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Tel.: +34‐987‐23‐74‐00 

Abstract 

Decision Curve Analysis (DCA) bridges the gap between statistical accuracy and clinical usefulness—

a distinction frequently overlooked in diagnostic research. Using a simulated cohort representing a 

real‐world diagnostic scenario,  this  tutorial demonstrates how predictors with similar ROC‐based 

performance can yield markedly different net benefit profiles when evaluated through DCA. Three 

tools  were  compared:  a  strong  predictor  (composite  clinical  score),  a  moderate  biomarker 

(leukocytes),  and  a weak marker with modest AUC but  limited practical value  (serum  sodium). 

Whereas ROC curves portray discrimination alone, decision curves situate performance within real 

clinical  trade‐offs, making  explicit when  a model  adds  value  beyond  default  strategies  such  as 

treating  all  or  none.  The  tutorial  provides  a  step‐by‐step  framework  for  interpretation,  clarifies 

frequent  misconceptions  (thresholds,  prevalence  effects,  calibration),  and  illustrates  how  DCA 

incorporates  the  consequences of decisions  rather  than  just  their  statistical accuracy. Rather  than 

adding ‘just another metric’, DCA reframes evaluation around a practical question: does using this 

model improve decisions across clinically reasonable thresholds? 

Keywords: decision curve analysis; predictive models; diagnostic accuracy; calibration; clinical utility 

 

Main Text 

In diagnostic and prognostic research, model performance  is often assessed using  traditional 

metrics such as sensitivity, specificity, and the area under the receiver operating characteristic curve 

(AUC). While  these measures  quantify  discrimination—that  is,  a model’s  ability  to  distinguish 

between patients who have a condition and those who do not—they provide limited insight into the 

clinical  utility  of  a model—that  is, whether  using  it  leads  to  better  decision‐making  in  practice. 

However, AUC‐based metrics remain blind to calibration and to the clinical consequences of false 

positives and false negatives. In other words, they answer whether the model ranks patients correctly, 

but  not whether  acting  on  its  output  leads  to  better  decisions. DCA  fills  precisely  this  gap  by 

quantifying whether using a model improves decisions across clinically relevant thresholds. 

This limitation becomes particularly relevant in pediatrics, where decision thresholds—the level 

of  risk  at which  a  clinician  decides  to  change  their  course  of  action  (e.g.,  from  observation  to 

intervention)—may vary widely and interventions often carry age‐ or context‐specific risks. A model 

may exhibit excellent statistical performance but still be unhelpful—or even harmful—if applied in 

an inappropriate context. Decision Curve Analysis (DCA) addresses this issue. 

This  manuscript  introduces  the  core  principles  of  DCA,  illustrates  its  construction  and 

interpretation,  and  demonstrates  its  application  using  simulated  data  from  pediatric  diagnostic 

research. 

Fundamentals and Formula of Decision Curve Analysis 

DCA  is a method  that  estimates  the net  benefit of using  a diagnostic or prognostic model at 

different threshold probabilities [1,2]. The net benefit  is calculated as the number of true positives 

identified by a model, penalized by the number of false positives, and weighted by the relative harms 
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of false‐positive and false‐negative decisions. This weighting represents the clinical trade‐off between 

the harm of intervening unnecessarily (a false positive) and the harm of failing to intervene when 

needed (a false negative). This ratio arises directly from the theory of expected utility: at the threshold 

probability pt, the clinician is at the point of indifference where the expected harm of treating equals 

the expected harm of withholding treatment, and the odds term pt/(1−pt) is simply the mathematical 

expression of that indifference. 

Net benefit is calculated as: 

Net benefit = (TP/n) − (FP/n) × (pt / (1 − pt)) 

Where TP and FP are the number of true and false positives, n is the total sample size, and pt is 

the threshold probability—that is, the minimum level of predicted risk a clinician is willing to accept 

to justify a clinical intervention. Conceptually, 𝑝௧is not merely a tolerated risk but the point of clinical 

indifference, where a clinician is equally willing to intervene or to withhold intervention because the 

expected harm of overtreatment equals the expected harm of undertreatment. This value captures 

the implicit balance between the harms of overtreatment and undertreatment. The clinical trade‐off 

is then encoded mathematically in the final term of the equation, pt / (1 − pt), which serves as the 

penalty weight for each false positive. For example, a clinician might decide to operate only if a model 

predicts a risk of appendicitis of 20% or higher; in this case, pt = 0.20. This formula reflects the clinical 

trade‐off between the benefits of identifying true positives and the harms of unnecessary treatment. 

