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Abstract

Space weather exerts a significant influence on the Earth’s atmosphere, driving a variety of physical
processes, including the production of cosmogenic radionuclides. Among these, “Be is a naturally
occurring radionuclide formed through spallation reactions induced by cosmic-ray showers interacting
with atmospheric constituents, primarily oxygen and nitrogen. Over long timescales, the atmospheric
concentration of “Be exhibits a direct correlation with the cosmic-ray flux reaching the Earth and an
inverse correlation with solar activity, which modulates this flux via variations of the heliosphere.
The large availability of “Be concentration data, resulting from its use as a natural tracer employed in
atmospheric transport studies and in monitoring the fallout from radiological incidents such as the
Chernobyl disaster, can also be exploited to investigate the impact of space weather conditions on
the terrestrial atmosphere and related geophysical processes. The present study analyzes a long-term
dataset of monthly 7Be activity concentrations in air samples collected at ground level since 1987 at the
ENEA Casaccia Research Center in Rome, Italy. In particular, the statistical dependency and correlation
of this time series with the galactic cosmic ray flux on Earth and solar activity have been investigated.
Data from a ground-based neutron monitor and sunspot numbers have been used as proxies for
galactic cosmic rays and solar activity, respectively. De-trending techniques were applied to the “Be
monthly time series to extract its low-frequency component associated with cosmic drivers, which is
partially hide by high-frequency modulations induced by atmospheric dynamics. For Solar Cycles
22,23, 24, and partially 25, clear statistical associations were identified, indicating that a substantial
portion of the relationship between stratospheric ”Be concentrations and cosmic drivers is captured by
linear correlations, while dependence analyses suggest the possible presence of additional non-linear
components. These findings support the potential use of “Be as a quantitative indicator of cosmic ray
modulation and, indirectly, of solar activity.

Keywords: atmospheric 7Be concentration; cosmic ray flux; solar activity; correlation; anti-correlation;
cosmic drivers; solar drivers

1. Introduction

Since the pioneering work of Libby [1], who hypothesized the production of radioactive isotopes
in the development of atmospheric nuclear showers initiated by galactic cosmic rays, cosmogenic
radionuclides have attracted growing scientific interest. Among them, “Be has been extensively
investigated since its first detection in rainwater samples [2], due to its characteristic half-life, emission
properties, and distinctive distribution across atmospheric layers. As a natural radioactive tracer, it is a
key radionuclide for investigating physical phenomena ranging from atmospheric dynamics [3-6] to
climate change [7,8], but also for monitoring the fallout of potential anthropogenic releases into the
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atmosphere, as in the case of the Chernobyl disaster in 1986. As a result, since 1987, environmental
laboratories worldwide have started the systematic measurement of ’Be concentrations in air (dry
deposition) and rain (wet deposition) as part of their routine environmental monitoring programs
[9,10]. Consequently, a vast amount of “Be concentration data has been accumulated over the years,
providing valuable resources also for other areas of physics, such as planetary science and space
weather research.

Cosmogenic ’Be is present throughout the Earth’s atmosphere with varying concentrations, with
maxima occurring in both production and accumulation layers. Although stratospheric production
(12-50 km) represents the predominant source of “Be detected at ground level due to its 53-day half-life,
the isotope is also present at higher altitudes. Spectrometric measurements on the outer surfaces
of spacecraft returning from low Earth orbit [11], as well as data from balloon-borne experiments
[12-14], have indicated unexpectedly high 7Be concentrations in the mesosphere (above 50 km) and
lower thermosphere (above 85 km), suggesting the existence of additional production mechanisms
in these regions. In particular, SEPs (Solar Energetic Particles), whose lower energies compared to
Galactic Cosmic Rays (GCRs) cause them to interact predominantly in the upper atmosphere, have
been proposed as a possible source of additional “Be production. By generating particle showers
at high altitudes, they may lead to localized modulation of “Be concentrations, as hypothesized for
high-latitude regions [15].

Regarding the lower atmospheric layers, the dominant source of ”Be remains associated to the
interaction of higher-energy GCRs, which are able to penetrate into the stratosphere and trigger
the spallation reactions responsible for its formation. This well-established mechanism explains the
statistical dependence and correlation observed between GCR flux and stratospheric ”Be concentrations.
The GCR flux is modulated by the Sun, decreasing during periods of high solar activity because of the
expansion of the heliosphere, which results from enhanced solar wind production and a stronger, more
irregular interplanetary magnetic field. Scattering and diffusion processes of incoming GCRs within
the expanded heliosphere lead to a reduction of their flux in the Solar System and on Earth[16,17]. As a
consequence of this mechanism, there is a well-established anti-correlation between GCR flux and solar
activity, which in turn translates into a direct anti-correlation between atmospheric ’Be concentrations
and solar activity.

