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Abstract 

(1) The Spanish Mediterranean is the destination of millions of tourists, blessed by the absence of rain 
in summer, the holiday period par excellence. Yet two major natural threats loom over this area: 
flooding and wildfires. It is precisely the summer drought, a climatic feature that is rare on a global 
scale, which helps them to start and spread. Mediterranean vegetation adapts to climate and 
wildfires. (2) This study analyses one of these adaptations: its regenerative capacity following 
wildfires that occurred in the Spanish province of Castellon. It examines changes in NDVI in the 
affected areas using Landsat images processed with the Climate Engine application, as well as NBR 
values calculated from Landsat imagery in GEE. (3) The analysis reveals a downward trend in fires 
and burned area. The NDVI values also indicate the strong regenerative capacity of well-adapted 
Mediterranean vegetation, with values rising to above the threshold of 75% of the pre-fire NDVI in 
all cases within five years, regardless of the type of vegetation cover or environmental factors such 
as precipitation. Conversely, the NBR percentages are less impressive. (4) Howeveronly partially 
reflect the actual situation since, as shown by field photographs and the Google Earth application, 
although the vegetation cover has recovered, its structure has not, as this process takes a longer 
period of time. 

Keywords: wildfires; Climate Engine; NDVI; NBR; Google Earth; recovery; time series; R 
 

1. Introduction 

Wildfires are not important merely because of their connection to climate change: they are an 
integral part of ecosystems across the planet [1], including forests, savannahs, grasslands, steppes 
and mountainous areas [2]. As a clear illustration of their significance, wildfires have a profound 
impact on ecosystems, their flora, fauna and functionalities [3]; they damage infrastructures and 
properties and threaten the wellbeing of people [4]. Along with earthquakes, hurricanes, volcanic 
eruptions and icebergs, they are among the five most significant natural phenomena [5]. Around 400 
million hectares are burned globally each year in wildfires [6], 90% of which are started by humans, 
with the remainder caused mainly by lightning [7]. Although wildfire figures may vary from year to 
year, in 2023, around half (over 200 million hectares), occurred in Africa, whilst two additional 
quarters, in equal measure, happened on two other continents with tropical regions: South America 
and Oceania. The remainder was spread across Asia (35 million), North America (almost 30 million, 
its worst figure since 2012) and Europe (11 million hectares) [6]. Only ecosystems dominated by cold, 
wet and dry conditions, such as tundra, rain forests and deserts, are spared from wildfires. This 
means their prevalence extends across many northern, temperate and tropical forests, including most 
vegetation types found in Mediterranean climates [8]. 
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While well below the figures reported in tropical regions or large northern countries (in 2023, 10 
million hectares were burned in Russia, 15 million in Canada, and 4.5 million in the United States), 
in that same year, 140,000 hectares were burned in Spain, 172,000 in Italy and 169,000 in Greece. These 
figures are much higher than for the rest of Europe [6]. Unlike less exploited regions such as the 
forests in North America and Siberia, the Mediterranean area experiences intense human pressure 
on its forests and fire develops in close association with this [9]. 

Indeed, wildfires are the primary natural hazards in the Mediterranean, together with floods 
[10]. They are the main natural disturbance for Mediterranean vegetation [11], and are especially 
relevant in many forest and shrub ecosystems [3]. They are helped by the fact that the Mediterranean 
climate is the only one whose dry season falls during the hottest period of the year. From a social and 
economic perspective, what is a major draw for millions of tourists poses a significant challenge for 
its long-suffering yet hardy vegetation, while another of its attractions, its warm sea, favours the 
formation of storms and increases the likelihood of lightning strikes. Moreover, this Mediterranean 
climate is also bound up with mountains, a compartmentalised relief which exacerbates winds and 
fuels wildfires [12]. In conditions of heat and low humidity, wind becomes a key meteorological 
factor, especially the high-speed offshore winds of summer, known for their intense drying effect [9]. 

Mediterranean plant species adapt to these harsh summer droughts with a high content of resins 
or essential oils, which are more concentrated in summer, making them highly combustible [9,13]. 
While these species are adapted to drought, they are also well-equipped to withstand fire—through 
traits such as thick bark, numerous dormant buds, cones and fruits that open under intense heat, 
seeds with thick insulating tegument, and the presence of rhizomes or creeping roots [9]. Following 
a wildfire, they have other strategies such as resprouting capacity, persistence of the seed bank and 
greater dispersal capacity [11]. Even with these defences, the high recurrence of wildfires completely 
transforms the ecosystem’s floristic composition by diminishing its richness and diversity, as well as 
its architecture by simplifying the strata. The dominance of scrubland with an abundance of 
sclerophyllous species increases [14], leaving broadleaved species in the less affected areas [9]. 

