Pre prints.org

Article Not peer-reviewed version

Computer Vision-Enabled Inventory
Management System: A Cloud-Native
Solution for Retail Cost Reduction

Ivonne Xu
Posted Date: 21 August 2025
doi: 10.20944/preprints202508.1576.v1

Keywords: computer vision; inventory management; cloud native; retail cost reduction

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4664609

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 August 2025 d0i:10.20944/preprints202508.1576.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Computer Vision-Enabled Inventory Management
System: A Cloud-Native Solution for Retail
Cost Reduction

Ivonne Xu

Department of Physics, University of Chicago, Chicago, IL 60637, USA; ixu@uchicago.edu

Abstract

In order to reduce Stock Keeping Unit (SKU) storage redundancy and to build a computer vision-
based inventory management system, this research is based on an AWS cloud-native architecture,
integrating the image recognition capability of the YOLOv7-B6 model and the elastic scheduling
mechanism of AWS Lambda and AWS Fargate to optimize the compression and heterogeneous
deployment scheduling of SKU-level data. The average compression ratio of the analyzed WebP and
Zstandard dual-layer coding structure on 1920x1080 resolution images reaches 0.264, the redundancy
rejection rate is improved to 37%, and the volume of a single SKU image is reduced from 2.8MB to
0.74MB, which reduces the storage cost by 40.12%. The average service latency of the AWS-based
system is controlled at 85ms under 50 concurrent requests, and the load balancing ratio is optimized
from 1.52 to 1.08. The results show that the inventory management system based on the fusion of
visual recognition and containerized scheduling can effectively improve the efficiency of inventory
flow and achieve structural cost reduction.

Keywords: computer vision; inventory management; cloud native; retail cost reduction

I. Introduction

Under the background of rapid iteration of the retail industry and intelligent transformation of
the supply chain system, inventory management is facing multiple challenges such as high-frequency
merchandise flow, redundant image data backlog, and insufficient accuracy of real-time inventory
counting. The traditional inventory system relies on manual verification or rule-driven identification,
which is difficult to support the collaborative demand of SKU-level refinement management and
cross-regional resource scheduling. The development of computer vision technology provides a new
path for image-level SKU identification, while cloud-native architecture shows significant
advantages in elastic deployment, cost control and service availability. The integration of the two
constitutes the key technical support for cost reduction and efficiency in retail scenarios, which is of
great practical significance.

II. Overall Framework of Computer Vision Based Inventory Management
System

The overall structure of the system consists of a computer vision data acquisition subsystem, a
cloud-native inventory management core platform, and heterogeneous deployment components. The
acquisition subsystem uses the YOLOv?7 architecture for channel-by-channel recognition of single-
frame images, with Edge TPUs to realize edge inference [1]. The main platform adopts AWS S3
partition compression strategy after migrating to AWS EKS, and the average compression ratio of
single-category SKU image data is controlled within 0.62. The back-end service is deployed using
AWS SageMaker endpoints and AWS Elastic Container Registry (ECR), streamlining resource
scheduling through Serverless containers, and combining with a hierarchical indexing model to
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improve the response speed of inventory requests. The key modules of the system focus on multi-
point concurrent image stream reconstruction, storage redundancy avoidance and real-time SKU
state synchronization to reduce the storage overhead by more than 40% on the retail side and improve
the efficiency of inventory flow.