In the environmental and atmospheric physics fields the correlation between the stratospheric
7Be and solar activity at different time scale has been investigated by some authors [18-20] but only a
few have also examined its correlation with the galactic cosmic ray flux on Earth at the same time [21].

This study focuses on the correlation and statistical dependence between the monthly stratospheric
7Be concentration, measured at the Casaccia Research Centre since 1987, and proxy variables of cosmic
ray flux and solar activity, retrieved from open science databases. The use of long-term monthly time
series provides an appropriate temporal framework for detecting relationships with cosmic drivers
and characterizing multi-annual trends. Dedicated de-trending techniques have been applied to filter
out signals induced by atmospheric processes, which are typically characterized by shorter-term
modulations, allowing for a clearer assessment of the cosmic component. Phenomena such as the
seasonal intrusion of stratospheric air into the troposphere (annual modulation) [22,23], the quasi-
biennial oscillation (QBO) in stratospheric wind direction with a period of approximately 2.2 years
[24], teleconnections with the El Nifio-Southern Oscillation occurring on timescales of about 7 years
[25], and semi-decadal oscillations [26] are all recognized contributors to "Be variability, and they
can hide the low-frequency cosmic modulation signal. By applying specific analytical techniques to
disentangle these Earth-induced effects, this study aims to investigate the underlying correlations and
dependencies evaluating whether the stratospheric ”Be concentration can be considered as a proxy, or
anti-proxy, for cosmic ray flux and solar activity.
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2. Materials and Methods
2.1. Stratospheric ' Be Production, Deposition and Measurement in Casaccia Research Center

The ”Be isotope is produced in the Earth’s atmosphere through interactions of galactic cosmic
rays (GCR) predominantly with nitrogen and oxygen nuclei [27]. The production reactions are driven
by spallation processes, mainly induced by protons and neutrons generated within the atmospheric
shower initiated by a GCR. Examples of such reactions are given below:

p (n) + "N —"Be + X 1)

p (n) +1%0 = "Be+Y 2)

where X and Y denote the residual products of the respective spallation reactions. Considering the
timescales of atmospheric diffusion processes (typically on the order of several weeks), the production
of 7Be can be assumed to occur quasi-simultaneously along the entire extent of the hadronic shower.

According to theoretical models (e.g. [28]), the 7Be maximum production is reached in the stratosphere
(10 — 50 km), where showers exhibit their maximum development [29]. Formed in ionized states
as Be™ or Be?*, beryllium rapidly attaches to sub-micron aerosol particles, whose high specific
surface area enhances electrostatic interaction efficiency [30,31]. Once attached, “Be gradually drifts
toward the ground due to gravitational settling and atmospheric dynamics, reaching deposition
velocities of few cm/s [32]. The separation layer between the stratosphere and the troposphere, the
tropopause (approximately at 12 km of altitude), acts as an accumulation layer for ’Be during its
drifting. The strong reduction in vertical mixing, caused by the sharp gradient in temperature and
density in this layer, effectively inhibits the downward transfer of air masses containing beryllium [33].
Approximately 71% of “Be is removed from the atmosphere by deposition processes, with about 68%
of this fraction due to wet deposition (precipitation) and around 3% due to dry deposition (aerosol
settling). The remaining 29% is lost through radioactive decay in the atmosphere [34,35]. Due to its
characteristic single gamma emission at 477.6 keV, ”Be is readily detectable on ground via gamma-ray
spectrometry both in rainwater sample (wet deposition) and in aerosol samples collected on filters
(dry deposition).

In this study, only dry deposition data are available because the monitoring network in place
at the Casaccia Research Center is designed for nuclear emergency preparedness, aiming to detect
potential releases from the on-site nuclear facilities and the following plume passage. Air sampling is
performed using three high-volume air samplers dislocate in the center, each processing approximately
800 m? of air per day. Dry deposition of “Be is measured monthly by performing gamma spectrometry
on 90 filters, corresponding to daily samples collected over a month from the 3 sampling points. This
method allows the determination of atmospheric “Be concentrations with sufficient sensitivity.

2.2. Datasets and Data Analysis

The upper panel of Figure 1 shows the monthly time series of atmospheric ”Be dry deposition, as
measured at the Casaccia Research Center.

The variables linked to the space weather conditions around our planet are available through
two Open Science databases. In this work, neutron flux data from the Oulu station in Finland, part
of the global neutron monitor network [36], are used as a proxy for GCR flux at Earth’s surface. This
detector was chosen as the closest to the beryllium-7 sampling site among the stations of the global
network, with data available starting from 1987. Neutrons, together with muons, are among the most
penetrating particles produced in hadronic showers in the atmosphere and are capable of reaching the
ground. Their flux is directly proportional to the incoming GCR flux impacting the Earth.