For instance, if the threshold probability is set at 20%, the pt/(1−pt) ratio equals 0.25 (calculated as 

0.20 / (1 − 0.20) = 0.25). In clinical terms, this means the model provides the equivalent of 25 additional 

correctly treated patients per 100, once false positives are penalized at pt/(1−pt). This means that each 

false positive  is penalized as one‐fourth of a  false negative.  In practical  terms,  it would  take  four 

unnecessary treatments (false positives) to cancel out the benefit of one correctly treated patient (true 

positive). This interpretation stems from the formula’s structure: the net benefit of one true positive 

can be considered as 1, while the penalty for one false positive is equal to the weight pt/(1‐pt), which 

is 0.25 in this case. Therefore, the benefit of one true positive is canceled out by the cumulative harm 

of four false positives (since 4 × 0.25 = 1). This weighting directly reflects the clinician’s tolerance for 

overtreatment  relative  to undertreatment.  It  is  important  to  clarify  that  in  the DCA  framework, 

‘treatment’ refers to the clinical action taken based on the model’s output (e.g., performing surgery). 

The  analysis  thus  assumes  that  a  positive  classification  leads  to  this  action,  effectively  equating 

overdiagnosis with overtreatment for decision‐making purposes. 

Suppose a threshold probability of 0.20 is chosen. This value is not arbitrary; it is the clinician’s 

explicit quantification of the balance between benefits and harms. Then pt / (1 − pt) = 0.25. If a model 

yields 60 true positives and 40 false positives in a sample of 200 patients, the net benefit would be: 

Net benefit = (60/200) − (40/200 × 0.25) = 0.30 − 0.05 = 0.25. 

This means the model provides the equivalent benefit of correctly treating 25 additional patients 

per 100 without unnecessary overtreatment. 

The  key  idea  behind DCA  is  to  compare  a model  not  just  against  chance,  but  against  two 

clinically relevant extremes: treating all patients as positive or treating none. These two strategies can 

be evaluated using the same net benefit formula. For the ‘treat none’ strategy, no patients are treated, 

so both TP and FP are zero, resulting in a net benefit of 0 by definition. For the ‘treat all’ strategy, 

everyone is treated, meaning all patients with the condition are true positives and all patients without 

it are false positives. The formula adapts to this scenario, as will be shown later. In the context of a 

child  presenting  to  the  Emergency  Department  with  abdominal  pain  and  suspected  acute 

appendicitis,  these  strategies would correspond  to operating on every child  regardless of  further 

assessment (“treat all”) versus discharging all children without additional work‐up or surgery (“treat 

none”). This provides  a  benchmark  to  assess whether  a model  adds  value  over  existing  clinical 

strategies. For instance,  in our appendicitis example, a  ‘treat all’ strategy would mean every child 

with abdominal pain undergoes surgery,  leading  to many unnecessary operations. A  ‘treat none’ 
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strategy would mean every child is sent home, potentially missing serious cases. A useful model must 

prove it provides more benefit than either of these simplistic—yet real‐world—alternatives. 

By plotting the net benefit of each strategy across a range of threshold probabilities, a decision 

curve graph is generated (see Figure 1 for examples). This graph shows whether and when a model 

provides higher clinical utility than blanket treatment or no treatment at all. A model with a higher 

net benefit across a relevant threshold range is considered more useful for decision‐making. 

 

Figure 1. Receiver operating characteristic (ROC, upper panels) and decision curve analysis (DCA, lower panels) 

for three predictors of acute appendicitis in a simulated pediatric emergency cohort (n=200, prevalence 20%). 

