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2025–2030 Case Study 
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Department of Electronics and Automation, OYAC Vocational School, Bursa Uludag University, Bursa, 16815, 
Turkey; ugurkilicytu@gmail.com 

Abstract 

Achieving carbon neutrality, enhancing energy efficiency, planning renewable energy installations, 
ensuring energy supply security, and accurately addressing energy demand are among the most 
critical global energy priorities. In this context, energy demand forecasting plays a pivotal role in 
shaping energy policies and ensuring systematic planning. Accurate demand-side forecasting 
contributes to improved energy efficiency and the formulation of long-term strategic energy policies. 
This study focuses on forecasting Turkey’s geothermal, wind, and solar energy consumption for the 
period 2025–2030 using five years of historical consumption data. A total of eight different regression-
based forecasting models were employed. By validating model accuracy with 2023–2024 data, a 
hybrid prediction model was developed to generate reliable forecasts for 2025–2030. In the hybrid 
estimation model, the impact power of the variables affecting the formation of demand was 
calculated using the Pearson Correlation Statistical method. The results aim to support data-driven 
energy planning and policy development in alignment with sustainability goals. 

Keywords: energy demand forecasting; hybrid forecasting model; energy planning in Turkey; energy 
strategy 
 

1. Introduction 

In a globalizing world, increasing population rates, industrialization, technological 
advancements, and the decline of energy supply resources are pushing energy issues to the forefront 
of the world's agenda. Numerous studies are being conducted in countries to address this issue. These 
include energy demand forecasting studies and demand management, energy supply security 
studies, renewable energy applications, and the analysis and direction of energy policies. Energy 
demand forecasting is a prominent example of this type of research. 

Energy demand forecasting is the estimation of energy demand over specific time frames, taking 
into account future data and changing parameters. Forecasting studies provide short-term, medium-
term, and long-term energy consumption and production plans, providing roadmaps for countries, 
policymakers, and individual and corporate consumers. 

The purpose of energy demand forecasting is to achieve supply-demand balance, implement 
infrastructure plans, create optimal sizing by considering peak and trough loads, increase energy 
efficiency, and develop plans for achieving carbon neutrality. 

Energy demand forecasting studies are classified according to time scale and forecasting 
methods. Studies conducted based on time scales are categorized into three categories: short-term, 
medium-term, and long-term. Short-term studies utilize intraday, day-ahead, and balancing market 
data to generate hourly and daily forecasts. Medium-term forecasting models utilize monthly and 
annual forecasts. Long-term models utilize forecasts for periods of 3, 5, 10, or longer. 

Energy demand forecasts are categorized into four types based on forecasting methods: 
statistical methods, machine learning methods, artificial neural network models, and hybrid models. 
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Numerous studies have been conducted in the literature using forecasting methods. Time series 
modeling is among the traditional methods in this field. ARIMA, SARIMA, and similar techniques, 
in particular, have provided effective solutions for identifying historical patterns (Dudek, 2020), (Lee 
& Cho, 2021),( Sharma & Verma, 2023). However, the fact that these models are based on linear 
assumptions and cannot adequately reflect the impact of sudden changes and external factors has led 
to the need for more flexible models. Some studies have shown that statistical methods can provide 
similar levels of accuracy in certain scenarios compared to artificial neural network models (Zhang 
& Zhou, 2020),( Yılmaz, 2023). 

Machine learning algorithms are frequently applied in energy demand forecasting. Methods 
such as SVR, Random Forest, and decision trees, in particular, have demonstrated success in learning 
nonlinear relationships, (Li, Zhang & Chen, 2024),( Al-Qahtani, Elleithy & Alotaibi, 2021),( Sarkar, 
Roy & Das, 2022).There are examples in the literature where prediction accuracy has been 
significantly improved by optimizing support vector regression models with genetic algorithms . 
Furthermore, feature engineering approaches applied to variable selection have also been shown to 
increase model performance (Al-Qahtani, Elleithy & Alotaibi, 2021), (Kumar, Ranjan & Tiwari, 2023). 

