

Review

Not peer-reviewed version

Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements

[William R. Stockwell](#) * and [Rosa M. Fitzgerald](#)

Posted Date: 7 August 2025

doi: [10.20944/preprints202508.0554.v1](https://doi.org/10.20944/preprints202508.0554.v1)

Keywords: particulate matter; sulfur dioxide; sulfate particles; aerosol; gas-oxidation; heterogeneous processes

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Review

Evidence for a New Oxidation Mechanism for Sulfur Dioxide from Laboratory Measurements

William R. Stockwell * and Rosa M. Fitzgerald

Physics Department, The University of Texas at El Paso, El Paso, TX 79902, USA

* Correspondence: william.r.stockwell@gmail.com

Abstract

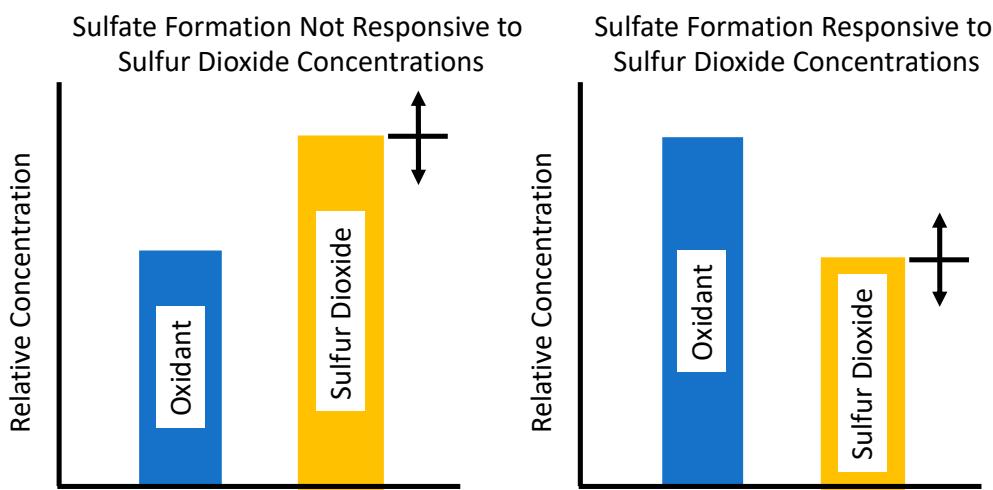
The oxidation of sulfur dioxide (SO_2) occurs in the gas and liquid-phase and this oxidation contributes to particulate matter and acid precipitation. The production of sulfate particles is significant because of their impacts on climate, precipitation acidification, and human health. In this paper the focus is on the oxidation of SO_2 and on the possibility of unknown heterogeneous reactions that may occur on sulfate aerosol surfaces. These results are based on a reanalysis of a foundational set of SO_2 laboratory oxidation measurements. The experiments involved two sets of photochemical studies of nitrous acid (HONO), nitrogen oxides ($\text{NO}_x = \text{NO} + \text{NO}_2$), SO_2 , carbon monoxide (CO) and water vapor (H_2O) mixtures made in molecular nitrogen (N_2) with trace of molecular oxygen or in synthetic air. The reanalysis strongly suggests that there are uncharacterized processes for the oxidation of SO_2 that are nearly three times faster than the known gas-phase reactions. The uncharacterized processes may involve sulfate aerosol surface reactions in the presence of nitrogen oxides. If these processes can be included in current atmospheric chemistry models, greater conversion rates of SO_2 to sulfate aerosol will be calculated and this may reduce modelling bias.

Keywords: particulate matter; sulfur dioxide; sulfate particles; aerosol; gas-oxidation; heterogeneous processes

1. Introduction

The oxidation of sulfur dioxide (SO_2) produces products that are significant sources of atmospheric particulate matter and acid precipitation (acid rain) [1–4]. The products, small droplets of liquid sulfuric acid (H_2SO_4), bisulfate (HSO_4^-) and sulfate (SO_4^{2-}) have consequences for health, agriculture, climate, etc. SO_2 is emitted from many natural and anthropogenic sources [4,5]. The greatest source of sulfur emissions into the atmosphere comes from biological processes in the Earth's oceans and this means that these sources are stronger in the southern hemisphere. Dimethyl sulfide (DMS, CH_3SCH_3) constitutes a significant fraction of the sulfurous emissions from the oceans [5–10]. Hydrogen sulfide (H_2S) is another biogenically emitted compound. H_2S and DMS are converted to SO_2 by a complicated chemical reaction mechanism [11].

Natural sources of SO_2 include volcanoes [5] and its photochemical production from biogenic emissions such as hydrogen sulfide (H_2S) and dimethyl sulfide (CH_3SCH_3). Biomass burning, i.e. wildfires, is an underappreciated source of sulfurous compound emissions [12]. The wildfire sources of sulfur compound emissions is increasing because of the increasing number and intensity of wildfires [13]. The major anthropogenic sources include the production of metals from sulfur containing ores (smelting) and the combustion of fossil fuels [14]. Coal is an example of a fossil fuel with sources that have large differences in sulfur content [15].


