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Abstract

This study addresses a significant gap in voice assistant research by evaluating the responsiveness
- the speed at which a TTS system generates speech in reaction to input, crucial for maintaining
natural, real-time interactions - of open-source text-to-speech (TTS) models—an often overlooked yet
critical component for real-time applications. While extensive benchmarking has been performed on
speech-to-text and large language models, little work has focused on how efficiently TTS systems
respond in live settings—largely because TTS research has historically prioritized subjective quality
metrics like naturalness and intelligibility, which are easier to assess through human listening tests
than real-time performance; additionally, the lack of standardized, reproducible tools for measuring
latency and responsiveness has further limited progress in this area. This work presents the first
comprehensive benchmark focused on responsiveness—assessing TTS latency, tail latency, and real-
time processing performance across 13 prominent open-source, readily available models, in contrast to
commercial systems like Amazon Polly or Google Cloud TTS, which are closed-source and paywalled.
Using a standardized single-stream evaluation inspired by MLPerf Inference, the study measures
model responsiveness under controlled conditions and also investigates trade-offs between speed and
audio quality. Results reveal substantial variability across models, with some achieving sub-second
latency suitable for interactive systems, while others fall short of real-time standards. The benchmark
highlights performance bottlenecks in autoregressive architectures and identifies parallel and flow-
based models as more efficient for low-latency scenarios. Importantly, the proposed framework
provides a reproducible foundation for comparing TTS models in latency-sensitive environments
and sets a baseline for future research. By focusing on responsiveness, this work contributes to the
development of more effective and natural voice interfaces.

Keywords: Text-to-Speech; voice assistant; responsiveness; benchmark; latency; trade-off, real-time

1. Introduction
Voice assistants have become increasingly prevalent in modern society, integrating seamlessly

into smartphones, smart speakers, and various IoT devices. The widespread adoption of virtual
assistants like Amazon’s Alexa, Apple’s Siri, and Google Assistant underscores the growing demand
for intuitive and hands-free interaction with technology [1]. This trend is propelled by advancements
in speech recognition and synthesis technologies, enabling more natural and efficient human-computer
communication [2].

The primary and most widely adopted approach for designing voice assistant systems is the
modular pipeline architecture. This structure divides the system into specialized components that each
handle a distinct task. First, a speech-to-text (STT) engine transcribes the user’s spoken input into text.
Next, a Natural Language Processing (NLP) component—typically powered by a Large Language
Model (LLM)—interprets the text and generates a response. Finally, a text-to-speech (TTS) engine
converts the generated text back into natural-sounding speech for the user [3]. This clear division
allows each part of the system to leverage domain-specific advances: STT models focus on acoustic
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and linguistic accuracy, LLMs handle semantics and intent reasoning, and TTS models synthesize
expressive, human-like speech.

An emerging alternative to this modular design is an integrated, end-to-end trainable system
that combines all stages—recognition, understanding, and synthesis—into a single model. One
prominent example is Moshi [4], a real-time speech-to-speech dialogue model developed by Kyutai
1. Although Moshi eliminates explicit interfaces between components (no separate ASR (Automatic
Speech Recognition), NLP (Natural Language Processing), or TTS (text-to-Speech) modules), its
architecture remains logically modular: it uses a large language model core to reason over internally
predicted text tokens, while audio tokenizers encode and decode the speech signals. The entire system
is trained end-to-end, allowing for tight integration and low latency, but it still relies on internal
text-based reasoning and separate token streams for input and output speech.

Overall, the base quality of the integrated approach remains behind that of modular pipelines —
Moshi, for example, prioritizes conversational fluidity and low latency over raw quality, and while it
achieves decent intelligibility and speaker similarity, it is not yet intended to be competitive against
state-of-the-art commercial TTS systems in terms of naturalness and expressiveness, as acknowledged
by its authors [4], making the more common modular approach the preferred choice for voice assistant
systems. This approach, with distinct components for speech-to-text (STT), natural language processing
(NLP), and text-to-speech (TTS), allows for higher-quality outputs by leveraging advancements in each
field. Benchmarking the performance of these individual components is critical not only for selecting
the most effective models, but also for ensuring system reliability and maintainability—since failures
or bottlenecks in a modular pipeline can be isolated and resolved at the component level without
retraining the entire system. This enables more targeted optimization and efficient integration of new
models, which is essential for building robust voice assistant applications. Moreover, because the
system is not end-to-end but modular, any quality or latency issues can be systematically traced to and
addressed within the responsible module, streamlining both development and debugging processes.

Among the three core components of voice assistants—speech-to-text (STT), large language
models (LLMs), and text-to-speech (TTS) — LLMs have received the most research attention due
to rapid advancements in AI. Several benchmarks have been developed to assess their capabilities,
such as BIG-Bench, which evaluate over 200 tasks spanning linguistics, logic, and world knowledge
to test generalization limits [5], while MMLU measures accuracy across 57 academic subjects to
assess reasoning depth [6]. HumanEval focuses on code generation accuracy using pass@k execution
metrics [7], and MLPerf Inference benchmarks model latency and throughput under standardized
deployment scenarios [8]. Project MPG introduces a combined “Goodness” and “Fastness” score to
balance correctness with query-per-second efficiency [9]. Holistic chatbot evaluations such as the E2E
Chatbot Benchmark assess semantic similarity against expert responses [10], MT-Bench-101 scores
multi-turn conversational coherence [11], and Malode analyzes deployment feasibility in domain-
specific contexts [12]. Finally, FACTS Grounding measures faithful, document-grounded generation
using multi-judge evaluations across real-world enterprise domains [13]. Together, these benchmarks
reflect a shift from accuracy-only metrics toward comprehensive evaluations incorporating latency,
grounding, and real-world applicability.

There are also benchmarks that evaluate voice assistants holistically, assessing the entire
end-to-end system rather than isolating individual modules, such as AudioBench [14], End-to-End
Speech Benchmark (ESB) [15], S2S-Bench [16], VoiceBench [17], and CURATe [18], which will be
discussed in subsequent sections. While these works provide critical insights into the LLM component
and end-to-end systems’ performance, they leave a major gap in evaluating TTS performance —
particularly its responsiveness, which is essential for real-time voice interactions. Unlike LLMs, TTS
systems have received relatively little benchmarking attention, despite their direct impact on perceived
latency, fluidity of conversation, and overall user experience.

