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Abstract 

In order to reduce Stock Keeping Unit (SKU) storage redundancy and to build a computer vision-

based inventory management system, this research is based on an AWS cloud-native architecture, 

integrating the image recognition capability of the YOLOv7-B6 model and the elastic scheduling 

mechanism of AWS Lambda and AWS Fargate to optimize the compression and heterogeneous 

deployment scheduling of SKU-level data. The average compression ratio of the analyzed WebP and 

Zstandard dual-layer coding structure on 1920×1080 resolution images reaches 0.264, the redundancy 

rejection rate is improved to 37%, and the volume of a single SKU image is reduced from 2.8MB to 

0.74MB, which reduces the storage cost by 40.12%. The average service latency of the AWS-based 

system is controlled at 85ms under 50 concurrent requests, and the load balancing ratio is optimized 

from 1.52 to 1.08. The results show that the inventory management system based on the fusion of 

visual recognition and containerized scheduling can effectively improve the efficiency of inventory 

flow and achieve structural cost reduction. 
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I. Introduction 

Under the background of rapid iteration of the retail industry and intelligent transformation of 

the supply chain system, inventory management is facing multiple challenges such as high-frequency 

merchandise flow, redundant image data backlog, and insufficient accuracy of real-time inventory 

counting. The traditional inventory system relies on manual verification or rule-driven identification, 

which is difficult to support the collaborative demand of SKU-level refinement management and 

cross-regional resource scheduling. The development of computer vision technology provides a new 

path for image-level SKU identification, while cloud-native architecture shows significant 

advantages in elastic deployment, cost control and service availability. The integration of the two 

constitutes the key technical support for cost reduction and efficiency in retail scenarios, which is of 

great practical significance. 

II. Overall Framework of Computer Vision Based Inventory Management 

System 

The overall structure of the system consists of a computer vision data acquisition subsystem, a 

cloud-native inventory management core platform, and heterogeneous deployment components. The 

acquisition subsystem uses the YOLOv7 architecture for channel-by-channel recognition of single-

frame images, with Edge TPUs to realize edge inference [1]. The main platform adopts AWS S3 

partition compression strategy after migrating to AWS EKS, and the average compression ratio of 

single-category SKU image data is controlled within 0.62. The back-end service is deployed using 

AWS SageMaker endpoints and AWS Elastic Container Registry (ECR), streamlining resource 

scheduling through Serverless containers, and combining with a hierarchical indexing model to 
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improve the response speed of inventory requests. The key modules of the system focus on multi-

point concurrent image stream reconstruction, storage redundancy avoidance and real-time SKU 

state synchronization to reduce the storage overhead by more than 40% on the retail side and improve 

the efficiency of inventory flow. 

III. Computer Vision Based Inventory Management System Software Design 

A. Computer Vision Data Acquisition Subsystem 

The computer vision data acquisition subsystem uses a distributed camera network deployed in 

concert with GPU edge computing modules to accomplish highly concurrent SKU image stream 

access and real-time acquisition preprocessing. The image input of the system is sampled at 

1920×1080 resolution per frame with a sampling frequency of 2fps, and the daily processing capacity 

of a single node exceeds 38,000 frames.The YOLOv7-B6 model structure is used as the detection 

backbone, and combined with the attention-weighted channel enhancement mechanism to optimize 

the recognition stability in SKU-dense stacking scenarios [2]. The images are acquired, preprocessed 

by the embedded Jetson Xavier module and uniformly encapsulated into a multi-task tensor 

representation defined as: 

(1) 

where  is the SKU feature response at the  location,  is the background interference 

term,  is the image metadata, and  is the weighting factor [3]. The preprocessing tensor is 

uniformly uploaded to AWS S3 Glacier deep-cooled storage, and the image redundancy compression 

ratios are listed in Table 1. The edge node state distribution and processing efficiency are shown in 

Figure 1. This module is designed to support asynchronous decoupling through AWS Lambda and 

Amazon EventBridge, ensuring data consistency and latency tolerance of the back-end inventory 

scheduling module in high I/O scenarios. 

 

Figure 1. Architecture of computer vision based inventory management system. 

Table 1. SKU image data compression parameter configuration table. 

image 

resolution 

Original single frame 

size (MB) 

Average size after 

compression (MB) 

compression 

ratio 
coding format 

Whether to use 

tiered storage 

1920×1080 2.8 1.1 0.392 WebP be 

1280×720 1.6 0.65 0.406 WebP be 

640×480 0.95 0.41 0.432 JPEG2000 clogged 

B. Cloud-Native Inventory Management System 

The cloud-native inventory management system is designed based on containerized 

microservice architecture, with core services deployed in AWS EKS clusters, adopting an elastic node 
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auto-scaling mechanism, and supporting asynchronous loading of heterogeneous data structures at 

the SKU level [4]. The system maps the image index data  and the dynamic inventory request 

vector  to the resource scheduling function: 