Sulfur dioxide is oxidized in the atmosphere to produce sulfate particles, i.e., H_2SO_4 , HSO_4^- or sulfate SO_4^{2-} , that are chemical components of particulate matter or aerosols [3]. This oxidation of sulfur dioxide to produce particulate matter is very important because of their effects on climate, precipitation patterns, amounts and acidification, and their health effects [4]. The chemistry may have possible applications to exoplanetary atmospheres too [16].

Sulfur containing particles have very significant effects on climate because they strongly scatter solar radiation which effects the Earth's radiation budget [4]. In fact, the emission of sulfate containing particles has been suggested as a method of cooling the Earth's atmosphere to counteract global warming [17].

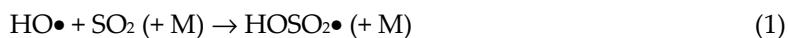
Sulfate containing particles, along with other forms of particulate matter, contribute to the secondary aerosol effect [4]. Fine aerosol particles provide nucleation sites for the formation of cloud water droplets. If there is an increase in the concentration of fine aerosol particles, then there will be more, but smaller droplets formed for a given level of water vapor in the atmosphere. Depending upon conditions the secondary aerosol effect can affect the amount and geographical distribution of precipitation.

Sulfate compounds are acidic in liquid water, and they contribute strongly to the acidification of precipitation along with nitrates (NO_3^-) and organic acids such as formic (HCOOH) and acetic acid (CH_3COOH) [18]. For this reason and direct health effects, emissions of SO_2 have been regulated in the United States by the Clean Air Act Amendments since 1970 [19]. Acid precipitation was recognized as a major problem in Europe, Canada and the United States [20,21] during the late 1970s and 1980s. One of the major driving political and scientific questions for public policy regarding acid precipitation was to determine if the production of sulfate was limited by the available sulfur dioxide (SO_2) or by the available oxidant; this uncertainty was known as the oxidant limitation question. This was a major issue of several international programs including the American National Acid Precipitation Program (NAPAP) and the U.S. Department of Energy's Processing of Emissions by Clouds Program (PRECP) [22–26].

Figure 1 shows the difference between a situation where the oxidation of SO_2 is limited by the available oxidant or not [27]. If there is a limited amount of oxidant relative to the amount of SO_2 , left plot, then moderate reductions in SO_2 will not result in less sulfate produced; this condition was known as oxidant limited. The right panel shows that if there is more oxidant available then SO_2 then reductions in SO_2 will result in reductions in the amount of sulfate produced. Finding the chemical mechanisms for the oxidation of SO_2 is important for determining the emission reduction policies needed to reduce acid precipitation.

Figure 1. The plot to the right shows an oxidant limited condition. In that case reductions or increases in SO_2 concentrations do not affect the formation of sulfate. The plot to the right shows the case where there is sufficient oxidant to convert SO_2 to sulfate and decreases in SO_2 concentrations lead to decreases in sulfate production.

The oxidation of SO_2 may be important on local, urban scales as well as regional and global. In general, the particulate matter produced through atmospheric chemical reactions are fine particles with an aerodynamic diameter of $2.5 \mu\text{m}$ and these particles are known as $\text{PM}_{2.5}$. Larger particles with an aerodynamic diameter of $10 \mu\text{m}$ are known as PM_{10} [19]. As an example, the city of El Paso


Texas in the Paso Del Norte Border Region of the United States and Mexico has had problems with high concentrations of PM_{2.5} and PM₁₀ [28,29]. High emissions of SO₂, NO_x and volatile organic compounds and wind-swept mineral dust have occurred in El Paso which contributes to particulate pollution. Emissions of nitrogen oxides are significant because the region contains the American – Mexican border. Truck and auto traffic are queued near the border until they are cleared to pass the border into the United States.

1.1. SO₂ Oxidation Mechanisms

Many atmospheric chemical reactions produce products that condense to form particulate matter, PM_{2.5} or PM₁₀. In general, SO₂ is oxidized in either gas or aqueous phases or it may be deposited directly to the ground. In this paper we present evidence that there may be chemical reactions that may involve nitrogen oxides and/or heterogeneous processed involving sulfate aerosols.

1.1.1. The Gas-Phase Oxidation of Sulfur Dioxide

There are two gas-phase mechanisms known mechanisms for the gas-phase oxidation of sulfur dioxide. The hydroxyl radical (HO•) is the oxidant [30]. As shown by the reactions given below the HO• reacts with SO₂ to produce the adduct HOSO₂•, note that M is any molecule of air that stabilizes the formation of the adduct by absorbing excess collision energy.

The HOSO₂• adduct reacts with molecular oxygen to produce the hydroperoxyl radical (HO₂•) and sulfur trioxide (SO₃) [30]. SO₃ reacts with water vapor to produce sulfuric acid. In a nitrogen oxide polluted atmosphere, HO₂• reacts with NO to reproduce HO• as shown below.

The hydroxyl radical produced by Reaction 4 can react with SO₂ making this mechanism a chain mechanism. When the concentration of nitric oxide (NO) is low, HO₂• reacts with another HO₂• or with organic peroxy radicals to produce hydrogen peroxide (H₂O₂) or an organic peroxide.

Another gas-phase process for the oxidation of SO₂ reaction with Criegee intermediates [31,32]. Criegee intermediates are produced by reactions of ozone (O₃) with alkenes. An example of the mechanism for the production of Criegee intermediates from ethene (CH₂CH₂) and its oxidation of SO₂ is given below, Reactions 5–6.