1 https://kyutai.org/
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This work addresses that gap by introducing a benchmark dedicated to evaluating TTS responsive-
ness for real-time voice assistants, focusing on latency, tail latency, and processing efficiency rather than
naturalness or intelligibility. It provides a standardized framework for fair comparisons, establishes
performance baselines, and informs future optimization of low-latency TTS systems. Section 2 reviews
related evaluations on LLMs, STT, and TTS; Section 3 details the benchmarking methodology; Section
4 describes the experimental setup; Section 5 presents results; and Section 6 discusses broader trends
and future directions.

2. Related Works
In this section, we review prior work on text-to-speech (TTS) systems and broader benchmarks

designed to evaluate voice assistants end to end, including their TTS components. We trace how
benchmarking methodologies have evolved—shifting from a narrow focus on accuracy toward more
comprehensive evaluations that account for responsiveness, latency, and real-time performance.

2.1. Text-to-Speech (TTS)

Benchmarking Text-to-Speech (TTS) models has historically focused on assessing speech quality,
naturalness, and intelligibility rather than computational efficiency or real-time responsiveness. Many
existing evaluations rely on subjective metrics such as Mean Opinion Scores (MOS) - a commonly used
metric in speech synthesis evaluation recommended to be the measure of synthesized speech quality
by an early work on benchmarking TTS relied on MOS [19], where human listeners rate the naturalness
and quality of generated speech on a scale (typically from 1 to 5), with higher scores indicating
more human-like and intelligible speech - preference tests, or crowdsourced human assessments.
However, as TTS models become increasingly advanced, these methods face limitations in scalability,
reproducibility, and responsiveness benchmarking. Several works have attempted to improve TTS
evaluation by introducing new benchmarking methodologies, but most remain limited in scope.

Hugging Face’s TTS Arena [20,21] is one of the most well-known benchmarking efforts, offering
a crowdsourced evaluation platform where users compare TTS models by listening to side-by-side
samples and voting on which sounds more natural, clear, and expressive. While this approach provides
valuable human feedback, it does not explicitly or systematically assess output accuracy; however,
inaccuracies in word generation can indirectly affect scores since they influence user preference. The
platform also has notable limitations: evaluations are inherently subjective and may shift with changing
user preferences, it does not measure latency or computational efficiency, and it relies on participant
activity—causing newer models to be underrepresented or unevenly rated.

Picovoice 2 [22] takes a different approach, specifically focusing on TTS inference speed. This
Picovoice TTS Latency Benchmark provides a lightweight and extensible benchmarking tool to evaluate
TTS models’ response times in virtual assistants and edge computing environments. It measures latency
at various processing stages, including text preprocessing, model inference, and waveform generation.
However, while Picovoice’s methodology offers a useful tool for assessing TTS speed, it is limited in
scope. The framework does not provide a comprehensive quality assessment, meaning models that
generate speech quickly but sound unnatural may still score highly. Additionally, its benchmarking
process is primarily designed for local and embedded systems, which focus solely on on-device
processing and therefore do not account for factors like network latency or scalability—potentially
making it less relevant for evaluating cloud-based or server-side TTS applications.

Artificial Analysis 3 [23] presents a more holistic evaluation framework, assessing both quality and
performance. Their methodology benchmarks various commercial and open-source TTS models across
key dimensions, including naturalness, intelligibility, and latency. They employ serverless API-based
evaluation, where models are tested in real-world conditions to measure their inference time and
quality trade-offs. However, like TTS Arena, Artificial Analysis relies on human evaluations for speech

2 https://github.com/Picovoice/tts-latency-benchmark
3 https://artificialanalysis.ai/text-to-speech
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quality, which introduces subjectivity. Moreover, their focus on commercial API-based models may
not fully capture open-source or offline TTS systems, limiting its applicability in resource-constrained
environments.

Another work [24] extends benchmarking efforts by providing a comparative analysis of six
leading TTS models, using a structured dataset of 500 diverse text prompts. Each output was rated by
three expert human evaluators using structured criteria, ensuring a controlled and consistent evalu-
ation process. Unlike previous works, this study incorporates structured feedback on intelligibility,
pronunciation accuracy, and audio quality. However, it does not explicitly benchmark latency or
responsiveness, making it less relevant for real-time applications. Additionally, since Labelbox focuses
on commercial solutions, open-source models are not evaluated, leaving gaps in benchmarking freely
available TTS systems.

Finally, Minixhofer et al. (2024) provides one of the most comprehensive attempts to establish
an objective, scalable evaluation metric for TTS models [25]. The Text-to-Speech Distribution Score
(TTSDS) benchmark quantifies synthetic speech quality by analyzing how closely a model’s output
distribution aligns with real human speech. Unlike MOS-based benchmarks, it removes reliance on
subjective ratings, enabling reproducible and cross-study comparisons. Intelligibility is evaluated by
passing the generated speech through speech-to-text (STT) models (wav2vec 2.0 and Whisper) to obtain
transcripts, which are then compared with the original text using Word Error Rate (WER). Alongside
intelligibility, TTSDS incorporates four additional factors—prosody, speaker identity, environmental
artifacts, and general distribution similarity—summarized below.

• Intelligibility – Measured using Word Error Rate (WER) from STT models.
• Prosody – Evaluated via pitch variation and rhythm consistency.
• Speaker Identity – Measures how closely the generated voice matches natural human speech by

comparing voice features (e.g., tone and timbre) between synthetic and real recordings.
• Environmental Artifacts – Measures unwanted noise or distortions in the generated audio, with

higher artifact levels indicating lower audio quality.
• General Distribution Similarity – Uses self-supervised embeddings to compare TTS outputs

with real speech data.

It benchmarks 35 TTS systems developed between 2008 and 2024, demonstrating that objective
factor-based scoring correlates strongly with human evaluations. However, TTSDS does not explicitly
evaluate latency, meaning it does not fully address responsiveness, which is critical for real-time TTS
applications.

2.2. End-to-End Systems

In addition to benchmarks that evaluate the three modular components separately, several recent
works have introduced benchmarks that assess speech-enabled systems in an end-to-end manner.

AudioBench [14] was introduced as a benchmark for audio large language models (AudioLLMs)
that take audio as input and generate textual responses to natural-language instructions. It unifies
evaluation across speech semantics, environmental audio understanding, and paralinguistic voice
traits through 8 tasks and 26 datasets, 7 of which are newly collected or adapted. These tasks span
areas such as speech understanding (e.g., automatic speech recognition and question answering),
audio-scene understanding (e.g., audio captioning), and voice-related attributes (e.g., emotion and
accent recognition). The benchmark tests robustness by varying prompt templates and input lengths
(from seconds to minutes), totaling over 400 hours and 100k samples. Since the benchmark outputs are
free-form text rather than fixed choices, AudioBench uses a model-as-judge approach, where large
language models automatically evaluate the generated answers instead of relying on human annotators.
The authors report high agreement between different judge models, validating the reliability of this
automated scoring method.

