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Abstract

The Kennedy model provides a flexible and mathematically consistent framework for modeling
the term structure of interest rates, leveraging Gaussian random fields to capture the dynamics
of forward rates. Building upon our earlier work, where we developed both theoretical results
— including novel proofs of the martingale property, connections between the Kennedy and HJM
frameworks, and parameter estimation theory — and practical calibration methods, using maximum
likelihood, Radon-Nikodym derivatives, and numerical optimization (stochastic gradient descent)
on simulated and real par swap rate data, this study extends the analysis in several directions. We
derive detailed formulas for the implied volatilities implied by the Kennedy model and investigate
their asymptotic properties. A comprehensive sensitivity analysis is conducted to evaluate the impact
of key parameters on derivative prices. We develop a Monte Carlo simulation scheme tailored to the
conditional distribution of the Kennedy field, enabling efficient scenario generation consistent with
observed initial forward curves. Furthermore, we present closed-form pricing formulas for various
interest rate derivatives, including zero-coupon bonds, caplets, floorlets, swaplets, and the par swap
rate, expressed explicitly in terms of the initial curve. Finally, we calibrate the Kennedy model to
market-observed caplet prices.The findings provide valuable insights into the practical applicability
and robustness of the Kennedy model in real-world financial markets.

Keywords: Kennedy model; calibration; term structure model; option pricing; interest rate caplet;
Gaussian random field; implied volatility; sensitivity analysis; caplet calibration

1. Introduction

In the last decade, the occurrence of negative interest rates has posed significant challenges for
classical term structure models, motivating the development and re-evaluation of interest rate models
capable of handling such phenomena. Among these, the Kennedy model, which describes forward
rate dynamics as a Gaussian random field, offers a flexible framework that naturally accommodates
negative rates while remaining consistent with the Heath—Jarrow-Morton (HJM) framework [1,4,6].

Building on our previous work [5], where we developed both theoretical results — including
novel proofs of the martingale property, connections between the Kennedy and HJM frameworks, and
parameter estimation theory — and practical calibration methods on par swap rates, using maximum
likelihood, Radon-Nikodym derivatives, and numerical optimization (stochastic gradient descent)
on simulated and real par swap rate data, this paper presents an extended analysis focusing on
additional theoretical and practical aspects of the model. In particular, we explore implied volatilities,
sensitivities, simulation techniques, and the calibration of the model to caplet prices using market-
implied volatilities. We also analyze conditional expectations arising in the pricing formulas, which
play a crucial role in evaluating interest rate derivatives.

The paper is organized as follows. Section 2 introduces the Kennedy model, its Gaussian random
field structure, and the theoretical properties necessary for pricing interest rate derivatives [1]. We
also discuss the special case where the model parameters A and y coincide, which leads to simplified
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formulas. Section 3 derives the conditional expectations and variances of key quantities, enabling
pricing formulas that depend explicitly on the observed initial forward curve.

Section 4 describes a Monte Carlo simulation scheme adapted to the conditional distribution of
the Kennedy field, while Section 5 presents the pricing formulas for various financial instruments,
including zero-coupon bonds, caplets, floorlets, swaplets, and the par swap rate. Section 7 examines
the sensitivity of model prices to changes in the parameters, providing insights into the model’s
stability and robustness. Section 8 explores the relationship between the Kennedy model and the Black
model, deriving implied volatilities analytically and investigating their asymptotic properties. Section
9 discusses the calibration of the Kennedy model to caplet prices based on market data, and evaluates
both in-sample and out-of-sample performance.

We conclude the paper with a summary of findings and remarks on possible directions for future
research.

2. Kennedy Model

The development of the forward rates in the model proposed by Kennedy is described in the
upcoming equation.
F(s,t) = a(s, t) + X(s, t), (1)

where X (s, t) is a centered Gaussian random field with the covariance structure specified by
cov[X(s1,t1), X(s2,t2)] = c(s1 Asp, t1,t2), 0<s; <t;,i=1,2. ()

The function c is given and satisfies c(0,t1,f;) = 0. We assume that the drift function «a(s,t) is
deterministic and continuous for 0 < s < f, and the initial term structure of (0, ), (where t > 0)
is specified. Additionally, we also have EF(0,t) = «(0,t) for t+ > 0. The covariance function c(s; A
Sp, t1,t7) is symmetric in #; and tp, and it is nonnegative definite in pairs (s1,t;) and (s, t2). The
dependence on sq A sp ensures that the Gaussian random field X(s, t) exhibits independent increments.

A sufficient condition for the drift surface is established to guarantee that the discounted zero-
coupon bond prices are martingales. Therefore, the model can be used to price financial products in
the future.

First, let us introduce the following notations, where 0 <s < t.

R(t) = F(t,t) (©)
A

FA(s,t) = %/t F(s,u)du 4)

P(s,t) =e" JS Bl (©)

Z(s, t) =¢e" h Rw)dup(s, 1) (6)

F(s) =0{F(u,v),0<u<s,u<v} (7)

where R(t) denotes the spot rate at time ¢, P(s, t) represents the price at time s of a bond paying one
unit at time f > s. Z(s, t) defines the discounted price of the previously defined bond at time 0, with
the information available at time s captured in the F(s) o-algebra, indicating that the entire yield
curve is observable at each time point. We also introduce a new notation, F A (s,t), for the continuously
compounded forward rate over the interval [t, t + A], (where A > 0), which can be interpreted as an
average of the forward rate for the current period, at time s.

An important theorem is emphasized in Kennedy’s article, which states the following [4].