The average total rates of the HO• radical and the Criegee intermediate mechanisms are a few percent per hour for a range of realistic conditions with a maximum rate of 6.13 % hr⁻¹ [33].

In cloud water or water coated aerosols the H₂O₂ may react with SO₂ to produce sulfate [1,4,34] and in the gas-phase SO₂ does not affect the concentration of the HO•. Either way there is little or no oxidant limitation to sulfate production from SO₂ in the lower troposphere.

However, there is reason to suspect that could be additional oxidation processes. Relative to observations, air quality models underestimate sulfate production across the Eastern U.S and the models underestimate the effect of temperature on its production [35,36]. These newer modeling studies for United States, Alaska and Beijing, China indicate that estimates of particulate sulfur may

be improved by the addition of additional heterogeneous chemical reactions [36]. In this paper we present an analysis of experimental data that suggests a process for the oxidation of SO_2 that is not included in models.

2. Materials and Methods

The experiments that are reanalyzed here were made with the objective to measure the rate coefficient of the $\text{HO}\bullet$ radical with SO_2 ($\text{HO} + \text{SO}_2$) reaction relative to the rate coefficient of the $\text{HO}\bullet$ radical with carbon monoxide ($\text{HO} + \text{CO}$) reaction [30,37]. The reaction of $\text{HO}\bullet$ with SO_2 (Reaction 1) is given above and the reaction of with $\text{HO}\bullet$ with CO is given below.

The original analysis determined that $\text{HO}\bullet$ radical concentrations were not affected by SO_2 concentrations, and this observation led to the proposal of the mechanism given by Reactions 1 through 4 [30]. This study was cited as a landmark in sulfur oxide chemistry [38]. The proposed mechanism was verified by several independent studies [39,40].

Mixtures of SO_2 , carbon monoxide (CO), nitrous acid (HONO), nitric oxide (NO) and nitrogen dioxide (NO_2) were photolyzed in molecular nitrogen (N_2) or synthetic air as a background gas, Table 1 [37]. The initial reactive nitrogen is the total molecular concentration of NO, NO_2 and HONO, Table 1 gives the initial conditions for the experiments made in N_2 ; note that there was a small trace of molecular (O_2) introduced during the filling of the chamber. Table 2 gives the initial conditions for the experiments made in synthetic air. Photolysis of nitrous acid produced $\text{HO}\bullet$ radicals.

The photolysis experiments were made using a long-path glass chamber that was 6m long and the concentration changes were measured with a Fourier Transform Spectrometer [30,37]. The concentrations of CO were sufficiently high so that they did not appreciably change during the experiments so the relative extent of the $\text{HO}\bullet + \text{CO}$ reaction was taken as the total CO_2 produced during each experiment. The rates of the $\text{HO}\bullet + \text{SO}_2$ and $\text{HO}\bullet + \text{CO}$ reactions are given below where k_{SO_2} and k_{CO} are rate coefficients for these reactions.

$$\frac{[\text{SO}_2]}{dt} = k_{\text{HO} + \text{SO}_2} [\text{HO} \bullet] [\text{SO}_2] \quad (9)$$

$$\frac{[\text{CO}]}{dt} = k_{\text{HO} + \text{CO}} [\text{HO} \bullet] [\text{CO}] \quad (10)$$

Equations 9 and 10 may be rearranged to derive the ratio, $k_{\text{HO} + \text{SO}_2}/k_{\text{HO} + \text{CO}}$. To derive Equation 11 for the experiments, note that the $\text{HO}\bullet$ concentrations cancel out, that the concentrations of SO_2 and CO may be averaged over the photolysis period ($[\text{SO}_2]_{\text{AVG}}$, $[\text{CO}]_{\text{AVG}}$) and that the change in CO is equal to the amount of CO_2 produced ($\Delta[\text{CO}_2]$). The change in the SO_2 concentration is given by $\Delta[\text{SO}_2]$.

$$\frac{k_{\text{HO} + \text{SO}_2}}{k_{\text{HO} + \text{CO}}} = \frac{[\text{CO}]_{\text{AVG}}}{[\text{SO}_2]_{\text{AVG}}} \frac{\Delta[\text{SO}_2]}{\Delta[\text{CO}_2]} \quad (11)$$

The gas-phase rate coefficients for the Reactions 1 and 8 are well known now. These were used to calculate the literature $k_{\text{HO} + \text{SO}_2}/k_{\text{HO} + \text{CO}}$ ratio. The rate coefficients for the reaction of $\text{HO}\bullet$ with SO_2 is pressure and temperature dependent [41]. This reaction involves two small molecules forming a reactive intermediate that requires its collision energy to be dissipated through collisions with a third bodies. The rate coefficient n units of $\text{cm}^6 \text{molecule}^{-1} \text{s}^{-1}$ is calculated through the following equations.

$$k_0(T) = k_{0,298} \left(\frac{T}{298} \right)^{-n} \quad (12)$$

$$k_\infty(T) = k_{\infty,298} \left(\frac{T}{298} \right)^{-m} \quad (13)$$

$$k_{HO+SO_2}(T, [M]) = \left\{ \frac{k_\infty(T)k_0(T)[M]}{k_\infty(T) + k_0(T)[M]} \right\} 0.6^{\left\{ 1 + \left[\log_{10} \left(\frac{k_0(T)[M]}{k_\infty(T)} \right) \right]^2 \right\}^{-1}} \quad (14)$$

where: $k_{0,298} = 2.90 \times 10^{-31}$, $n = 4.1$, $k_{\infty,298} = 1.70 \times 10^{-12}$ and $m = -0.2$; and $[M]$ is the concentration of the total background gas in molecules cm^{-3} [41].