The left panels display results for serum sodium, which achieved only modest discrimination (AUC 0.64; 95% 

CI:  0.55–0.73).  Its  DCA  curve  largely  overlapped  with  the  “treat‐none”  and  “treat‐all”  strategies  across 

thresholds, with only a minimal interval of apparent net benefit around 0.2–0.3, underscoring its lack of practical 

utility despite AUC values commonly reported in the literature. The middle panels correspond to total leukocyte 

count, which demonstrated moderate discrimination (AUC 0.78; 95% CI: 0.70–0.86). Its decision curve remained 

above both default strategies up to ~0.6, then declined below “treat none” as false‐positive penalties outweighed 

the modest number of true positives. A transient rise was observed between thresholds of 0.7 and 0.9, reflecting 

the contribution of a small subgroup with markedly elevated  leukocyte counts, before ultimately converging 

with “treat none” at extreme thresholds. The right panels show the Pediatric Appendicitis Score (PAS), which 

was calibrated to mirror external validation studies and yielded good overall discrimination (AUC 0.85; 95% CI: 

0.79–0.91). In DCA, PAS consistently provided greater net benefit than either “treat‐all” or “treat‐none” across 

almost  the  entire  range of  thresholds,  except beyond 0.9, where  convergence with “treat none” occurred as 

expected given the simulated prevalence. Accordingly, the figure should be  interpreted as supporting model 

choice  within  clinically  relevant  thresholds.  Collectively,  these  analyses  highlight  how  ROC‐based 

discrimination can overestimate the clinical value of weaker predictors, while DCA offers a more direct appraisal 

of their decision‐making utility. 

Interpreting a Decision Curve 

Returning to the previous example of suspected acute appendicitis in children, a decision curve 

can  illustrate  the  clinical  usefulness  of  a  predictive model  designed  to  guide  surgical  decision‐

making—that is, the decision to intervene. The “treat none” strategy assumes that no patient receives 

the intervention, and by definition its net benefit is always zero across all thresholds. The “treat all” 

strategy assumes every patient is treated, regardless of their predicted risk. Its net benefit depends 

on  the  prevalence  of  disease  and  declines  as  the  threshold  increases,  since  a  higher  threshold 

penalizes  false positives more heavily. Formally,  the net benefit of  the “treat all”  strategy can be 

expressed as: 

Net benefit (treat all) = prevalence − (1 − prevalence) × (pt / (1 − pt)) 
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In this equation, pt does not represent a threshold for the ‘treat all’ strategy itself (which has no 

threshold), but rather  the clinician’s  threshold against which  this strategy  is being evaluated. The 

decision curve plots the net benefit of ‘treat all’ across the entire range of possible clinician thresholds 

(pt on the x‐axis) to serve as a benchmark. An immediate implication of this formulation is that as 

𝑝௧ → 0, the penalty term approaches zero and the net benefit of the “treat all” strategy converges to 
the disease prevalence. This is why, in every decision curve, the ‘treat all’ line intersects the y‐axis at 

the prevalence—it represents the proportion of true positives obtained if everyone is treated in the 

absence of any false‐positive penalty. A direct corollary is that the “treat all” curve crosses the x‐axis 

(net benefit = 0) precisely when pt equals  the disease prevalence: only clinicians whose  treatment 

threshold  lies  below  the  baseline  risk  of  the  population would  obtain  net  benefit  from  treating 

everyone. 

This equation reflects the clinical trade‐off of treating every patient—yielding true positives at 

the rate of disease prevalence, while incurring harm from unnecessary treatment of patients without 

the disease. As the threshold probability  increases, the weight of false positives rises, leading to a 

progressive reduction in the net benefit of this strategy. 

These  two  reference  strategies  serve  as  benchmarks  for  evaluating  the  added  value  of  a 

predictive model. 

The  x‐axis  represents  the  threshold  probability, which,  as  defined  earlier,  is  the minimum 

predicted risk at which an intervention would be considered. The y‐axis shows the net benefit, which 

combines true positives and false positives into a single metric weighted by the clinical consequences 

of misclassification. 

