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Abstract 

The oxidization of sulfur dioxide (SO2) occurs in the gas and liquid-phase and this oxidation 
contributes to particulate matter and acid precipitation. The production of sulfate particles is 
significant because of their impacts on climate, precipitation acidification, and human health. In this 
paper the focus is on the oxidation of SO2 and on the possibility of unknown heterogeneous reactions 
that may occur on sulfate aerosol surfaces. These results are based on aa reanalysis of a foundational 
set of SO2 laboratory oxidation measurements. The experiments involved two sets of photochemical 
studies of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), SO2, carbon monoxide (CO) and 
water vapor (H2O) mixtures made in molecular nitrogen (N2) with trace of molecular oxygen or in 
synthetic air. The reanalysis strongly suggests that there are uncharacterized processes for the 
oxidation of SO2 that are nearly three times faster than the known gas-phase reactions. The 
uncharacterized processes may involve sulfate aerosol surface reactions in the presence of nitrogen 
oxides. If these processes can be included in current atmospheric chemistry models, greater 
conversion rates of SO2 to sulfate aerosol will be calculated and this may reduce modelling bias. 

Keywords: particulate matter; sulfur dioxide; sulfate particles; aerosol; gas-oxidation; heterogeneous 
processes 
 

1. Introduction 

The oxidation of sulfur dioxide (SO2) produces products that are significant sources of 
atmospheric particulate matter and acid precipitation (acid rain) [1–4]. The products, small droplets 
of liquid sulfuric acid (H2SO4), bisulfate (HSO4-) and sulfate (SO4=) have consequences for health, 
agriculture, climate, etc. SO2 is emitted from many natural and anthropogenic sources [4,5]. The 
greatest source of sulfur emissions into the atmosphere comes from biological processes in the Earth’s 
oceans and this means that these sources are stronger in the southern hemisphere. Dimethyl sulfide 
(DMS, CH3SCH3) constitutes a significant fraction of the sulfurous emissions from the oceans [5–10]. 
Hydrogen sulfide (H2S) is another biogenically emitted compound. H2S and DMS are converted to 
SO2 by a complicated chemical reaction mechanism [11]. 

Natural sources of SO2 include volcanoes [5] and its photochemical production from biogenic 
emissions such as hydrogen sulfide (H2S) and dimethyl sulfide (CH3SCH3) Biomass burning, i.e. 
wildfires, is an underappreciated source of sulfurous compound emissions [12]. The wildfire sources 
of sulfur compound emissions is increasing because of the increasing number and intensity of 
wildfires [13]. The major anthropogenic sources include the production of metals from sulfur 
containing ores (smelting) and the combustion of fossil fuels [14]. Coal is an example of a fossil fuel 
with sources that have large differences in sulfur content [15]. 

Sulfur dioxide is oxidized in the atmosphere to produce sulfate particles, i.e., H2SO4, HSO4- or 
sulfate SO4=, that are chemical components of particulate matter or aerosols [3]. This oxidation of 
sulfur dioxide to produce particulate matter is very important because of their effects on climate, 
precipitation patterns, amounts and acidification, and their health effects [4]. The chemistry may have 
possible applications to exoplanetary atmospheres too [16]. 
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Sulfur containing particles have very significant effects on climate because they strongly scatter 
solar radiation which effects the Earth’s radiation budget [4]. In fact, the emission of sulfate 
containing particles has been suggested as a method of cooling the Earth’s atmosphere to counteract 
global warming [17]. 

Sulfate containing particles, along with other forms of particulate matter, contribute to the 
secondary aerosol effect [4]. Fine aerosol particles provide nucleation sites for the formation of cloud 
water droplets. If there is an increase in the concentration of fine aerosol particles, then there will be 
more, but smaller droplets formed for a given level of water vapor in the atmosphere. Depending 
upon conditions the secondary aerosol effect can affect the amount and geographical distribution of 
precipitation. 