In addition to natural factors, human influences such as densely populated areas, recreational 
use of mountains and changes in the landscape resulting from rural depopulation also play a 
significant role [15]. Strikingly, human impact extends beyond causing fires to also include their 
prevention. In the 20th century, fire suppression lessened forest heterogeneity, biodiversity potential 
and fuel build-up [16]. Yet, there is no shortage of cases where fire is essential to preserve ecosystem 
health [17]. 

Though wildfires are part and parcel of many ecosystems, they lead to degradation and soil 
erosion [2,13] and, thus the loss of nutrients [18], increasing gas and soot emissions. They worsen air 
quality and biodiversity as well as damaging soil structure and its water retention capacity [2]. As 
they affect vegetation, they interfere with the water and carbon cycles of most ecosystems [19]. Smoke 
particles are a major source of aerosols which influence atmospheric radiative transfer by scattering 
and absorbing solar radiation and altering cloud microphysics. Wildfires can thus change clouds, 
precipitation and even atmospheric circulation [8]. They have consequently been studied from many 
standpoints. 

Satellite-based remote sensing, for example, has analysed vegetation dynamics, invasive species 
and changes in land use to assess crop conditions, drought severity and wildfires [20]. In the latter, 
satellites have been harnessed to investigate wildfires, their risks, potential and management, 
detection, severity and recovery by assessing and quantifying the spatial and time-based variations 
of changes in vegetation cover in fire-affected areas [2]. Wildfires bring about a number of changes 
by devouring vegetation, destroying chlorophyll, leaving bare soil, charring roots and altering soil 
moisture, all of which alter the electromagnetic response of the surface and mean they can be spotted 
by remote sensors [21]. Remote sensing's contributions to wildfire science and management are 
almost never-ending [22]. 

This study utilized Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio 
(NBR) data to analyse the recovery capacity following large-scale wildfires in a region of eastern 
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Spain. NDVI has already been used in similar studies based on Landsat, AVHRR, 
SPOT/VEGETATION and MODIS images for the Spanish Mediterranean area [3,13,14,18,23–25], in 
an aim to understand the resilience of Mediterranean vegetation to fire [26]. Our study extends the 
analysis to a total of 25 large-scale wildfires and, far from being restricted to specific pixels, it gathers 
the NDVI of the entire burned area. It also expands the volume of data well beyond the analysis of 
one Landsat image per year, thereby circumventing the problem of comparing NDVI data taken in 
different phenological periods. 

2. Materials and Methods 

2.1. Study Area 

The second most important administrative division in Spain is the province. Our study area is 
Castellon province, the northernmost of the three making up the Valencian Region. It lies between 
0o50’46.45’’ W and 0o41’26.50’’ E longitude and between 39o42’53.01’’ N and 40o47’19.16’’ N latitude. 
It features coastal plains and a mountainous inland presided over by Penyagolosa Mountain, its 
highest elevation (1,813 metres). Indeed, geographically speaking it is known as the second most 
mountainous province in Spain. Although this reputation is not deserved, it does have a 
mountainous relief with 75.10% of its territory having slopes above 10o [27]. Between 1990 and 2024, 
its 6,638 km2 experienced up to 25 large-scale wildfires affecting a surface area of over 500 hectares 
(Figure 1 y Table 1). 

The province's climate is very much shaped by latitude, yet especially by altitude and distance 
from the Mediterranean, a warm-water sea which is a source of potential convective processes. 
Accordingly, the climate contrasts in the province are more marked along its east-west axis as 
altitudes increase in step with the distance from the sea. Temperatures decrease in this direction, 
especially in winter, thus increasing thermal amplitude, which is unambiguous proof of its more 
continental character. As for rainfall, once again, altitude and distance from the sea create a contrast 
between the typical coastal Mediterranean regime, below 500-600 metres in altitude with a peak in 
autumn and a very pronounced summer low (July) which exceeds the secondary winter minimum, 
and the less defined Iberian Mediterranean regime where the summer low diminishes until it is 
surpassed by the winter minimum. The north-western sector dominates, home to the Iberian 
mountain range: Gudar, Maestrazgo, Penyagolosa and Els Ports, where the hallmark of the 
Mediterranean climate, summer drought, disappears. Here, annual totals can top 800 mm which, 
while not exceptional, are far better than the little more than 400 mm in most coastal areas. The decline 
on the coast is coupled with the reduction and virtual disappearance of snowfall and frosts [28]. 
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Figure 1. Relief and location of Castellon province, Spain, and extent of large-scale wildfires in the period 1990-
2024. 