Typically, three lines are plotted: one for the predictive model, one for the “treat all” strategy, 

and one for the “treat none” strategy. These serve as benchmarks against which the model’s added 

value can be  judged. The model provides clinical benefit only in the range of thresholds where its 

curve lies above both reference strategies. 

For example, if the model’s net benefit exceeds both “treat all” and “treat none” between 10% 

and 40% predicted risk,  it suggests  that  its use  is preferable to either universal or no intervention 

within  that  threshold  range. Outside  that  range,  the model may offer no advantage, and  simpler 

decision rules may be equally or more effective. 

Decision curves help determine whether, when, and to what extent a model is clinically useful—

transforming statistical performance into actionable insight. 

DCA and Prevalence 

DCA  is  influenced by disease prevalence, since  the balance between  true positives and  false 

positives depends on the frequency of the outcome in the population. In low‐prevalence settings, the 

net benefit of  treating  all declines  rapidly  as  the  threshold  increases, while  in higher‐prevalence 

settings, treating all may appear favorable over a broader range. Model‐based curves are also shaped 

by prevalence, meaning that the same predictor can show different apparent utility depending on the 

baseline risk of the cohort. For this reason, decision curves should always be interpreted in light of 

the population context. 

An Applied Example 

To illustrate the application of decision curve analysis (DCA) in pediatric diagnostic research, a 

simulated  dataset  was  constructed  simulating  a  cohort  of  pediatric  patients  evaluated  in  the 

Emergency Department for abdominal pain with suspected acute appendicitis (Supplementary File 

1).  Before  interpreting  the  decision  curves,  it  is  important  to  clarify  that DCA  is  applied  to  the 

predicted probabilities generated by a fitted model, not to the raw predictor itself. The intermediate 

step is therefore the modeling process (typically logistic regression), which converts each predictor 

into an individualized probability of disease. The dataset comprised 200 simulated pediatric patients, 

with  a  prevalence  of  histologically  confirmed  appendicitis  set  at  20%  and  the  remaining  80% 
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representing  non‐specific  abdominal  pain. These prevalence  values were  chosen  to  approximate 

conditions in a typical Pediatric Emergency Department and are intended for illustrative purposes. 

A Pediatric Appendicitis Score (PAS) was calculated for each case. The score ranged from 0 to 10 and 

was calibrated to approximate performance reported in external validation, in line with Bhatt et al., 

where the AUC typically ranges from 0.80 to 0.90 [3]. Before applying DCA, each predictor must be 

converted into a risk prediction ranging from 0 to 1. For continuous predictors like leukocyte count 

or composite scores like PAS, this is typically achieved by fitting a logistic regression model with the 

predictor as the independent variable and appendicitis as the dependent variable. The fitted model 

generates  a predicted probability of  appendicitis  for  each patient based on  their  specific PAS or 

leukocyte  value.  These  predicted  probabilities  are  the  quantities  that  are  entered  into  the DCA 

equation, allowing the clinical utility of each predictor to be evaluated on the same decision‐analytic 

scale. 

As  comparators,  two  continuous  laboratory  variables were  included:  total  leukocyte  count, 

representing a biomarker commonly used in the clinical diagnosis of acute appendicitis, and serum 

sodium, a marker reported to discriminate between complicated and uncomplicated appendicitis but 

without value for distinguishing appendicitis from non‐surgical abdominal pain [4,5]. The simulated 

variables were generated to loosely mirror the real‐world distribution of clinical findings in pediatric 

appendicitis,  assuming  independence  between  predictors.  Each  binary  variable was  assigned  a 

prevalence  consistent with  existing  literature. No  correlation  structures were  imposed  between 

predictors, reflecting a simplified yet educational design. 