Theorem 1. In the independent-increments case the following statements are equivalent:

(a)  The discounted bond-price process {Z(s,t), F(s), (0 < s < t)} is a martingale for each t > 0;
(b)  P(s,t)=E [e fs'R(”)d”U-"(s)} forall (s,t), (0 <s <t) and
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(c)  a(s,t) =wa(0,t) + fot[c(s Av,v,t) —c(0,0,t)]do forall (s, t), (0 <s <t).

The proof of the theorem is accessible in the original article written by Kennedy [1]. Furthermore,
a different derivation of the theorem can be found in our previous article [5].

Assuming martingale property of the discounted bond price process, as well as stationarity and
Markovianity of the forward rate field, the Kennedy model can be expressed in a closed form with
four parameters (c, A, i, v). Under these assumptions, the covariance function of the forward rates
{F(s,t) : 0 < s <t} takes the form

cov[F(s1,t1),F(s, t2)] = 02 o min(s1,52)+(2p—A) min(ty b2) —p(ti+t2) (8)

wherec > 0,A > 0,and u > A/2.
The martingale property is ensured by the drift term (s, f).

1 1 1 1
H=y— 2( 2 —u(t=s)( = L “Alt—s) - ,
a(s, t) =v U(y e (y+A—y>+e g 9)
where v is determined by the initial forward curve.
A detailed derivation of these results and a discussion of the underlying assumptions can be
found in Kennedy’s original article [4] and in our previous work [5].

2.1. The A = u Case

In this subsection, we investigate the special case of the Kennedy model when the two exponential
decay parameters coincide, that is, when A = yu. In this setting, the analytical expressions of the
covariance and the drift function significantly simplify, providing further insight into the internal
structure of the model.

We begin by recalling the original covariance formula from equation (8), which is given by

COV[F(Sl,fl),P(Sz, tz)] _ O.ZEAmin(sl,sz)-i-(Zy—/\)mir\(tl,tz)—y(tl-i-tz)‘ (10)
When A = y, the formula simplifies to
cov[F(s1,t1), F(sy, )] = o2et(min(sis2)+min(tyta) —ti—t2) (11)

This simplified version exhibits a more symmetric structure and leads to a more tractable analytical
form for pricing and simulation purposes.

The drift function originally given in equation (9) becomes undefined when A = y due to a
division by zero. However, by taking the appropriate limit, we obtain the well-defined expression

1— g_l‘(t_s)

2
a(s, t) =v (7( m

+ (t— s)e_"(t_s)> . (12)

This formula remains continuous and well-behaved as A — y and thus ensures a valid definition for
the drift surface in the degenerate case.

Alternatively, one can derive the same formula using Theorem 1, part (c), which expresses the
drift surface in terms of the covariance function as

a(s,t) = a(0,t) + /Ot[c(s Av,v,t) —c(0,0,t)]dv. (13)

When using the simplified covariance formula for the case A = y, this expression also yields the same
drift surface as the one obtained from the limit calculation. The consistency of these two approaches
confirms the analytical soundness of the model.
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In conclusion, both derivations lead to the same expression for the drift surface, demonstrating
that the Kennedy model remains internally consistent and mathematically stable even in the special
case where A = p.

3. Conditional Expected Value and Standard Deviation of (s, t) and 7 (s, t)

In interest rate markets, the initial forward curve F(0,t) is directly observable from market
data, and thus represents a valuable source of information for model calibration. Incorporating this
observable curve into the modeling framework can significantly improve calibration accuracy, as it
allows the model to be explicitly conditioned on information available at time zero. To this end, we
derive the conditional expected values, variances, and correlations of the forward rates (and of their
integrals over different timescales) given the observed initial forward curve. These quantities play a
central role in the pricing of various interest rate derivatives.

Specifically, we introduce two integral quantities, consistent with our previous study, which
capture the accumulation of forward rates over different time ranges:

&(s, 1) :/tr(u),du:/tF(u,u),du, (14)
n(s,t) = /tF(t,u),du. (15)

By expressing these quantities as functions of the observed initial forward curve, we obtain pricing
formulas that are consistent with market practice and more accurately aligned with the available
information at the time of pricing. This, in turn, enhances the practical applicability of the model and
its relevance for real-world calibration tasks.

Let F be the c-algebra defined by {F(0,T) where T > 0}. Thus, the conditional expected
value and variance of the terms in the pricing formula are as follows:

]E(e—‘é‘(s'”w(o, T) T> 0) = E(e_ [rwde po ) T > 0) = (16)
:exp{—/tE(r(u)|]-")du+;DZ(/tr(u)du]-")} (17)

Therefore, we have to calculate the following expressions: E(F(u,u)|F), E*(F(u,u)|F),
E(F(s,u)|F) and E?(F(s, u)|F).

Let X = E(F(s, t)|F). It is known that the expression F(s, t) — X is independent of F(0, T) for all
T > 0. In this case, we need to write down the covariance between the two and choose X such that,
due to the properties of the normal distribution, it exactly cancels it out. Based on the previous results,
using the covariance function of the special case Kennedy field, the following can be calculated:

cov(F(s,t),F(0,t)) =¢(0,£,T) = o2e(2n—A) min(t,T) —p(t+T) (18)

Thus, we can conclude that if X is represented in the following form X = F(0, t) + constant, then
the covariance will be canceled out. Furthermore, we know that the expected value of the expression
must be equal to F(s, t), so X will be equal to the following expression, where EF(s, t) = a(s, t) in line
with the previous notations.

X =F(0,t) + EF(s,t) —EF(0,f) = F(0,t) + «(s,t) — a(0,f) = (19)
1 1 1 1
=F(0,¢ +v—a2(—e‘ﬂ<*‘5) o +e—"(f—s))— 20
(0,8) p i w— py (20)
1 1 1 1
—v+az(—eﬂf 4 +e”) = 21
m (V A_V) p— (1)
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1 1 1
=F(0,t +(72< HE=s) _pmity (2 - ) — (e M) M ) (22)
08)+0*( (e )G =)~ )T
In this case, the expected value will be equal to EF(s, t), and the covariance of the difference will be
zero, thus we have shown that the conditional expected value will be equal to X, therefore

S | 1 sy an 1
E(F(s, £)|F) = F(0, f)+0“2<( M) e ’d)(ﬁ—m)—(e M) e M)A_V> (23)
| 1 V!