The rate coefficient for the reaction of $\text{HO}\bullet$ with CO in units of $\text{cm}^6 \text{molecule}^{-1} \text{s}^{-1}$ is given by equation 15 [42,43]:

$$k_{HO+CO} = 1.44 \times 10^{-13} \times \left(1.0 + \frac{0.8 \times [N_2]}{4 \times 10^{19}} \right) \quad (15)$$

These were used to calculate literature ratio of the coefficients given in the Results section of this work.

Table 1. Initial conditions for sulfur dioxide oxidation experiments that were made using molecular nitrogen as the background gas. All experiments contained a trace of molecular oxygen with a pressure assumed to be $4.64 \pm 0.06 \times 10^{-5}$ atm [37]. The initial reactive nitrogen is the total initial sum of the HONO , NO and NO_2 concentrations.

Experiment Number	N_2 (atm)	Initial Reactive Nitrogen ($\text{Molec cm}^{-3} \times 10^{-15}$)	Initial CO ($\text{Molec cm}^{-3} \times 10^{-16}$)	Initial SO_2 ($\text{Molec cm}^{-3} \times 10^{-15}$)
1	0.921	0.817	2.31	2.96
2	0.954	0.882	3.43	3.88
3	0.925	0.917	2.31	2.23
4	0.924	1.09	1.60	2.07
5	0.922	1.23	1.62	1.69
6	0.925	2.17	1.10	1.70
7	0.933	2.38	1.03	1.28
8	0.921	1.91	1.07	2.01

Table 2. Initial conditions for sulfur dioxide oxidation experiments that were made using synthetic air as the background gas [37].

Experiment Number	N_2 (atm)	O_2 (atm)	Initial Reactive Nitrogen ($\text{Molec cm}^{-3} \times 10^{-15}$)	Initial CO ($\text{Molec cm}^{-3} \times 10^{-16}$)	Initial SO_2 ($\text{Molec cm}^{-3} \times 10^{-15}$)
O1	0.761	0.176	0.739	2.29	3.20
O2	0.748	0.171	1.43	2.32	2.26
O3	0.749	0.172	1.34	1.86	3.42
O4	0.746	0.175	0.828	1.83	2.31
O5	0.752	0.169	0.908	1.38	3.14
O6	0.742	0.176	1.02	1.39	2.36
O7	0.750	0.171	1.20	0.935	3.56

3. Results

Table 3 shows experimental results for the photolysis experiments.

Table 3. Experimental Results for sulfur dioxide oxidation [37].

Experiment Number	Reaction Time (min)	Δ Reactive Nitrogen (Molec cm ⁻³ ×10 ⁻¹⁴)	ΔCO ₂ (Molec cm ⁻³ ×10 ⁻¹⁴)	ΔSO ₂ (Molec cm ⁻³ ×10 ⁻¹⁴)	Experimental $\frac{k_{HO+SO_2}}{k_{HO+CO}}$
1	29.12	0.088	1.60	2.53	12.9
2	25.37	0.52	1.01	1.03	9.1
3	16.98	0.060	1.58	1.38	9.4
4	25.57	-0.004	1.07	1.61	12.1
5	25.72	1.20	0.979	1.26	12.8
6	25.78	3.90	0.816	1.72	14.5
7	25.82	2.57	1.00	1.72	14.9
8	28.47	19.10	0.383	1.03	14.8
O1	28.20	0.100	1.50	2.34	11.6
O2	28.87	0.917	1.27	1.75	14.7
O3	28.37	-0.024	0.832	2.45	16.7
O4	28.62	-0.062	1.28	2.57	16.8
O5	28.87	-0.609	0.916	1.64	8.0
O6	28.32	0.382	0.962	2.45	15.9
O7	37.20	0.803	0.763	2.92	10.5