The sunspot number was used in this study as a proxy for solar activity and the corresponding data
were retrieved from the Open Science database provided by [37]. These datasets are shown in the
middle and bottom panel of Figure 1.
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Figure 1. Time series of monthly 7Be concentrations measured at Casaccia (top), neutron monitor counts (middle),
and sunspot numbers (bottom). The 7Be time-series exhibits a clear higher-frequency modulation driven by
stratosphere-troposphere exchange processes and meteorological dynamics. Neutron monitor counts and sunspot
numbers are shown as proxies for cosmic ray intensity and solar activity respectively. Vertical dashed lines
indicate the boundaries of solar cycles.

2.3. De-Trending Methods

The presence of temporal modulations in the 7Be time series, induced by atmospheric exchange
processes with no counterparts in cosmic drivers, necessitates the application of de-trending procedures
to reliably quantify the correlation and the dependency between these variables. Their presence can
indeed introduce artificial negative contributions in the covariance structure, potentially obscuring the
true physical relationships under investigation.

Short-term variability in atmospheric “Be concentrations primarily reflects dynamic processes oc-
curring in the troposphere and lower stratosphere, including seasonal cycles, quasi-biennial oscillations
(QBO), stratosphere-troposphere exchange events, large-scale circulation patterns, and phenomena
such as ENSO (El Nifio—Southern Oscillation). These terrestrial drivers impart oscillations on timescales
ranging from several months to a few years, superimposed upon longer-term variations controlled
by solar activity and cosmic ray modulation. To achieve this separation of timescales, three distinct
de-trending techniques were implemented and systematically compared in this study, aiming to isolate
the long-term variability of atmospheric “Be concentrations from shorter-term meteorological and
seasonal perturbations.

The selection of de-trending parameters for each applied method is therefore constrained by
the need to suppress these high-frequency, non-cosmogenic fluctuations while preserving the low-
frequency signal components associated with solar and heliospheric processes. Accordingly, parameter
choices were guided by the typical temporal scales of the known atmospheric oscillations, with the
objective of ensuring that the extracted trends accurately reflect variability on timescales consistent
with cosmic-ray-related influences.

The first method consists of applying a running average with a fixed time window. This classical
approach, widely adopted in geophysical and climate sciences, is used to suppress high-frequency
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fluctuations and emphasize low-frequency trends [38,39]. In this work, the running average was com-
puted using a centered window, so that each value represents the mean of observations symmetrically
distributed around the point in time. This ensures that the smoothed series remains aligned in phase
with the original signal, avoiding the temporal shifts that occur when the averaging is performed only
over past values. Additionally, near the boundaries of the time series, where a full window cannot be
accommodated, the filter adapts by computing the average over the available data points, even if fewer
than the nominal window size. This prevents gaps at the start and end of the series and maintains the
continuity of the smoothed trend. Overall, this approach preserves the low-frequency component of
the series while effectively reducing short-term variability, making it suitable for highlighting temporal
patterns associated with atmospheric or solar influences on “Be concentrations.

Secondly, a Seasonal-Trend decomposition based on Loess (STL) was applied [40]. STL is a
decomposition technique that separates a time series into trend, seasonal, and remainder components.
The method employs locally weighted regression (Loess) to iteratively estimate the trend and seasonal
components. Although the seasonal period must be specified in advance, the use of local regression
allows the method to accommodate gradual variations in both the amplitude and phase of the seasonal
cycle, as well as long-term modulations in the trend component. Finally, a low-frequency Fourier
reconstruction was implemented by summing the first n terms of the Fourier series expansion of
the 7Be time series [41]. The Fourier series expansion preserves the full temporal resolution of the
data, avoiding the loss of detail associated with smoothing techniques. In the present work, these
de-trending methods were applied exclusively to the “Be time series: the neutron counts and sunspot
number series were analyzed in their original form, as they are considered physical drivers of "Be
concentration and already represent temporally smoothed indices of cosmic ray flux and solar activity,
respectively. This approach avoids the introduction of mathematical artifacts and preserves the physical
meaning of the time-series.

2.4. Advanced Measures of Statistical Dependence

The investigation of correlations among variables characterized by (quasi-)sinusoidal periodic-
ity, phase shifts, and inherent temporal lags, such as the detrended time series of atmospheric “Be
concentrations, sunspot numbers, and ground-level neutron fluxes, requires careful methodological
consideration. These properties suggest that analyses confined to linear and monotonic associations,
as measured by the Pearson coefficient (r), may be insufficient to capture the complexity of interac-
tions. Therefore, employing additional statistical metrics capable of detecting complex and nonlinear
dependencies is essential for a robust and comprehensive assessment of the relationships among these
variables.