Then, transitioning to the conditional expected values of (s, t) and #(s, t)

E(&(s, £)|F) = ]E(/tF(u,u)du|}') - /t]E(F(u,u)|]-')du - (25)
t 11 1
= F(O,t)—i—('/'z( e MM(P‘_M‘)+6AM)‘I/‘>du: (26)
o2 o2 e Hut o2 [e Mt
_F(O’t)'(t_sH(u_A—V){ " LS_?\—#[ A Ls_ 7
F(0,t)- (t—s)+ o o? (et — ehs) — o (e—At _ e—As) 28)
pr (A —p) AN —u)
E (1 (s B F) = /tF w)du| F) = /;E(F(s,u)u-')du - (29)
[l nll ) e
o2 e H(u—s) e—yu t o2 e Mu—s)  p—Auit
=FOHE =) (u H " T L—s+?\—#{ A L—s: ey
=F(0 (‘; > (e”(ts) —e M peH — 1> + (32)
N 02 <eA(ts) My s 1) (33)
AA —u)

In the Gaussian case, the conditional variances are equal to the ordinary variances, hence as a result

D?(&(s, B[ F) =D*(s,t) = 2: : <ﬂ<f —s) Fe M) - 1) (34)
D? (n(s, )| F) =D?%j(s,t) = V(:Z)L) (zey(tS) M) 1) " (35)
(wm w0 36
_ 2 ~u(t-s) 20° “A(t=s) B
= () T (e ) = 2
= (yzi'ZA) (;(ey(ts) _ 1) _ %(ef/\(tfs) _ 1)> (38)

Thus, in order to write the pricing formulas as a function of the initial forward curve, F(0,t), we only
need to calculate the conditional correlation between ¢(s,t) and #(s, t), for which we first need to
express the conditional covariance.

In the case of the Kennedy field, the conditional covariance is calculated as follows due to the
properties of the correlation of the normal distribution.

cov[F(s1,t1), F(sp, 1) | F| = 39)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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=E (F Sl,tl (51,52)|f)> (F(Sz, tz) —E(P(Sz, t2)|]:)> |]::| = (40)
=E <P Sl,tl (Sl,t1)|]:))< (Sz,tz) —]E(F(Sz,tzﬂf))] = (41)
=E (F s1,t1) —EF(s1, 1) — (F(0, 1) —EF(O,tl))) (42)

. (F(Sz,tz) — EP(S2, t2) — (F(O, tz) —EF(O,tz))>:| = (43)
=cov(F(sq,t1)F(s2,t2)) — cov(F(0,t1)F(sp, t2)) — (44)

— cov(F(s1,41)F(0,t2)) + cov(F(0,t1)F(0, 1)) = (45)
=c(s1 A sy, t1,t2) —¢c(0,t1,t2) —c(0,t1,t2) +¢(0,t1,t2) = (46)
:C(Sl NSy, tq, 2) (0 t1, tz) (47)
— g2t min(s1,52)+(2p—A) min(ty,t2) —p(ti+t2) _ 52,(2p—A) min(ty,t2)—p(t1+t2) — (48)
— o 2p(2u—A) min(ty,t2) —p(t +t2) (e/\min(slfsz) _ 1) (49)

Therefore, the conditional covariance of ¢ and 7 is

cov [F( ) (52, )|f] Uze(ZV_/\) min(u,v)—y(u-i—v)( Amin(u,sy) _ 1) (50)
cov[&(sq,t),m(s2, 1)| F| = / / cov[F(u,u), F(sp,v)| F|dvdu = (51)
51 /82
= / / e (2u—A) min(u,v) —p(u+0) (e)\mm(u,sz) . l)dvdu _ (52)
1752
t t
_ 2 —pu (,Amin(u,sp) _ (2p—A) min(u,0)—po g4,
0'/816‘ (e 1)/526‘ vdu (53)
. t ,
= o? /52 e Hu (eAmm(u,Sz) _ 1) / e(ZV*/\) mm(u,v)ﬁuvdvdu_i_ (54)
51 Sp
t . t )
+ 0.2/ o Hu (e/\mm(u,sz) _ 1) / e(Zy—/\) mm(u,v)—‘uvdvdu _ (55)
S2 Sy

First, we demonstrate the calculation of the first term.

o) —g2 /52 e Hu (eAmm(u,sz) _ 1) /t e(Z}t—A) min(u,v)—yvdvdu _ (56)
51 52
=02 /52 e hi (M) — 1) /te(zl‘_’\)”_””dvdu = (57)
51 S
:0.2 /S2 (e—yu-&-)\u _ e—;m) /teZyu—)\u—yvdvdu _ (58)
B 52
s t Hu (u—A)uqs2 —pot
:0'2/ Tt e””_)‘”du/ e Mdy = o [e_ . } [e ] = (59)
51 52 M p—A u=s; L ~H ly=s,
> (eVSZ — eMs1 g(]‘_/\)SZ — e(ﬂ_/\)sl ) (e_Vt — e_VSZ) (60)
=0 — =
Z (h=A) —H
2
:m (V i) _ iS4 e ts) s (61)

e talt=sa) e dsitp(si—sa) g | \e—hlt=s2) | ppmei—s2) _ Aey(tsl)) 62)
Similarly to the first term, the calculation of the second part is demonstrated below.