Sulfate compounds are acidic in liquid water, and they contribute strongly to the acidification 
of precipitation along with nitrates (NO3-) and organic acids such as formic (HCOOH) and acetic acid 
(CH3COOH) [18]. For this reason and direct health effects, emissions of SO2 have regulated in the 
United States by the Clean Air Act Amendments since 1970 [19]. Acid precipitation was recognized 
as a major problem in Europe, Canada and the United States [20,21] during the late 1970s and 1980s. 
One of the major driving political and scientific questions for public policy regarding acid 
precipitation was to determine if the production of sulfate was limited by the available sulfur dioxide 
(SO2) or by the available oxidant; this uncertainty was known as the oxidant limitation question. This 
was a major issue of several international programs including the American National Acid 
Precipitation Program (NAPAP) and the U.S. Department of Energy’s Processing of Emissions by 
Clouds Program (PRECP) [22–26]. 

Figure 1 shows the difference between a situation where the oxidation of SO2 is limited by the 
available oxidant or not [27]. If there is a limited amount of oxidant relative to the amount of SO2, left 
plot, then moderate reductions in SO2 will not result in less sulfate produced; this condition was 
known as oxidant limited. The right panel shows that if there is more oxidant available then SO2 then 
reductions in SO2 will result in reductions in the amount of sulfate produced. Finding the chemical 
mechanisms for the oxidation of SO2 is important for determining the emission reduction policies 
needed to reduce acid precipitation. 

 

Figure 1. The plot to the right shows an oxidant limited condition. In that case reductions or increases in SO2 
concentrations do not affect the formation of sulfate. The plot to the right shows the case where there is sufficient 
oxidant to convert SO2 to sulfate and decreases in SO2 concentrations lead to decreases in sulfate production. 

The oxidation of SO2 may be important on local, urban scales as well as regional and global. In 
general, the particulate matter produced through atmospheric chemical reactions are fine particles 
with an aerodynamic dynamiter of 2.5 µm and these particles are known as PM2.5. Larger particles 
with an aerodynamic dynamiter of 10 µm are known as PM10 [19]. As an example, the city of El Paso 
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Texas in the Paso Del Norte Border Region of the United States and Mexico has had problems with 
high concentrations of PM2.5 and PM10 [28,29]. High emissions of SO2, NOx and volatile organic 
compounds and wind-swept mineral dust have occurred in El Paso which contributes to particulate 
pollution. Emissions of nitrogen oxides are significant because the region contains the American – 
Mexican border. Truck and auto traffic are queued near the border until they are cleared to pass the 
border into the United States. 

1.1. SO2 Oxidation Mechanisms 

Many atmospheric chemical reactions produce products that condense to form particulate 
matter, PM2.5 or PM10. In general, SO2 is oxidized in either gas or aqueous phases or it may be 
deposited directly to the ground. In this paper we present evidence that there many be chemical 
reactions that may involve nitrogen oxides and/or heterogeneous processed involving sulfate 
aerosols. 

1.1.1. The Gas-Phase Oxidation of Sulfur Dioxide 

There are two gas-phase mechanisms known mechanisms for the gas-phase oxidation of sulfur 
dioxide. The hydroxyl radical (HO•) is the oxidant [30]. As shown by the reactions given below the 
HO• reacts with SO2 to produce the adduct HOSO2•, note that M is any molecule of air that stabilizes 
the formation of the adduct by absorbing excess collision energy. 

HO• + SO2 (+ M) → HOSO2• (+ M) (1)

HOSO2• + O2 → HO2• + SO3 (2)

SO3 + H2O → H2SO4 (+ liquid aerosol) (3)

The HOSO2• adduct reacts with molecular oxygen to produce the hydroperoxyl radical (HO2•) 
and sulfur trioxide (SO3) [30]. SO3 reacts with water vapor to produce sulfuric acid. In a nitrogen 
oxide polluted atmosphere, HO2• reacts with NO to reproduce HO• as shown below. 

