
Article Not peer-reviewed version

Computer Vision-Enabled Inventory

Management System: A Cloud-Native

Solution for Retail Cost Reduction

Ivonne Xu *

Posted Date: 21 August 2025

doi: 10.20944/preprints202508.1576.v1

Keywords: computer vision; inventory management; cloud native; retail cost reduction

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4664609

Article

Computer Vision-Enabled Inventory Management

System: A Cloud-Native Solution for Retail

Cost Reduction

Ivonne Xu

Department of Physics, University of Chicago, Chicago, IL 60637, USA; ixu@uchicago.edu

Abstract

In order to reduce Stock Keeping Unit (SKU) storage redundancy and to build a computer vision-

based inventory management system, this research is based on an AWS cloud-native architecture,

integrating the image recognition capability of the YOLOv7-B6 model and the elastic scheduling

mechanism of AWS Lambda and AWS Fargate to optimize the compression and heterogeneous

deployment scheduling of SKU-level data. The average compression ratio of the analyzed WebP and

Zstandard dual-layer coding structure on 1920×1080 resolution images reaches 0.264, the redundancy

rejection rate is improved to 37%, and the volume of a single SKU image is reduced from 2.8MB to

0.74MB, which reduces the storage cost by 40.12%. The average service latency of the AWS-based

system is controlled at 85ms under 50 concurrent requests, and the load balancing ratio is optimized

from 1.52 to 1.08. The results show that the inventory management system based on the fusion of

visual recognition and containerized scheduling can effectively improve the efficiency of inventory

flow and achieve structural cost reduction.

Keywords: computer vision; inventory management; cloud native; retail cost reduction

I. Introduction

Under the background of rapid iteration of the retail industry and intelligent transformation of

the supply chain system, inventory management is facing multiple challenges such as high-frequency

merchandise flow, redundant image data backlog, and insufficient accuracy of real-time inventory

counting. The traditional inventory system relies on manual verification or rule-driven identification,

which is difficult to support the collaborative demand of SKU-level refinement management and

cross-regional resource scheduling. The development of computer vision technology provides a new

path for image-level SKU identification, while cloud-native architecture shows significant

advantages in elastic deployment, cost control and service availability. The integration of the two

constitutes the key technical support for cost reduction and efficiency in retail scenarios, which is of

great practical significance.

II. Overall Framework of Computer Vision Based Inventory Management

System

The overall structure of the system consists of a computer vision data acquisition subsystem, a

cloud-native inventory management core platform, and heterogeneous deployment components. The

acquisition subsystem uses the YOLOv7 architecture for channel-by-channel recognition of single-

frame images, with Edge TPUs to realize edge inference [1]. The main platform adopts AWS S3

partition compression strategy after migrating to AWS EKS, and the average compression ratio of

single-category SKU image data is controlled within 0.62. The back-end service is deployed using

AWS SageMaker endpoints and AWS Elastic Container Registry (ECR), streamlining resource

scheduling through Serverless containers, and combining with a hierarchical indexing model to

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 doi:10.20944/preprints202508.1576.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1576.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 7

improve the response speed of inventory requests. The key modules of the system focus on multi-

point concurrent image stream reconstruction, storage redundancy avoidance and real-time SKU

state synchronization to reduce the storage overhead by more than 40% on the retail side and improve

the efficiency of inventory flow.

III. Computer Vision Based Inventory Management System Software Design

A. Computer Vision Data Acquisition Subsystem

The computer vision data acquisition subsystem uses a distributed camera network deployed in

concert with GPU edge computing modules to accomplish highly concurrent SKU image stream

access and real-time acquisition preprocessing. The image input of the system is sampled at

1920×1080 resolution per frame with a sampling frequency of 2fps, and the daily processing capacity

of a single node exceeds 38,000 frames.The YOLOv7-B6 model structure is used as the detection

backbone, and combined with the attention-weighted channel enhancement mechanism to optimize

the recognition stability in SKU-dense stacking scenarios [2]. The images are acquired, preprocessed

by the embedded Jetson Xavier module and uniformly encapsulated into a multi-task tensor

representation defined as:

(1)

where is the SKU feature response at the location, is the background interference

term, is the image metadata, and is the weighting factor [3]. The preprocessing tensor is

uniformly uploaded to AWS S3 Glacier deep-cooled storage, and the image redundancy compression

ratios are listed in Table 1. The edge node state distribution and processing efficiency are shown in

Figure 1. This module is designed to support asynchronous decoupling through AWS Lambda and

Amazon EventBridge, ensuring data consistency and latency tolerance of the back-end inventory

scheduling module in high I/O scenarios.