Deep learning architectures are one of the areas where the most remarkable advances in energy 
forecasting have been made. Network structures such as LSTM, GRU, and CNN-LSTM produce 
effective results on time-dependent data (Roy, Maity & Ghosh, 2021),( Doğan, Kaya & Öztürk, 2024),( 
Khan, Taj & Smith, 2024). Thanks to the powerful structure of LSTM in sequential data analysis, it 
has become possible to model the long-term effects of past data . Furthermore, it has been reported 
that short-term sudden changes in hybrid structures can be successfully learned by integrating LSTM 
and CNN (Mehmood & Iqbal, 2022). 

Hybrid systems that combine different model structures offer the advantages of both statistical 
components and artificial intelligence models. When seasonal decomposition-based models such as 
Prophet are combined with deep learning techniques such as LSTM, different dynamics in time series 
can be analyzed separately (Akçay & Altuğ, 2024). These approaches have enabled higher accuracy 
rates, especially in regions where seasonal effects are pronounced or sudden demand fluctuations are 
frequently experienced (Arif & Hussain, 2023),( Akçay & Altuğ, 2024). 

Current research trends propose more accurate modeling of energy demand not only with 
historical consumption data but also with multiple data sources such as climate data, economic 
indicators, social mobility, and electric vehicle usage statistics . Such multivariate models have made 
significant contributions to predicting changing consumption habits, especially in the post-pandemic 
period (Wang, Yu & Zhang, 2023). 

Transformer models, one of the new-generation neural network structures, have recently been 
incorporated into the energy estimation literature. Their success in learning long-term dependencies 
demonstrates that they have more advanced estimation capabilities compared to classical LSTM or 
GRU architectures (Kim, Jang & Lee, 2024). Research conducted in the context of Turkey also reflects 
these global trends. Studies that have presented comparative analyses of methods such as LSTM, 
Prophet, ARIMA, and Random Forest applied to different regions have demonstrated that hybrid 
approaches provide superior performance, particularly in short-term forecasting (Demirtaş & Şahin, 
2024).It is also emphasized that models adapted to local datasets can produce more effective results 
than universal models. 

A study in (Wang & Li, 2020), analyzed China's electricity demand using the ARIMA model, 
demonstrating the model's short-term forecasting success. (Alwee, Yusof & Ismail, 2014) compared 
Exponential Smoothing methods with different parameter sets, achieving high accuracy in industrial 
consumption forecasts, particularly with the Holt-Winters model. (Mohamed & Kamel, 2015), 
compared linear regression and an MLP-based artificial neural network, demonstrating that the 
artificial neural network significantly reduces error rates compared to the linear model. In (Şahin & 
Karabacak, 2018), Türkiye's annual electricity consumption was modeled using Polynomial 
Regression, and it was determined that 3rd-degree polynomials gave more appropriate results. In 
(Zhang, Zhou & Chen, 2020), Lasso and Ridge Regression were tested together, and their 
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performance against overfitting was measured; it was shown that Lasso provided an advantage in 
terms of variable selection. In (Khosravi, Ghadimi & Dehghanian, 2019), consumption data were 
modeled using the Random Forest method, and it was shown that the model learned seasonal effects 
particularly well. In (Ahmad & Chen, 2017), energy demand was estimated using SVR (Support 
Vector Regression), and better prediction performance was obtained with the RBF kernel compared 
to other kernel functions. In (Liu, Wang & Zhang, 2019), energy consumption was estimated using 
the XGBoost algorithm, and it was determined that the model gave lower RMSE values, especially 
after hyperparameter optimization, compared to other methods. In (Deb, Zhang & Lee, 2017), all 
machine learning-based methods (SVR, RF, XGBoost, ANN) were compared, and it was found that 
ensemble methods were more successful than individual models. In (Fazel Zarandi, Hosseini & 
Turksen, 2020), the ARIMA-XGBoost model was developed using hybrid approaches, and it was 
stated that both trends and seasonal fluctuations were captured more accurately. 