To address these challenges, a suite of advanced dependence measures has been employed,
including Spearman’s (p) and Kendall’s (7) rank correlation coefficients for capturing monotonic yet
potentially nonlinear associations; Distance Correlation (), which can detect any type of dependence
irrespective of functional form; Mutual Information (I), quantifying shared information content be-
tween variables and the Maximal Information Coefficient (MIC), designed to identify a wide range
of linear and nonlinear relationships with sensitivity to various dependency structures. Collectively,
these methods enable a more comprehensive and robust assessment of statistical associations, offering
critical insights into the complex dynamics underlying environmental and cosmic phenomena. For the
following analyses, we assume that the two time series, whose correlation and dependency is to be
investigated, can be expressed as vectors of observations:

X = (x1,%2,...,%j,...,xp) and Y = (yl,yz,...,yj,...,yn). 3)

where n denotes the number of observations, and x; and y; represent the values of the variables X
and Y at time indices i and j, respectively. These generic representations will be used consistently
throughout the discussion of the different statistical dependence measures.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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2.4.1. Correlation Metrics

Several correlation metrics can be employed to assess the relationship between two variables.
The simplest and most widely used is Pearson’s correlation coefficient, which measures the strength
and direction of a linear association. However, it is limited to detecting linear relationships and may
fail to capture more complex or nonlinear dependencies. To detect monotonic relationships that may
not be strictly linear, rank-based correlation coefficients are often used. Unlike Pearson’s 7, these
metrics are sensitive to ordinal associations and do not assume a specific functional form for the
relationship between variables. Two widely used estimators, Spearman’s p [42] and Kendall’s 7 [43,44],
are employed to quantify the degree of monotonic dependence. Details regarding these correlation
coefficient are given in the following:

* Pearson’s correlation coefficient r - the metric measures the strength and direction of a linear
relationship between two variables. It is defined as:

. Cov(X,Y)
- Ox Oy

(4)

where Cov(X,Y) denotes the covariance between X and Y, and ox and oy are the standard
deviations of X and Y, respectively. The covariance is given by:

Cov(X,Y) = 1y (3~ ) (4~ 9), ©

where ¥ and jj are the sample means of X and Y respectively. The coefficient r ranges from
—1 (perfect negative linear relationship) to +1 (perfect positive linear relationship), with r = 0
indicating no linear association.

*  Spearman’s rank correlation coefficient p - the metric measures the strength and direction of a
monotonic relationship by computing the Pearson correlation between the ranked values of the

variables:
~ Cov(rank(X), rank(Y))

Urank(X) Trank(Y)

(6)

where Cov denotes the covariance and ¢ the standard deviation of the ranked variables. In
this context, ranking transforms the original vector of values into a vector of ranks, where each
rank indicates the position of a value in the ordered dataset. The coefficient p ranges from —1
(perfect decreasing monotonic relationship) to +1 (perfect increasing monotonic relationship),
with p = 0 indicating no monotonic association. Spearman’s p is particularly effective in detecting
relationships that are nonlinear but still consistently increasing or decreasing.

¢  Kendall’s rank correlation coefficient T - the metric is based on counting the number of concordant
and discordant pairs among all possible pairs of observations:

T = M 7)
ahn(n—1)

where 7. is the number of concordant pairs and 7, is the number of discordant pairs, with n
representing the sample size. Two observations (x;, y;) and (x;,y;) are considered concordant
if the ranks of both variables increase or decrease together (i.e., x; > xjand y; > y;, or x; < x;
and y; < y;). They are discordant if one variable increases while the other decreases (e.g., x; > x;
but y; < y;). The coefficient T also ranges from —1 (complete inversion of ranks) to +1 (perfect
agreement in rank order), with T = 0 corresponding to no association.

While all three measures capture associations between variables, they differ in their sensitivity and
interpretation. Pearson’s r assesses the strength and direction of a linear relationship and assumes
normally distributed data. In contrast, Spearman’s p and Kendall’s T are rank-based measures that
capture monotonic relationships without requiring linearity. Kendall’s T tends to be more robust for
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small sample sizes and provides a probabilistic interpretation, representing the difference between
the probability that pairs of observations are in the same order versus different orders. Spearman’s p
can be slightly more sensitive to variations in the strength of monotonic associations but may be more
influenced by extreme values in the ranks. Together, these correlation coefficients offer complementary
insights into both linear and non-linear associations in the data. For all three correlation coefficients,
significance was assessed through classical statistical tests: the t-distribution for Pearson’s r [39], and
asymptotic normal approximations for Spearman’s p and Kendall’s T [44,45].