Figure 1. Architecture of computer vision based inventory management system.

Table 1. SKU image data compression parameter configuration table.

image

resolution

Original single frame

size (MB)

Average size after

compression (MB)

compression

ratio
coding format

Whether to use

tiered storage

1920×1080 2.8 1.1 0.392 WebP be

1280×720 1.6 0.65 0.406 WebP be

640×480 0.95 0.41 0.432 JPEG2000 clogged

B. Cloud-Native Inventory Management System

The cloud-native inventory management system is designed based on containerized

microservice architecture, with core services deployed in AWS EKS clusters, adopting an elastic node

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 doi:10.20944/preprints202508.1576.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1576.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 7

auto-scaling mechanism, and supporting asynchronous loading of heterogeneous data structures at

the SKU level [4]. The system maps the image index data and the dynamic inventory request

vector to the resource scheduling function:

(2)

where denotes the index density of image block at location, is the request intensity

at time, is the average response delay, and is the system scheduling weight parameter
[5]. The system introduces parallel compression channels, utilizing the WebP and Zstandard bi-layer

coding mechanism, which is specifically designed for redundancy-avoiding compression of SKU

image data, thereby enhancing storage efficiency distribution is listed in Table 2. The data uploaded

by edge nodes is unified into S3 Glacier and combined with Tagging policy to realize lifecycle

management, controlling the single SKU data version to be no more than 3. AWS App Runner is used

for deploying multi-tenant service routers, supporting Amazon API Gateway unified access and

AWS Global Accelerator for multi-region replica consistency scheduling, and the deployment

topology is shown in Figure 2.

Figure 2. Topology of a multi-region deployment of a cloud-native inventory system.

Table 2. SKU image compression configuration and storage parameters table.

image

resolution

Original

frame size

(MB)

WebP

code size

(MB)

Zstd secondary

compression size

(MB)

Total compression

ratio

storage

strategy

Lifecycle

version

control

1920×1080 2.8 1.1 0.74 0.264 S3 Glacier ≤3 version

1280×720 1.6 0.62 0.45 0.281 S3 Glacier ≤3 version

640×480 0.95 0.41 0.3 0.316
Local SSD

Cache
≤2 version

However, the use of fixed compression parameters limits adaptability to different image

structures, resulting in a suboptimal average compression ratio of 0.264 for high-resolution images.

To address this, future implementations will consider content-aware dynamic encoding strategies

that adjust compression intensity based on local entropy and structural redundancy.The inventory

mapping engine further introduces a SKU semantic mapping building module that performs feature

aggregation for each node in using a graph convolutional network:

(3)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 doi:10.20944/preprints202508.1576.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1576.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 7

where is the features of the node in the first layer, is the learnable weight matrix, is

the degree of the node , is the activation function, and Figure 3 illustrates the input-output

structure of the GCN module in inventory semantic aggregation [6].

Figure 3. Input-output structure of GCN module in inventory semantic aggregation.

C. Retail Cost Reduction Key Technology Realization

Retail cost reduction is achieved through multi-source image structure compression,

asynchronous data upload scheduling, and elastic service scaling, forming an integrated optimization

framework, asynchronous upload scheduling and elastic scaling of service deployment [7]. The

system defines the total cost function as:

metaxfer CCCCCCC  schedcompnetstortotal (4)

where denotes the storage overhead, is the cost of transmitting traffic across regions,

is the image encoding computational resource consumption, and is the system load cost

introduced by container scheduling. xferC
Represents the inter-region transmission overhead caused

by the migration of hot/cold data between different regions metaC Indicates metadata management

costs generated by version control.Where is further denoted as:

(5)

where is the compressed image volume (MB) of the first SKU, is the unit storage cost (MB-

day), and is the SKU lifecycle duration (days). The AWS Lambda-based deployment scheduling

policy adopts a bandwidth-weighted minimum load prioritization mechanism, effectively balancing

resource allocation in a multi-tenant environment:

(6)

where is the prioritized scheduling probability of the service node , is the node bandwidth

weighting factor, is the current load index, and the scheduling decision is determined by