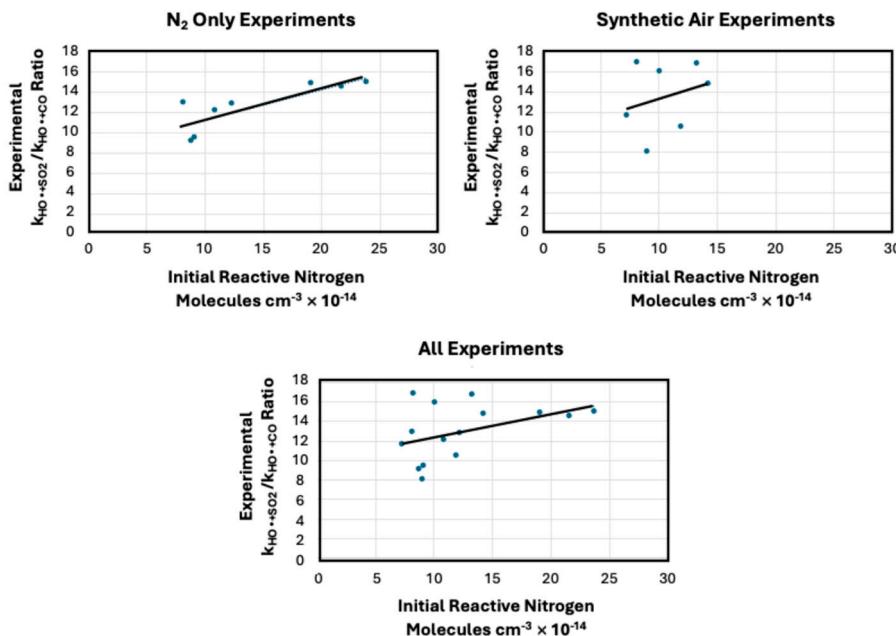

Table 3 shows the experimental k_{HO+SO_2}/k_{HO+CO} ratios calculated using Equation 11 from the initial concentrations. The observed changes in SO₂ and CO₂ concentrations. The ratios ranges from 9.1 to 14.9 for the experiments made with background N₂. The ratio ranges from 0.8 to 16.7 for the experiments made with background synthetic air.

Table 4 shows calculated k_{HO+SO_2}/k_{HO+CO} ratios from the literature rate coefficients. The expected values of the ratios are between 4 and 4.5. The experimental values of the k_{HO+SO_2}/k_{HO+CO} ratios are between 1.80 and 3.75 times greater than the literature calculated values.

Table 4. Comparison of experimental k_{HO+SO_2}/k_{HO+CO} ratio with literature values. The values of k_{HO+SO_2} and k_{HO+CO} were calculated for a temperature of 300K and the N₂ pressures given in Tables 1 and 2.

Experiment Number	k_{HO+SO_2} (cm ³ Molec ⁻¹ ×10 ¹³)	k_{HO+CO} (cm ³ Molec ⁻¹ ×10 ¹³)	Literature $\frac{k_{HO+SO_2}}{k_{HO+CO}}$	Experimental/Literature $\frac{k_{HO+SO_2}}{k_{HO+CO}}$
1	9.22	2.21	4.17	3.10
2	9.33	2.24	4.17	2.18
3	9.23	2.22	4.17	2.26
4	9.23	2.21	4.17	2.90
5	9.22	2.21	4.17	3.07
6	9.23	2.22	4.17	3.48
7	9.26	2.22	4.17	3.58
8	9.22	2.21	4.17	3.55
O1	9.27	2.08	4.46	2.60
O2	9.21	2.07	4.46	3.30
O3	9.22	2.07	4.46	3.75
O4	9.22	2.07	4.46	3.76
O5	9.22	2.07	4.45	1.80
O6	9.21	2.06	4.47	3.56
O7	9.22	2.07	4.46	2.36

Plots were made to examine the possibility that there was an effect of reactive nitrogen on the k_{HO+SO_2}/k_{HO+CO} ratios. Figure 2 shows plots of the experimental k_{HO+SO_2}/k_{HO+CO} ratios as functions of the initial reactive nitrogen oxides (HONO+NO+NO₂). Table 5 shows the average reactive nitrogen in the three sets of experiments, the average k_{HO+SO_2}/k_{HO+CO} ratio and the shared variance between them.

Figure 2. Figure shows the relationship between the experimental k_{HO+SO_2}/k_{HO+CO} ratios and the initial reactive nitrogen used in the experiments. The initial reactive nitrogen is the total initial sum of the HONO, NO and NO₂ concentrations. The plot at the top left is for the experiments made with N₂ as the background gas. The plot at the top right is for the experiments made with synthetic air as the background gas. The plot at the lower center shows all experiments plotted together. The line in each plot is the regression line.

Table 5. Comparison of average experimental k_{HO+SO_2}/k_{HO+CO} ratio to the average reactive nitrogen concentrations and the shared variance between them as determined from the plots shown in Figure 2.

Experimental Series	Average Reactive Nitrogen Conc. (Molec $cm^{-3} \times 10^{-14}$)	Average k_{HO+SO_2}/k_{HO+CO} Ratio	Shared Variance (R^2)
N ₂ Only	14.2	12.6	0.65
Synthetic Air	10.7	13.5	0.076
All	12.6	13.0	0.18

4. Discussion

This new analysis of photolysis experiments made with relatively high concentrations of HONO, NO, NO₂, SO₂ and CO showed that there may be an uncharacterized oxidation process for SO₂. The literature value of the k_{HO+SO_2}/k_{HO+CO} ratio for the experimental conditions is near 4 to 4.5 while the measured ratio is around three times greater for the N₂ only, synthetic air background gas experiments and both sets of experiments considered together.

The experimental ratio for the experiments with N₂ only as the background gas has a shared variance of 0.65 with the initial total reactive nitrogen concentration. However, the shared variance between the experimental ratio and the initial total reactive nitrogen concentration is much lower for the synthetic air case. Although there is much uncertainty, this could be due to an oxygen effect that is not taken into account in this analysis.

If there is a new oxidation process for SO₂ that is three times greater than the known hydroxyl radical reaction that occurs in NO_x polluted atmospheres then conversion rates in the range of 10 to

20% hr⁻¹ may occur in urban regions such as El Paso, Texas with sources of SO₂ and NO_x (using reference 33 as the baseline).