2.4.2. Dependence Metrics

To quantify statistical dependence beyond monotonic or linear structures, three complementary
approaches were employed: distance correlation [46,47], mutual information [48], and the maximal in-
formation coefficient [49] . These metrics are capable of detecting complex nonlinear or non-functional
associations between variables and are suitable for identifying dependencies that traditional correlation
measures may overlook. Details of these approaches are provided in the following:

e  Distance correlation R - this metric measures the statistical dependence between two variables or
vectors, capturing both linear and nonlinear relationships. Unlike Pearson’s correlation, distance
correlation is equal to zero if and only if the variables are statistically independent, making it a
true test of independence. Mathematically, distance correlation is defined as:

V(X,Y)

RMJ%:'WKDVWJ)

(®)

where V(X,Y) denotes the distance covariance between X and Y. The distance covariance V (X, Y)
quantifies how much the pairwise distances between observations in X are associated with the
pairwise distances in Y. To compute it, the first step is to calculate the pairwise Euclidean distance
matrices:

a;j = |lx; —x;l| and by = [ly; — yj| )

These matrices are then transformed through a centering process, where the row means (3;.) and
column means (7.;) are subtracted to the initial value 4;; and the grand mean (a..) is added back,
yielding the doubly centered matrices:

Aij = ajj — a;. — 17.]‘ +a.. (10)

and similarly for B;;. The squared distance covariance is computed as:
> 1 n n
V( 722 (11)

By normalizing the distance covariance with the distance variances of X and Y, the distance corre-
lation coefficient R, defined in eq. 8, is obtained. The coefficient R ranges from 0 (independence)
to 1 (perfect dependence) and can detect complex relationships that are not necessarily linear
or monotonic. This makes distance correlation a valuable tool for exploring dependencies in
environmental and geophysical data.

*  Mutual information I - the metric quantifies the amount of information shared between two
variables and is rooted in information theory. It is defined as:

p(x,y)
106v) = & T ple s ) 12

xeXyeY

where p(x,y) is the joint probability distribution and p(x), p(y) are the marginal distributions of
X and Y, respectively. The index is always non-negative and equals zero if and only if X and Y
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are independent. Unlike correlation coefficients, mutual information has no fixed upper bound,
and its magnitude depends on the entropy of the individual variables.

*  Maximal Information Coefficient MIC - the metric allows to capture complex and potentially
nonlinear relationships between time series. This method belongs to the family of maximal
information-based nonparametric exploration (MINE) statistics and is designed to detect a wide
range of association types, regardless of their functional form or strength. Conceptually, MIC
measures how well one variable can be used to predict another by exploring how data points
distribute over different grid partitions of the scatter plot. The algorithm divides the plane defined
by variables X and Y into multiple grids of varying resolutions (up to a maximum resolution
determined by the sample size). For each grid, it computes the mutual information—a measure
quantifying how much knowing one variable reduces uncertainty about the other. The MIC
is then defined as the highest normalized mutual information observed across all tested grids,
formally expressed as:

MIC(X,Y) = max { I(XY”)} (13)

xy<B(n) | logmin(x, )

where I*(X, Y; x, y) denotes the maximum mutual information achievable with a grid of x x y
cells, and B(n) limits the maximum grid resolution based on the sample size n. This normalization
ensures that MIC scores remain comparable across different grid sizes. A key advantage of MIC
is its capacity to identify not only linear and monotonic relationships but also more complex
patterns—such as periodic, exponential, or piecewise associations that traditional measures like
Pearson or Spearman correlations might fail to detect. MIC values range between 0 and 1, where
values close to 1 indicate strong dependence (irrespective of shape), and values near 0 suggest
little or no association.

These measures of statistical dependence expand the analytical framework beyond linear or
monotonic relationships, allowing the detection of complex, non-linear, and non-functional associations
between variables. By identifying dependencies that traditional correlation coefficients might overlook,
they offer a more comprehensive characterization of the data structure and are crucial for investigating
subtle interactions in environmental and space-weather studies.

3. Results
3.1. Correlation on the Raw Data

The correlation and statistical dependence between ”Be, neutron flux, and sunspot number
were initially evaluated using raw, non-detrended data. This preliminary analysis was conducted
to establish a baseline reference for comparison with the results obtained after applying various
de-trending techniques. The left and middle panels of Figure 2 show that the association between “Be
concentration and both neutron flux and sunspot number is modest across all metrics. In contrast, the
right panel reveals a strong negative correlation between neutron flux and sunspot number, indicating
that these series are closely anti-correlated and reflect the same solar modulation signal. This strong
interdependence supports the use of both neutron counts and sunspot number as external drivers of
7Be variability, even without de-trending.
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Be-7 vs Neutron Counts [raw data] Be-7 vs Sunspot Number [raw data] Neutron Counts vs Sunspot Number [raw data]
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Figure 2. Scatter plots showing the relationships among the investigated variables using raw monthly data.
Pearson, Spearman, Kendall, Distance Correlation, Mutual Information, and MIC values are reported in each
panel.