III. Computer Vision Based Inventory Management System Software Design
A. Computer Vision Data Acquisition Subsystem

The computer vision data acquisition subsystem uses a distributed camera network deployed in
concert with GPU edge computing modules to accomplish highly concurrent SKU image stream
access and real-time acquisition preprocessing. The image input of the system is sampled at
1920x1080 resolution per frame with a sampling frequency of 2fps, and the daily processing capacity
of a single node exceeds 38,000 frames.The YOLOv7-B6 model structure is used as the detection
backbone, and combined with the attention-weighted channel enhancement mechanism to optimize
the recognition stability in SKU-dense stacking scenarios [2]. The images are acquired, preprocessed
by the embedded Jetson Xavier module and uniformly encapsulated into a multi-task tensor
representation defined as:

Ty=a-Fy' + B-Ef+y- M 1)
sku bg

where "/ is the SKU feature response at the (@7) location, "/ is the background interference
meta
term, "/ isthe image metadata, and %GBT s the weighting factor [3]. The preprocessing tensor is

uniformly uploaded to AWS S3 Glacier deep-cooled storage, and the image redundancy compression
ratios are listed in Table 1. The edge node state distribution and processing efficiency are shown in
Figure 1. This module is designed to support asynchronous decoupling through AWS Lambda and
Amazon EventBridge, ensuring data consistency and latency tolerance of the back-end inventory
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h

scheduling module in high I/O scenarios.
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Figure 1. Architecture of computer vision based inventory management system.

Table 1. SKU image data compression parameter configuration table.

image Original single frame Average size after compression . Whether to use
. . . . coding format .
resolution size (MB) compression (MB) ratio tiered storage
1920x1080 2.8 1.1 0.392 WebP be
1280720 1.6 0.65 0.406 WebP be
640x480 0.95 0.41 0.432 JPEG2000 clogged

B. Cloud-Native Inventory Management System

The cloud-native inventory management system is designed based on containerized

microservice architecture, with core services deployed in AWS EKS clusters, adopting an elastic node
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auto-scaling mechanism, and supporting asynchronous loading of heterogeneous data structures at
the SKU level [4]. The system maps the image index data Lo and the dynamic inventory request
w

vector & to the resource scheduling function:

M N
Rl =5- zzlmn ’ Qr.m.n + A lat,

m=1 n=1 (2)
where Lo denotes the index density of image block at””? %/ ]ocation, Qrimn is the request intensity
at! time, lat, is the average response delay, anda’ HA is the system scheduling weight parameter

[5]. The system introduces parallel compression channels, utilizing the WebP and Zstandard bi-layer
coding mechanism, which is specifically designed for redundancy-avoiding compression of SKU
image data, thereby enhancing storage efficiency distribution is listed in Table 2. The data uploaded
by edge nodes is unified into S3 Glacier and combined with Tagging policy to realize lifecycle
management, controlling the single SKU data version to be no more than 3. AWS App Runner is used
for deploying multi-tenant service routers, supporting Amazon API Gateway unified access and
AWS CGlobal Accelerator for multi-region replica consistency scheduling, and the deployment
topology is shown in Figure 2.
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Figure 2. Topology of a multi-region deployment of a cloud-native inventory system.

Table 2. SKU image compression configuration and storage parameters table.

. Original WebP Zstd secondary . Lifecycle
image . . . . Total compression storage ’
resolution frame size code size compression size ratio strate version
(MB) (MB) (MB) 8y control
1920x1080 2.8 1.1 0.74 0.264 S3 Glacier <3 version
1280x720 1.6 0.62 0.45 0.281 S3 Glacier <3 version
640x480 0.95 041 03 0316 Local SSD <2 version
Cache

However, the use of fixed compression parameters limits adaptability to different image
structures, resulting in a suboptimal average compression ratio of 0.264 for high-resolution images.
To address this, future implementations will consider content-aware dynamic encoding strategies
that adjust compression intensity based on local entropy and structural redundancy.The inventory
mapping engine further introduces a SKU semantic mapping building module that performs feature
v eV . G=(V,E)

aggregation for each node using a graph convolutional network:

(/+|) Z W(/)h(/)
/EN(') (3)
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I P ] W(l) . . d .
where i is the features of the node! in the first’ layer, is the learnable weight matrix, i is

the degree of the node 1,0 js the activation function, and Figure 3 illustrates the input-output
structure of the GCN module in inventory semantic aggregation [6].
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Figure 3. Input-output structure of GCN module in inventory semantic aggregation.