This east-west staggering of climate components enables a distinction to be drawn between three 
climate types: the coastal plain climate, characterized by predominantly autumnal rainfall—
accounting for around 50% of the annual total—and notably mild temperatures throughout the year; 
a transitional climate, where the autumn rainfall peak gradually gives way to a spring maximum, 
summer dryness becomes less pronounced, and annual and winter temperatures decline, although 
summer temperatures remain relatively high; and finally, the mountain climate, found above 800 
metres in elevation, where spring and autumn rainfall peaks are of similar magnitude, and summers 
are cooler and more humid due to the frequent occurrence of convective storms. This is one of the 
stormiest areas of the peninsula [29], specifically Maestrazgo in Teruel and Castellon in a 
quadrilateral bounded by the Teruel towns of Mosqueruela, Valdelinares and La Iglesuela del Cid 
and the Castellon town of Villafranca [30]. In fact, Castellon province registered a record number of 
lightning strikes in a single day in Spain: 16,548 on 17 August 2003 [31]. Based on the Köppen-Geiger 
classification, the province is divided diagonally: the south and coast correspond to Csa, a temperate 
Mediterranean climate with a hot, dry summer, and the Csb variant with a cooler summer at higher 
elevations in the south. To the west of the diagonal, an inland area widening towards the north hosts 
the domains of Cfa with no dry summer, which morphs into a Cfb featuring a temperate summer at 
higher elevations [30]. 

In terms of Land Use and Land Cover (LULC) (Figure 2), and based on CORINE Land Cover 
data [32,33], four land uses exceeded 5% in 2018. Scrub and/or herbaceous vegetation associations led 
the way at 2,783 km2 (41.6%), followed by forests which accounted for a quarter of the terrain at 1,697 
km2. Natural areas were rounded off by open spaces with little or no vegetation at 80.3 km2, barely 
1.21%. The other two major land uses were agricultural: 1,116 km2 (16.8%) taken up by permanent 
crops and 543 km2 (8.19%) in heterogeneous agricultural areas. CORINE Land Cover identifies three 
types of forests in the province at its more specific level 3 [34], where conifers predominate at over 
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1,114 km2 compared to 470 km2 and 114 km2 in broadleaved forests and mixed forests, respectively. 
The study territory thus conforms to the Mediterranean pattern in which pines are the most extensive 
forests. Specifically, the Aleppo pine (Pinus halepensis) is the most widespread on the coasts of Spain, 
France, Italy, Greece, Turkey and Morocco [9]. 

 

Figure 2. LULC distribution in Castellon province in 2018. Source: “Generated using European Union's Copernicus 
Land Monitoring Service information; <https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0>” [33]. 

Notwithstanding the large-scale wildfires which have affected the territory, changes in LULCs 
between 1990 and 2018 showed a net increase of 384 km2 in forested area, up from 1,313 to 1,697 km2. 
Forests gained 246 km2 net from scrub and/or herbaceous vegetation associations, gaining 565 km2 
whilst losing 319 km2. However, scrub and/or herbaceous vegetation associations rose by 129 km2, 
gaining ground from agricultural areas. Indeed, the other significant figure is the loss of 
heterogeneous agricultural areas, 649 km2 or 10% of the provincial territory, which have been 
converted into permanent crops, scrub and/or herbaceous vegetation associations and open spaces 
with little or no vegetation. 

2.2. Materials 

The first of the datasets used in this study was the wildfire database in Castellon province [35], 
provided by the Integrated Wildfire Management System run by the Valencian Regional 
Government. This database goes back to 1968 and is considered definitive until 2016. Data from 
subsequent years are provisional. It consists of the date and time, municipality and comarca (a 
traditional territorial division in Spain, similar to a county) where the fire started; forested, cleared 
and totally burned areas in hectares, and the cause of the fire. The database was reviewed to check 
for mistakes in the names of municipalities and their assignment to comarcas. In 2023, five 
municipalities in the province (Atzeneta del Maestrat, Benafigos, La Serratella, Villafranca del Cid 
and Vistabella del Maestrat) changed comarca,following the regional government’s approval of their 
relevant and justified requests [36]. In fact, within the database, wildfires originating in these 
municipalities had been assigned to different comarcas depending on the year of the fire. These 
inconsistencies have now been corrected. Additionally, the geographical coordinates of the 
municipalities where the fires began have been added, along with new columns indicating the month 
and year based on the fire date. 
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Wildfire data are supplemented by additional information provided by the Ministry of 
Ecological Transition and Demographic Challenge which, like the regional figures, are divided into 
definitive statistics [37] and preliminary information [38]. 