Sulfuric acid has been produced on a commercial scale from the direct reaction of SO₂ and NO_x and H₂O. These were mixed at very high concentrations in large chambers, made from lead, where reactions produced H₂SO₄. [44] Based on our experiments we show that similar reactions may occur at lower concentrations. These reactions are probably heterogeneous and appear to be faster than the gas-phase reactions. The reactions may be important for converting SO₂ to sulfate on urban scales and therefore contribute to local PM_{2.5} formation. Improved representation of these processes may improve the agreement between measurements and air quality modeling results [35,36] for the United States, China and elsewhere. New research involving laboratory studies and field measurements are needed to better characterize the oxidation of SO₂. because it is possible that heterogeneous reactions occurred on sulfate particles as soon as they were formed and/or other reactive nitrogen catalyzed processes occur. Therefore, better measurements of formation and properties of the sulfate particles and their surface reactions are needed.

Author Contributions: Conceptualization, W.S. and R.F.; methodology, W.S.; validation, W.S., and R.F.; formal analysis, W.S.; investigation, W.S.; resources, W.S. and R.F.; data curation, W.S.; writing—original draft preparation, W.S.; writing—review and editing, R.F.; visualization, W.S.; supervision, W.R. and R.F.; project administration, R.F.; funding acquisition, R.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the NOAA Center for Atmospheric Science—Meteorology (NCASM II), which is funded by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Educational Partnership Program under Agreement No. NA22SEC4810015.

Data Availability Statement: Original data is available in: Stockwell, William. "The chemistry of nitrogen oxides/sulphur oxides/hydrogen oxides systems." Doctoral dissertation, Ohio State University, 1981. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487171566434414.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Middleton, P.M.; Klang, C.S.; Mohnen, V.A. The relative importance of various urban sulfate aerosol production mechanisms – A Theoretical comparison. In *Heterogeneous Atmospheric Chemistry*; Schryer D.R.; American Geophysical Union; Washington D.C., United States, 1982, pp. 221–230.
2. Walcek, C.J.; Taylor, G.R. A Theoretical Method for Computing Vertical Distributions of Acidity and Sulfate Production within Cumulus Clouds. *J. Atmos. Sci.* **1986**, *43*, 339–55. [https://doi.org/10.1175/1520-0469\(1986\)043<0339:atmfcv>2.0.co;2](https://doi.org/10.1175/1520-0469(1986)043<0339:atmfcv>2.0.co;2).
3. Seinfeld, J.H.; Pandis, S.N. *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change* 3rd. 2016, John Wiley & Sons, New York.
4. Kolb, C.F.; Worsnop, D.R. Chemistry and Composition of Atmospheric Aerosol Particles. *Annu. Rev. Phys. Chem.* **2012**, *63*, 471–491. <https://doi.org/10.1146/annurev-physchem-032511-143706>
5. Warneck, P., Chapter 10. Sulphur compounds in the atmosphere. In *Chemistry of the Natural Atmosphere*, 2ed; Academic Press, San Diego, California, United States, 2000, pp. 587–655.
6. Brasseur, G.P.; Orlando, J.J.; Tyndall, G.S. *Atmospheric Chemistry and Global Change*, Oxford University Press, United Kingdom, 1999.
7. Rotstain, L.D.; Lohmann, U. Simulation of the Tropospheric Sulfur Cycle in a Global Model with a Physically Based Cloud Scheme. *J. Geophys. Res.* **2002**, *107*, 4592. <https://doi.org/10.1029/2002JD002128>.
8. Gondwe, M.; Krol, M.; Gieskes, W.; Klaassen, W.; de Baar, H. The Contribution of Ocean-Leaving DMS to the Global Atmospheric Burdens of DMS, MSA, SO₂, and NSS SO₄²⁻. *Global Biogeochem. Cycles* **2003**, *17*, 1056. <https://doi.org/10.1029/2002GB001937>.
9. Gondwe, M.; Krol, M.; Gieskes, W.; Klaassen, W.; de Baar, H. Correction to “The Contribution of Ocean-Leaving DMS to the Global Atmospheric Burdens of DMS, MSA, SO₂, and NSS SO₄²⁻”. *Global Biogeochem. Cycles* **2003**, *17*, 1106. <https://doi.org/10.1029/2003GB002153>.