(2) 

where  denotes the index density of image block at  location,  is the request intensity 

at  time,  is the average response delay, and  is the system scheduling weight parameter 
[5]. The system introduces parallel compression channels, utilizing the WebP and Zstandard bi-layer 

coding mechanism, which is specifically designed for redundancy-avoiding compression of SKU 

image data, thereby enhancing storage efficiency distribution is listed in Table 2. The data uploaded 

by edge nodes is unified into S3 Glacier and combined with Tagging policy to realize lifecycle 

management, controlling the single SKU data version to be no more than 3. AWS App Runner is used 

for deploying multi-tenant service routers, supporting Amazon API Gateway unified access and 

AWS Global Accelerator for multi-region replica consistency scheduling, and the deployment 

topology is shown in Figure 2. 

 

Figure 2. Topology of a multi-region deployment of a cloud-native inventory system. 

Table 2. SKU image compression configuration and storage parameters table. 

image 

resolution 

Original 

frame size 

(MB) 

WebP 

code size 

(MB) 

Zstd secondary 

compression size 

(MB) 

Total compression 

ratio 

storage 

strategy 

Lifecycle 

version 

control 

1920×1080 2.8 1.1 0.74 0.264 S3 Glacier ≤3 version 

1280×720 1.6 0.62 0.45 0.281 S3 Glacier ≤3 version 

640×480 0.95 0.41 0.3 0.316 
Local SSD 

Cache 
≤2 version 

However, the use of fixed compression parameters limits adaptability to different image 

structures, resulting in a suboptimal average compression ratio of 0.264 for high-resolution images. 

To address this, future implementations will consider content-aware dynamic encoding strategies 

that adjust compression intensity based on local entropy and structural redundancy.The inventory 

mapping engine further introduces a SKU semantic mapping building module that performs feature 

aggregation for each node  in  using a graph convolutional network: 

(3) 
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where  is the features of the node  in the first  layer,  is the learnable weight matrix,  is 

the degree of the node ,  is the activation function, and Figure 3 illustrates the input-output 

structure of the GCN module in inventory semantic aggregation [6]. 

 

Figure 3. Input-output structure of GCN module in inventory semantic aggregation. 

C. Retail Cost Reduction Key Technology Realization 

Retail cost reduction is achieved through multi-source image structure compression, 

asynchronous data upload scheduling, and elastic service scaling, forming an integrated optimization 

framework, asynchronous upload scheduling and elastic scaling of service deployment [7]. The 

system defines the total cost function as: 

metaxfer CCCCCCC  schedcompnetstortotal  (4) 

where  denotes the storage overhead,  is the cost of transmitting traffic across regions,  

is the image encoding computational resource consumption, and  is the system load cost 

introduced by container scheduling. xferC
Represents the inter-region transmission overhead caused 

by the migration of hot/cold data between different regions metaC Indicates metadata management 

costs generated by version control.Where  is further denoted as: 

(5) 

where  is the compressed image volume (MB) of the first  SKU,  is the unit storage cost (MB-

day), and  is the SKU lifecycle duration (days). The AWS Lambda-based deployment scheduling 

policy adopts a bandwidth-weighted minimum load prioritization mechanism, effectively balancing 

resource allocation in a multi-tenant environment: 

(6) 

where  is the prioritized scheduling probability of the service node ,  is the node bandwidth 

weighting factor,  is the current load index, and the scheduling decision is determined by 

[8]. Compared to traditional Round-Robin and Kubernetes bin-packing schedulers, this 

strategy dynamically integrates real-time bandwidth constraints and load balancing, achieving up to 

13.2% reduction in queue latency under 50-concurrent SKU image requests. Its adaptability makes it 

well-suited for heterogeneous resource environments in elastic retail deployments.The image 

compression part combines Zstandard entropy coding with image block level redundancy 

identification and the redundant region is defined as: 

(7) 
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Where  is the  location image block,  is the block mean,  is the similarity threshold, and

 is the metrics function. AWS EKS dynamic cold archive trigger controls the frequency of 

redundant data transfers, ensures that the compressed write rate is maintained at , and 

uniformly controls the maximum number of SKU versions under multi-tenant conditions at

. The system builds a link-wide cost control strategy through function-level metrics modeling to 

improve cost reduction in heterogeneous regional deployment environments [9]. 

IV. System Experimental Results and Cost Reduction Effect Analysis 

A. Experimental Environment and Test Program 

The experimental environment is constructed in the AWS Oregon and Singapore regions, using a 

dual-zone heterogeneous deployment scheme, with the server-side configuration of 32-core vCPU, 

256GB memory, NVIDIA A100 GPU × 2, network bandwidth set to 1.2Gbps, and edge-side nodes 

deployed in parallel using Jetson Xavier AGX. The test scheme is designed as follows: (1)Build SKU 

image datasets with 120 categories and a total of 110,000 images, sourced primarily from Concrete-

Crack500, SDNET2018, and UAV-collected images from retail store environments, to evaluate image 

acquisition latency and throughput; (2) test the WebP+Zstd co-coding computation consumption and 

storage write rate under different compression ratios; (3)perform multi-tenant dynamic concurrency 

simulation of the AWS SageMaker endpoint-based service scheduler to validate the container cold-

start latency and request queue fluctuation response; (4) applying 50 concurrent HTTP traffic 

pressure for 5 minutes to monitor the average service latency and the triggering logic of cross-region 

load balancing policy. 