@ =02 /t o Hu (eAmm(u,sz) _ 1) /t e(ZV—A) min(u,v)—yvdvdu — (63)

Sy 52
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t u t t
:02/ e (M52 — 1)/ eH=N? dody +(72/ elH=Au(ghs2 1)/ e Mdodu = (64)
52 52 S2 u
o2 b u(,As (u—A)u (n—M)s
:‘u_)\ sg?‘(e 2—1)(6’4 —e\H 2 \du+ (65)
2
ot (p—A)u (,As —pu —ut
+7/e” (e 21)(6”6 ”)du: (66)
52
T (e'2 —1) /t e M emmut(=Ns2gy 4 - (e'2 —1) /t e M — =AUt gy — (67)
‘M — )\ Sy ﬂ 52
2 —At _ p=Asy —pt+(p=A)s2 _ p—ps2+(p—A)s2
:V‘T_A(&qu)(e _)f . _: )+ (68)
2 —At _ ,—Asy (u=A)t—pt _ ,(u—A)sy—put
+Z(6A52_1)(8 _;’ _¢ y_eA ): (69)
o’ —A(t—sp) —AE L ,—As
:V(V_A)G 2 —1—e M e (70)

By adding the two terms back together, we got the conditional covariance of {(s,t) and 7 (s, t).

o? (
cov[E(s1,), (52, 1)| F| = ———— (e M52 1 — My pmAs2 gy e plt=s2) (71)
(201, 8) o2 DIF] = =55 po
_ yefy(slfsz) + ‘uefy(tfsﬂ _ ‘uef/\sz _ ‘uef/\szfy(tfsz) + ye*/\51+}l(51*52) A+ (72)
4 e HE=s2) 4 A H(s1—52) _ Ae—u(t—sl)> 73)

Based on this, we can conclude that the conditional correlation between ¢ and # is equal to the
conditional covariance divided by the standard deviations of ¢ and 7.

corr(e ) = o) 7

3.1. The A = y case

In the special case where A = y, we revisit the previously derived conditional expected values of
&(s,t) and 5 (s, t). In these expressions, the denominators involving (A — p) become singular, so we
apply first-order Taylor expansions and L'Hospital’s rule to evaluate the limits [12]. After simplification,
we obtain the following results:

2

E[&(s,t) | F] = F(0,£)(t—s) + 2% (eHt — emhs)? (75)
E(s,t) | F] = F(0,£)(t —s) + ;;(e—ﬂt —e )’ ‘;(e—%*(t—@ - 1) (76)

These simplified expressions show that in the limit case A = p, the conditional expected val-
ues remain well-defined and retain a clear dependence on the initial forward curve F(0, t) and the
exponential decay parameter .

When A = y, the general formulas for the conditional variances contain singularities due to terms
involving (A — y) in the denominator, similarly to the conditional expected values. To resolve this, we

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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apply L'Hospital’s rule and first-order Taylor expansions to obtain the limiting values. The resulting
expressions are the following:

D?(&(s,t)|F) = 2y2(y(t—s)+e plt= S>—1) (77)

20 2
D (s, 1) = S (ult =)+ e 1 — eyt — ) (78)

These results show that the conditional variance of &(s, t) remains unchanged, while the expression
for the variance of 7 (s, t) simplifies to an explicit and finite formula in the degenerate case.

Similarly to the previous expressions, the general formula for the conditional covariance of ¢ and
1 becomes singular as A — u. To compute the limiting form, we apply L'Hospital’s rule and Taylor
expansions term by term. After simplification, we obtain the following closed-form expression:

o2

)lgr;llcov[é(sl,t), 1(s2,1)|F] = 2 (y(t_SZ)Jre plt=s1) _ p=p(t=s2) _

— e Hs1ms2) g u(t— SZ)e—ﬂ(f—Sz)) (79)

This expression is smooth and free from singularities, and can thus be used directly in the pricing
formulas when A = p.

4. Simulation

Since we have calculated the expected value and variance of the forward field conditional on the
o-algebra F, the simulation process also needed to be revised compared to our previous study [5,9].
Our objective was to generate a Kennedy field based on a given initial forward curve input vector,
ensuring that the field evolves according to the Kennedy model starting from the initial curve. Thus,
let us denote the conditional expected value of the forward field with B(s, t)

B(s,t) = F(0,t) + ¢* <(e”(ts) —e M) (

cov[F(s1, 1), E(sp, t2) | F] = o2eH=Mm

1 1 —A(t—s —At 1
L) e ) 6o
in(ty,t2) —p(t+t2) (e/\min(slfsz) ~1) (81)

Similarly to the previous simulation, we first generate a Brownian sheet over an equidistant grid.
Next, we apply an affine transformation by adding the conditional expected value to the generated
sheet. By evaluating the field at the specified points, we obtain the Kennedy field, which matches the
conditional expected value and variance as prescribed [8]. Therefore, B(s, t) +ce MW (e —1,e(2#1))
produces the desired Kennedy field.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Forward rates as a Kennedy field
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Figure 1. Conditional simulation of the Kennedy forward-rate field {F(s,t) : 0 < s < t}, using parameters

(0, A, u) calibrated to the April 2025 USD caplet panel and conditioning on the observed initial forward curve
F(0, t) for that month.

5. Pricing Formulas

In the following section, we will write the previously derived pricing formulas using conditional
expected values, variances, and covariance, which will make the formulas dependent on the initial
forward curve. As a result, there will be additional information incorporated into the formulas.

Let us start with one of the simplest financial product, the zero coupon bond which pays 1 at time
t. Therefore, the price of the zero coupon bond calculates as follows.