S2S-Bench [16] is designed to measure “intelligence degradation,” or the drop in reasoning ability
when a model processes audio tokens instead of text tokens. It compares two conditions: speech-
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to-text (S→T), where audio input is tokenized and processed by the model, and a text-to-text (T→T)
upper bound using the same semantic content. Each test sample contains two continuations — a
correct (positive) and an incorrect (negative) option — and the model’s task is to prefer the positive
one. Perplexity, a standard language modeling metric indicating how confident the model is about
a sequence (lower means more confident), is used to score each option. Accuracy is defined as the
proportion of times the positive continuation receives lower perplexity than the negative, and the
benchmark also analyzes the perplexity “gap” between the two options to gauge how strongly the
model prefers the correct answer. Results show a consistent performance drop in the S→T setting across
all tested reasoning tasks, confirming that audio tokenization introduces a measurable degradation
relative to the text-only upper bound.

VoiceBench [17] introduces a benchmark for assessing how effectively LLM-based voice assistants
interpret spoken commands in realistic conditions. Unlike traditional speech-to-text (STT) tests, it
examines robustness to factors like speaker variation, background noise, and linguistic complexity,
covering tasks in knowledge retrieval, instruction following, and safety adherence. Results show
notable performance gaps between end-to-end voice assistants and modular ASR-LLM pipelines, with
current models struggling under noisy or diverse inputs, underscoring the need for greater real-world
resilience.

Conversely, CURATe [18] evaluates the ability of conversational AI to sustain personalized align-
ment during interactions. It benchmarks ten leading LLM-based assistants across 337 scenarios,
focusing on their capacity to respect user-specific safety constraints and contextual preferences. Find-
ings highlight recurring issues such as neglecting safety-critical instructions, excessive agreement
(sycophancy), and inattentiveness to personalized context, while demonstrating that prompting mod-
els to explicitly acknowledge safety cues can enhance adherence. CURATe thus offers a structured
framework for measuring consistency and trustworthiness in conversational AI.

Overall, while significant progress has been made in benchmarking TTS models, existing evalua-
tions remain fragmented. Crowdsourced evaluations like TTS Arena [20,21] provide valuable user
feedback but lack latency measurements. Speed-focused frameworks like Picovoice’s [22] benchmark
effectively assess inference time but do not consider speech quality. API-driven benchmarks such as
Artificial Analysis [23] and Labelbox [24] provide structured evaluations of commercial TTS models but
exclude open-source solutions. Finally, TTSDS [25] represents a strong step toward objective evaluation
but does not address responsiveness—the primary focus of this study. Given these limitations, this
research aims to establish a dedicated, open-source benchmark for evaluating TTS responsiveness,
filling the gap left by prior methodologies and providing insights tailored for real-time voice assistant
applications.

3. Benchmarking Methodology
This project is influenced by the MLPerf Inference framework [8], a widely recognized benchmark

suite for evaluating machine learning systems across different deployment scenarios. Among its four
defined scenarios—single-stream, multistream, server, and offline—we adopt the single-stream setting,
which best reflects real-time voice assistant usage where queries are processed sequentially for a single
user. In our evaluation, we feed each model datasets of text from different categories - which will be
discussed in the experiment section and record the latency for every input. We then summarize these
results using descriptive statistics, primarily median latency and tail latency (e.g., 90th percentile),
to capture both typical and worst-case performance across the distribution. This approach reflects
realistic usage patterns rather than single-point measurements and provides a more reliable picture of
model responsiveness.

This paper defines TTS input processing as the sequence where text is received and converted into
an output audio file. Because streaming support varies—some models offer native streaming while
others rely on external tools—evaluating only file generation time ensures fair, consistent measurement
of responsiveness across all models.
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For speech processing models, the task is to transcribe audio input into text accurately and
efficiently. The following metrics are chosen for evaluating model responsiveness and quality:

• Latency: Measures the time from when the model begins processing the text input to when the
generated audio file is fully produced. This study reports the median latency, which summarizes
typical synthesis speed across the dataset while minimizing the effect of outliers. Lower median
latency directly indicates faster audio generation, which is critical for real-time voice assistant
performance.

Latency = taudio_ready − ttext_received (1)

where:

– ttext_received is the timestamp when the text input is passed to the TTS model.
– taudio_ready is the timestamp when the audio file generation is completed.

• Tail Latency: Captures worst-case performance by measuring the 90th percentile latency across
all samples. This reflects edge-case delays relevant to voice assistant interactions; keeping this
value low is essential for maintaining smooth and responsive user experiences.

Tail Latency = P90 (2)

where:

– P90 is the 90th percentile latency across the dataset.

In addition to latency metrics, this paper evaluates Audio Quality as a primary measure of
synthesis performance. These metrics directly assess the clarity, naturalness, and intelligibility of the
generated speech, focusing on phrases and sentences rather than isolated single-word utterances. In
this study, audio quality is further examined alongside responsiveness to investigate whether there is
any trade-off between synthesis speed and perceived quality.

To evaluate audio quality, this study uses a speech-to-text (STT) model to transcribe the audio
generated by each TTS system back into text. The resulting transcription is then compared against the
original input text to measure how accurately the TTS model preserved the intended content. Both
the ground-truth input text and the STT-produced transcription undergo normalization following
Whisper’s evaluation guidelines [26], which include lowercasing, punctuation removal, whitespace
standardization, contraction normalization, and numeric formatting. This preprocessing ensures that
the comparison focuses on semantic accuracy rather than superficial formatting differences, providing
a fair assessment of how faithfully each TTS model conveys the intended speech content.

• Percentage of Incorrect Audio Files: The proportion of generated audio files whose transcriptions,
after being converted back to text via STT and normalized as described above, do not exactly
match the original input text. In other words, this metric is based on strict string equality between
the normalized input and output texts.

• Overall WER: A cumulative measure of word error rate (WER) across all transcriptions. Word
Error Rate (WER) is a common metric used to evaluate transcription accuracy, calculated for a
single sample as:

WER =
S + D + I

N
(3)

where:

– S is the number of substitutions (incorrectly transcribed words),
– D is the number of deletions (missing words),
– I is the number of insertions (extra words added),
– N is the total number of words in the reference transcript.
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For multiple transcriptions, the Overall WER, used by Whisper [26] aggregates WER across all
samples by summing the total number of errors (substitutions, deletions, and insertions) across
all transcriptions and dividing by the total number of words in all reference transcripts:

Overall WER =
∑(Si + Di + Ii)

∑ Ni
(4)

where i represents each individual sample in the dataset. This method provides a cumulative
error rate that reflects the overall performance of the transcription system across a dataset rather
than an average of individual WER values.