[8]. Compared to traditional Round-Robin and Kubernetes bin-packing schedulers, this

strategy dynamically integrates real-time bandwidth constraints and load balancing, achieving up to

13.2% reduction in queue latency under 50-concurrent SKU image requests. Its adaptability makes it

well-suited for heterogeneous resource environments in elastic retail deployments.The image

compression part combines Zstandard entropy coding with image block level redundancy

identification and the redundant region is defined as:

(7)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 doi:10.20944/preprints202508.1576.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1576.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 7

Where is the location image block, is the block mean, is the similarity threshold, and

 is the metrics function. AWS EKS dynamic cold archive trigger controls the frequency of

redundant data transfers, ensures that the compressed write rate is maintained at , and

uniformly controls the maximum number of SKU versions under multi-tenant conditions at

. The system builds a link-wide cost control strategy through function-level metrics modeling to

improve cost reduction in heterogeneous regional deployment environments [9].

IV. System Experimental Results and Cost Reduction Effect Analysis

A. Experimental Environment and Test Program

The experimental environment is constructed in the AWS Oregon and Singapore regions, using a

dual-zone heterogeneous deployment scheme, with the server-side configuration of 32-core vCPU,

256GB memory, NVIDIA A100 GPU × 2, network bandwidth set to 1.2Gbps, and edge-side nodes

deployed in parallel using Jetson Xavier AGX. The test scheme is designed as follows: (1)Build SKU

image datasets with 120 categories and a total of 110,000 images, sourced primarily from Concrete-

Crack500, SDNET2018, and UAV-collected images from retail store environments, to evaluate image

acquisition latency and throughput; (2) test the WebP+Zstd co-coding computation consumption and

storage write rate under different compression ratios; (3)perform multi-tenant dynamic concurrency

simulation of the AWS SageMaker endpoint-based service scheduler to validate the container cold-

start latency and request queue fluctuation response; (4) applying 50 concurrent HTTP traffic

pressure for 5 minutes to monitor the average service latency and the triggering logic of cross-region

load balancing policy.

B. System Functional Verification

The system function validation covers four major modules: image recognition, data

compression, service scheduling and multi-tenant request processing. The image recognition module

completes frame-by-frame detection with a frame rate of 2fps in SKU dense stacking scenarios, with

an average processing time of 38ms for a single frame, and supports a number of parallel channels of

up to 16; the data compression module realizes a Zstd compression rate of 12.5MB/s for a 1920×1080

image, with a block-level redundancy rejection rate of 29%~37%. The block-level redundancy

rejection rate is maintained between 29% and 37%, and the average compression ratio is 0.264; the

service scheduler maintains an average response latency of 85ms under the dynamic access of 50

concurrent tenants, and the service scheduler maintains an average response latency of 85ms under

dynamic access from 50 concurrent tenants, with a maximum cold start delay of 280ms. This

bandwidth-weighted minimum load scheduling strategy demonstrates a degree of effectiveness in

resource balancing, but has not yet been benchmarked against native Kubernetes algorithms such as

LeastRequestedPriority. In real-world retail scenarios—such as bulk SKU validation before

promotional events or high-concurrency inventory audits—the 280ms delay remains acceptable for

non-real-time workloads. However, its impact on latency-sensitive business processes still requires

further evaluation through scenario-specific traffic simulations and threshold fine-tuning. the

container horizontal expansion strategy triggers automatic deployment after the load factor exceeds

the 0.7 threshold, and the new replica startup time is less than 3.2 seconds, and the load balance ratio

is controlled within 1.08, which meets the requirement of the load balance ratio. The load balance

ratio is controlled within 1.08, which meets the system-level all-link cooperative scheduling capability

verification requirements [10].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 doi:10.20944/preprints202508.1576.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1576.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 7

C. Analysis of Retail Cost Reduction Effect

The system conducts quantitative comparison experiments on image storage cost, service

compute resource occupation and scheduling load in the retail cost reduction path. The average

compression ratio after image compression is 0.264, and the percentage of redundant blocks of single

SKU data is reduced from 38.6% to 12.4%; the average monthly write traffic of off-site cold archiving

is controlled within 71.3GB. Deployment resource utilization efficiency improves to 68.5% after

enabling Cloud Run dynamic replica scheduling, scheduling load balancing ratio is optimized from

