, 1, 220765.0) (20, 1, 194484.0)
le450_25c 450 17343 25 (36,2,151978.0) (30, 10, 87136.5) (28,10, 77927 .4) (27, 4,100118.0)
1le450_25d 450 17425 25 (36, 3, 37371.0) (30,9, 41700.2) (28, 10, 63732.8) (27, 8,139768.8)
le450_15¢ 450 16680 15 (29, 10, 24378.9) (16, 1, 123032.0) (20, 3, 180997.3) (20,1, 187445.0)
le450_15b 450 8169 15 (19, 1, 150060.0) (16, 2, 136735.0) (16, 10, 16153.4) (15,2, 112835.5)
le450_15a 450 8168 15 (19, 2,95430.5) (17,10, 6299.5) (16, 10, 18193.5) (15, 1, 121410.0)
dsjr500.1c 500 121275 85 (93,1, 84314.0) (87, 6, 145665.0) (86, 2, 185044.5) (86,1, 202039.0)
dsjr500.1 500 3555 12 (12, 10, 5808.9) (12,10, 1672.4) (12, 10, 1355.3) (12, 10, 1343.8)
dsjr500.5 500 58862 122 (165,1,244534.0) (150, 3,127779.3) (145,4,121450.5) (143, 1, 216451.0)
inithx.i.1 (519, 864*) 18707 54 (54, 8, 184365.0) (55,1, 201835.0) (58, 2,188375.0) (56,1, 174260.0)
inithx.i.2 (558, 645*) 13979 31 (38,1, 181649.0) (43,1, 218428.0) (44, 1, 208224.0) (44,1, 113023.0)
inithx.i.3 (559, 621*) 13969 31 (38,1, 153621.0) (43, 1, 25165.0) (43, 2, 138566.5) (46, 2, 114019.0)

Unlike in the synthetic balanced graphs, the DIMACS instances exhibit greater structural diversity,
and our method does not consistently recover the true chromatic number (k). However, we observe
that in many cases, even a simple greedy coloring initialization suffices to reach the optimal chromatic
number. This indicates that for a subset of these graphs, the chromatic number is accessible with
relatively straightforward heuristics.

At the same time, for several instances, the inferred chromatic number remains above the known
optimum, suggesting that such graphs pose greater challenge because of their density or structure or
both. The variation in performance across instances and base values highlights the sensitivity of the
method to initialization and the graph’s internal structure.

While we do not identify a consistent trend as in the random k partite balanced graphs, these
results suggest that simple heuristic methods can be surprisingly effective on real-world instances,
although more adaptive or problem-specific strategies may be needed for harder cases. This is in
fact well known, as for some instances in the DIMACS dataset, advanced heuristics fail to find near
optimal solutions (See, for example, a very recent study [27]).

As a summary of our experiments on DIMACS graphs, Figure 6 shows the percent deviation in
the best value of k achieved among all the considered bases from the true chromatic number, x.

5. Conclusions

We proposed a dynamic extension of the Petford—Welsh coloring algorithm that estimates the
chromatic number of a graph without requiring k as an input. The method begins with a minimal
coloring and adaptively adjusts the number of colors based on solution quality. By allowing a
temporary increase in the color budget, the algorithm facilitates broader exploration, followed by
controlled reduction to encourage convergence toward minimal valid colorings.

As already noted, we believe that the main contribution of the work reported here is a “proof of
concept”. In other words, our aim was to show that the simple heuristics based on a generalization of
the Ising model works. This may be of particular interest because of the relation of the algorithm to the
Boltzmann machines and to the Ising model. The potential of the approach that we did not explore
here, is the inherent parallelism. Namely, the current version of the algorithm is implemented and
run on a classical processor and simulates the process in which the vertices selected for update are

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

14 of 16

% Deviation from True Chromatic Number

@ Greedy *
A GreedyProp2 N
o] @ Rangom2
[]
o []
% 60 i
— [)
X $ e ¢
>‘< 40 @ A ® X
¥ = * P < PS P’ A L4 A
o2 ® <) ° X
a & 4 o
20 P ®are o0
e 4 . o8 eoee 60 *°e
1—t-t0e 2008000 00 00000 0 —0-0s0e ¢——oee

15¢
15d

1e450_15a

fpsol2.i.2

1e450_25¢
dsjT500

dsjT500.

games120
r125.1
dsjc125.1
niles250
nyciel?
dsjc250.9
schooll
1e450_5a
1e450_5b

queenii_11
mulsol.i.1
queen12_12
zeroin.i.2
zeroin.i.3
queen13_13
mulsol.i.2
mulsol.i.3
mulsol.i.4
mulsol.i.5
queenid_14
queen15_15
£psol2.i.1
£1a£300_28_0
schooll_nsh
£psol2.i.3
1e450_15b
1e450
1e450
1e450_25d
dsjr500
inithx.i
inithx.i
inithx.i

Figure 6. Percent deviation of kp.s; w.rt. x among all the bases using different initialization methods.

stored in a queue of bad vertices. This is clearly more efficient than allowing each vertex to be selected
at random as the properly colored vertices will very likely be recolored with the same color. On the
other hand, we believe that on a parallel architecture, full parallelism with minimal communication
overhead is possible. In fact, this may be an important potential for future applications . (For a recent
report of simulation of parallel version of the basic algorithm, see [32].)