All statistical analyses were performed using Stata 19.0  (StataCorp LLC, College Station, TX, 

USA). Logistic regression models were fitted using the Pediatric Appendicitis Score (PAS), leukocyte 

count, and serum sodium as individual predictors. For each predictor, a binomial logistic regression 

model was used to generate individual predicted probabilities (𝑝̂), representing the estimated risk of 

appendicitis conditional on the observed predictor value. These predicted probabilities served as the 

input  for Decision Curve Analysis, which evaluates  the clinical utility of probabilistic predictions 

rather than raw predictor values. Discrimination was assessed through the area under the ROC curve 

(AUC) using 500 stratified bootstrap replications (stratified by outcome status) with percentile‐based 

95% confidence intervals (seed = 12345). The PAS showed excellent performance (AUC = 0.85; 95% 

CI: 0.79–0.91),  leukocytes demonstrated moderate discrimination  (AUC = 0.78; 95% CI: 0.70–0.86), 

and sodium performed poorly (AUC = 0.64; 95% CI: 0.55–0.73). 

Calibration of all three models was assessed using the pmcalplot command (Supplementary File 

2). Calibration plots demonstrated good concordance between predicted and observed probabilities 

for PAS and leukocyte count, whereas serum sodium exhibited systematic miscalibration across the 

risk  spectrum.  The  Brier  score—a metric  that  evaluates  how well  predicted  risks match  actual 

outcomes, where  lower values  indicate more accurate and  clinically  reliable predictions—further 

confirmed  the  hierarchy  of  performance:  PAS  achieved  the  lowest  mean  squared  error  (0.11), 

followed  by  leukocytes  (0.13), while  sodium performed worst  (0.16). These  results  highlight  the 

superiority  of  PAS,  as  it  consistently  provided  the  most  accurate  and  clinically  meaningful 

probability estimates. 

Decision curve analysis with the dca package using a user‐written Stata script based on Vickers 

et al.’s work [6] further highlighted the differences between these predictors (Figure 1). The PAS score 

demonstrated a consistent and clinically meaningful net benefit across a broad range of threshold 

probabilities, clearly outperforming both the “treat‐all” and “treat‐none” strategies, except at very 

high  thresholds  (>0.9), where  the  curve  converged with  “treat  none”  because  the  false‐positive 

penalty  term pt/(1–pt) diverges as pt→1. At  that point, even a  small number of  false positives  is 

sufficient to drive the model’s net benefit to ≈ 0, and the exact location of this convergence is primarily 

determined  by prevalence  rather  than  empirical model performance. The  leukocyte  count  curve 

remained above both default strategies up to approximately 0.6, but then fell below “treat none.” This 

decline reflects the growing penalty for false positives at intermediate thresholds in the context of a 

20% prevalence, which outweighs the modest number of true positives contributed by leukocytosis 
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alone. A transient rise was observed between 0.7 and 0.9, driven by a small subgroup of patients with 

very high leukocyte counts who cross these extreme thresholds and temporarily improve net benefit. 

However, once the threshold approaches values where virtually no additional cases can be captured, 

the  curve  ultimately  converges with  “treat  none.”  By  contrast,  serum  sodium  did  not  separate 

meaningfully from the default strategies at almost any threshold, except for a brief interval between 

0.2 and 0.3, underscoring its poor clinical utility despite an AUC in the modest discrimination range 

(≈0.65).  This  highlights  a  key  lesson  from  DCA:  a  predictor  can  have  statistically  modest 

discrimination but still be clinically useless. These findings exemplify how ROC‐based discrimination 

can overstate  the clinical usefulness of weak predictors when assessed  in  isolation, whereas DCA 

provides  a  more  direct  evaluation  of  decision  support.  Calibration  further  complements  this 

assessment. In the present example, sodium illustrates how a biomarker can underperform not only 

in discrimination but also in calibration, underscoring the need to evaluate all three dimensions when 

judging clinical applicability. 

Two additional DCA analyses were then generated for the PAS score using simulated extreme 

prevalences within the same dataset, obtained via without‐replacement stratified subsampling (i.e., 

retaining all cases from the majority class and randomly sampling from the minority class to achieve 

the  target prevalence,  rather  than relabelling outcomes), while maintaining a comparable  level of 

diagnostic performance (Figure 2). At a simulated prevalence of 5%, the decision curve showed broad 

overlap with the “treat none” strategy beyond a threshold probability of 0.5, reflecting the scarcity of 

true positive cases and the growing penalty of false positives as thresholds increase. Conversely, at a 

simulated prevalence of 70%, the curve demonstrated consistently high net benefit, exceeding both 

“treat all” and “treat none” strategies across the entire threshold range. This pattern is expected, as a 

high baseline risk increases the contribution of true positives and sustains net benefit even at more 

demanding thresholds. 