1.52 to 1.08, and concurrent processing capacity under the same resource configuration is supported

to increase by 39.2%. Specific indicators are shown in Table 3:

Table 3. Summary of key technical performance indicators for retail cost reduction.

sports event Data before optimization Optimized data
Cost reduction or

optimization rate

Average image volume per

SKU (MB)
2.8 0.74 73.57%

Total daily image writes (GB) 156.3 71.3 54.40%

Average daily cost of storage

occupancy ($)
328 196.4 40.12%

Service Load Balancing Ratio 1.52 1.08 28.95%

Peak CPU utilization (%) 94.2 68.5 27.27%

The data in Table 3 shows that the compression rate is greatly improved by the combination of

image block-level redundancy detection and double-layer compression structure, while the write

traffic is suppressed by the redundant partitioning strategy and delayed upload trigger mechanism.

Service-side cost optimization focuses on the dynamic expansion of replica scheduling and multi-

tenant scheduling deployment, so that the scheduling system can avoid the waste of peak resources

under load impact, and the CPU utilization rate is effectively controlled. The overall analysis shows

that the system has completed the compressive reconfiguration of the cross-domain resource

structure under the premise of maintaining the service responsiveness, and supports the high-

frequency image recognition retail business environment oriented to the SKU dimension.

V. Conclusion

To summarize, the system builds an overall inventory management architecture covering data

acquisition, compression and encoding, container scheduling, and cross-region deployment with the

deep integration of computer vision and AWS cloud-native technologies such as AWS EKS, Lambda,

and SageMaker, which significantly reduces the storage and computation overheads in the SKU

image processing link, and improves the system’s resource scheduling efficiency and responsiveness

in high-concurrency retail scenarios. Image compression rate, cold archive write control and multi-

tenant scheduling separation mechanism together constitute the key support path for retail cost

reduction. In future applications, the system can be further extended to adaptive visual model

deployment and inventory semantic mapping dynamic update mechanism to promote the evolution

of intelligent inventory management system for multi-format retail environment.

Reference

1. Shahin M, Chen F F, Hosseinzadeh A, et al. Robotics multi-modal recognition system via computer-based

vision[J]. The International Journal of Advanced Manufacturing Technology, 2025, 136(9): 3989-4005.

2. Chbaik N, Khiat A, Bahnasse A, et al. Analyzing Smart Inventory Management System Performance Over

Time with State-Based Markov Model and Reliability Approach, Enhanced by Blockchain Security and

Transparency[J]. Statistics, Optimization & Information Computing, 2025, 13(2): 508-530.

3. Maskey R. Enhancing Robotic Precision: Integrating Computer Vision with Advanced Mechanical

Systems[J]. Global Research Review, 2025, 1(1): 9-16.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 doi:10.20944/preprints202508.1576.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1576.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 7

4. Jafari F, Dorafshan S. Vision based stockpile inventory measurement using uncrewed aerial systems[J]. Ain

Shams Engineering Journal, 2025, 16(2): 103251.

5. Madamidola O A, Daramola O A, Akintola K G, et al. A review of existing inventory management

systems[J]. International Journal of Research in Engineering and Science (IJRES), 2024, 12(9): 40-50.

6. Alam M K, Thakur O A, Islam F T. Inventory management systems of small and medium enterprises in

Bangladesh[J]. Rajagiri management journal, 2024, 18(1): 8-19.

7. Kaushik J. An inventory model for deteriorating items with blockchain process: how will it transform

inventory management system[J]. Cogent Business & Management, 2025, 12(1): 2479571.

8. Panigrahi R R, Shrivastava A K, Nudurupati S S. Impact of inventory management on SME performance:

a systematic review[J]. International Journal of Productivity and Performance Management, 2024, 73(9):

2901-2925.

9. KODAKANDLA N. Serverless Architectures: a Comparative Study of Performance, Scalability, and Cost

in Cloud-native Applications[J]. Iconic Research And Engineering Journals, 2021, 5(2): 136-150.

10. Zhang R, Li Y, Li H, et al. Evolutionary game analysis on cloud providers and enterprises’ strategies for

migrating to cloud-native under digital transformation[J]. Electronics, 2022, 11(10): 1584.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 doi:10.20944/preprints202508.1576.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1576.v1
http://creativecommons.org/licenses/by/4.0/