10. Lana, A.; Bell, T.G.; Simó, R.; Vallina, S.M.; Ballabrera-Poy, J.; Kettle, A.J.; Dachs, J.; Bopp, L.; Saltzman, E.S.; Stefels, J.; Johnson, J.E.; Liss, P.S. An Updated Climatology of Surface Dimethylsulfide Concentrations and Emission Fluxes in the Global Ocean. *Global Biogeochem. Cycles* **2011**, *25*, GB 1004. <https://doi.org/10.1029/2010GB003850>.
11. Goss, M.B.; Kroll, J.H. Chamber Studies of OH + Dimethyl Sulfoxide and Dimethyl Disulfide: Insights into the Dimethyl Sulfide Oxidation Mechanism. *Atmos. Chem. Phys.* **2024** *24*, 1299–1314. <https://doi.org/10.5194/acp-24-1299-2024>.
12. Rickly, P.S.; Guo, H.; Campuzano-Jost, P.; Jimenez, J. L.; Wolfe, G.M.; Bennett, R.; Bourgeois, I.; Crounse, J.D.; Dibb, J.E.; DiGangi, J.P.; Diskin, G.S.; Dollner, M.; Gargulinski, E.M.; Hall, S.R.; Halliday, H.S.; Hanisco, T.F.; Hannun, R.A.; Liao, J.; Moore, R.; Nault, B.A.; Nowak, J.B.; Peischl, J.; Robinson, C.E.; Ryerson, T.; Sanchez, K.J.; Schöberl, M.; Soja, A.J.; St. Clair, J.M.; Thornhill, K.L.; Ullmann, K.; Wennberg, P.O.; Weinzierl, B.; Wiggins, E.B.; Winstead, E.L.; Rollins, A.W. Emission factors and evolution of SO₂ measured from biomass burning in wildfires and agricultural fires. *Atmos. Chem. Phys.*, **2022**, *22*, 15603–15620. <https://doi.org/10.5194/acp-22-15603-2022>
13. 13 Pausas, J.G.; Keeley, J.E. Wildfires and Global Change. *Frontiers in Ecology and the Environment*, **2021**, *19*, 387–395. <https://doi.org/10.1002/fee.2359>
14. Smith, S.J.; van Aardenne, J.; Klimont, Z.; Andres, R.J.; Volke, A.; Delgado Arias, S. Anthropogenic Sulfur Dioxide Emissions: 1850–2005. *Atmos. Chem. Phys.* **2011**, *11*, 1101–1116. <https://doi.org/10.5194/acp-11-1101-2011>.
15. Calkins, W.H. The Chemical Forms of Sulfur in Coal: A Review. *Fuel* **1994**, *73*, 475–484. [https://doi.org/10.1016/0016-2361\(94\)90028-0](https://doi.org/10.1016/0016-2361(94)90028-0)
16. Hu, R.; Seager S.; Bains W. Photochemistry in Terrestrial Exoplanet Atmospheres. II. H₂S and SO₂ Photochemistry in Anoxic Atmospheres. *The Astrophysical Journal*. **2013**, *769*, 1–14. <https://doi.org/10.1088/0004-637X/769/1/6>
17. Visioni, D.; Pitari, G.; Aquila, V. Sulfate Geoengineering: A Review of the Factors Controlling the Needed Injection of Sulfur Dioxide. *Atmos. Chem. Phys.* **2017**, *17*, 3879–3889. <https://doi.org/10.5194/acp-17-3879-2017>
18. Tilgner, A.; Schaefer, T.; Alexander, B.; Barth, M.; Collett Jr., J.L.; Fahey, K.M.; Nenes, A.; Pye, H.O.T.; Herrmann H.; McNeill, V.F. Acidity and the Multiphase Chemistry of Atmospheric Aqueous Particles and Clouds. *Atmos. Chem. Phys.* **2021**, *21*, 13483–536. doi.org:10.5194/acp-21-13483-2021
19. Jacobson, M.Z. Atmospheric Pollution, History, Science and Regulation. Cambridge University Press, Cambridge, United Kingdom, **2002**.
20. Bolin, B.; Persson, C. Regional Dispersion and Deposition of Atmospheric Pollutants with Particular Application to Sulfur Pollution over Western Europe. *Tellus* **1975**, *27*, 281–310. <https://doi.org/10.1111/j.2153-3490.1975.tb01679.x>
21. Cowling, E.B. Acid Precipitation in Historical Perspective. *Environ. Sci. Technol.* **1982**, *16*, 110A-123A. <https://doi.org/10.1021/es00096a002>
22. Acid Deposition: State of Science and Technology, Volume 1 – Emissions, Atmospheric Processes and Deposition; National Acid Assessment Program; Superintendent of Documents; Washington D.C. United States, 1990.
23. Acid Deposition: State of Science and Technology, Volume 2 – Aquatic Processes and Effects; National Acid Assessment Program; Superintendent of Documents; Washington D.C. United States, 1990.
24. Acid Deposition: State of Science and Technology, Volume 3 – Terrestrial, Materials, Health and Visibility Effects; National Acid Assessment Program; Superintendent of Documents; Washington D.C. United States, 1990
25. Acid Deposition: State of Science and Technology, Volume 4 – Control Technologies, Future Emissions and Effects Valuation; National Acid Assessment Program; Superintendent of Documents; Washington D.C. United States, 1990.
26. Tanner, R.L.; Tichler, J.; Brown, R.; Davis, W.; Johnson, S.; Patrinos, A.A.; Sisterson, D.; Slinn, W.G. PRECP: the Department of Energy's Program on the Nonlinearity of Acid Precipitation Processes (No. BNL-38776). Brookhaven National Lab., Upton, NY (USA); Pacific Northwest Lab., Richland, WA (USA); Argonne National Lab., IL (USA) 1986.
27. Rhode, H.; Crutzen, R.; Vanderpol, A. Formation of Sulfuric and Nitric Acid in the Atmosphere During Long-Range Transport. *Tellus*, **1981**, *33*, 132 – 141.