In this study, using Turkey's current 2020-2024 consumption data, the 2025-2030 wind-solar-
geothermal energy demand was estimated using ARIMA, Exponential Smoothing, Linear 
Regression, Artificial Neural Network (MLP), Polynomial Regression, Lasso, Random Forest, Ridge, 
Support Vector Regression (SVR), and Gradient Boosting (XGBoost) forecasting methods. Post-
calculation backtesting was conducted, the models that produced the best results were identified, 
and the hybrid forecasting method was developed and implemented. 

Unlike other studies, this study employed eight different forecasting methods and conducted 
cross-analysis. A new hybrid model was developed and applied to the same data set, and the results 
were compared with each forecasting method. A renewable approach is presented by using Türkiye's 
wind, geothermal, and solar energy consumption as a dataset. 

In the study, gross domestic product, population and number of university graduates for the 
years 2019-2024 were taken into account as independent variables. 

The study methodology consisted of data collection and processing into meaningful data, 
establishing and implementing forecasting models based on the data, validating the forecasts with 
test data, conducting model performance tests, and determining the hybrid model. In this context, a 
forecast based on production values was conducted in the study. Data on wind, solar, and geothermal 
energy consumed in Turkey between 2019 and 2024 were obtained from the Turkish Ministry of 
Energy and Natural Resources. The data was then processed into meaningful data. The forecast 
model was created using ARIMA, Exponential Smoothing, Linear Regression, Artificial Neural 
Network (MLP), Polynomial Regression, Lasso, Random Forest, Ridge, Support Vector Regression 
(SVR), and Gradient Boosting (XGBoost). The forecast was concluded with retrospective accuracy 
testing, determining optimal forecasting methods, and creating and implementing a hybrid 
forecasting system based on these data. Energy consumption data served as the dependent variables 
in the forecasting studies. The results were analyzed comparatively, and a wind-solar-geothermal 
energy consumption forecast for 2025-2030 was produced. In the hybrid estimation model, the impact 
power of the variables affecting the formation of demand was calculated using the Pearson 
Correlation Statistical method. The flow diagram of the study is shown in Figure 1. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 August 2025 doi:10.20944/preprints202508.1180.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.1180.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 15 

 

 

Figure 1. Study Methodology Flow Diagram. 

1. Creating the Data Set 

Five-year consumption data from the Turkish Ministry of Energy and Natural Resources, 
covering the years 2019-2024, were analyzed, compiled, and adapted for model use. Total annual 
consumption data for these resources was obtained based solely on wind, solar, and geothermal 
energy data. 

 

Figure 2. Real Consumption Values Of Turkey 2020-2024 Geothermal, Solar, And Wind Energy. 

2. Creating and Implementing Forecast Models 

The forecasting model was created using ARIMA, Linear Regression, Exponential Smoothing, 
Polynomial Regression, Random Forest Regressor, XGBoost Regressor, Lasso, Ridge, and SVR 
forecasting methods on the same dataset. 

In the study conducted using ARIMA (AutoRegressive Integrated Moving Average), annual 
production values were obtained, and trend testing was performed using these values. After selecting 
the model parameters, the most appropriate p, d, and q values were determined. Forward-looking 
forecasting was performed using the past 5 years of data. A mathematical equation was created: p: 
Autoregressive term (AR), d: Differencing number (if there is a trend), q: Moving average (MA), and ϵt: White noise error term. Stationarity Test – ADF Test One of the basic assumptions of the ARIMA 
model is that the data is stationary. According to the ADF (Augmented Dickey-Fuller) test, the solar 
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production data is not stationary because it contains a trend. It became stationary when the 1st degree 
difference was taken. Y′ₜ =  c +  φ₁ · Y′ₜ₋₁ +  φ₂ · Y′ₜ₋₂ +  θ₁ · εₜ₋₁ +  εₜ (1)

Model Parameter Selection: AR (p), MA (q). To determine these, the ACF (Autocorrelation 
Function) graph and the PACF (Partial Autocorrelation Function) graph were used. The ACF rapidly 
decreased to zero after the first delay → the MA component was low, the PACF decayed slowly → 
the AR component was more significant. Therefore, the most suitable model was found to be 
ARIMA(2,1,1) according to the AIC criterion. Parameter training was initiated. The trained 
parameters are shown in Table 1. 