This example illustrates how DCA can reveal significant differences in clinical utility between 

tools  with  similar  ROC‐based  discrimination.  A  score  that  integrates  multiple  complementary 

predictors may offer substantially better decision support than a single biomarker, even when both 

achieve  acceptable AUCs.  In  pediatric  practice,  this  distinction  can  directly  influence  treatment 

decisions such as observation, imaging, or surgery. 

As a final caveat, it should be emphasized that the discrimination, calibration, and decision curve 

results  reported here  reflect apparent performance, as  they were obtained on  the same simulated 

dataset used for model derivation. In real‐world research, external validation or bootstrap correction 

would be required to avoid optimism and to ensure that the observed net benefit generalizes beyond 

the training sample 
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Figure 2. Decision curve analysis of the Pediatric Appendicitis Score (PAS) under simulated extreme prevalence 

scenarios. Prevalence scenarios of 5% and 70% were generated by stratified random subsampling of the original 

dataset.  For  each  subset,  the  PAS model was  refitted  and  predicted  probabilities were  recalculated  before 

performing DCA. At a prevalence of 5%, the curve overlaps substantially with the “treat none” strategy beyond 

a threshold probability of 0.5, illustrating the limited contribution of true positives and the increasing penalty of 

false positives in a low‐prevalence setting. At a prevalence of 70%, the curve shows consistently high net benefit, 

remaining above both “treat all” and “treat none” across the full range of thresholds, as expected when baseline 

risk is high and true positives predominate. 
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Strengths and Limitations of DCA 

One  of  the main  strengths  of  Decision  Curve Analysis  is  its  ability  to  incorporate  clinical 

consequences  into model evaluation directly  [7‐9]. Unlike  formal decision‐analytic models, which 

often require external estimates of utilities, costs or patient preferences, DCA can be applied directly 

to  the  validation  dataset without  the  need  for  additional  preference  elicitation.  It  also  handles 

continuous  predictors  natively,  avoiding  the  discretization  steps  typically  required  in  classical 

decision trees, which can distort performance or introduce artificial cut‐points. These characteristics 

help explain why DCA offers a pragmatic alternative to more complex decision‐analytic frameworks 

in routine model evaluation. This is achieved through the threshold probability (pt), which forces an 

explicit declaration  of  the harm‐benefit  trade‐off. By  evaluating  a model  across  a  range  of  these 

thresholds, DCA shows how its utility changes depending on different clinical perspectives on risk. 

Unlike  traditional metrics  such  as AUC or  accuracy—which measure  statistical performance but 

ignore the decision context—DCA provides insight into whether a model leads to better outcomes by 

quantifying the trade‐off between true positives and false positives. This makes it especially useful 

in  scenarios with  uncertain  or  variable decision  thresholds, where  the  clinical  value  of  a model 

depends not only on its discrimination but also on the harm‐benefit balance of treatment decisions. 

DCA also allows models to be compared against real‐world strategies such as treating all or none, 

offering a practical benchmark for clinical adoption. 

While DCA is increasingly used in diagnostic research, it carries several interpretive limitations. 

First,  its  conclusions depend on  the  specification of  threshold probabilities, which are  inherently 

context‐dependent and often subjective. Second, the method assumes a uniform misclassification cost 

across all patients—effectively encoding a single harm–benefit trade‐off (pt) for the entire population. 