HO2• + NO → HO• + NO2 (4)

The hydroxyl radical produced by Reaction 4 can react with SO2 making this mechanism a chain 
mechanism. When the concentration of nitric oxide (NO) is low, HO2• reacts with another HO2• or 
with organic peroxy radicals to produce hydrogen peroxide (H2O2) or an organic peroxide. 

Another gas-phase process for the oxidation of SO2 reaction with Criegee intermediates [31,32]. 
Criegee intermediates are produced by reactions of ozone (O3) with alkenes. An example of the 
mechanism for the production of Criegee intermediates from ethene (CH2CH2) and its oxidation of 
SO2 is given below, Reactions 5–6. 

O3 + CH2CH2 → CH2OOOCH2 (5)

CH2OOOCH2 → CH2OO + CH2O (6)

CH2OO + SO2 → SO3 + CH2O (7)

The average total rates of the HO• radical and the Criegee intermediate mechanisms are a few 
percent per hour for a range of realistic conditions with a maximum rate of 6.13 % hr-1 [33]. 

In cloud water or water coated aerosols the H2O2 may react with SO2 to produce sulfate [1,4,34] 
and in the gas-phase SO2 does not affect the concentration of the HO•. Either way there is little or no 
oxidant limitation to sulfate production from SO2 in the lower troposphere. 

However, there is reason to suspect that could be additional oxidation processes. Relative to 
observations, air quality models underestimate sulfate production across the Eastern U.S and the 
models underestimate the effect of temperature on its production [35,36]. These newer modeling 
studies for United States, Alaska and Beijing, China indicate that estimates of particulate sulfur may 
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be improved by the addition of additional heterogeneous chemical reactions [36]. In this paper we 
present an analysis of experimental data that suggests a process for the oxidation of SO2 that is not 
included in models. 

2. Materials and Methods 

The experiments that are reanalyzed here were made with the objective to measure the rate 
coefficient of the HO• radical with SO2 (HO+SO2) reaction) relative to the rate coefficient of the HO• 
radical with carbon monoxide (HO+CO) reaction [30,37]. The reaction of HO• with SO2 (Reaction 1) 
is given above and the reaction of with HO• with CO is given below. 

HO• + CO (+ O2) → HO2• + CO2 (8)

The original analysis determined that HO• radical concentrations were not affected by SO2 
concentrations, and this observation led to the proposal of the mechanism given by Reactions 1 
through 4 [30]. This study was cited as a landmark in sulfur oxide chemistry [38]. The proposed 
mechanism was verified by several independent studies [39,40]. 

Mixtures of SO2, carbon monoxide (CO), nitrous acid (HONO), nitric oxide (NO) and nitrogen 
dioxide (NO2) were photolyzed in molecular nitrogen (N2) or synthetic air as a background gas, Table 
1 [37]. The initial reactive nitrogen is the total molecular concentration of NO, NO2 and HONO, Table 
1 gives the initial conditions for the experiments made in N2; note that there was a small trace of 
molecular (O2) introduced during the filling of the chamber. Table 2 gives the initial conditions for 
the experiments made in synthetic air. Photolysis of nitrous acid produced HO• radicals. 

HONO + hν → HO• + NO (8)

The photolysis experiments were made using a long-path glass chamber that was 6m long and 
the concentration changes were measured with a Fourier Transform Spectrometer [30,37]. The 
concentrations of CO were sufficiently high so that they did not appreciably change during the 
experiments so the relative extent of the HO•+CO reaction was taken as the total CO2 produced 
during each experiment. The rates of the HO•+SO2 and HO•+CO reactions are given below where 
kSO2 and kCO are rate coefficients for these reactions. [𝑆𝑂ଶ]𝑑𝑡 = 𝑘ுைାௌைଶ[𝐻𝑂 ∗][𝑆𝑂ଶ] (9)