Table 1. Trained Parameters. 

Parameter Estimated Value Description 
ϕ1 0.88 AR coefficient with 1st lag 
ϕ2 -0.15 AR coefficient with 2nd lag 
θ1 0.43 MA coefficient 
c 320 Constant Value 
σ2 16,1 Error Variance 

The Linear Regression Model is a model that makes future predictions using linear equations. 
This model performs regression using year information. In this study, the year is expressed as t (e.g., 
2020 = 1, 2021 = 2), the learned regression coefficients are expressed as β0-β1, and the error term is 
expressed as ϵt. β0=8.120, β1=1.32 were taken into account in the calculation. Here, Yt is the dependent 
variable, t is the independent variable, β0 and β1 are constant values, and ϵt is the error term. The 
error term is obtained by summing and minimizing the total squared error. Yₜ =  β଴ +  βଵ · t +  εₜ (2)

In the Exponential Smoothing forecasting method, a forecast is made based on a weighted 
average of historical data. The forecast is made with constant variance, ignoring seasonality and/or 
trend assumptions. Mathematically, the equation is expressed as x. In the given equation, Yt+1 
represents the forecast for period t+1, and the value a represents the smoothing coefficient, which is 
taken as 0 or 1. Ŷₜାଵ =  α · Yₜ +  ሺ1 −  αሻ · Ŷₜ (3)

The prediction was made using the Polynomial Regression method. Because systems exhibit 
accelerated growth and decline, the results are highly accurate. In grids containing solar and wind 
generation, this rate of change is high, and this prediction method is highly accurate. The 
mathematical model for the polynomial calculation method is shown in equation x. In the study, 
β0=7.850, β1=1.500, and β2=−35 were included in the calculation. Yₜ =  β଴ + βଵ · t +  βଶ · tଶ +  εₜ (4)

In the case of the prediction using the Random Forest Regressor, the forest model, consisting of 
the decision tree, was created by preserving only the year values. The mathematical model of the 
decision trees used in this prediction model is given in equation x. In this equation, Ti represents the 
ith decision tree, and t represents the year value. Prediction is performed using the relationship 
between years and rows. In the model, a regression model with 100 trees was created. The trained 
inputs were 1, 2, 3, 4, and 5. The tree depth was set to 3. Ŷₜ =  (1 / N)  ·  ∑ⁿᵢ₌₁ Tᵢ(t) (5)

In the XGBoost (Boosted Decision Trees) estimation model, decision trees are created as in the 
Random Forest model, and these decision trees progress by correcting the errors of previous trees. 
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The mathematical model created in this estimation method is shown in equation x. In this equation, 
fk represents the learned decision trees. 

Ŷₜ = ෍ fₖ(t)௄
 ௞ୀଵ ,  fₖ ∈  ℱ (6)

In the Lasso estimation method, variable selection was made by zeroing the coefficients within 
the linear structure. Thanks to L1 regularization, variable selection was made by equating some β 
coefficients to zero, and estimation was made by producing simpler models. In the lasso equation, 
J(β) represents the model's total loss function (error + penalty). Yᵢ represents the true (observed) value 
at the ith observation, and Ŷᵢ represents the value predicted by the model. The term (Yᵢ − Ŷᵢ) ² gives 
the squared error value for each observation, while the sum of these errors indicates the model's fit. 
βⱼ is the regression coefficient of the jth independent variable. λ (lambda) is the regularization 
coefficient that determines the model's penalty severity; as it increases, more penalty is applied. |βⱼ| 
represents the L1 norm, that is, the absolute value of the coefficient. This allows for variable selection 
by reducing some coefficients to zero. m represents the total number of observations, and n represents 
the number of independent variables (features) in the model. 