CORINE Land Cover is another database used. It has five versions: 1990 [32], 2000 [39], 2006 
[40], 2012 [41] y 2018 [33]. The next 2024 update is to begin in the first four-month period of 2025 and 
is set to be completed in the first four-month period of 2026, with publication expected in the 
following four-month period [42]. This database has furnished information on the LULC of burned 
areas. 

CORINE classifies the terrain into various land covers with a degree of detail at three levels, 
from the most generic (Level 1) to the most detailed (Level 3). Level 1 has four categories: artificial 
surfaces, agricultural surfaces, forest and seminatural areas and wetlands, which are expanded into 
15 subcategories at Level 2 and 44 at Level 3 [34]. 

The next crucial database for the study was the Normalized Difference Vegetation Index (NDVI) 
derived from Landsat satellite imagery [43]. Although not without its limitations [19], after been 
defined by Rouse in 1974, NDVI is the most popular of the spectral vegetation indices [3,19,44], and 
commonly employed to track changes in LULC [2]. It is calculated by: 

NDVI =     (1) 

where NIR is spectral reflectance in the near-infrared red channel and RED is spectral reflectance in 
the red channel [44,45]. NDVI ranges from -1 to +1. Values below 0 indicate water, clouds or snow, 
while those slightly above 0 represent bare soil. NDVI values increase with vegetation density and 
the strength of its phenological state [3]. NDVI is a robust indicator of the amount of green biomass 
and numerous studies show that it is the most widely used tool to assess vegetation recovery after a 
wildfire [24,46]. 

Landsat, which has provided most of the technology used in today's remote sensing satellites, 
was the first civilian satellite program designed for global land resource monitoring. It was started in 
1967 under the name Earth Resources Technology Satellite (ERTS) [47], and although it was not 
launched until 1972 [47,48], subsequent satellites Landsat 5,7,8,9 (after the failed launch of Landsat 6 
[47]) enabled the completion of an NDVI database with a resolution of 30 metres (which is reduced 
to 60-120 metres depending on satellites and sensors in the thermal band [47]). This represents the 
largest active time series of medium resolution data ever obtained by remote sensing [49]. This study 
utilized Landsat images directly to define burned areas and indirectly to extract NDVI values. 

NDVI data have been available since April 1984 through the Climate Engine (CE) project [50,51]. 
This is an application embedded in Google Earth Engine (GEE) and constitutes an outstanding 
instrument for climate monitoring [52]. GEE, which was set up in 2010, is a cloud-based platform 
providing easy access to large collections of geospatial data [53,54]. Landsat imagery is among the 
most prominent [55,56]. It has been used to perform studies as varied as mapping burned land in 
Cape Province (South Africa) [57], assessing the effects of wildfires in Yosemite National Park [58], 
land degradation in South Africa [59], fire propensity in forests in India [60], changes in wildfire 
patterns in countries including Australia, Canada, Chile, China, Russia, the USA and in southern 
Europe [17], and studies of droughts, water resources and forest alteration [61]. It delivers 
computational capacity for data preparation and enables the creation and training of classifiers and 
algorithms, as exemplified by Climate Engine (CE) [50], a web portal that provides global satellite 
time series data. 

Four smaller databases, limited to the location map (Figura 1), complete the data used. The relief 
data came from a digital elevation model, ALOS World 3D [62]. This is a global database generated 
from images gathered using a remote sensor called PRISM (an acronym for Panchromatic Remote-
Sensing Instrument for Stereo Mapping), on board ALOS, the Advanced Land Observation Satellite. 
The Japan Aerospace Exploration Agency (JAXA) releases the database with a horizontal accuracy of 
30 metres [63]. The basic hydrographic network [64] is derived from the 100 x 100 digital terrain 
model of the Army Geographic Service [65]. The provincial boundaries were obtained with the R 
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geodata package. The same package facilitates the comarca boundaries but does not include the 
changes indicated above in the Valencian Region comarca map. Therefore, the vector file was 
downloaded from the Regional Government website [66]. 

2.3. Methods 

The first step in the study was to compile a list of the large-scale wildfires, i.e., those affecting a 
surface area of over 500 hectares, in Castellon province (Table 1), by utilizing regional and national 
statistics [35,37,38]. 

Table 1. Wildfires affecting over 500 hectares in Castellon province since 1990. 