28. Chen, L.-W.A.; Tropp, R.; Li, W.-W.; Zhu, D.; Chow, J.C.; Watson, J.C.; Zielinska, B. Aerosol and Air Toxics Exposure in El Paso, Texas: A Pilot Study. *Aerosol and Air Quality Research*, 12: 2012, 169–179. <https://doi.org/10.4209/aaqr.2011.10.0169>

29. Karle, N.N.; Mahmud, S.; Sakai, R.K.; Fitzgerald, R.M.; Morris, V.R.; Stockwell, W.R. Investigation of the Successive Ozone Episodes in the El Paso–Juarez Region in the Summer of 2017. *Atmosphere* 2020, 11, 532. <https://doi.org/10.3390/atmos11050532>.

30. Stockwell, W.R.; Calvert, J.G. The Mechanism of the HO–SO₂ Reaction. *Atmos. Environ.* 1983, 17, 2231–2235.

31. Sarwar, G.; Fahey, F.; Kwok, R.; Gilliam, R.; Xue, J.; Jianzhen, Y.; Carter, W.P.L. Potential impacts of two SO₂ oxidation pathways on regional sulfate concentrations: aqueous-phase oxidation by NO₂ and gas-phase oxidation by Stabilized Criegee Intermediates. *Atmos. Environ.* 2013, 68, 186–197.

32. Sarwar, G.; Simon, H.; Fahey, K.; Mathur, R.; Goliff, W.S.; Stockwell, W.R. Impact of Sulfur Dioxide Oxidation by Stabilized Criegee Intermediate on Sulfate, *Atmos. Environ.*, 2014, 85, 204–214.

33. Calvert, J.G.; Stockwell, W.R. Acid Generation in the Troposphere by Gas Phase Chemistry. *Envir. Sci. Technol.*, 1983, 17, 428A–443A.

34. Graedel, T.E.; Weschler, C.J. Chemistry Within Aqueous Atmospheric Aerosols and Raindrops. *Rev. Geophys. and Space Phys.* 1981, 19, 505–539.

35. Vannucci, P. F.; Foley, K.; Murphy, B. N.; Hogrefe, C.; Cohen, R. C.; and Pye, H. O. T.; Temperature-Dependent Composition of Summertime PM_{2.5} in Observations and Model Predictions across the Eastern U.S., ACS Earth Space Chem., 8 (2), 381–392, 2024. <https://doi.org/10.1021/acsearthspacechem.3c00333>.

36. Farrell, S. L.; Pye, H. O. T.; Gilliam, R.; Pouliot, G.; Huff, D.; Sarwar, G.; Vizuete, W.; Briggs, N.; Duan, F.; Ma, T.; Zhang, S.; Fahey, K. Predicted Impacts of Heterogeneous Chemical Pathways on Particulate Sulfur over Fairbanks (Alaska), the Northern Hemisphere and the Contiguous United States, *Atmos. Chem. Phys.* 2025, 25, 3287–3312. <https://doi.org/10.5194/acp-25-3287-2025>.

37. Stockwell, W.R. The Chemistry of Nitrogen Oxides/Sulphur Oxides/Hydrogen Oxides Systems. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 1981. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487171566434414

38. Crutzen, P.J. My Life with O₃, NO_x and Other YZOs, Nobel Lecture. December 8, 1995. Available online: <https://www.nobelprize.org/prizes/chemistry/1995/crutzen/lecture/> (Accessed on 4 August 2025).

39. Gleason, J. F.; Sinha, A.; Howard, C. J. Kinetics of the Gas-Phase Reaction HOSO₂ + O₂ → HO₂ + SO₃. *J. Phys. Chem.* 1987, 91, 719–724. <https://doi.org/10.1021/j100287a045>.

40. Egsgaard, H.; Carlson, L.; Florencio, H.; Drewello, T.; Schwarz, H. Experimental Evidence for the Gaseous HSO₃ Radical. The Key Intermediate in the Oxidation of SO₂ in the Atmosphere. *Chem. Phys. Lett.* 1988, 148, 537–540. [https://doi.org/10.1016/0009-2614\(88\)80327-0](https://doi.org/10.1016/0009-2614(88)80327-0).

41. Burkholder, J.B.; Sander, S.P.; Abbatt, J.; Barker, J.R.; Cappa, C.; Crounse, J.D.; Dibble, T.S.; Huie, R.E.; Kolb, C.E.; Kurylo, M.J.; Orkin, V.L.; Percival, C.J.; Wilmouth, D.M.; Wine, P.H. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 19," JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, 2019 <http://jpldataeval.jpl.nasa.gov>.

42. Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume I – Gas Phase Reactions of O_x, HO_x, NO_x and SO_x Species. *Atmos. Chem. Phys.* 2004, 4, 1461–1738. <https://doi.org/10.5194/acp-4-1461-2004>, 2004.

43. Calvert, J.G.; Orlando, J.J.; Stockwell, W.R.; Wallington, T.J. The Mechanisms of Reactions Influencing Atmospheric Ozone, Oxford University Press: Oxford, United Kingdom, 2015; pp. 412–424.

44. Schroeder, W.H.; Urone, P. (1978). Isolation and Identification of Nitrosonium Hydrogen Sulfate (NOHSO₄) as a Photochemical Reaction Product in Air Containing Sulfur Dioxide and Nitrogen Dioxide. *Envir. Sci. Technol.* 1978, 12, 545–550.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.