• Median WER (Mismatched Files): In addition to the Summation-Based WER following Whis-
per’s methodology, we also compute the Median WER specifically for files with mismatched
transcriptions, providing further insight into transcription accuracy variability.

4. Experiments - Benchmarked Text Inputs
This section describes the experiments conducted to measure each model’s performance, detailing

the datasets of text inputs used as well as models tested.

4.1. Evaluation Categories

First, to reflect the models’ capabilities of naturally transforming text into speech in conversations,
we look into various elements in human speech - where certain sentence types consist solely of words
or short phrases that can function as complete, standalone utterances. We also take into account the
elements that are present in dialogues, including utterances, backchannel words such as "uh-huh", "I
see" or filler & transition words such as "well", "so", "anyway" to define the range of inputs for models
testing. Accordingly, this project evaluates single-word utterances and two-word phrases that can
function as complete sentences. Furthermore, full-length sentences are incorporated to capture typical
structures observed in standard written and spoken communication. A guideline for scientific writings
suggested 12-17 words to be the optimal length [27], while another one indicated today’s experts
recommended 15-18 words per sentence [28]. To accommodate these guidelines, we incorporate
12-word sentences and 18-word sentences into our benchmarking, and to sum up, came up with the
following criterias for experimentation:

Table 1. Categorization of Benchmarked Text Input Types with Word Count, Sources, and Data Size.

Input Type # Words Justification Source # Data Points

Single Words

1-syllable words 1
Single words containing ex-
actly one syllable, filtered and
deduplicated.

CMU Dictio-
nary [29,30] 5,352

2-syllable words 1
Single words containing ex-
actly two syllables, filtered
and deduplicated.

CMU Dictio-
nary [29,30] 13,549

Most common in
dialogues 1

Frequently spoken standalone
words (questions, answers,
imperatives, etc.).

COCA [31] 501
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Table 1. Cont.

Input Type # Words Justification Source # Data Points

2-Word Phrases

LLM-generated 2
Random 2-word phrases used
as standalone expressions,
deduplicated.

LLaMA 3
8B (LLM-
generated)

5,659

Most common 2
Most frequent spoken 2-word
N-grams based on raw fre-
quency.

iWebCorpus
[32] 504

Sentences with Specific Lengths

12-word sentences 12
Minimum recommended sen-
tence length for benchmark-
ing.

LLaMA 3
8B (LLM-
generated)

4,994

18-word sentences 18
Maximum recommended sen-
tence length for benchmark-
ing.

LLaMA 3
8B (LLM-
generated)

5,506

To ensure a robust evaluation, while latency is computed for all input categories, audio quality
metrics are assessed only on 12-word and 18-word sentences generated by Llama3-8B. This choice
avoids the limitations of single-word evaluations: while the benchmark includes standalone words
(e.g., “Yes,” “Stop”), such cases can yield misleading accuracy scores because multiple pronunciations
may be valid and the lack of surrounding context provides few cues for disambiguation. Multi-word
phrases and sentences, by contrast, more closely resemble natural speech patterns and offer richer
contextual information, resulting in a more reliable assessment of audio quality.

4.2. TTS Models

This study focuses on evaluating the most popular and widely-used TTS models, as identi-
fied through extensive literature and community engagement metrics—such as GitHub stars or
likes—alongside models developed by reputable service providers. Since voice assistants typically
do not require voice cloning or dynamic multi-voice capabilities, we prioritize models trained on
single-speaker datasets. We also include models trained on multiple voices, provided that each voice is
independently preset—meaning the model is trained on specific voices individually and allows users
to choose from those predefined options.

In many TTS systems, the core model is responsible for converting input text into intermediate
audio representations, typically mel-spectrograms. These spectrograms must then be transformed
into actual audio waveforms using a vocoder. Therefore, unless the TTS model is fully end-to-end,
a separate vocoder is required to synthesize the final audio output. In this study, we focus on TTS
models that perform the text-to-spectrogram transformation, however still making use of vocoders
where applicable. The list of models and architectures evaluated is as follows:

Table 2. Summary of TTS models evaluated in this study.

Model Architecture /
Approach

Setup
(Vocoder /
Dataset)

Year Stars/Forks Key Features

BarkTTS [33] Transformer
text-to-audio,
semantic
token-based

EnCodec [34] 2023 N/A Multilingual, in-
cludes nonverbal
audio and music
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Table 2. Cont.

Model Architecture /
Approach

Setup
(Vocoder /
Dataset)

Year Stars/Forks Key Features

VALL-E X
[35]

Neural codec
language
model

EnCodec [34] 2023 N/A Zero-shot voice
cloning, cross-
lingual synthesis

Neural HMM
[36]

Probabilistic
seq2seq with
HMM align-
ment

Hifigan 2 [37] /
LJSpeech [38]

2022 41.6k /
5.4k

Stable synthe-
sis, adjustable
speaking rate,
low data need

Overflow [39] Neural HMM
+ normalizing
flows

Hifigan 2 [37] /
LJSpeech [38]

2022 41.6k /
5.4k

Expressive, low
WER, efficient
training

Edge-TTS
[40]

Cloud API Cloud Back-
end

2021 N/A Lightweight,
easy integration,
multilingual

FastPitch [41] Parallel non-
autoregressive,
pitch-
conditioned

Hifigan 2 [37] /
LJSpeech [38]

2021 41.6k /
5.4k

Low latency, con-
trollable prosody,
real-time capable

VITS [42] End-to-end
VAE + adver-
sarial learning

None /
LJSpeech
[38]

2021 41.6k /
5.4k

Unified pipeline,
high natural-
ness, expressive
prosody

Glow-TTS
[43]

Flow-based,
monotonic
alignment

Multiband
MelGAN [44] /
LJSpeech [38]

2020 41.6k /
5.4k

Fast infer-
ence, robust
alignment,
pitch/rhythm
control

Capacitron
[45]

Tacotron 2
+ VAE for
prosody

Hifigan 2 [37]
/ Blizzard 2013
[46]

2019 41.6k /
5.4k

Fine-grained
prosody model-
ing, expressive
synthesis

Tacotron 2
(DCA/DDC)
[47]

Two-stage
seq2seq,
attention-
based

Hifigan 2 [37],
Multiband
MelGAN [44] /
LJSpeech [38]