Date Start municipality Total area (ha.) Cause 
1991/08/08 Coves de Vinromà 600 Rubbish burning 
1992/08/30 Altura 3,310 Unknown 
1992/08/31 Azuébar 1,042 Stubble burning 
1992/12/08 Castellón 1,634 Bonfires 
1993/08/07 El Toro 2,135 Unknown 
1993/09/12 Argelita 4,896 Bonfires 
1993/09/13 Sant Mateu 3,520 Stubble burning 
1994/04/02 Castillo de Villamalefa 7,120 Bonfires 
1994/04/09 Borriol 1,113 Bonfires 
1994/07/01 Olocau del Rey1 11,381 Lightning 
1994/07/02 Espadilla 19,310 Lightning 
1994/08/10 Altura 3,220 Unknown 
1994/08/26 Salsadella 2,800 Unknown 
1994/09/08 Toga 778 Intentional 
1999/04/07 Cabanes 742 Intentional 
2001/08/29 Chert 3,200 Lightning 
2007/03/07 Gaibiel 1,045 Lightning 
2007/08/28 Useras 5,775 Railway2 
2009/07/23 Segorbe 832 Lightning 
2012/06/29 Andilla1 23,273 Negligence 
2016/07/25 Artana 1,487 Lightning 
2017/12/29 Culla 535 Negligence 
2022/08/14 Costur 728 Other causes 
2022/08/15 Bejís 16,824 Lightning 
2023/03/23 Villanueva de Viver 3,381 Other causes 

1 The Olocau and Andilla wildfires do not appear in the Valencian Regional Government's database as they 
started outside Castellon province. The Olocau wildfire started in Teruel province whilst the Andilla wildfire 
started in Valencia province. 2 Although beyond the scope of the study, the cause of the wildfire in Useras, 
known as the l'Alcalaten wildfire because of the comarca it was in, was not rail-related as there is no railway track 
in this area. The cause was maintenance work on the electricity grid [67]. Source: Valencian Regional 
Government [35] and Government of Spain [37,38] wildfire databases. 

Next, the areas affected by large-scale wildfires were defined. The GEE application was used to 
search for Landsat images taken before and after each wildfire analysed. NBR, which has been proven 
effective in detecting fires, was calculated based on these images [16]. The Normalized Burn Ratio, 
which was proposed in 1991 [68], is a spectral index that normalises the reflectance of near infrared 
(NIR, Landsat band 4) and mid-infrared (Landsat band 7) to monitor areas affected by wildfires [49]. 
The spectral behavior of burned areas is characterized by a sharp drop in near-infrared reflectance 
due to the destruction of leaf cell structure, and, conversely, by a significant increase in SWIR 
reflectance caused by the reduction in water content absorbed in that region [68]. Since 2001, the 
switch in NBR between two images (dNBR) has been used to map burned areas [49] and assess fire 
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severity [17]. Similarly, the affected areas of large-scale wildfires in Castellon were successfully 
delineated using the GEE application and exported as shapefiles. The only exception to this 
procedure was the wildfire which broke out in Andilla on 29 June 2012. This is the only wildfire for 
which Landsat 7 images had to be used as it fell within the time interval between 5 May 2012, when 
Landsat 5 ended, and 18 March 2013, when Landsat 8 began. Landsat 7 generates images with bands 
of pixels with no data due to an error in the operation of the scan line corrector, an issue which was 
resolved using a focal mean filter [69]. 

The GEE application includes a “draw shape” tool which was used to delimit the burned area. 
The figure created is closed and its geometry included in the script. Its configuration was switched 
from “Geometry” to “Feature Collection”. The top of the script includes the code for “Imports” and 
a “Show generated code” option, displaying the generated code which is copied into another script 
with the command to save the geometry. The task created runs by changing the output to shp, 
shapefile. The result opens in Google Drive from where it can be exported to a computer and used in 
a GIS. These areas, one for each wildfire, were used to retrieve NDVI data from the Climate Engine 
(CE) application which were then read, analysed and displayed with various R software packages 
(Table 2). 

Table 2. R software packages used in the study. 