C. Retail Cost Reduction Key Technology Realization

Retail cost reduction is achieved through multi-source image structure compression,
asynchronous data upload scheduling, and elastic service scaling, forming an integrated optimization
framework, asynchronous upload scheduling and elastic scaling of service deployment [7]. The

system defines the total cost function as:

Ciotal = Cyor + Cret + C, +Cyhed T Cror +C

stor net comp xfer meta (4)

where Csordenotes the storage overhead, Coet i the cost of transmitting traffic across regions, """

is the image encoding computational resource consumption, and Coned s the system load cost

C
introduced by container scheduling. ~¥*" Represents the inter-region transmission overhead caused

by the migration of hot/cold data between different regions C,,,, Indicates metadata management

meta

costs generated by version control. Where Caor s further denoted as:

N
Cstor = Zpl 'S’- '77,'
= )

where®i is the compressed image volume (MB) of the first! SKU, Pi is the unit storage cost (MB-

day), and i is the SKU lifecycle duration (days). The AWS Lambda-based deployment scheduling
policy adopts a bandwidth-weighted minimum load prioritization mechanism, effectively balancing
resource allocation in a multi-tenant environment:

1
T+,

(6)
P, Pow,
where "/ is the prioritized scheduling probability of the service node "/ is the node bandwidth

L.
weighting factor, / is the current load index, and the scheduling decision is determined by

P
max(F)) [8]. Compared to traditional Round-Robin and Kubernetes bin-packing schedulers, this

strategy dynamically integrates real-time bandwidth constraints and load balancing, achieving up to
13.2% reduction in queue latency under 50-concurrent SKU image requests. Its adaptability makes it
well-suited for heterogeneous resource environments in elastic retail deployments.The image
compression part combines Zstandard entropy coding with image block level redundancy
identification and the redundant region is defined as:

—2
R, = J(UB,J -B|, <ej ”
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Where */ isthe (@) location image block, B s the block mean, € is the similarity threshold, and

II' is the metrics function. AWS EKS dynamic cold archive trigger controls the frequency of
R, <18MB/s 4

Kmax S 3

redundant data transfers, ensures that the compressed write rate is maintained at

uniformly controls the maximum number of SKU versions under multi-tenant conditions at
. The system builds a link-wide cost control strategy through function-level metrics modeling to
improve cost reduction in heterogeneous regional deployment environments [9].

IV. System Experimental Results and Cost Reduction Effect Analysis
A. Experimental Environment and Test Program

The experimental environment is constructed in the AWS Oregon and Singapore regions, using a
dual-zone heterogeneous deployment scheme, with the server-side configuration of 32-core vCPU,
256GB memory, NVIDIA A100 GPU x 2, network bandwidth set to 1.2Gbps, and edge-side nodes
deployed in parallel using Jetson Xavier AGX. The test scheme is designed as follows: (1)Build SKU
image datasets with 120 categories and a total of 110,000 images, sourced primarily from Concrete-
Crack500, SDNET2018, and UAV-collected images from retail store environments, to evaluate image
acquisition latency and throughput; (2) test the WebP+Zstd co-coding computation consumption and
storage write rate under different compression ratios; (3)perform multi-tenant dynamic concurrency
simulation of the AWS SageMaker endpoint-based service scheduler to validate the container cold-
start latency and request queue fluctuation response; (4) applying 50 concurrent HTTP traffic
pressure for 5 minutes to monitor the average service latency and the triggering logic of cross-region

load balancing policy.