2018 41.6k /
5.4k

High natural-
ness, improved
alignment with
DDC/DCA

Google TTS
(gTTS) [48]

Cloud API
(Google Trans-
late)

Cloud back-
end

2014 N/A Lightweight,
easy integration,
multilingual

Microsoft
Speech API
5.4 (Microsoft
Speech) [49]

Concatenative
/ parametric
synthesis

Built-in voices
/ Windows

2009 N/A Commercial
baseline, real-
time, multilin-
gual support

The experiments are conducted on a machine equipped with a 13th Gen Intel Core i9-13900HX
processor (24 cores, 32 threads) and an NVIDIA GeForce RTX 4070 Laptop GPU with 8 GB of VRAM,
providing sufficient computational resources for text-to-speech benchmarking. As this setup reflects
a high-end consumer device rather than specialized server hardware, it closely mirrors real-world
conditions in which virtual assistants are typically deployed, ensuring the results remain practically
relevant. To ensure a fair and consistent comparison, all experiments are conducted using each model’s
default configurations, with no manual hyperparameter tuning or additional training. The models
are evaluated exactly as provided by their official implementations or APIs, relying on pre-trained
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weights and configurations publicly released by their developers. No fine-tuning or custom training
was performed in this study.

5. Results
This section provides an overview of model performance, focusing on both responsiveness and

audio quality for the 12-word and 18-word sentence input types. We begin with a broad discussion of
overall trends before examining the results and their implications in greater details in the subsequent
section.

5.1. Responsiveness

Overall, across both median and 90th percentile rankings, FastPitch consistently dominates
performance. It ranks first or second in nearly every category, achieving first place in both median
and 90th percentile for most inputs such as 2-syllable words, most common words, and LLM 2-word
phrases. Even in longer sequences like 12-word and 18-word sentences, it maintains top-three positions
(median rank 1, P90 rank 3). This highlights FastPitch’s exceptional balance between typical and worst-
case latency, ensuring predictable real-time responsiveness across varying input complexities.

Microsoft Speech follows closely behind and frequently secures first or second place in both
median and P90 rankings across almost all categories. It is ranked first in median latency for 1-syllable
words, tied first for most common words, and first again for 12-word sentences. Even at 90th percentile,
Microsoft Speech rarely falls below rank 3, showing remarkable stability despite being a non-neural,
CPU-based system. Its consistent top-tier performance demonstrates how deterministic architectures
can outperform many neural models under variable conditions.

GlowTTS and VITS also perform strongly, staying within the top five in most categories. GlowTTS
achieves ranks as high as third for both median and P90 in shorter inputs (e.g., 1-syllable and 2-syllable
words) and second for 18-word sentences at P90, though occasionally dropping to fifth in LLM 2-word
phrases. VITS shows similar behavior, with steady mid-upper rankings (median rank 4–6) and slightly
worse tail performance (P90 ranks 4–5), indicating minor degradation as inputs grow more complex.

The middle tier consists of NeuralHMM, Overflow, and Tacotron2-DCA. NeuralHMM ranks
mid-table, for example 8th in median and 6th in P90 for 1-syllable words, and improves to 4th in
most common words (median). However, its P90 scores degrade with input length, reaching 7th for
18-word sentences. Overflow follows a similar trajectory, ranking around 6th–10th across categories;
for instance, it is 10th median and 7th P90 for 1-syllable words and 9th/8th for most common words.
Tacotron2-DCA places better at median (2nd–4th in shorter phrases) but worsens in P90, hitting 10th
for 2-syllable words and 9th for most common words, indicating occasional latency spikes.

Capacitron50 and Capacitron150 occupy mid-lower rankings. Capacitron50 is typically 6th–7th
median (e.g., 6th for 1-syllable words, 7th for most common words) and similarly placed for P90.
Capacitron150 fares slightly worse, with 9th median and 9th P90 for 1-syllable words and 7th–8th
across other categories. The minimal performance gap between the 50- and 150-unit variants suggests
increased model size does not significantly alleviate tail-latency issues.

At the bottom, Vall-E-X and BarkTTS consistently rank last, with extremely high median and P90
latencies across all input lengths. Vall-E-X sits consistently at 13th–14th for both median and P90, for
example 13th median and 13th P90 in most common words, and 14th in 18-word sentences. BarkTTS
is similarly poor, often tied for 14th (e.g., 14th median and 14th P90 in 1-syllable and 2-syllable words)
and showing no improvement even in shorter inputs. These rankings reflect their computationally
heavy architectures and lack of optimization for low-latency inference.
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Table 3. Median (M) and 90th Percentile (P90) Latencies Across All Benchmarked Text Input Categories (s).

Model

1-
syllable

word

2-
syllable

word

Most
Common

word

LLM
2-word
phrase

Most
Common

2-word

LLM
12-word
sentence

LLM
18-word
sentence

M P90 M P90 M P90 M P90 M P90 M P90 M P90

BarkTTS [33] 5.73 13.01 4.41 12.11 1.49 1.90 2.01 5.05 7.45 12.42 31.05 78.86 14.75 36.00

Vall-E-X [35] 2.20 11.72 1.75 5.59 2.63 4.36 7.53 15.78 1.73 5.93 10.09 13.90 17.79 45.38

NeuralHMM [36] 0.27 0.33 0.28 0.35 0.24 0.34 0.06 0.12 0.20 0.24 0.45 0.70 0.64 0.85

Overflow [39] 0.33 0.41 0.23 0.28 0.34 0.53 0.37 0.45 0.22 0.27 0.68 0.88 1.56 1.99

EdgeTTS [40] 1.11 1.58 1.29 1.59 0.83 0.98 1.19 1.98 0.87 1.16 1.64 2.26 1.78 2.41

Fastpitch [41] 0.06 0.09 0.04 0.05 0.05 0.12 0.04 0.07 0.04 0.10 0.06 0.17 0.13 0.30

VITS [42] 0.29 0.33 0.22 0.31 0.19 0.28 0.25 0.29 0.20 0.23 0.28 0.42 0.51 0.73

GlowTTS [43] 0.10 0.14 0.09 0.13 0.09 0.14 0.23 0.29 0.05 0.07 0.08 0.13 0.09 0.15

Capacitron50 [45] 0.23 0.35 0.24 0.39 0.20 0.32 0.29 0.37 0.19 0.37 0.35 0.48 0.66 0.94

Capacitron150 [45] 0.25 0.51 0.28 0.58 0.22 0.42 0.33 0.69 0.22 0.50 0.64 0.86 0.39 0.62