We continue with a discussion of results of our experiments. The experiments highlight the
importance of both initialization and the choice of base (serving a role analogous to temperature in
simulated annealing). In particular, greedy initialization consistently leads to better convergence and
more accurate estimates of the chromatic number than random strategies. Similarly, lower base values
tend to encourage global refinement, whereas higher values promote local exploration.

This adaptive framework provides a practical approach to estimating chromatic numbers for
large or structurally complex graphs, where exact methods may be infeasible. As directions for future
work, we intend to:

¢ Investigate more principled strategies for base selection and initialization to improve reliability
and convergence speed.

* Explore parallel or distributed implementations to enhance scalability on large graph instances.

¢ Benchmark the approach against recent heuristic solvers, including those based on deep learning
and quantum optimization.

Funding: The research was partially supported by ARIS through the annual work program of Rudolfovo and by
the research grants P2-0248, L1-60136, N1-0278, and J1-4031.

Data Availability Statement: The instances are graphs from DIMACS dataset (sources are given in reference
list, [28-30].) and random graphs generated for the experiment. The later are avalilable at [31].

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Karp, R. Reducibility among combinatorial problems. In: Complexity of Computer Computations. R. Miller and
J. Thatcher, Eds. Plenum Press 1972, pp. 85-103.

2. Appel, K.; Haken, W. Solution of the Four Color Map Problem. Scientific American 1977, 237, 108-121.
https://doi.org/doi:10.1038 /scientificamerican1077-108.

3. de Werra, D. Restricted coloring models for timetabling. Discrete Mathematics 1997, 165-166, 161-170. Graphs
and Combinatorics, https://doi.org/https://doi.org/10.1016/50012-365X(96)00208-7.

4. King, A.D.; Nocera, A.; Rams, M.M.; Dziarmaga, J.; Wiersema, R.; Bernoudy, W.; Raymond, J.; Kaushal,
N.; Heinsdorf, N.; Harris, R.; et al. Beyond-classical computation in quantum simulation. Science 2025,
388,199-204. https://doi.org/10.1126/science.ad06285.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/doi:10.1038/scientificamerican1077-108
https://doi.org/https://doi.org/10.1016/S0012-365X(96)00208-7
https://doi.org/10.1126/science.ado6285
https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

150f 16

5. Mohseni, N.; McMahon, P.L.; Byrnes, T. Ising machines as hardware solvers of combinatorial optimization
problems, 2022, [arXiv:quant-ph/2204.00276]. To appear in Nature Reviews Physics.

6. Lee, H,; Jeong, K.C.; Kim, P. Quantum Circuit Optimization by Graph Coloring, 2025, [arXiv:quant-
ph/2501.14447).

7. D’Hondt, E. Quantum approaches to graph colouring. Theoretical Computer Science 2009, 410, 302-309.
Computational Paradigms from Nature, https://doi.org/https://doi.org/10.1016/j.tcs.2008.09.055.

8. Tabi, Z.; El-Safty, K.H.; Kallus, Z.; Haga, P,; Kozsik, T.; Glos, A.; Zimboras, Z. Quantum Optimization for the
Graph Coloring Problem with Space-Efficient Embedding. In Proceedings of the 2020 IEEE International
Conference on Quantum Computing and Engineering (QCE), Los Alamitos, CA, USA, 2020; pp. 56-62.
https://doi.org/10.1109/QCE49297.2020.00018.

9. Ardelean, S.; Udrescu, M. Graph coloring using the reduced quantum genetic algorithm. Peer] Computer
Science 2022, [8:e836].

10. Shimizu, K.; Mori, R. Exponential-Time Quantum Algorithms for Graph Coloring Problems. Algorithmica
2022, p. 3603-3621.

11. Asavanant, W.; Charoensombutamon, B.; Yokoyama, S.; Ebihara, T.; Nakamura, T.; Alexander, R.N.; Endo,
M.; Yoshikawa, J.i.; Menicucci, N.C.; Yonezawa, H.; et al. Time-Domain-Multiplexed Measurement-
Based Quantum Operations with 25-MHz Clock Frequency. Phys. Rev. Appl. 2021, 16, 034005. https:
//doi.org/10.1103/PhysRevApplied.16.034005.

12. Arrazola,].M.; Delgado, A.; Bardhan, B.R.; Lloyd, S. Quantum-inspired algorithms in practice. Quantum
2020, 4, 307. https://doi.org/10.22331/q-2020-08-13-307.

13. Chakhmakhchyan, L.; Cerf, N.J.; Garcia-Patron, R. Quantum-inspired algorithm for estimating the perma-
nent of positive semidefinite matrices. Physical Review A 2017, 96. https://doi.org/10.1103/physreva.96.022
329.