Metrics index and related p-values are summarized in Table 1.

Table 1. Dependence measures computed for the analyzed variable pairs on raw variables.

Pair r p-value [y p-value T p-value R MI MIC
(r) () (7)
Be-7 vs Neutron Counts 023 <107° 031 <102 021 <10™° 029 034 022
_ - -3 - -7 - -7
Be-7 vs Sunspot Number 016 <10 0.27 <10 0.19 <10 024 035 021
- —10 - —10 - —10
Neutron Counts vs 0.87 <10 0.88 <10 0.69 < 10 086 091 0.70

Sunspot

The analysis of raw data indicates that the relationship between atmospheric ”Be concentration
and both solar and cosmic proxies is relatively weak and method-dependent, in contrast to the strong
and consistent anticorrelation observed between neutron counts and sunspot number. This suggests
that “Be does not respond to solar and cosmic drivers as directly as neutron monitors, but rather
integrates additional atmospheric processes that may obscure or modulate the primary signal. These
findings highlight the necessity of applying appropriate de-trending techniques in order to isolate the
intrinsic, large-scale modulation of “Be by solar and cosmic factors, which may otherwise be masked
by dominant seasonal patterns and atmospheric variability.

3.2. De-Trending Methods Results

The main parameters of each de-trending method were selected based on their effectiveness
in isolating low-frequency components while minimizing shorter-term atmospheric variability. The
specific configurations adopted are summarized below:

¢  Running Average: A window length of 70 months was chosen to effectively suppress high-
frequency atmospheric oscillations, including the annual cycle ( 12 months), the quasi-biennial
oscillation ( 2.2 years), and other meteorological variations such as ENSO ( 7 years), while
preserving lower-frequency components linked to solar activity, particularly the 11-year solar
cycle. This window was identified as an optimal compromise, ensuring that the extracted trend
predominantly reflects variability of cosmic origin with minimal contamination from terrestrial
atmospheric dynamics.

e Fourier Series: The trend component of the “Be time series was reconstructed using the first
five Fourier harmonics, aiming to isolate variability on multi-annual to decadal timescales. This
spectral resolution was selected to capture the dominant long-term modulation associated with
the 11-year solar cycle, while effectively filtering out higher-frequency fluctuations driven by
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meteorological and seasonal processes. The resulting low-frequency component defines the
primary large-scale variability inherent in the “Be record.

*  STL Decomposition: The STL method was applied with a seasonal period of 36 months to suppress
intra-annual and inter-annual fluctuations driven by meteorological processes and stratosphere-
troposphere dynamics. This configuration isolates the low-frequency trend component of the ”Be
time series, preserving variability potentially linked to solar-cycle modulation, while reducing
the influence of shorter-term atmospheric oscillations.

The results obtained are shown in Figure 3.

Running Average (70 mo) Fourier Series (5 terms) STL Trend (period 36 mo)
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Figure 3. Monthly concentrations of “Be measured at Casaccia site. The grey lines represent the original monthly
time series. Colored lines (on-line) in each panel show the low-frequency trends extracted using three different
de-trending methods, plotted in separate rows: (left) running average with a 70-month window, (middle) Fourier
reconstruction using the first 5 harmonics, and (right) STL decomposition with a seasonal period of 36 months.
Vertical dashed lines indicate the start dates of Solar Cycles 22 to 25, allowing comparison of the extracted trends

with solar activity phases.

The consistency of the results obtained from the three de-trending methods was assessed by
calculating the periods of the resulting carrier waves. To estimate systematic uncertainties, the key
parameters of each method were varied within a plausible range: +12 months for the running average
window, +2 harmonics for the Fourier reconstruction, and +12 months for the STL seasonal period.
Results are shown in Table 2.

Table 2. Estimated periods of "Be time-series using different de-trending methods.

Period Lower Bound Upper Bound Systematic Range

Method [years] [years] [years] [years]
Running Avg  10.92 9.96 10.92 0.96
Fourier 9.79 9.80 11.42 1.62
STL 10.54 10.46 10.79 0.33

Considering the associated uncertainties, the periods obtained with the three de-trending methods
are consistent with each other and compatible with the typical duration of the solar cycle, which drives
the main modulation on long timescales.