[𝐶𝑂]𝑑𝑡 = 𝑘ுைା஼ை[𝐻𝑂 ∗][𝐶𝑂] (10)

Equations 9 and 10 may be rearranged to derive the ratio, kHO+SO2/kHO+CO. To derive Equation 11 
for the experiments, note that the HO• concentrations cancel out, that the concentrations of SO2 and 
CO may be averaged over the photolysis period ([SO2]AVG, [CO]AVG) and that the change in CO is 
equal to the amount of CO2 produced (Δ[CO2]. The change in the SO2 concentration is given by Δ[SO2]. 𝑘ுைାௌைଶ𝑘ுைା஼ை = [𝐶𝑂]஺௏ீ[𝑆𝑂ଶ]஺௏ீ ∆[𝑆𝑂ଶ]∆[𝐶𝑂ଶ] (11)

The gas-phase rate coefficients for the Reactions 1 and 8 are well known now. These were used 
to calculate the literature kHO+SO2/kHO+CO ratio. The rate coefficients for the reaction of HO• with SO2 is 
pressure and temperature dependent [41]. This reaction involves two small molecules forming a 
reactive intermediate that requires its collision energy to be dissipated through collisions with a third 
bodies. The rate coefficient n units of cm6molecule-1s-1 is calculated through the following equations. 𝑘଴ሺ𝑇ሻ = 𝑘଴,ଶଽ଼ ൬ 𝑇298൰ି௡ (12) 

𝑘ஶሺ𝑇ሻ = 𝑘ஶ,ଶଽ଼ ൬ 𝑇298൰ି௠ (13) 
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𝑘ுைାௌைଶሺ𝑇, [𝑀]ሻ = ቊ 𝑘ஶሺ𝑇ሻ𝑘଴ሺ𝑇ሻ[𝑀]𝑘ஶሺ𝑇ሻ+ 𝑘଴ሺ𝑇ሻ[𝑀]ቋ0.6ቊଵା൤௟௢௚భబ൬௞బሺ்ሻ[ெ}௞ಮሺ்ሻ ൰൨మቋషభ
 (14) 

where: 𝑘଴,ଶଽ଼ =2.90×10-31, n = 4.1, 𝑘ஶ,ଶଽ଼ =1.70×10-12 and m = -0.2; and [M] is the concentration of 
the total background gas in molecules cm-3 [41]. 

The rate coefficient for the reaction of HO• with CO in units of cm6molecule-1s-1 is given is given 
by equation 15 [42,43]: 𝑘ுைା஼ை = 1.44 × 10ିଵଷ × ቀ1.0 + ଴.଼×[ேమ]ସ×ଵ଴శభవቁ  (15)

These were used to calculate literature ratio of the coefficients given in the Results section of this 
work. 

Table 1. Initial conditions for sulfur dioxide oxidation experiments that were made using molecular nitrogen as 
the background gas. All experiments contained a trace of molecular oxygen with a pressure assumed to be 
4.64±0.06×10-5 atm [37]. The initial reactive nitrogen is the total initial sum of the HONO, NO and NO2 
concentrations. 

Experiment 
Number 

N2 

(atm) 

Initial Reactive 
Nitrogen 

(Molec cm-3 
×10-15) 

Initial 
CO 

(Molec cm-3 
×10-16) 

Initial 
SO2 

(Molec cm-3 
×10-15) 

1 0.921 0.817 2.31 2.96 
2 0.954 0.882 3.43 3.88 
3 0.925 0.917 2.31 2.23 
4 0.924 1.09 1.60 2.07 
5 0.922 1.23 1.62 1.69 
6 0.925 2.17 1.10 1.70 
7 0.933 2.38 1.03 1.28 
8 0.921 1.91 1.07 2.01 

Table 2. Initial conditions for sulfur dioxide oxidation experiments that were made using synthetic air as the 
background gas [37]. 