This assumption may be unrealistic in heterogeneous settings (e.g., a frail versus a low‐risk patient 

may  not  incur  equivalent  harm  from  the  same  false positive). Third, DCA does  not  identify  an 

‘optimal’ threshold; it merely reports the net benefit if a given threshold is chosen. In practice, these 

constraints imply that DCA is best interpreted as a framework for comparative clinical utility rather 

than prescriptive decision‐making,  and may  be  complemented  by  tools  such  as decision  impact 

curves.  Nonetheless,  DCA  remains  a  uniquely  intuitive  tool  for  evaluating  clinical  utility  in 

probabilistic terms. It is also important to emphasize, as highlighted by Kerr et al. [8], that the peak 

of a net benefit curve should not be interpreted as the ‘optimal’ clinical threshold. DCA is designed 

to  show  the  relative net benefit across a  range of  thresholds, not  to prescribe a  single  cut‐off  for 

decision‐making 

Special Considerations: Overfitting, Binary Predictors, and Calibration 

One important methodological caveat in DCA is the risk of overfitting, particularly when the 

analysis  is  performed  on  the  same  dataset  used  for model derivation.  This  can  lead  to  inflated 

estimates of net benefit  that may not generalize  to new data. Whenever possible, DCA should be 

conducted using external validation datasets or bootstrap‐corrected predictions to avoid this bias. 

Another common issue arises when DCA is applied to dichotomous predictors. Because such 

variables only generate a few distinct predicted probabilities (often just two), the resulting decision 

curve reduces to a single straight line segment, connecting the net benefit of the ‘treat none’ strategy 

to the net benefit observed at one point. This provides information over a much narrower range of 

thresholds  compared  with  continuous  predictors,  restricting  interpretability  and  limiting  the 

assessment of clinical Utility. 

Finally, DCA assumes that predicted probabilities are well‐calibrated. If a model systematically 

over‐ or underestimates  risk,  the net benefit  calculation will misrepresent  its  true  clinical utility. 

Calibration can be evaluated using calibration plots, calibration slope and intercept, or the Brier score 

[9,10]. While calibration plots provide a visual assessment, the calibration slope and intercept offer 

quantitative  measures  of  miscalibration.  The  Brier  score  aggregates  prediction  errors  but  can 

sometimes mask  specific  calibration deficiencies,  so  it  should  be  interpreted  alongside graphical 
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methods. If calibration  is poor,  techniques such as logistic recalibration or shrinkage methods can 

help adjust predictions and improve decision‐analytic performance [9,10]. 

An additional consideration, particularly relevant in pediatrics, is the small sample size often 

available. Limited data may lead to unstable estimates of net benefit, especially at extreme threshold 

probabilities.  Simulation  or  bootstrap  techniques may  be  required  to  assess  variability  in  these 

contexts. 

Conclusions 

Decision  Curve  Analysis  offers  a  powerful,  clinically  oriented  framework  for  evaluating 

prediction models [7‐9] (Figure 3). By directly quantifying net benefit across relevant thresholds, it 

clarifies whether, when, and how a model can improve decision‐making. Combined with calibration, 

DCA  complements  traditional metrics  by  quantifying  net  benefit  across  relevant  thresholds.  In 

diagnostics—where both overtreatment and undertreatment carry distinct risks—this dual approach 

adds  value  beyond  conventional  metrics  such  as  sensitivity,  specificity,  or  AUC.  For  reliable 

application, however, DCA requires methodological rigor, including adjustment for overfitting and 

thoughtful handling of predictor  types.  Its  systematic use  in diagnostic  research  can better align 

statistical evaluation with real‐world clinical benefit. 

 

Figure 3. Summary of the core principles of Decision Curve Analysis (DCA). This visual overview outlines what 

DCA is, how it adds value beyond traditional performance metrics like AUC, and key interpretive caveats. It 

highlights DCA’s focus on clinical utility—quantifying net benefit across decision thresholds—and its ability to 

compare models against “treat‐all” and “treat‐none” strategies. Unlike AUC, DCA shows whether and when a 

model  improves  decision‐making.  However,  its  interpretation  depends  on  correct  threshold  specification, 

external validation, and the nature of the predictor (binary vs. continuous). 

   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 October 2025 doi:10.20944/preprints202508.1452.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1452.v2
http://creativecommons.org/licenses/by/4.0/


  10  of  10 

 

Funding: None declared. 

Institutional Review Board Statement: Not Applicable. 

Informed Consent Statement: Not Applicable. 