Tacotron2-DCA [47] 0.10 0.53 0.18 1.16 0.16 0.70 0.09 0.46 0.18 0.50 0.44 0.62 0.53 0.77

Tacotron2-DDC [47] 0.17 16.49 0.26 15.95 0.37 8.19 0.45 21.99 0.16 8.14 0.91 1.24 0.93 1.52

GTTS [48] 0.43 0.65 0.45 0.58 0.58 0.65 0.42 0.62 0.58 0.64 0.68 0.78 0.93 1.39

Microsoft Speech [49] 0.06 0.07 0.06 0.08 0.06 0.07 0.07 0.08 0.06 0.07 0.07 0.08 0.07 0.08

A particularly striking outlier is Tacotron2-DDC. While its median ranks are mid-tier (e.g., 4th for
1-syllable words, 8th for 2-syllable words), its P90 ranks collapse to last place in almost every input
(14th P90 for 1-syllable words, 13th–14th for longer inputs). This discrepancy stems from pathological
inference behavior, where stop-token failures and alignment drift cause excessively long outputs even
for short inputs.

Cloud-based systems like GTTS and EdgeTTS show distinct patterns. GTTS generally ranks in
the 10th–11th range for both median and P90, such as 10th median and 10th P90 for 1-syllable words,
reflecting moderate but stable performance. EdgeTTS fares slightly worse: 12th in both median and
P90 for 1-syllable words and 11th–12th for most categories, with tail latencies particularly affected by
network fluctuations. These results highlight how cloud services, while convenient, struggle to match
the deterministic low-latency performance of local neural models like FastPitch or GlowTTS.

5.2. Audio Quality

In terms of output audio quality, Microsoft Windows Speech, GTTS, and EdgeTTS emerge as the
best overall performers in terms of audio quality. All three achieve extremely low incorrect file rates —
between 2–4% for 12-word inputs and around 4% for 18-word inputs — with overall WER consistently
below 0.5. Median WER remains low (approx. 10–16), demonstrating both stability and precision.
Their consistent accuracy across sentence lengths places them firmly at the top of the ranking. Notably,
Microsoft Windows Speech achieves this despite being CPU-based and non-neural, highlighting the
efficiency of its deterministic synthesis pipeline. GTTS and EdgeTTS, despite being cloud-based,
maintain similarly high quality, with minimal degradation even as input length doubles.

Among locally hosted neural models, VITS demonstrates the strongest performance in audio
quality. It records incorrect rates of just 5.11% (12-word) and 7.11% (18-word), combined with the
lowest overall WER among local models (approx. 0.65) and consistently low median WER values
(approx. 5–8%). FastPitch and GlowTTS follow closely, with slightly higher incorrect rates (7–20%)
and WER values around 0.7–1.8, remaining highly competitive in quality despite their focus on speed.
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Mid-tier results are observed for Tacotron2-DCA, Tacotron2-DDC, and Overflow. These models
maintain moderate incorrect rates (approx. 12–20%) and overall WER between 1–3. While Tacotron2-
DDC suffers from severe tail-latency issues in responsiveness, its quality metrics remain stable, sug-
gesting that overly long outputs do not necessarily lead to higher transcription mismatches. Overflow
and Tacotron2-DCA show similar performance, with modest error rates but less consistency compared
to top-tier models.

Table 4. TTS Models’ Audio Quality for LLM-Generated 12-Word and 18-Word Sentence Inputs

12-Word Sentence Inputs 18-Word Sentence Inputs
Model % Incorrect Overall WER Median WER % Incorrect Overall WER Median WER

BarkTTS [33] 26.72 5.28 8.33 32.30 4.20 5.56
Vall-E-X [35] 26.36 4.04 8.33 32.67 3.75 5.56
NeuralHMM [36] 51.44 8.48 16.67 62.78 8.50 11.11
Overflow [39] 12.06 1.38 8.33 16.32 1.28 5.56
EdgeTTS [40] 3.02 0.41 16.67 4.02 0.38 11.11
Fastpitch [41] 7.15 0.82 8.33 9.43 0.77 5.56
VITS [42] 5.11 0.65 8.33 7.11 0.65 5.56
GlowTTS [43] 14.92 1.80 8.33 20.03 1.69 5.56
Capacitron 50 [45] 17.01 3.90 16.67 23.87 4.77 11.11
Capacitron 150 [45] 28.19 7.94 16.67 23.64 4.89 11.11
Tacotron 2 - DCA [47] 16.01 2.01 8.33 20.40 1.99 5.56
Tacotron 2 - DDC [47] 12.56 2.68 8.33 19.68 2.84 5.56
GTTS [48] 2.84 0.40 16.67 4.25 0.39 10.82
Microsoft Speech [49] 2.86 0.39 16.67 4.09 0.39 10.53

NeuralHMM and the Capacitron series perform worse in terms of quality. NeuralHMM exhibits
error rates exceeding 50% and overall WER around 8.5, indicating frequent synthesis failures or
alignment errors. Capacitron50 and Capacitron150 fare slightly better but still remain in the lower tier,
with 17–28% incorrect rates and overall WER between 4–8, reflecting inconsistent handling of longer
phrases.

Vall-E-X and BarkTTS consistently deliver the lowest quality scores. Both models show in-
correct rates exceeding 25–32% and overall WER above 3.5–5, with median WER comparable to
low-performing models despite significantly heavier architectures. Their degradation worsens with
longer inputs, highlighting poor optimization for short prompts and limited robustness to input length
scaling.

Overall, cloud-based models (GTTS, EdgeTTS) and in-built Microsoft Windows Speech dominate
the quality metrics, showing the most accurate and stable outputs, while VITS leads among locally
hosted neural architectures. FastPitch and GlowTTS also maintain high quality with slightly more
variability, while models like Vall-E-X, BarkTTS, and Capacitron variants consistently trail behind due
to higher error rates and poor robustness.

6. Discussions & Conclusion
6.1. High-Performing Models: Strong Responsiveness with Minimal Quality Trade-offs Across Input Categories

One of the primary aims of this benchmarking study was to identify whether any text-to-speech
(TTS) models could deliver both low latency and high audio quality consistently across a range of input
lengths. Most models exhibited trade-offs — excelling in one dimension while underperforming in the
other. However, Microsoft Speech stands out as the clear overall leader. Despite being a CPU-based,
non-neural system, it achieves top-tier responsiveness and audio quality simultaneously, ranking first
or second in nearly every median and 90th percentile latency category and also securing the lowest
error rates in audio quality metrics (approximately 2–4% incorrect files, overall WER around 0.39-0.41).