Experiment 
Number 

N2 

(atm) 
O2 

(atm) 
Initial 

Reactive Nitrogen 
(Molec cm-3 

×10-15) 

Initial 
CO 

(Molec cm-3 
×10-16) 

Initial 
SO2 

(Molec cm-3 
×10-15) 

O1 0.761 0.176 0.739 2.29 3.20 
O2 0.748 0.171 1.43 2.32 2.26 
O3 0.749 0.172 1.34 1.86 3.42 
O4 0.746 0.175 0.828 1.83 2.31 
O5 0.752 0.169 0.908 1.38 3.14 
O6 0.742 0.176 1.02 1.39 2.36 
O7 0.750 0.171 1.20 0.935 3.56 

3. Results 

Table 3 shows experimental results for the photolysis experiments. 
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Table 3. Experimental Results for sulfur dioxide oxidation [37]. 

Experiment 
Number 

Reaction 
Time 
(min) 

Δ Reactive 
Nitrogen 

(Molec cm-3 
×10-14) 

ΔCO2 
(Molec cm-3 

×10-14) 

ΔSO2 
(Molec cm-3 

×10-14) 

Experimental 𝒌𝑯𝑶ା𝑺𝑶𝟐𝒌𝑯𝑶ା𝑪𝑶  

 
1 29.12 0.088 1.60 2.53 12.9 
2 25.37 0.52 1.01 1.03 9.1 
3 16.98 0.060 1.58 1.38 9.4 
4 25.57 -0.004 1.07 1.61 12.1 
5 25.72 1.20 0.979 1.26 12.8 
6 25.78 3.90 0.816 1.72 14.5 
7 25.82 2.57 1.00 1.72 14.9 
8 28.47 19.10 0.383 1.03 14.8 

O1 28.20 0.100 1.50 2.34 11.6 
O2 28.87 0.917 1.27 1.75 14.7 
O3 28.37 -0.024 0.832 2.45 16.7 
O4 28.62 -0.062 1.28 2.57 16.8 
O5 28.87 -0.609 0.916 1.64 8.0 
O6 28.32 0.382 0.962 2.45 15.9 
O7 37.20 0.803 0.763 2.92 10.5 

Table 3 shows the experimental kHO+SO2/kHO+CO ratios calculated using Equation 11 from the initial 
concentrations. The observed changes in SO2 and CO2 concentrations The ratios ranges from 9.1 to 
14.9 for the experiments made with background N2. The ratio ranges from 0.8 to 16.7 for the 
experiments made with background synthetic air. 

Table 4 shows calculated kHO+SO2/kHO+CO ratios from the literature rate coefficients. The expected 
values of the ratios are between 4 and 4.5. The experimental values of the kHO+SO2/kHO+CO ratios are 
between 1.80 and 3.75 times greater than the literature calculated values. 

Table 4. Comparison of experimental kHO+SO2/kHO+CO ratio with literature values. The values of kHO+SO2 and kHO+CO 
were calculated for a temperature of 300K and the N2 pressures given in Tables 1 and 2. 

Experiment 
Number 

kHO+SO2 
(cm3 Molec-1  

×1013) 

kHO+CO 
(cm3 Molec-1  

×1013) 

Literature 𝒌𝑯𝑶ା𝑺𝑶𝟐𝒌𝑯𝑶ା𝑪𝑶  

 

Experimental/Literature 𝒌𝑯𝑶ା𝑺𝑶𝟐𝒌𝑯𝑶ା𝑪𝑶  

 
1 9.22 2.21 4.17 3.10 
2 9.33 2.24 4.17 2.18 
3 9.23 2.22 4.17 2.26 
4 9.23 2.21 4.17 2.90 
5 9.22 2.21 4.17 3.07 
6 9.23 2.22 4.17 3.48 
7 9.26 2.22 4.17 3.58 
8 9.22 2.21 4.17 3.55 