Data  Availability  Statement:  The  dataset  used  in  this  study  is  simulated  and  has  been  provided  as 

supplementary material (Supplementary File 1). 

Use of Artificial Intelligence: Artificial intelligence (ChatGPT 4, OpenAI) was used for language editing and for 

generating a simulated dataset under the author’s explicit instructions. It did not influence the scientific content, 

analysis, or interpretation. 

Conflicts of Interest: The author states no conflict of interest. 

References 

1. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models. Med Decis 

Making.  2006  Nov‐Dec;26(6):565‐74.  doi:  10.1177/0272989X06295361.  PMID:  17099194;  PMCID: 

PMC2577036. 

2. Vickers A J, Van Calster B, Steyerberg E W. Net benefit approaches to the evaluation of prediction models, 

molecular markers, and diagnostic tests BMJ 2016; 352 :i6 doi:10.1136/bmj.i6 

3. Bhatt M,  Joseph L, Ducharme FM, Dougherty G, McGillivray D. Prospective validation of  the pediatric 

appendicitis score in a Canadian pediatric emergency department. Acad Emerg Med. 2009 Jul;16(7):591‐6. 

doi: 10.1111/j.1553‐2712.2009.00445.x. Epub 2009 Jun 22. PMID: 19549016. 

4. Kottakis G, Bekiaridou K, Roupakias S, Pavlides O, Gogoulis I, Kosteletos S, Dionysis TN, Marantos A, 

Kambouri K. The Role of Hyponatremia  in Identifying Complicated Cases of Acute Appendicitis in the 

Pediatric  Population.  Diagnostics  (Basel).  2025  May  30;15(11):1384.  doi:  10.3390/diagnostics15111384. 

PMID: 40506956; PMCID: PMC12154570. 

5. Duman L, Karaibrahimoğlu A, Büyükyavuz Bİ, Savaş MÇ. Diagnostic Value of Monocyte‐to‐Lymphocyte 

Ratio Against Other Biomarkers in Children With Appendicitis. Pediatr Emerg Care. 2022 Feb 1;38(2):e739‐

e742. doi: 10.1097/PEC.0000000000002347. PMID: 35100771. 

6. Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions  to decision curve analysis, a novel method  for 

evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008 

Nov 26;8:53. doi: 10.1186/1472‐6947‐8‐53. PMID: 19036144; PMCID: PMC2611975. 

7. Van Calster B, Wynants L, Verbeek JFM, Verbakel JY, Christodoulou E, Vickers AJ, Roobol MJ, Steyerberg 

EW.  Reporting  and  Interpreting Decision Curve Analysis: A Guide  for  Investigators.  Eur Urol.  2018 

Dec;74(6):796‐804.  doi:  10.1016/j.eururo.2018.08.038.  Epub  2018  Sep  19.  PMID:  30241973;  PMCID: 

PMC6261531. 

8. Kerr KF,  Brown MD, Zhu K,  Janes H. Assessing  the Clinical  Impact  of Risk  Prediction Models With 

Decision  Curves:  Guidance  for  Correct  Interpretation  and  Appropriate  Use.  J  Clin  Oncol.  2016  Jul 

20;34(21):2534‐40.  doi:  10.1200/JCO.2015.65.5654.  Epub  2016  May  31.  PMID:  27247223;  PMCID: 

PMC4962736. 

9. Steyerberg  EW, Vickers AJ, Cook NR, Gerds  T, Gonen M, Obuchowski N,  Pencina MJ, Kattan MW. 

Assessing  the  performance  of  prediction  models:  a  framework  for  traditional  and  novel  measures. 

Epidemiology.  2010  Jan;21(1):128‐38.  doi:  10.1097/EDE.0b013e3181c30fb2.  PMID:  20010215;  PMCID: 

PMC3575184. 

10. Steyerberg, E. W.  (2019). Clinical Prediction Models: A Practical Approach to Development, Validation, 

and Updating (2nd ed.). Springer. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 October 2025 doi:10.20944/preprints202508.1452.v2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1452.v2
http://creativecommons.org/licenses/by/4.0/