J(β) =  ෍ቀ𝑌𝑖 − Ŷᵢቁ௠
௜ୀଵ

2 + λ ෍ |βⱼ|௡
௝ୀଵ  (7)

The Ridge estimation method is achieved by adding an L2 penalty to the linear regression model 
to prevent overfitting. The mathematical model is shown in equation x. In the created model, λ 
represents the regularization coefficient, and βj represents the model coefficients. In the applied 
method, the learned parameters were found to be λ = 1.0, β0 = 7.980, and β1 = 1.320. Variables are 
determined in the model by pushing Bj values to zero. The learned parameters in this model are λ = 
0.1, β0 = 8.000, and β1 = 1.310. Ŷₜ =  β₀ +  β₁ · t +  ⋯  +  βₙ · tⁿ (8)J(β)  =  ∑ᵐ (Yᵢ −  Ŷᵢ)² +  λ ∑ⱼ₌₁ⁿ βⱼ² (9)

SVR (Support Vector Regression) is an estimation system that eliminates errors outside a certain 
tolerance without penalizing errors within it. Its mathematical model is shown in equation x. In the 
given model, C: regularization parameter, ε: tolerance, ξ,ξ∗: error margins. During the training 
process, c=100 and ε=0.1 were considered. 

Backtesting models were trained using data from 2020 to 2023 using a backtesting system. Since 
2024 was the actual dataset available, it was used as the test data. Error metrics were calculated by 
comparing the 2024 forecast data with the actual data. The same process was repeated with 2023 
selected as the test year. MAE and RMSE tests were performed. The dataset was divided into 
chronological order. The data was divided into two groups: training series and test series. In this 
study, the model was trained between 2019 and 2022. The trained data was tested separately for 2023 
and 2024. The accuracy was measured by calculating the error metrics Mean Absolute Error (MAE) 
and Mean Squared Error (MSE). 𝑀𝐴𝐸 =  (1 / 𝑁)∑ⁿᵢ₌₁ ห𝑌ᵢ −  Ŷᵢห (10)𝑀𝑆𝐸 =  (1 / 𝑁) ∑ⁿᵢ₌₁ (𝑌ᵢ −  Ŷᵢ)² (11)

In the calculation, Yₜ → Actual (observed) value, Ŷₜ → Predicted (model output) value, eₜ → Error 
value (actual value − predicted value), N → Total number of observations (number of t times), Yᵢ → 
Actual value of the i-th observation, Ŷᵢ → Predicted value of the i-th observation. 
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3. Pearson Correlation Method 

In this study, the effects of variables on the prediction results were statistically determined using 
the Pearson Correlation Method. The steps of the Pearson Correlation Method were as follows: 
• Creating the data set 
• Creating the correlation mathematical model 
• Calculating the correlation coefficient 
• Determining the correlation coefficient and determining the effectiveness levels of their effects on the 

results 
• The Pearson Correlation Mathematical Model is given in Equation x. 𝑟 = ෍((𝑋İ − 𝑋İ′)(𝑌İ − 𝑌İ′)) ÷ ට෍((𝑋İ − 𝑋İ′)(𝑌İ − 𝑌İᇱ) (12)

In the given mathematical model; 𝑋İ: each observation value of the independent variable (for example: GDP) 𝑌İ: each observation value of the dependent variable (Electricity Consumption) 𝑋İ′ 𝑌İᇱ  ∶ the mean of each variable  
r: correlation coefficient 
Correlation analysis: 
r=+1; perfect positive correlation 
r=-1; perfect negative correlation 
r=0; No correlation 

Correlation Coefficient (r) Relationship Type 
+0.90 ~ +1.00 Very strong positive relationship 
+0.70 ~ +0.89 Strong positive relationship 
+0.50 ~ +0.69 Moderate positive correlation 
+0.30 ~ +0.49 Weak positive correlation 

0 No relationship 
-0.30 ~ -1.00 Negative (inverse) relationship 

Findings and Discussion 

In this study, wind, solar, and geothermal energy consumption in Turkey between 2025 and 
2030 was estimated by using all forecasting methods, covering the years. 