PVycp(0,t) = DE(0,t) = e~ Jo RO — o= o Flumdu _ ,~£(04) (82)
o
E(e IN F(u,u)du|]:) _ E(e—é(o,t)u_-) _J Tty (&9)
o o? ot
=expq —F(0,8)t + ——— (7" -1 +<e‘“—1)+} 84
p{ (©4) #M—#ﬂ ) AA=p) wy ®

Based on the above, the price of a zero-coupon bond can be calculated in two ways. First, by simulating
the forward field and subsequently using Monte Carlo simulation to estimate the price of the financial
product. Alternatively, it can be derived by substituting the original parameters in the previously
calculated conditional expected value.

Compared to the pricing formulas derived in our earlier work [5], the general structure of the
caplet, floorlet, and swaplet prices remains unchanged. However, in the current formulation, the
unconditional expectations, variances, and correlations appearing in those formulas are replaced by
their conditional counterparts, explicitly conditioned on the observed initial forward curve. This
modification allows the pricing formulas to remain analytically tractable while making them more
consistent with the information available in the market at time zero. As a result, the model becomes
more aligned with practice, enabling more accurate calibration and interpretation of the implied prices.

1

pa—p1+ 5 (03 +03—200102) 2 + 0% — poor — AK
Peaplet(s) =e 27 @(” 2 P - (85)

%]
AK +1 2 AK
ity _ _
e ”121@1><V2 0712 > (86)
2

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202508.0832.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 August 2025 d0i:10.20944/preprints202508.0832.v1

10 of 21
AK +1 ? [ AK +
—M1t 50 — Uy o109
Pfloorlet (S) =e 2 1@( H [ ) _ 87)
2
VZ*F1+1(172+17272,0¢71(72) AK — ppy — o2+ 010
— 212 cD( 2 ) (88)
02
”‘271"14’1(0‘24’0‘22*2()0’1(72) AKfﬂlJrfg-Z
Powpaplet () = € 27! —e 2! (89)

In our earlier work, the parameters of the Kennedy model were calibrated to observed par swap
rate data, utilizing the explicit pricing formula for the par swap rate in the unconditional setting. In the
present study, we extend this analysis by deriving the par swap rate also under the assumption that
the initial forward curve is observed and fixed. This conditional formulation preserves the tractability
of the pricing formula, while making it more consistent with market practice and better suited for
calibration to real-world data. The covariance function simplifies in this setting to the expression
below, reflecting the fact that the entire yield curve at time zero is incorporated into the model.

o? ( A
cov[E(s1, 1), (sp, t)|F] = ———= (e + e — e~ AHA) 1 e—/\S—yA) 90
[&(s1,t), (52, )| F] = Y u (90)

From this, the par swap rate in the Kennedy model takes the following form:

1 1 1 1
K= Z(M + ‘72 pO102) = K(Hz + 5‘722 —cov(&,n|F)) = (91)
2 2
+ (772 <€M — e MEHA) oS 1) + 702 <2€P‘A —e M 1) + (93)
AA = p) 2u(u—A)

o’ —AA o —AA

+2A(A—y)<e 1>+W(1—e >— (94)
2

_ ;40/\)(6 As | p=AD _ o=A(s+A) _ ‘ue—)\s—yA>:| _ (95)

o A —u(s+A) s

A (e u(s+4) _ e Hs ; %e—/\A —e N8 + e—/\(s+A) + ‘ue—/\s—yA> + 97)
As _ ,—A(s+A) 3 —AA § o
(e + 2e 2) +

yTEEmTY 8)

6. Monte Carlo Simulations

To validate the correctness of the analytical pricing formulas derived earlier, we perform Monte
Carlo simulations [7]. The key idea of this approach is to simulate a large number of realizations of the
forward rate field using the simulation algorithm presented in Section 4. For each simulated path, we
compute the corresponding payoffs of the financial products under consideration. As the number of
simulation runs tends to infinity, the average simulated price converges to the theoretical price implied
by the model. This provides a robust numerical check on the analytical results, ensuring consistency
between the theoretical derivations and the stochastic dynamics of the model.

The figure below plots the Monte Carlo estimate of the zero-coupon bond price as a function of
the number of simulated paths on a log scale. The dashed horizontal line shows the closed-form price,
the solid curve is the Monte Carlo mean, and the shaded band is the pointwise 95% confidence interval.
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As the number of paths increases, the Monte Carlo estimate stabilizes and the confidence band shrinks,
converging to the analytic benchmark.

MC convergence to analytic price (ZCB)

1.0154 —— MC estimate
95% CI
1.010 —=~ Analytic price

Zero-coupon bond price
o o Iy Iy
©o © o o
©o o (=] o
o w o v

0.985

0.980 -

T T T T T T
10t 102 10° 104 10° 10°
Number of Monte Carlo paths

Figure 2. Monte Carlo convergence to the analytical zero-coupon bond price in the Kennedy model

Beyond serving as a validation tool, Monte Carlo simulation also offers practical advantages
when pricing more complex derivatives, for which closed-form solutions may not be available. In
particular, the flexibility of the simulation framework allows us to incorporate path-dependent features,
non-standard payoff structures, or alternative assumptions about the forward curve. However, this
comes at the cost of increased computational burden: achieving high accuracy requires a large number
of simulation runs, which can be time-consuming.

7. Sensitivity Analysis

In this section, we conduct a sensitivity analysis on the prices of the financial instruments
introduced earlier, including zero coupon bond, caplet and swaption. The aim is to examine how the
values of these derivatives respond to changes in the key model parameters. By systematically varying
the input parameters—such as the volatility ¢, the mean-reversion speed y, and the long-term mean
A — we assess the robustness of the pricing formulas and the overall behavior of the model. This
analysis provides valuable insight into the model’s stability and practical applicability in real market
conditions.