O1 9.27 2.08 4.46 2.60 
O2 9.21 2.07 4.46 3.30 
O3 9.22 2.07 4.46 3.75 
O4 9.22 2.07 4.46 3.76 
O5 9.22 2.07 4.45 1.80 
O6 9.21 2.06 4.47 3.56 
O7 9.22 2.07 4.46 2.36 
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Plots were made to examine the possibility that there was an effect of reactive nitrogen on the 
kHO+SO2/kHO+CO ratios. Figure 2 shows plots of the experimental kHO+SO2/kHO+CO ratios as functions of the 
initial reactive nitrogen oxides (HONO+NO+NO2. Table 5 shows the average reactive nitrogen in the 
three sets of experiments, the average kHO+SO2/kHO+CO ratio and the shared variance between them. 

 
Figure 2. Figure shows the relationship between the experimental kHO+SO2/kHO+CO ratios and the initial reactive 
nitrogen used in the experiments. The initial reactive nitrogen is the total initial sum of the HONO, NO and NO2 
concentrations. The plot at the top left is for the experiments made with N2 as the background gas. The plot at 
the top right is for the experiments made with synthetic air as the background gas. The plot at the lower center 
shows all experiments plotted together. The line in each plot is the regression line. 

Table 5. Comparison of average experimental kHO+SO2/kHO+CO ratio to the average reactive nitrogen concentrations 
and the shared variance between them as determined from the plotes shown in Figure 2. 

Experimental 
Series 

Average Reactive 
Nitrogen Conc. 

(Molec cm-3×10-14) 

Average 
kHO+SO2/kHO+CO 

Ratio 

Shared Variance 
(R2) 

N2 Only 14.2 12.6 0.65 
Synthetic Air 10.7 13.5 0.076 

All 12.6 13.0 0.18 

4. Discussion 

This new analysis of photolysis experiments made with relatively high concentrations of HONO, 
NO, NO2, SO2 and CO showed that there may be an uncharacterized oxidation process for SO2. The 
literature value of the kHO+SO2/kHO+CO ratio for the experimental conditions is near 4 to 4.5 while the 
measured ratio is around three times greater for the N2 only, synthetic air background gas 
experiments and both sets of experiments considered together. 

The experimental ratio for the experiments with N2 only as the background gas has a shard 
variance of 0.65 with the initial total reactive nitrogen concentration. However, the shard variance 
between the experimental ratio and the initial total reactive nitrogen concentration is much lower for 
the synthetic air case. Although there is much uncertainty, this could be due to an oxygen effect that 
is not taken into account in this analysis. 

If there is a new oxidation process for SO2 that is three times greater than the known hydroxyl 
radical reaction that occurs in NOx polluted atmospheres then conversion rates in the range of 10 to 
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20% hr-1 may occur in urban regions such as El Paso, Texas with sources of SO2 and NOx (using 
reference 33 as the baseline). 

Sulfuric acid has been produced on a commercial scale from the direct reaction of SO2 and NOx 
and H2O. These were mixed at very high concentrations in large chambers, made from lead, where 
reactions produced H2SO4. [44] Based on our experiments we show that similar reactions may occur 
at lower concentrations. These reactions are probably heterogeneous and appear to be faster than the 
gas-phase reactions. The reactions may be important for converting SO2 to sulfate on urban scales 
and therefore contribute to local PM2.5 formation. Improved representation of these processes may 
improve the agreement between measurements and air quality modeling results [35,36] for the 
United States, China and elsewhere. New research involving laboratory studies and field 
measurements are needed to better characterize the oxidation of SO2.because it is possible that 
heterogeneous reactions occurred on sulfate particles as soon as they were formed ans/or other 
reactive nitrogen catalyzed processes occure. Therefore, better measurements of formation and 
properties of the sulfate particles and their surface reactions are needed. 
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