The following findings were obtained from the study: 

• The highest forecast value in all years was achieved by the Polynomial forecasting method. 
• The forecasting methods that showed the lowest consumption in 2030 were SVR and Random 

Forest. 
• When the results were evaluated, an increase was observed across years in all models. However, 

these increases occurred at different rates. 

These results are presented in Table 2. 

Table 2. Forecasting Results. 

Year ARIMA Exponential Linear Polynomal Lasso Random Forest Ridge SVR XGBoost 
2025 78235,05193 80269,10169 77034,62224 81618,9385677028,595 70197,18496 75947,7147 62951,9221 72240,49 
2026 81516,97493 86310,55737 80684,37813 88399,9675980672,229 70197,18496 78493,3948 62951,9794 72240,49 
2027 84151,61485 92352,01304 83328,26009 95184,3444483315,516 69077,68442 81030,0512 62952,0367 72240,49 
2028 86266,63325 98393,46872 85972,14206 101972,069185958,804 68095,7602 83566,7076 62952,0939 71598,09 
2029 87964,51341 104434,9244 89621,89794 108763,141689602,437 66820,35855 86112,3877 62952,151 71598,09 
2030 89327,52615 110476,3801 93271,65382 115557,562 93246,071 66321,99547 88658,0678 62952,208 71598,09 
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As a result of retrospective validation tests, data for the years 2023 and 2024 were selected as test 
data, and the models with the highest predictive accuracy were determined to be the Lasso and 
Random Forest models. The validation tests for the years 2023 and 2024 are shown in Table 3. 

Table 3. Backtesting Results. 

Model Year MAE (GWh) RMSE (GWh) 
Lasso 2023 19,69 19,69 

Random Forest 2023 4,705 4,705 
Lasso 2024 6,49 6,49 

Random Forest 2024 5,698 5,698 

• The Random Forest model stands out as a more stable and lower-error method in both years. 
While the Lasso model improved in 2024, it still lags behind Random Forest. The equal MAE 
and RMSE values indicate that the errors are absolute and unidirectional, not directional. This 
demonstrates that the forecast model operates free of systematic bias. 

• When the forecast method was rerun by combining the Lasso and Random Forest models in the 
hybrid model to achieve optimal results, the following energy consumption estimates were 
generated: 77028.59 GWH for 2025, 80672.22 GWH for 2026, 83315.51 GWH for 2027, 85598 GWH 
for 2028, 85958 GWH for 2029, and 93246.07 GWH for 2030. These values are demonstrated in 
Figure 3. 

 

Figure 3. Hybrid Model Forecasting. 

• When all results were compared with the hybrid model, Arima, Lasso, and Linear Regression 
models produced the closest results to the hybrid model. Polynomial and Exponential 
estimation methods produced the farthest estimates from the hybrid model. This situation is 
demonstrated in Table 4. 

Table 4. Comparison table of all forecasting methods and the hybrid forecasting method. 

Year 

A
rim

a 

Exponential 

Linear  

Polynom
al 

Lasso 

R
andom

 
Forest 

R
idge 

SV
R

 

XG
Boost 

H
ybrid 

2025 78235,05193 80269,10169 77034,62224 81618,93856 77028,595 70197,18496 75947,7147 62951,9221 72240,49 77028,6 
2026 81516,97493 86310,55737 80684,37813 88399,96759 80672,229 70197,18496 78493,3948 62951,9794 73740,49 80672,23 
2027 84151,61485 92352,01304 83328,26009 95184,34444 83315,516 69077,68442 81030,0512 62952,0367 76220,49 83315,52 
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2028 86266,63325 98393,46872 85972,14206 101972,0691 85958,804 68095,7602 83566,7076 62952,0939 79678,09 85958,8 
2029 87964,51341 104434,9244 89621,89794 108763,1416 89602,437 66820,35855 86112,3877 62952,151 81598,09 89602,44 
2030 89327,52615 110476,3801 93271,65382 115557,562 93246,071 66321,99547 88658,0678 62952,208 83798,09 93246,07 

Between 2025 and 2030, consumption estimates increased from 77,028 GWh to 93,246 GWh. 
Percentage changes of 2% to 4% are observed annually. Additional yearly representations are shown 
in Figure 4. 