For the zero coupon bond and caplet, we carry out the sensitivity analysis using both the analytical
pricing formulas and Monte Carlo simulations, allowing us to compare the efficiency and consistency
of the two approaches. In contrast, for the swaption, due to the lack of a closed-form pricing formula,
the sensitivity analysis is performed solely via Monte Carlo simulation.

We examine the sensitivity of both caplet and swaption prices to changes in the parameters of the
Kennedy model. Caplet pricing is carried out using analytical formulas, while swaption prices are
derived via Monte Carlo simulation. The model parameters under investigation include the drift u,
the long-term mean level v, the volatility ¢, and the decay parameter A. We also consider the effect of
observable market inputs, such as the strike rate K and the time to maturity T.

To measure how price changes with respect to a given parameter, we apply a central finite-
difference approximation of the partial derivative. These numerical approximations are analogous
to the Greeks in the Black-Scholes framework [11]. For a parameter 6 € {y;,v,0, A}, we compute a
discrete sensitivity as
9 P(O+e)—PO—¢)

: 2% /

where P(6) denotes price of a financial asset evaluated at the perturbed value of the parameter and ¢ is

A

(99)

a small increment, typically 10~3. These derivatives approximate how robust the model output is to
perturbations in the parameters obtained during calibration.
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Figure 3 presents the sensitivity results for the caplet prices. The plots reveal that increasing the
maturity T results in lower caplet prices, reflecting the lower present value of longer-dated claims.
When the strike rate K increases, the caplet becomes less valuable due to reduced intrinsic value. As
the volatility ¢ increases, the caplet price grows sharply, displaying strong convexity and indicating
significant vega sensitivity. Variations in y and A lead to more nuanced effects: the response is generally
non-monotonic and reflects the delicate interaction between mean reversion and discounting within
the forward rate field.
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Figure 3. Caplet price sensitivity with respect to model parameters and market inputs. Each subplot shows a

single-factor perturbation.

Figure 4 illustrates the analogous sensitivity for swaption prices, obtained via numerical sim-
ulation. In contrast to caplets, swaption values increase with maturity, owing to the cumulative
optionality embedded in longer-term swap contracts. Increasing the strike rate reduces swaption
prices approximately linearly over the observed range. Volatility has a pronounced convex impact
on swaption prices, underscoring the importance of accurately estimating o. The long-term mean v
also plays a key role; as it increases, the forward curve shifts upward, thereby increasing the value of
the option. On the other hand, changes in the drift  lead to a decreasing trend in the price, while the
response to A is more erratic and displays non-monotonic behavior.
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Figure 4. Swaption price sensitivity computed via Monte Carlo simulation. Note the convex dependence on
volatility and mean reversion.

These results underline the relative importance of the various model parameters. Volatility ¢
clearly has the largest impact on both caplet and swaption pricing, making its accurate calibration
critical for effective risk management and valuation. The mean reversion level v has a notable effect
particularly for long-dated instruments, as it governs the average level of the forward rate over time.
The drift parameter u and decay parameter A influence the curvature and decay dynamics of the
forward curve, and although their impact is less direct, they remain essential for fine-tuning model
behavior.

From a calibration perspective, the results suggest a possible hierarchical approach: one may first
calibrate o and v, which dominate price level sensitivity, and then refine y and A to better match the
forward curve’s shape and dynamics.

8. Implied Volatility

In practice, option prices are often quoted in terms of implied volatilities rather than direct prices.
Therefore, it is natural and useful to transform the model prices into implied volatilities, which can
be computed either under the assumption of a lognormal distribution (as in the Black-model) or a
normal distribution (as in the Bachelier model). Expressing prices in terms of implied volatilities
has several advantages. First, it aligns the model output with market conventions, facilitating direct
comparison with observed quotes. Second, the calibration surface expressed in implied volatilities
tends to be smoother and more stable than the surface of prices, which improves numerical stability
during calibration. Finally, working with implied volatilities allows us to assess the model’s ability
to reproduce characteristic market patterns, such as the volatility smile or skew, which are directly
observable in the implied volatility space [10].

8.1. Black Model

The Black model is an industry standard model in the pricing of European options written on
forwards and futures [2]. The model assumes that the forward price of the underlying asset follows
a lognormal distribution under the risk-neutral measure, which is consistent with the no-arbitrage
pricing framework.
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In this setting, the price of a European call option on a forward contract with forward price F,
strike price K, time to maturity T, risk-free rate r, and volatility ¢ is given by:

Pgrack(s) = e ") [F@(dy) — K®(dy)], (100)

where
d; =

Vi(t—s
dy =dy — o/ (t—s). (102)

Here, ® denotes the cumulative distribution function of the standard normal distribution. The

, (101)

term d; represents the standardized distance of the forward price from the strike, adjusted for volatility
and time, while d, accounts for the expected downward drift due to the volatility over the remaining
time to maturity.

In the context of interest rate derivatives, such as caplets and floorlets, the Black model is
particularly relevant because these instruments can be viewed as options on forward rates. Under
the Black framework, the forward rate is assumed to follow a lognormal process, and the price of a
European caplet can be expressed in the same functional form as the above call option price. This
allows practitioners to quote and compare caplet prices conveniently in terms of implied volatilities
derived from the Black formula, aligning with market conventions.

This formulation provides a tractable and closed-form solution for option prices, facilitating
calibration and interpretation in practice. In later sections, we will build on this framework to compare
and align the Kennedy model with the Black model in order to analyze their respective implications
for implied volatilities and pricing accuracy.

8.2. Comparison Between the Kennedy and Black Models

In this section, we aim to establish a direct correspondence between the Kennedy model and
the Black model in order to derive a closed-form expression for the implied volatility implied by the
Kennedy framework. By aligning the caplet pricing formulas of the two models, we can express the
implied volatility as a function of the Kennedy model’s parameters. This is particularly useful because
implied volatilities are the standard way of quoting option prices in financial markets, and having an
analytical formula enables efficient calibration and better comparability with market data.