Package Tasks 
Terra Reading raster data 

geodata Administrative boundaries 
Gpkg Reading CORINE data 

Sf Spatial data processing 
Utils Reading csv files 

data.table Linking CORINE layers with categories 
Dlookr Outlier imputation 

imputeTS Missing data imputation 
tidyverse Data processing, results by areas and comparative tables 

tidygeocoder Retrieving geographical coordinates 
ggplot2 Graphic visualisation 

basemapR Base maps 
grDevices Saving graphs and maps 
patchwork Image compositions 

The first step was to download and read the files with the information obtained from the 
CORINE Land Cover database stored with the reference coordinate system EPSG 25830. EPGS is the 
initialism for “European Petroleum Survey Group” [70], originally established for the oil industry 
and nowadays used as a reference. EPSG 25830 corresponds to the reference system ETRS89 
(European Terrestrial Reference System) projection UTM (Universal Transversal Mercator) zone 30N. 
Both the 1990 and 2018 files were cropped using the administrative boundaries of Castellon province 
(the study area), to analyse the LULC distribution. These administrative boundaries were 
downloaded with the R geodata package. Their reference system is geographic, WGS84/EPSG 4326 
(World Geodetic System), so they were first transformed to the ETRS89/EPSG 25830 of the CORINE 
Land Cover layers. This transformation enabled the areas to be calculated more accurately. A legend 
was also added with the levels of the CORINE Land Cover layers and their colour palette. The 
CORINE Land Cover layers from 1990 and 2018, the first and last years of the database, show how 
land use changed over the period analysed. However, some of the large-scale wildfires went beyond 
the province's borders. A decision was made to study all the areas which were burned and so the 
entire CORINE database from 1990 to 2018, including the intermediate years 2000, 2006 and 2012, 
was cropped to encompass a larger area (Table 3) including the province and all the wildfires. 
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Table 3. Geographical coordinates of the study area. 

Coordinates Data 
Maximum latitude 41.0 oN
Minimum latitude 39.6 oN

Maximum longitude 0.7 oE
Maximum longitude 1.0 oW

The next step consisted of obtaining NDVI data from the Climate Engine website [51,71], 
enabling data to be retrieved from a point or surface defined in a vector file. NDVI has a slight 
advantage over other indices in post-fire recovery detection as it observes a wider range of values, 
making it easier to identify changes in trends [72]. The perimeter of each burned area was saved in 
shapefile format. This shapefile format is supported by the website as long as it is in the WGS84/EPSG 
4326 (World Geodetic System) geographic reference system. To prevent errors when selecting and 
assigning polygons, the process was carried out after visually inspecting the polygons in QGIS 
software. 

Once the NDVI data had been obtained, they underwent a twofold process consisting of locating 
outliers and imputing them using the capping method. This method replaces the upper outliers with 
the 95th percentile value and the lower ones with the 5th percentile. Next, temporary reference files 
were created to locate the months with no Landsat images where no data was available. The missing 
data were replaced by the Weight Moving Average method based on the two closest observations. 

The next step was to analyse the intensity of the wildfires and vegetation recovery. Previous 
studies have used a wide variety of methods such as calculating the annual NDVI slope following 
the wildfire [14], comparing the minimum NDVI value recorded in the year of the fire with the 
median of the previous four years [23] and measuring recovery based on changes in vegetation 
indices across multiple time frames: the year before the fire, the year of the fire, the following year, 
and additional recovery phases at short-term (+6 years), medium-term (+11 years), and long-term 
(+16 years) intervals [73]. 

The methodology employed in this study with the R tidyverse package was as follows. The 
monthly averages per year and per wildfire were worked out from the NDVI data. Similarly, annual 
averages per wildfire were calculated for all years in the study (1985–2024) divided into several 
recovery-related phases: the five years prior to the fire, the year of the fire, the year after the fire, the 
value in the fifth year after the fire, the years after the fire until NDVI recovered to its pre-wildfire 
level, and the years after that recovery value. 

Finally, the recovery results from NDVI were compared with those from NBR. The NBR 
difference (dNBR) was calculated by subtracting the pre-fire NBR from the post-fire NBR [21]. The 
value provides an estimate of the wildfire’s severity compared to average NBR [3]. As with NDVI, 
the NBR values from images five years after the wildfire were calculated as evidence of vegetation 
cover recovery [17,74]. 

3. Results 

Although beyond the scope of the study, the compelling evidence furnished by the data 
underscores the strong spatial and time clustering of wildfires. Provincial data recorded a total of 
4,004 cases between 1990 and 2024. Just under a quarter were considered as wildfires, whilst the other 
3,000 were classified as fire outbreaks, i.e., burning an area of less than one hectare. By way of 
reference, a football pitch has a surface area of around 0.75 hectares. All wildfires above this threshold 
and those burning an area equivalent to ten football pitches were analysed. While the main study 
focused on the effects and recovery following large-scale wildfires affecting over 500 hectares, the 
threshold has been reduced in this brief overview of changes in fire numbers and burned area to 
make the conclusions more robust since, fortunately, “only” 25 fires have been classified in the 
highest severity category in the last 35 years. 
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August stands out as the peak month for both variables, following a steady increase from the 
low values observed in May and June. The onset of autumn brings a decline in the data, especially 
from October onwards. Another salient feature of seasonality is a secondary peak in spring. 
Interestingly, the number of fires reaches this secondary peak earlier, in March, while the area burned 
does not peak until April (Figure 3). 