B. System Functional Verification 

The system function validation covers four major modules: image recognition, data 

compression, service scheduling and multi-tenant request processing. The image recognition module 

completes frame-by-frame detection with a frame rate of 2fps in SKU dense stacking scenarios, with 

an average processing time of 38ms for a single frame, and supports a number of parallel channels of 

up to 16; the data compression module realizes a Zstd compression rate of 12.5MB/s for a 1920×1080 

image, with a block-level redundancy rejection rate of 29%~37%. The block-level redundancy 

rejection rate is maintained between 29% and 37%, and the average compression ratio is 0.264; the 

service scheduler maintains an average response latency of 85ms under the dynamic access of 50 

concurrent tenants, and the service scheduler maintains an average response latency of 85ms under 

dynamic access from 50 concurrent tenants, with a maximum cold start delay of 280ms. This 

bandwidth-weighted minimum load scheduling strategy demonstrates a degree of effectiveness in 

resource balancing, but has not yet been benchmarked against native Kubernetes algorithms such as 

LeastRequestedPriority. In real-world retail scenarios—such as bulk SKU validation before 

promotional events or high-concurrency inventory audits—the 280ms delay remains acceptable for 

non-real-time workloads. However, its impact on latency-sensitive business processes still requires 

further evaluation through scenario-specific traffic simulations and threshold fine-tuning. the 

container horizontal expansion strategy triggers automatic deployment after the load factor exceeds 

the 0.7 threshold, and the new replica startup time is less than 3.2 seconds, and the load balance ratio 

is controlled within 1.08, which meets the requirement of the load balance ratio. The load balance 

ratio is controlled within 1.08, which meets the system-level all-link cooperative scheduling capability 

verification requirements [10]. 
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C. Analysis of Retail Cost Reduction Effect 

The system conducts quantitative comparison experiments on image storage cost, service 

compute resource occupation and scheduling load in the retail cost reduction path. The average 

compression ratio after image compression is 0.264, and the percentage of redundant blocks of single 

SKU data is reduced from 38.6% to 12.4%; the average monthly write traffic of off-site cold archiving 

is controlled within 71.3GB. Deployment resource utilization efficiency improves to 68.5% after 

enabling Cloud Run dynamic replica scheduling, scheduling load balancing ratio is optimized from 

1.52 to 1.08, and concurrent processing capacity under the same resource configuration is supported 

to increase by 39.2%. Specific indicators are shown in Table 3: 

Table 3. Summary of key technical performance indicators for retail cost reduction. 

sports event Data before optimization Optimized data 
Cost reduction or 

optimization rate 

Average image volume per 

SKU (MB) 
2.8 0.74 73.57% 

Total daily image writes (GB) 156.3 71.3 54.40% 

Average daily cost of storage 

occupancy ($) 
328 196.4 40.12% 

Service Load Balancing Ratio 1.52 1.08 28.95% 

Peak CPU utilization (%) 94.2 68.5 27.27% 

The data in Table 3 shows that the compression rate is greatly improved by the combination of 

image block-level redundancy detection and double-layer compression structure, while the write 

traffic is suppressed by the redundant partitioning strategy and delayed upload trigger mechanism. 

Service-side cost optimization focuses on the dynamic expansion of replica scheduling and multi-

tenant scheduling deployment, so that the scheduling system can avoid the waste of peak resources 

under load impact, and the CPU utilization rate is effectively controlled. The overall analysis shows 

that the system has completed the compressive reconfiguration of the cross-domain resource 

structure under the premise of maintaining the service responsiveness, and supports the high-

frequency image recognition retail business environment oriented to the SKU dimension. 

V. Conclusion 

To summarize, the system builds an overall inventory management architecture covering data 

acquisition, compression and encoding, container scheduling, and cross-region deployment with the 

deep integration of computer vision and AWS cloud-native technologies such as AWS EKS, Lambda, 

and SageMaker, which significantly reduces the storage and computation overheads in the SKU 

image processing link, and improves the system’s resource scheduling efficiency and responsiveness 

in high-concurrency retail scenarios. Image compression rate, cold archive write control and multi-

tenant scheduling separation mechanism together constitute the key support path for retail cost 

reduction. In future applications, the system can be further extended to adaptive visual model 

deployment and inventory semantic mapping dynamic update mechanism to promote the evolution 

of intelligent inventory management system for multi-format retail environment. 
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