The price of a caplet in the Kennedy model is given by following expression

1
= (024022 2 _ — AK
PKemzedy(S) :eﬂz . Z(UI ” p0102)®<‘u2+az 50102 )_ (103)
2
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_ M 1<p<?‘2 p71%2 ) _ (104)
2
7}[1‘1*10'2 y2+1027p£f]0’2 Ha + 0'2 — p0102 — AK
_ zl{e 2% q>< 2 )— (105)
(%)
B eAKcD(VZ - 90(1702 — AK)], (106)
2

we align its structure with the Black model to express the implied volatility explicitly within the
Kennedy framework.

(107)

1
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Based on these considerations, the correspondence between the two models can be established as
follows:
1 2
erlt=s) — o 1T 111)
o/ (t—s) =03, (112)
K ="K, (113)
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Therefore, the Kennedy model can be perfectly aligned with the Black model, allowing for an
analytical, closed-form expression for the implied volatility:

o

2 o’ 1 —AA 1 —uh
= | 1)+ — (e -1 117
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It can be observed that the strike price does not appear in the closed-form expression of implied
volatility. Consequently, the implied volatility curve as a function of the strike price will be flat, and
the model does not exhibit a volatility smile.
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Figure 5. The sensitivity of the implied volatility, backed out from the Black model, to various parameters.
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The limiting case when A = y takes the following form:
2
2 o- 1 —AA
UBlack_t+A')L2(1_e ) (120)

We now examine the first- and second-order asymptotics of the implied volatility derived from the
Black model, in the limit as A approaches zero. Hence, the first-order expansion is:

5 A—0 AA Ul 1 1
P - 4 (U= A)A+ —AA = (121)
Black AMp—A)  plp—A)  plp—A) (=) A
e (122)
TR

The second-order expansion yields:

g2 Ao, 1 MAT L peA 1 (AR A
Black A= A) 2 2u(p—A)  u(p—A)\ 2 2
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The implied volatility converges to this expression at second order. The Kennedy model assumes

that (y > ;), a condition which can also be justified by the second-order expansion, since the

convergence rate must necessarily be positive. Therefore, the term (2 — #) is strictly positive.

Consequently, 0 = O(A?).

This asymptotic behavior is relevant from both a theoretical and practical standpoint. The fact
that the implied variance decays as O(A?) for short maturities ensures that the Kennedy model
remains well-behaved in the limit of small accrual periods, avoiding volatility spikes that may arise
in other forward rate models. From a calibration perspective, this result implies that short-maturity
caplets contribute only minimally to the total calibration error, which can improve numerical stability
and reduce overfitting. Moreover, the positivity condition # > A/2 not only guarantees the correct
convergence rate but also aligns with typical empirical parameter estimates observed in interest rate
markets.

9. Calibration of the Kennedy Model to Caplet Prices

The data related to various financial instruments presented in this article were obtained from the
Bloomberg Terminal. For each product, we collected transaction prices, corresponding normal implied
volatilities, and at-the-money (ATM) strike levels, along with the relevant discount factors for present
value calculations. The dataset covers USD-denominated interest rate derivatives, including caplets
and swaptions, and was retrieved with monthly frequency from June 8, 2024, to April 8, 2025.

In this section, we describe the calibration of the Kennedy model to observed caplet prices. First,
we calibrated the model to three-month caplets usin a numerical extremum search algorithm that relies
on stochastic gradient descent and analytical pricing formulas.

The available dataset consists of European-style caplets and swaptions with single future pay-
ments. Each instrument is defined by two dates: the in date, indicating the beginning of the fixed leg
(i.e., the payment time), and the for date, representing the tenor of the swap. Since these products
involve only one payment, they can be treated as caplets with a three-month accrual period. For each
instrument, the at-the-money strike rate (fixed rate) is also provided and used as the strike K in pricing.
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The calibration procedure begins by constructing the initial forward rate curve F(0, ) from
zero-coupon discount factors. This is done using the classical forward rate interpolation formula:

_ InP(0,tiy1) —InP(0, )
tivy1 —ti

F(0,t;) = , (126)
where P(0, t) denotes the zero-coupon bond price at time zero maturing at time t. The resulting
forward curve serves as a deterministic input to the pricing model.

To determine the optimal parameters (y, A, o) of the Kennedy model, we formulate the calibration
as a numerical optimization problem. The objective function measures the discrepancy between model-
implied and market-observed caplet prices, and is defined as a weighted sum of squared log-scale
errors. Specifically, we minimize:

n

A 2 .
Z wi (log(Pmodel> - log(Pmarket)) — min, (127)
i=1

where w; =1+ % is a maturity-dependent weight, assigning higher importance to longer maturities.
The use of logarithmic error is motivated by the form of the Kennedy pricing formula, which contains
multiple exponential terms. Working in log-space reduces the impact of large relative differences
and improves numerical stability, particularly in regions where prices are small or highly sensitive to
parameter changes.

To further improve robustness, a weak regularization term is added to the objective to prevent
overfitting and to avoid implausible parameter values. Moreover, in order to better explore the
parameter space and reduce the risk of convergence to local minima, the optimization is initialized
from several different starting points, including randomly generated ones.

The optimization is carried out using the Sequential Least Squares Programming (SLSQP) algo-
rithm, subject to box constraints and the structural condition y > A /2, which ensures stationarity of
the Gaussian field [3]. Additionally, all three model parameters (y, A, and o) are required to be strictly
positive. The best solution among all starting points is selected based on the minimized error.

Following the optimization, we compute the model-implied caplet prices using the calibrated
parameters, and assess the quality of the fit using average absolute and relative error metrics.