14. da Silva Coelho, W.; Henriet, L.; Henry, L.P. Quantum pricing-based column-generation framework for hard
combinatorial problems. Physical Review A 2023, 107. https:/ /doi.org/10.1103 /physreva.107.032426.

15. Lewis, RM.R. A Guide to Graph Colouring; Springer Nature Switzerland, 2016. https://doi.org/doi.org/10.1
007/978-3-319-25730-3.

16. DPetford, A.; Welsh, D. A Randomised 3-coloring Algorithm. Discrete Mathematics 1989, 74, 253-261.

17. Donnelly, P.; Welsh, D. The antivoter problem: Random 2-colourings of graphs. In Graph Theory and
Combinatorics (Cambridge, 1983), Academic Press, London. 1984, pp. 133-144.

18. Zerovnik, J. A Randomized Algorithm for k—colorability. Discrete Mathematics 1994, 131, 379-393.

19. Ubeda, S.; Zerovnik, J. A randomized algorithm for a channel assignment problem. Speedup 1997, 11, 14-19.

20. Ikica, B.; Gabrovsek, B.; Povh, J.; Zerovnik, J. Clustering as a dual problem to colouring. Computational and
Applied Mathematics 2022, 41, 147.

21. Zerovnik, J. A randomised heuristical algorithm for estimating the chromatic number of a graph. Information
Processing Letters 1989, 33, 213-219. https:/ /doi.org/https://doi.org/10.1016/0020-0190(89)90144-0.

22. Shawe-Taylor, J.; Zerovnik, J. Boltzmann machine with finite alphabet, 1992. RHBNC Departmental
Technical Report CSD-TR-92-29, extended abstract appears in Artificial Neural Networks 2, vol 1, 391-394.

23. Ackley, D.H.; Hinton, G.E.; Sejnowski, T.]. A learning algorithm for boltzmann machines. Cognitive science
1985, 9, 147-169.

24. Lundy, M.; Mees, A. Convergence of an annealing algorithm. Mathematical Programming 1986, 34, 111-124.
https:/ /doi.org/https:/ /doi.org/10.1007 /BF01582166.

25. Johnson, D.S; Trick, M.A., Eds. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,
Vol. 26, DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society, 1996. Proceedings of the Second DIMACS Implementation Challenge held October 11-13, 1993.

26. Marappan, R.; Bhaskaran, S. New evolutionary operators in coloring DIMACS challenge benchmark graphs.
International Journal of Information Technology 2022, 14, 3039-3046. Published August 19, 2022; Received April
25, 2022; Accepted July 28, 2022, https:/ /doi.org/10.1007 /s41870-022-01057-x.

27. Kole, A.; Pal, A. Efficient Hybridization of Quantum Annealing and Ant Colony Optimization for Coloring
DIMACS Graph Instances. | Heuristics 2025, 31, 29. https://doi.org/https://doi.org/10.1007 /s10732-025-0
9565-2.

28. https://mat.tepper.cmu.edu/COLOR/instances.html. Accessed: 2025-08-14.

29. https://cedric.cnam.fr/~porumbed/graphs/. Accessed: 2025-08-14.

30. hittps://sites.google.com/site/graphcoloring /links. Accessed: 2025-08-14.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

http://arxiv.org/abs/2204.00276
http://arxiv.org/abs/2501.14447
http://arxiv.org/abs/2501.14447
https://doi.org/https://doi.org/10.1016/j.tcs.2008.09.055
https://doi.org/10.1109/QCE49297.2020.00018
http://arxiv.org/abs/8:e836
https://doi.org/10.1103/PhysRevApplied.16.034005
https://doi.org/10.1103/PhysRevApplied.16.034005
https://doi.org/10.22331/q-2020-08-13-307
https://doi.org/10.1103/physreva.96.022329
https://doi.org/10.1103/physreva.96.022329
https://doi.org/10.1103/physreva.107.032426
https://doi.org/doi.org/10.1007/978-3-319-25730-3
https://doi.org/doi.org/10.1007/978-3-319-25730-3
https://doi.org/https://doi.org/10.1016/0020-0190(89)90144-0
https://doi.org/https://doi.org/10.1007/BF01582166
https://doi.org/10.1007/s41870-022-01057-x
https://doi.org/https://doi.org/10.1007/s10732-025-09565-2
https://doi.org/https://doi.org/10.1007/s10732-025-09565-2
https://mat.tepper.cmu.edu/COLOR/instances.html
https://cedric.cnam.fr/~porumbed/graphs/
https://sites.google.com/site/graphcoloring/links
https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1583.v1

16 of 16

31. https://github.com/omkarbihani/Dynamic_Petford_Welsh.
32. Gabrovsek, B.; Zerovnik, J. A fresh look to a randomized massively parallel graph coloring algorithm.
Croatian Operational Research Review 2024, 15, 105-117.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://github.com/omkarbihani/Dynamic_Petford_Welsh
https://doi.org/10.20944/preprints202508.1583.v1
http://creativecommons.org/licenses/by/4.0/