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 August 2025 doi:10.20944/preprints202508.0654.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0654.v1
http://creativecommons.org/licenses/by/4.0/


13 of 18

Its deterministic design avoids pathological tail-latency spikes and maintains pristine transcription
fidelity even for long inputs, making it uniquely suited for latency-critical real-time applications.

In terms of pure responsiveness, FastPitch remains the fastest neural model in this benchmark.
Its feed-forward, non-autoregressive design consistently ranks first in median and tail latency across
almost every category, including 1- and 2-syllable words, most common words, and short phrases.
Even in longer sentences (12-word and 18-word), it maintains top-three positions, highlighting its
predictability under load. However, FastPitch’s audio quality lags behind the top tier: its incorrect rates
are slightly higher (around 7–9%), and its overall WER (around 0.7-0.8) is above the best performers.
While still competitive and suitable for real-time systems where speed is paramount, its quality ceiling
prevents it from unseating Microsoft Speech as the best all-rounder.

Conversely, EdgeTTS and Google’s GTTS dominate the audio quality leaderboard. Both achieve
error rates in the 2–4% range and overall WER below 0.5, rivaling or even matching Microsoft Speech
for transcription fidelity. However, their cloud-based nature introduces significant responsiveness
issues. GTTS performs mid-tier in latency (10th-11th ranks across most inputs), while EdgeTTS
frequently ranks near the bottom (11th-12th at P90) due to network variability and API response times.
These results underline a key trade-off: while cloud services can deliver exceptional quality, their
unpredictable latency makes them unsuitable for deterministic real-time deployments.

Among locally hosted neural architectures, VITS strikes the best balance between speed and
quality. It ranks mid-upper for latency (median ranks 4-6, P90 ranks 4-5) and delivers the lowest WER
among all neural models (approximately 0.65), with incorrect rates around 5-7%. This combination
makes VITS a strong candidate where moderate latency is acceptable but higher audio fidelity is
desired, such as offline synthesis or user-facing content generation.

Other models - including GlowTTS, NeuralHMM, Overflow, Tacotron2-DCA, and Capacitron
variants - occupy the mid-tier, with moderate rankings in both responsiveness and quality. GlowTTS
is competitive at low latency but slightly less stable at P90; NeuralHMM and Overflow degrade as
input length grows; and Capacitron 50/150 gain little from scaling, remaining slower and less accurate
than top performers.

At the bottom, Tacotron2-DDC, Vall-E-X, and BarkTTS show severe limitations. Tacotron2-DDC
suffers catastrophic tail-latency failures (e.g., 16.49s P90 for 1-syllable words) due to attention/stop-
token misalignment, despite decent median scores. Vall-E-X and BarkTTS, meanwhile, consistently
rank last in both latency and quality: their heavy autoregressive pipelines result in extreme latencies
(median >2s, P90 >12-45s) and high error rates (25-32%), making them impractical for any interactive
use case.

In summary, Microsoft Speech emerges as the best all-round TTS system in this study - unrivaled
in its ability to combine ultra-low latency with near-perfect quality. FastPitch is the fastest neural
option, ideal when responsiveness outweighs quality, while EdgeTTS and GTTS lead in fidelity but
are hampered by cloud-induced delays. For local neural solutions balancing both, VITS provides the
strongest alternative, though it still trails Microsoft Speech in overall stability.

6.2. Unusual Patterns in Performance Metrics

While most models exhibit predictable behavior in terms of latencyand synthesis quality, certain
models display unexpected performance trends that merit closer examination. These anomalies provide
deeper insights into the internal workings of the architectures and highlight potential optimizations or
inefficiencies in model design.

A particularly notable irregularity arises in the performance of Tacotron2-DDC (Double Decoder
Consistency). While most models maintain predictable scaling between median and tail latencies,
Tacotron2-DDC exhibits extreme instability. For example, in the 1-syllable word category it records
a median latency of 0.17 s, yet its P90 latency spikes to 16.49 s. This pattern repeats across all inputs
— 2-syllable words (median 0.26 s vs. P90 15.95 s) and LLM 2-word phrases (median 0.45 s vs. P90
21.99 s) — indicating severe tail-latency issues irrespective of text length or complexity. Such behavior
suggests systemic alignment failures in its dual-decoder mechanism: when the coarse and fine decoders
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desynchronize, the model enters extended decoding loops, inflating inference times even on otherwise
short prompts. These anomalies render Tacotron2-DDC unsuitable for latency-critical deployments,
despite its competitive median responsiveness.

Beyond individual strengths at specific input lengths, the latency rankings also reveal which
models maintain stable performance across all text categories. Microsoft Speech stands out as the
clearest example of consistency: its median latency remains at 0.06–0.07 s across every input type,
from single-syllable words to 18-word sentences, with 90th percentile latency barely exceeding 0.08 s.
This indicates virtually no degradation as inputs grow longer, a rare trait among all evaluated models.
Combined with its leading audio quality — consistently achieving the lowest incorrect-file rates and
word-error rates across both 12-word and 18-word sentences — Microsoft Speech delivers exceptional
balance between responsiveness and fidelity. These qualities make it particularly well-suited for
general-purpose voice assistants, where reply lengths can vary widely yet both latency and intelligibil-
ity must remain predictably high.

FastPitch also displays relatively stable trends — for example, FastPitch’s median latency only
rises from 0.06 s (1-syllable words) to 0.13 s (18-word sentences). It achieves competitive audio quality,
though not as consistently strong as Microsoft Speech or VITS. By contrast, autoregressive models such
as Tacotron2-DDC and BarkTTS degrade sharply, with 90th percentile latencies ballooning from 16.49 s
and 13.01 s (1-syllable words) to 31.99 s and 78.86 s, respectively, for 2-word and 18-word phrases.
These findings highlight how Microsoft Speech — and, to a slightly lesser degree, FastPitch and
GlowTTS — provide predictable real-time performance while balancing speed and quality, a critical
property for interactive systems where worst-case latency and transcription accuracy both impact user
experience.

A notable anomaly is observed in GlowTTS, where latency for longer inputs is sometimes compa-
rable to — or even lower than — that of shorter ones. For instance, GlowTTS records a median latency
of 0.10 s for 1-syllable words but achieves 0.09 s for the most common single words and maintains
0.23 s for LLM-generated 2-word phrases. Despite handling more content, its per-word latency does
not scale upward as expected, and in some cases, longer phrases are synthesized proportionally faster.
This behavior suggests that GlowTTS benefits from parallel flow-based synthesis and stable duration
modeling, allowing it to maintain efficient performance even as input complexity increases. In practical
applications, this implies GlowTTS can process full-sentence prompts with minimal latency overhead
relative to single-word utterances, making it especially effective in scenarios where reply lengths vary
dynamically.