 

Figure 3. Monthly change in the number of fires and area burned, for wildfires affecting more than 1 (top left) 
and 75 (top right) hectares, and annual change in the number of wildfires affecting more than 1 hectare and area 
burned by them (bottom). Red indicates number of fires; grey indicates area burned. Source: Valencian Regional 
Government wildfire databases [35]. 

There has been a clear downward trend over time compared to the high figures recorded in the 
1990s. The first half of that decade saw values consistently above 70 wildfires per year. Although the 
area burned was low in 1990 and 1991, from 1992 to 1994 there was a steady increase in the number 
of large-scale wildfires and the area they burned. There were seven large wildfires in 1994, all 
affecting more than 1,000 hectares. Three wildfires affected over 5,000 hectares. Two of them, Olocau 
del Rey and Espadilla, were particularly devastating. The former destroyed more than 10,000 
hectares, whilst the latter burned nearly 20,000 hectares. 

Since that tragic year, the number of wildfires (always below 30 per year), which have affected 
more than one hectare, fell gradually until 2022. There have been around 15 wildfires per year in the 
last three years. The decline has been more pronounced in terms of area burned which has remained 
nearly constant except for peaks caused by large-scale wildfires. Notable events included the 2007 
Gaibiel wildfire, which affected around 1,000 hectares, and the Useras wildfire, which burned almost 
6,000 hectares. In 2022, nearly 17,000 hectares were burned in the Bejis fire, along with the smaller 
Costur fire at just over 700 hectares. The latter was particularly concerning because it impacted areas 
already burned by the Useras wildfire 15 years earlier. The largest wildfire affecting the province was 
the Andilla wildfire, named after a small town in Valencia province in the Los Serranos comarca where 
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the wildfire actually started before eventually spreading into Castellon province. As the fire broke 
out in the province of Valencia, it does not appear in the Valencian Regional Government’s databases 
[35], for Castellon province, which explains why 2012 shows no peak in area burned (Figure 3). 

The time clustering of wildfires, particularly during the summer months and between 1992 and 
1994, when more than half of all large-scale wildfires occurred, is mirrored by strong geographical 
clustering, especially regarding the area burned. La Plana Alta and El Baix Maestrat stand out for 
having the highest number of wildfires. However, Alto Mijares and Alto Palancia accounted for two-
thirds of the burned area despite experiencing only one-fifth of the wildfires. This difference indicates 
that wildfires primarily drive burned area in these two comarcas: 29% of fires in these areas affected 
over 75 hectares, and more than half of those that burned over 500 hectares, i.e., the largest wildfires. 
Specifically, 41% of the total area burned by large-scale wildfires occurred in Alto Mijares, while 33% 
occurred in Alto Palancia. Vegetation recovery in Alto Palancia has been particularly slow, as some 
areas have been affected by multiple wildfires. Conversely, La Plana Alta and El Baix Maestrat show 
the opposite pattern. They have suffered many fires but with a smaller total burned area. This is due 
to a predominance of agricultural land and less forest, scrub, or grassland, which limits fire spread 
across large expanses (Figure 4). 

 

Figure 4. Monthly change in the number of fires, shown in red on the left, and area burned, shown in grey on 
the right, for fires larger than 1 hectare by comarca. Source: Valencian Regional Government wildfire databases 
[35]. 