3.3. Correlation and Dependence Metrics Results

The correlation and dependence among the investigated time series were assessed using the
metrics described in sub-section 2.4. The results of all dependence measures and the associated p-
values computed for the different variable pairs and de-trending methods are summarized in Table 3.
The pairwise analysis includes also the “Neutron vs Sunspot” relationship as a benchmark, given
its well-known anti-correlation, allowing all metrics to be compared against an established physical

connection.
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Table 3. Dependence measures computed for the analyzed variable pairs after de-trending, grouped by pair. The
table reports Pearson’s r, Spearman’s p, and Kendall’s T correlation coefficients with their associated p-values,
together with Distance Correlation (), Mutual Information (MI), and the Maximal Information Coefficient (MIC).

Pair Method r p-value(r) p p-value(p) T p-value(t) R MI MIC
fourier 054 < 10710 062 << 10710 043 <« 10710 059 079 051
Be-7 vs Neutron running  0.65 < 10710 075 < 10710 055 < 10710 069 093 0.60
stl 052 <1010 061 <1071 046 <1071 0.60 093 058
fourier 038 < 10710 - < 10710 031 <1071 043 070 0.33
0.47
Be-7 vs Sunspot )
running  -048 <« 10710 oss < 1010 040 < 10710 051 0.8 0.39
stl 039 <1010 E) g < 10-10 035 <« 10710 046 072 039
Neutron vs Sunspot ~ raw 087 < 10710 688 < 10710 0.69 < 10710 086 091 0.70

Figure 4 reports the numerical results obtained after applying the three de-trending approaches
to the “Be concentration data, namely running average, Fourier series reconstruction, and STL decom-
position. The plots allow comparison of the statistical relationships between ”Be and both neutron
counts and sunspot number under different assumptions of trend extraction.

FOURIER - Correlation Metrics (Signed) FOURIER - Dependence Metrics (Positive-only)
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Figure 4. Dependence metrics computed for the investigated time series after applying three different de-trending
methods to the “Be concentration data: Fourier series reconstruction (top), running average (middle), and STL
decomposition (bottom). Each row shows two heatmaps for the same method. The left panels report signed
correlation coefficients (Kendall, Pearson, Spearman) quantifying linear or monotonic relationships and retaining
information about the direction of dependence. The right panels show positive-only dependence metrics (Distance
Correlation, MIC, Mutual Information) capturing non-linear relationships. The pairs analyzed are ”Be vs neutron
counts, “Be vs sunspot number, and neutron counts vs sunspot number. All metrics were computed on the trend
components (carrier waves of “Be) extracted by the respective de-trending method.
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4. Discussion

The analysis of the raw time-series data (see Table 1), performed to establish reference values in
the present study, reveals only weak statistical dependencies and low correlation coefficients between
the atmospheric “Be concentration and both neutron counts, a proxy variable for the cosmic ray
flux reaching Earth, and the sunspot number, a proxy for solar activity. Almost all the dependency
and correlation indices show modest values, although with a high level of statistical significance.
Conversely, the same analysis performed on the neutron counts and sunspot number time series consis-
tently shows the well-known anti-correlation between these two variables, with high absolute values
across all correlation and dependency metrics. These findings support the conservative hypothesis
adopted in this work to avoid de-trending the neutron count and sunspot number time series, as they
already capture almost all the information regarding the two cosmic phenomena of interest. In the
“Be monthly concentration time-series, the presence of high-frequency modulations (see Figure 1)
due to atmospheric dynamics, substantially hides the low-frequency modulations which carry the
information related to the cosmic drivers phenomena. For this reason, three de-trending techniques
have been applied to the “Be signal to extract only the low frequency part. An assessment on the
obtained low-frequency carrier signal has been performed evaluating the period of the sinusoidal
patterns, finding values consistent with the 11 years period of the Solar cycle (see Table 2). The impact
of de-trending on the considered metrics is shown in Figure 5.

Be-7 vs Neutron Counts Be-7 vs Neutron Counts
Correlation Metrics (Absolute) Dependence Metrics

Mutualinformatio

Be-7 vs Sunspot Number Be-7 vs Sunspot Number
Correlation Metrics (Absolute) Dependence Metrics