In contrast, Vall-E-X and BarkTTS perform markedly worse than other models in terms of latency,
with inefficiencies evident across every input length tested. For short single-word inputs, Vall-E-X
records a median latency of 2.20 s with 90th percentile latency spiking to 11.72 s, while BarkTTS fares
even worse at 5.73 s median and 13.01 s P90. Performance deteriorates further with longer sequences:
for LLM-generated 18-word sentences, Vall-E-X reaches 17.79 s median and 45.38 s P90, and BarkTTS
records 14.75 s median with an extreme 36.00 s at the 90th percentile.

These values place both models firmly at the bottom of the ranking across all categories, reflecting
their computationally heavy autoregressive architectures and lack of optimization for low-latency
inference. Their high tail latencies also translate to poor throughput, rendering them impractical for
any real-time or interactive voice assistant deployment.

These results indicate that while these models prioritize high-fidelity synthesis and expressive
speech generation, their computational demands render them impractical for latency-sensitive applica-
tions.

These unusual performance patterns underscore the complexities inherent in text-to-speech
benchmarking. Future research will need to focus on stabilizing tail latency, especially in hybrid
or multi-stage decoder architectures like Tacotron 2 DDC. Potential approaches include adopting
blockwise or speculative decoding methods to limit worst-case sequential steps [50], introducing
monotonic alignment constraints or probabilistic duration models as used in Neural HMMs [36], and
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redesigning decoder pipelines to separate coarse and fine-grained generation stages with explicit
convergence checks. Furthermore, the unexpected speed-ups observed for longer sequences suggest
opportunities to exploit batching or hierarchical context windows, where multiple phonemes or words
are processed jointly to amortize computation. These findings may also guide training strategies such
as curriculum learning (progressively increasing input length) or targeted fine-tuning for structured
versus unstructured texts, ensuring models maintain both stability and efficiency across diverse
input types. More broadly, this highlights the importance of detailed benchmarking to uncover
counterintuitive trends that can inform architectural refinements and future design priorities.

6.3. Cloud-Based TTS Services: GTTS vs. EdgeTTS

Cloud-based TTS services provide an alternative to locally deployed models, offering scalable
synthesis capabilities with varying constraints on performance and accessibility. Two cloud-based
models evaluated in this study are GTTS (Google Text-to-Speech) and EdgeTTS. These models differ
significantly in availability, with GTTS imposing usage limits while EdgeTTS allows unrestricted
access. This distinction is crucial for real-time applications, where consistent availability is essential.

When examining responsiveness, GTTS demonstrates moderate yet stable latency behavior across
input types. As shown in Table 3, its median latency ranges from 0.43 s on single-word inputs to 0.93 s
for 18-word sentences, with 90th-percentile latencies remaining between 0.65 s and 1.39 s. While this
performance does not match the ultra-low latency of models such as FastPitch or Microsoft Speech, it
remains predictable and comfortably within real-time thresholds across all tested scenarios. EdgeTTS,
by contrast, performs notably worse in responsiveness: its median latency spans 1.11 s to 1.78 s, and
90th-percentile latencies rise as high as 2.41 s for longer inputs. The disparity is most evident in shorter
phrases, where GTTS sustains sub-0.5 s median latency, whereas EdgeTTS more than doubles that
figure.

Audio quality results for 12-word and 18-word sentence synthesis, summarized in Table 4, further
highlight differences between the two cloud-based systems. GTTS achieves overall word error rates
(WER) of 0.40 for 12-word inputs and 0.39 for 18-word inputs, with median WERs of 16.67 and 10.82,
respectively. EdgeTTS records nearly identical overall WER values (0.41 and 0.38) and slightly higher
median WERs (16.67 and 11.11). Both models therefore provide comparable transcription fidelity,
and both substantially outperform models like NeuralHMM (overall WER 8.48–8.50) or BarkTTS
(5.28–4.20), which suffer from high misalignment and token omission rates.

Incorrect transcription rates reinforce this finding: GTTS produces 2.84% incorrect files for 12-
word inputs and 4.25% for 18-word inputs, while EdgeTTS reports 3.02% and 4.02%, respectively.
These errors primarily arise from phoneme-duration misalignments rather than network instability,
indicating that both cloud systems are robust to input length. Taken together, GTTS offers a slight
advantage in responsiveness, while EdgeTTS delivers similar audio quality but suffers higher latency
— a trade-off that may constrain its use in latency-critical deployments while remaining viable for
general-purpose synthesis scenarios.

The primary trade-off between gTTS and EdgeTTS is an availability–versus–quality balance.
Looking ahead, major TTS providers already expose configurable performance profiles—e.g., OpenAI’s
Realtime API for low-latency speech interactions4 (and its separate, higher-latency Chat Completions
audio path)5, Microsoft Azure’s guidance on chunked/streamed synthesis to cut first-byte and finish
latency6, and ElevenLabs’ streaming endpoints for real-time audio generation7.

Commercial tiers and usage limits are likewise segmented: Google Cloud TTS prices Stan-
dard/WaveNet/Neural2 voices separately8, while Amazon Polly differentiates Standard, Neural,

4 https://platform.openai.com/docs/guides/realtime
5 https://openai.com/index/introducing-the-realtime-api/
6 https://learn.microsoft.com/en-us/azure/ai-services/speech-service/how-to-lower-speech-synthesis-latency
7 https://elevenlabs.io/docs/api-reference/text-to-speech/stream
8 https://cloud.google.com/text-to-speech/pricing
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Long-Form, and Generative voices with distinct quotas and rates9. Meanwhile, industry forecasts
project the voice user interface market to grow at ∼20% CAGR through 2032, reflecting rising demand
for scalable yet stable voice tech—pressure that will drive convergence toward offerings blending
reliability with accessibility.10

In the end, this benchmark provides a dedicated systematic evaluation of open-source TTS models
with a focus on responsiveness—a metric critical to real-time voice assistant performance yet largely
absent from prior studies. By standardizing latency and tail-latency measurement across multiple
architectures, the framework establishes a reproducible baseline for future research and enables fair
comparison with commercial systems. Our findings highlight the strengths of flow-based, parallel as
well as in-built CPU based models for low-latency deployment, while exposing persistent bottlenecks
in autoregressive approaches. Beyond benchmarking, this work offers practical insights for selecting
TTS models in latency-sensitive applications and sets the stage for integrating similar evaluations into
end-to-end voice assistant pipelines, ultimately supporting the development of more natural, real-time
human–AI interactions.
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