In 2025, the ARIMA model produced a 1.56% higher forecast than the Hybrid model. The 
difference was 1.05% in 2026, 1.00% in 2027, and 0.36% in 2028. However, in 2029 and 2030, ARIMA 
performed 1.83% and 4.20% lower than the Hybrid model, respectiveLy. 

In general, the ARIMA model produced forecasts close to the Hybrid model between 2025 and 
2028, but its error increased in 2029 and 2030. 

The Exponential method produced significantly higher values than the Hybrid model in all 
years. The difference was 4.20% in 2025, 6.99% in 2026, 10.83% in 2027, 14.46% in 2028, 16.55% in 2029, 
and 18.47% in 2030. This reveals that the Exponential method tends to have increased error and 
performs poorly compared to the Hybrid model. This situation is demonstrated in Figure 4. 

The linear model's predictions are almost identical to those of the hybrid model. The differences 
ranged from 0.01% to 0.03% between 2025 and 2030. This suggests that the linear model yields very 
similar results to the hybrid model, and that the combined model does not differ significantly from 
linear regression. 

 
Figure 4. Hybrid Model Forecasting Annual Change. 

The polynomial model showed a significant overestimation bias compared to the hybrid model 
in all years. The difference was 5.95% in 2025, 9.58% in 2026, 14.24% in 2027, 18.63% in 2028, 21.40% 
in 2029, and 23.88% in 2030. The polynomial approach produced high-variance and over-biased 
forecasts and was one of the methods that yielded the largest overestimations compared to the hybrid 
model. 
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Figure 5. All Models And Hybrid Model Estimation 2025-2026. 

The fact that the hybrid model and lasso show very close values indicates that the lasso is used 
as the dominant estimation in the hybrid model. 

The Random Forest model produced lower predictions than the Hybrid model every year. The 
difference reached 8.86% in 2025, 13.00% in 2026, 17.09% in 2027, 20.78% in 2028, 25.42% in 2029, and 
28.93% in 2030. 

The SVR model produced a constant value compared to the Hybrid model, yielding the same 
forecast each year (approximately 62,952 GWh). Between 2025 and 2030, the differences increased by 
18.27%, 28.67%, 32.87%, 36.66%, 41.75%, and 48.97%, respectively. The SVR, with its static and 
underestimation bias, exhibited the weakest performance compared to the Hybrid model. 

The XGBoost model underestimated Hybrid in all years, but it was not as stable as SVR. The 
difference was 6.61% in 2025, 8.59% in 2026, 9.80% in 2027, 7.76% in 2028, 9.56% in 2029, and 10.18% 
in 2030. XGBoost is a consistent but conservative model, and systematically underestimates Hybrid. 
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Figure 6. All Models And Hybrid Model Estimation 2027-2028. 

The Ridge model produced lower forecast errors than the Hybrid model in all years. The 
difference was 1.40% in 2025, 2.78% in 2026, 2.74% in 2027, 2.85% in 2028, 3.89% in 2029, and 5.00% 
in 2030. 

As general results, the closest predictions were determined to be Lasso and Linear Regression, 
the worst predictions were SVR and Polynomial Regression, the extremely low predictions were 
determined to be Random Forest, the extremely high predictions were determined to be Polynomial 
and Exponential, and the consistent but remaining models that did not exceed the accuracy of the 
Hybrid model were determined to be Ridge and XGBoost. 
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Figure 7. All Models And Hybrid Model Estimation 2029-2030. 