The calibration procedure described above is repeated independently for each month in an eleven-
month historical window, from 2024 June to 2025 April. For each month, we extract the corresponding
market data: the observed caplet prices, the associated at-the-money strike rates, and the initial forward
rate curves. Each monthly dataset consists of caplets with a fixed accrual period A = 3 months and
seven different maturities: 3 months, 6 months, 1 year, 2 years, 5 years, 10 years, and 20 years.

Using the monthly data, the same optimization routine is applied to obtain a separate set of
Kennedy model parameters (y, A, ) for each month. This results in a time series of calibrated parame-
ter triplets, allowing us to observe how the term structure dynamics evolve over time.

To assess the performance of the model, we compare the market-observed caplet prices with the
model-implied prices calculated using the calibrated parameters. Figure 6 displays this comparison
across all months. The fit is visually close for most maturities, and the monthly average relative errors
are also computed to quantify accuracy.
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Caplet Prices - Market vs. Kennedy Model (Monthly)
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Figure 6. Observed (dots) and model-implied (dashed lines) caplet prices for each month.

The relative error between the calibrated (model-implied) caplet prices and the market-observed
prices remains within the range of 5%-10% across all months considered. Such accuracy is generally
regarded as indicative of a well-performing calibration.

Furthermore, the temporal evolution of the calibrated parameters is presented in Figure 7. These
plots provide insight into how the forward curve’s volatility structure and mean reversion characteris-
tics have changed over time, potentially reflecting macroeconomic developments or shifts in market
sentiment.

Kennedy Parameters Over Time
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Figure 7. Time series of the calibrated Kennedy model parameters y, A, and ¢.

As the plot of the Kennedy model parameters over time shows, the values of A and y tend to
move closely together. This observation motivated an additional analysis, in which we examined
how the model performs under the constraint A = y, reducing the number of calibrated parameters
from three to two. Our aim was to assess how much the model’s performance deteriorates when this
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structural simplification is imposed. We found that, in this case, the prices of the financial instruments
become insensitive to the time parameter ¢, leading to a flat caplet price curve as a function of maturity.
Consequently, this specification cannot be calibrated effectively.

Furthermore, since the parameter ¢ remains relatively stable throughout the observed time
window, we also explored the impact of fixing o to be constant across time, in order to evaluate
whether such a simplification would still yield acceptable pricing accuracy. This aspect is subject to
further research.

In addition to the calibration quality within each month, we also investigated the predictive
performance of the model by evaluating how well parameters estimated in month t forecast caplet
prices in month (¢ + 1). For each month after the initial one, we computed caplet prices using the
forward curve of the current month and the Kennedy parameters calibrated in the previous month.
This allows us to assess the stability and forecasting power of the Kennedy model across time.

To visualize this, Figure 8 displays the market prices, the calibrated model prices using the current
month’s parameters, and the forecasted prices using the previous month’s parameters. The figure
includes twelve subplots, one for each month, along with the average relative errors for both the fitted
and forecasted prices. The results demonstrate that while the Kennedy model fits the observed prices
well in-sample, the forecasting performance is slightly worse but still remains within an acceptable
error margin.

Caplet Prices - Market vs. Kennedy Model (Monthly) with Forecasts
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Figure 8. Caplet prices by month: observed market prices (dots), model-implied prices (dashed lines), and
forecasted prices using the previous month’s parameters (dotted green lines).

In this case, the relative error exhibits greater dispersion, ranging between 6% and 15%. Neverthe-
less, such accuracy can still be regarded as indicative of a reasonably good forecasting performance.

To summarize the difference between in-sample and forecast performance, Figure 9 plots the
time series of average relative errors for both the calibrated model and the forecasted prices. This
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comparison helps evaluate how well the Kennedy model generalizes across time when parameter
updates are delayed.

Comparison of Calibration and Forecast Errors Over Time
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Figure 9. Comparison of monthly average relative errors: in-sample calibration (orange) vs. one-step-ahead
forecast (green).

10. Discussion

Conditioning the Kennedy field on the observed initial forward curve proved useful both con-
ceptually and empirically. The closed-form conditional moments delivered analytic prices for several
financial instruments (ZCBs, caplets, floorlets, swaplets, par swap rates) and an aligned conditional
simulation scheme for path-dependent payoffs. In turn, this enabled a fast and stable calibration
loop. The small-A expansion of the Black-implied variance (vanishing first order, positive second
order %2 (2 —A/pu) under u > A/2) provides a local diagnostic for short-tenor behavior and parameter
admissibility.

The framework has limits. A one-factor Gaussian structure implies strike-flat Black volatilities, so
smiles/skews are out of the scope of the Kennedy model. Identification can deteriorate near A ~ ,
calling for careful limit formulas and mild regularization. Results also depend on curve construction
and accrual conventions. Out-of-sample errors are, as expected, higher than in-sample fits, though still
acceptable in our caplet study.

11. Conclusions

This study advances the application of the Kennedy model by incorporating the initial forward
curve, market-implied volatilities, and observed caplet prices into a unified pricing and calibration
framework. We derived closed-form expressions for financial asset prices, performed comprehensive
sensitivity analyses with respect to the model parameters, and conducted simulation experiments to
assess the model’s robustness under varying market conditions. The calibration procedure, applied to
market-observed USD caplet prices, yielded a consistently low relative error (within 5%-10% across all
examined months), indicating a strong fit to real market data.

Furthermore, the model successfully reproduced key stylized facts of interest rate markets, includ-
ing the occurrence of negative rates, while maintaining parameter stability over time. These results
highlight the Kennedy model’s flexibility and practical applicability, positioning it as a competitive
alternative to industry-standard interest rate models. Future research will focus on a detailed compari-
son with the Hull-White model and on exploring calibration procedures driven directly by implied
volatility surfaces.
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