Spearmap Mutualinformatio

DistanceCorrelation

Method
B Rraw B Fourier W sTL Running Average

Figure 5. Radar plots illustrating the correlation and dependence metrics for the investigated variable pairs. The
left two panels refer to the relationship between 7Be concentration and neutron counts, while the right two panels
show the relationship between ”Be concentration and sunspot number (absolute values). For each pair, correlation
metrics (Pearson, Spearman, and Kendall) and dependence metrics (Distance Correlation, Mutual Information,
and MIC) are presented separately. Different colors (on-line) represent the raw data and the results obtained
after applying various de-trending methods (Fourier, STL, and Running Average). This visualization allows for a
comparative assessment of the strength and consistency of associations under different de-trending techniques.
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The analysis of the de-trended ”Be series highlights a significant strengthening of the statistical
dependence and correlation with both neutron counts and sunspot number, compared to the raw
data results. Although all three de-trending techniques adopted (Fourier carrier, running average,
and STL decomposition) lead to similar outcomes, we focus the discussion on the results obtained
through the running average method, as this approach systematically yields the highest correlation
and dependence coefficients. Focusing first on the relationship between ”Be and neutron counts (GCR
proxy), dependence metrics after de-trending reach 0.69 for Distance Correlation (+48%), 0.93 for
Mutual Information (+202%), and 0.60 for MIC (+140%), highlighting a strong shared low-frequency
variability linked to cosmic ray modulation. Correlation indices likewise increase, attaining 0.65 for
Pearson (+75%), 0.75 for Spearman (+51%), and 0.55 for Kendall (+61%), indicating a pronounced linear
and monotonic association once high-frequency atmospheric fluctuations are removed. Overall, the
results indicate that the low-frequency component of the ”Be time series exhibits substantial statistical
association with neutron counts, consistent with shared variability driven by cosmic ray modulation.
The increase observed in dependence metrics suggests the presence of shared information potentially
extending beyond linear associations, while higher Spearman’s and Kendall’s coefficients point to
strengthened monotonic relationships. Furthermore, the rise in Pearson’s correlation implies that
a significant part of this dependency may be described through linear models, although statistical
evidence leaves open the possibility of additional non-linear contributions, underscoring the mixed
nature, linear and possibly non-linear, of the connection between ”Be and cosmic ray flux.

For the relationship between “Be and sunspot number (solar activity proxy), dependence metrics
after de-trending reach 0.51 for Distance Correlation (+56%), 0.68 for Mutual Information (+224%), and
0.39 for MIC (+137%), indicating moderate shared variability mediated by cosmic ray modulation.
Correlation indices show also an absolute value increase, attaining -0.48 for Pearson (+54%), -0.58 for
Spearman (+49%), and -0.40 for Kendall (+51%), consistent with a strengthened inverse monotonic
relationship, though less pronounced than for neutron counts. These results suggest that, while the
connection between “Be and solar activity remains weaker than for neutron counts, the low-frequency
component of Be still reflects a measurable imprint of solar modulation. This is consistent with the
physical mechanism whereby solar activity does not directly regulate the stratospheric “Be production,
but rather modulates the intensity of galactic cosmic rays, which constitute the primary source of Be
through spallation processes in stratosphere. The increased dependence metrics indicate potential
non-linear associations, while enhanced correlation indices point to a clearer monotonic and partially
linear relationship.

5. Conclusions

In this study, we investigated the correlation between "Be concentrations, measured at the ENEA
Casaccia site from 1987 to 2024, and proxies of cosmic ray flux and solar activity. The application of
de-trending techniques to the atmospheric ’Be time series significantly improves the detection of its
statistical associations with cosmic drivers such as GCR flux and solar activity. By removing high-
frequency atmospheric variability, the analysis reveals a low-frequency signal in ”Be concentrations
that shows stronger dependence and correlation metrics, particularly with neutron counts (GCR
proxy), reflecting the shared influence of galactic cosmic ray flux. Although the associations with
solar activity are comparatively weaker, they remain significant and align with the indirect role of the
Sun in modulating cosmic ray intensities, which are the direct drivers for the ”Be production through
spallation processes in the stratosphere.

The study employed a comprehensive statistical framework, combining classical correlation
coefficients (Pearson, Spearman, Kendall) with dependence metrics such as Distance Correlation,
Mutual Information, and the Maximal Information Coefficient (MIC), enabling the detection of both
linear and non-linear associations as well as shared information content.

These results highlight the mixed linear and potentially non-linear nature of the connections
between 7Be and cosmic phenomena, underscoring the importance of employing advanced signal pro-
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cessing techniques on the 7Be time series. From a practical standpoint, this work supports the potential
use of atmospheric ”Be as a valuable proxy for monitoring long-term variations in galactic cosmic ray
flux and, to a lesser extent, for inferring aspects of solar activity. However, careful consideration must
be given to the choice of de-trending method, because the ”Be concentration is subjected to complex
atmospheric transport and deposition processes.

Finally, given the extensive global network of atmospheric ”Be monitoring stations and the large
datasets accumulated over decades, ”Be records represent a promising resource for reconstructing past
trends in galactic cosmic ray flux on Earth and may potentially contain valuable information related to
solar activity variations.
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GCR  Galactic Cosmic Rays
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QBO Quasi-Biennial Oscillation

STL Seasonal-Trend decomposition using Loess
MIC Maximal Information Coefficient

MI Mutual Information
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