B. System Functional Verification

The system function validation covers four major modules: image recognition, data
compression, service scheduling and multi-tenant request processing. The image recognition module
completes frame-by-frame detection with a frame rate of 2fps in SKU dense stacking scenarios, with
an average processing time of 38ms for a single frame, and supports a number of parallel channels of
up to 16; the data compression module realizes a Zstd compression rate of 12.5MB/s for a 1920x1080
image, with a block-level redundancy rejection rate of 29%~37%. The block-level redundancy
rejection rate is maintained between 29% and 37%, and the average compression ratio is 0.264; the
service scheduler maintains an average response latency of 85ms under the dynamic access of 50
concurrent tenants, and the service scheduler maintains an average response latency of 85ms under
dynamic access from 50 concurrent tenants, with a maximum cold start delay of 280ms. This
bandwidth-weighted minimum load scheduling strategy demonstrates a degree of effectiveness in
resource balancing, but has not yet been benchmarked against native Kubernetes algorithms such as
LeastRequestedPriority. In real-world retail scenarios—such as bulk SKU validation before
promotional events or high-concurrency inventory audits—the 280ms delay remains acceptable for
non-real-time workloads. However, its impact on latency-sensitive business processes still requires
further evaluation through scenario-specific traffic simulations and threshold fine-tuning. the
container horizontal expansion strategy triggers automatic deployment after the load factor exceeds
the 0.7 threshold, and the new replica startup time is less than 3.2 seconds, and the load balance ratio
is controlled within 1.08, which meets the requirement of the load balance ratio. The load balance
ratio is controlled within 1.08, which meets the system-level all-link cooperative scheduling capability
verification requirements [10].
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C. Analysis of Retail Cost Reduction Effect

The system conducts quantitative comparison experiments on image storage cost, service
compute resource occupation and scheduling load in the retail cost reduction path. The average
compression ratio after image compression is 0.264, and the percentage of redundant blocks of single
SKU data is reduced from 38.6% to 12.4%; the average monthly write traffic of off-site cold archiving
is controlled within 71.3GB. Deployment resource utilization efficiency improves to 68.5% after
enabling Cloud Run dynamic replica scheduling, scheduling load balancing ratio is optimized from
1.52 to 1.08, and concurrent processing capacity under the same resource configuration is supported
to increase by 39.2%. Specific indicators are shown in Table 3:

Table 3. Summary of key technical performance indicators for retail cost reduction.

t reducti
sports event Data before optimization Optimized data COS_ reduction or
optimization rate
Average image volume per o
SKU (MB) 2.8 0.74 73.57%
Total daily image writes (GB) 156.3 713 54.40%
Average daily cost of storage 308 196.4 40.12%
occupancy ($)
Service Load Balancing Ratio 1.52 1.08 28.95%
Peak CPU utilization (%) 94.2 68.5 27.27%

The data in Table 3 shows that the compression rate is greatly improved by the combination of
image block-level redundancy detection and double-layer compression structure, while the write
traffic is suppressed by the redundant partitioning strategy and delayed upload trigger mechanism.
Service-side cost optimization focuses on the dynamic expansion of replica scheduling and multi-
tenant scheduling deployment, so that the scheduling system can avoid the waste of peak resources
under load impact, and the CPU utilization rate is effectively controlled. The overall analysis shows
that the system has completed the compressive reconfiguration of the cross-domain resource
structure under the premise of maintaining the service responsiveness, and supports the high-
frequency image recognition retail business environment oriented to the SKU dimension.

V. Conclusion

To summarize, the system builds an overall inventory management architecture covering data
acquisition, compression and encoding, container scheduling, and cross-region deployment with the
deep integration of computer vision and AWS cloud-native technologies such as AWS EKS, Lambda,
and SageMaker, which significantly reduces the storage and computation overheads in the SKU
image processing link, and improves the system’s resource scheduling efficiency and responsiveness
in high-concurrency retail scenarios. Image compression rate, cold archive write control and multi-
tenant scheduling separation mechanism together constitute the key support path for retail cost
reduction. In future applications, the system can be further extended to adaptive visual model
deployment and inventory semantic mapping dynamic update mechanism to promote the evolution
of intelligent inventory management system for multi-format retail environment.
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