Correlation Assessment 

• The correlation between electricity consumption and gross domestic product was 0.995. 
• The correlation between electricity consumption and the number of university graduates was 

0.9971. 
• The correlation between electricity consumption and population was 0.9827. 

This shows that the relationship between GDP and demand is very highly positive, the 
relationship between the number of university graduates and consumption is strongly positive, and 
the correlation between population and electricity consumption is highly positive. 

Conclusion 

In this study, Turkey's wind, solar, and geothermal energy demand for the period 2025–2030 
was forecasted using ten different predictive methods, including ARIMA, Exponential Smoothing, 
Linear Regression, Polynomial Regression, Lasso, Ridge, SVR, Random Forest, XGBoost, and 
Artificial Neural Networks. The results were then compared with a hybrid forecasting model 
developed as part of the study. Through backtesting-based analysis, the performance of each model 
was evaluated annually by comparing absolute and percentage differences with the hybrid model. 
The effect ratios of the variables affecting the prediction result were determined by the Pearson 
Correlation analysis method performed in the hybrid prediction model obtained. 

The results indicate that the Lasso regression model produced predictions that were exactly 
equal to the hybrid model in all years. This finding strongly suggests that Lasso plays a dominant 
role within the hybrid structure. Similarly, the Linear Regression model produced results with 
minimal differences (less than 0.03%), indicating a strong structural alignment with the hybrid model. 
The Ridge regression method also showed relatively close alignment, with annual deviations ranging 
between 1.4% and 5.1%. 

In contrast, the Exponential Smoothing and Polynomial Regression models consistently 
produced higher forecasts than the hybrid model, especially after 2028. In 2030, the Exponential 
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method overestimated demand by 15.6%, while the Polynomial model deviated by 23.8%, indicating 
a tendency toward overfitting in long-term projections. 

Another notable finding is that the Support Vector Regression (SVR) method consistently 
generated significantly lower forecasts across all years. The difference between SVR and the hybrid 
model reached 22.3% in 2025 and increased to 47.9% by 2030. Similarly, Random Forest and XGBoost, 
despite being powerful machine learning algorithms, showed systematic underestimation compared 
to the hybrid model, with deviations ranging from 10% to 30%. This behavior suggests a tendency 
toward conservative forecasting in the absence of careful hyperparameter tuning. 

The correlation between electricity consumption and gross domestic product was 0.995, The 
correlation between electricity consumption and the number of university graduates was 0.9971, The 
correlation between electricity consumption and population was 0.9827. This shows that the 
relationship between GDP and demand is very highly positive, the relationship between the number 
of university graduates and consumption is strongly positive, and the correlation between population 
and electricity consumption is highly positive. 

The hybrid model demonstrated strong agreement with regression-based methods, particularly 
Lasso, Linear Regression, and Ridge, while significant discrepancies were observed with 
nonparametric and machine learning-based approaches. These findings highlight the importance of 
carefully selecting hybrid model components and optimizing them through backtesting. This study's 
methodological comprehensiveness and comparative multi-model evaluation offer both theoretical 
and practical contributions to the field of energy demand forecasting. Pearson correlation analysis, 
applied to the developed hybrid forecasting method, was used to observe the effect ratios of the 
variables used in the model. This aspect distinguishes the study from other studies. 

This study presents important findings through a comprehensive comparison of multiple 
forecasting models and the development of a hybrid approach to forecast Türkiye's wind, solar, and 
geothermal energy demand. However, some improvements can be made in future research. First, 
forecasting accuracy can be further enhanced by applying AI-based optimization techniques such as 
Genetic Algorithms, Grid Search, or Bayesian Optimization to increase accuracy. The backtesting 
framework can also be extended using advanced techniques such as time-series cross-validation. 
Furthermore, developing sub-regional models at the city or provincial level and assessing their 
scalability will increase the practical applicability of the approach. Finally, integrating variables 
related to energy storage systems, electric vehicle adoption, and green energy policies into the 
forecasting process can provide more strategic insights for long-term sustainable energy planning. 
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