The annual NDVI values (Figure 5) show a distinct upward trend following a wildfire. 
Nonetheless, the year of the wildfire does not usually record the lowest value as this is delayed until 
the year afterwards. The year of the wildfire includes the months before it which push up the average. 
Only wildfires which took place in the first few months of the year, March or April, have their 
minimum value in the same year as the event, which includes up to nine or ten months with burned 
land indices. 
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The NDVI decline and recovery values show, albeit with significant differences, the regenerative 
capacity of Mediterranean vegetation which is well adapted to wildfires and the climatic conditions 
that favour their occurrence. The NDVI decline ranges from a minimum of 0.103 for the 1991 Coves 
de Vinroma wildfire, the first in the series, to a maximum of 0.265 recorded in the 2016 Artana 
wildfire. Alongside the Artana fire, four other fires exceeded the 0.200 threshold. Another five fires 
showed a significant decrease greater than 0.170. Most of these fires occurred in areas with a high 
proportion of forest cover. By contrast, the lowest values in NDVI loss (below 0.500) tended to occur 
in areas dominated by scrub and/or herbaceous vegetation associations. These areas recovered their 
vegetation cover most quickly. Within five years after the fire (the reference threshold for recovery), 
NDVI values ranged from approximately 75% to over 90% of pre-fire levels. Notably, the Cabanes 
fire of April 1999 surpassed its pre-fire NDVI within that five-year period. Most fires with over 90% 
recovery occurred in landscapes dominated by herbaceous and scrub vegetation, where initial NDVI 
loss was relatively low. However, two cases, Espadilla (July 1994) and Artana (July 2016), paint a 
starkly different picture. Both involved extensive forest damage, especially Artana, where 
approximately 70% of forest cover was destroyed and NDVI dropped by 0.265, the highest loss 
recorded. Despite this, Artana achieved a 94.3% recovery in NDVI within five years (Table 4). 

 

Figure 5. Annual NDVI change for each wildfire. The vertical red line indicates the year of the fire and the dark 
green line the year in which NDVI reaches the average value prior to the fire. The horizontal dark green line 
indicates the average NDVI value prior to the fire and the light green line the NDVI reached five years after the 
fire. This latter line does not appear in the last three wildfires, the most recent ones, as the five-year period has 
not yet ended, just as the pre-fire NDVI level has not been reached in the last five fires. Their graphs therefore 
do not feature the vertical dark green line. Source: Climate Engine [50,71]. 
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Table 4. NDVI and NBR decline after a wildfire and five-year recovery by total burned area. 

Date Start municipality LULC1 dNDVI2 %rec 
NDVI+53 dNBR4 %rec 

NBR+55 
1991/08/08 Coves de Vinromà 1.70 0.103 96.3 0.170 69.0 
1992/08/30 Altura 13.70 0.212 76.7 0.129 57.9 
1992/08/31 Azuébar 7.73 0.143 89.0 0.093 69.1 
1992/12/08 Castellón 7.83 0.144 95.9 0.169 74.7 
1993/08/07 El Toro 29.67 0.208 77.6 0.171 79.0 
1993/09/12 Argelita 11.75 0.158 79.5 0.155 52.7 
1993/09/13 Sant Mateu 8.61 0.140 84.3 0.117 68.1 
1994/04/02 Castillo de Villamalefa 43.49 0.157 87.5 0.141 55.2 
1994/04/09 Borriol 0.76 0.131 85.0 0.183 32.8 
1994/07/01 Olocau del Rey 44.45 0.172 78.7 0.149 51.3 
1994/07/02 Espadilla 41.54 0.185 94.9 0.209 70.3 
1994/08/10 Altura 22.28 0.181 80.3 0.160 38.4 
1994/08/26 Salsadella 3.90 0.143 96.2 0.188 102.0 
1994/09/08 Toga 45.52 0.183 88.1 0.233 45.4 
1999/04/07 Cabanes 0.89 0.120 102.0 0.142 101.7 
2001/08/29 Chert 29.60 0.160 87.1 0.149 78.7 
2007/03/07 Gaibiel 8.71 0.134 88.3 0.080 59.8 
2007/08/28 Useras 2.69 0.148 85.1 0.195 58.2 
2009/07/23 Segorbe 17.32 0.113 85.1 0.171 55.6 
2012/06/29 Andilla 30.62 0.183 86.4 0.208 75.6 
2016/07/25 Artana 70.30 0.265 94.3 0.227 86.8 
2017/12/29 Culla 0.96 0.177 82.8 0.190 69.3 
2022/08/14 Costur 11.77 0.169 -----6 0.228 -----6 
2022/08/15 Bejís 42.48 0.211 -----6 0.163 -----6 
2023/03/23 Villanueva de Viver 58.36 0.214 -----6 0.165 -----6 

1LULC indicator: the whole number indicates the percentage of forests whilst the decimal part indicates the areas 
of scrub and/or herbaceous vegetation associations. 2Difference in NDVI between the average values prior to the 
wildfire and the minimum annual value afterwards. 3Percentage NDVI recovery in the fifth year after the fire. 
4Difference in NBR before and after the fire. 5Percentage NBR recovery in the fifth year after the fire. 6Less than 
five years from the fire. Source: Valencian Regional Government [35] and Spanish Government [37,38] wildfire 
databases. 
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Figure 6. Monthly change in NDVI values for each wildfire in the following periods: prior to the fire (pre-fire), 
fire year (fire), post-fire year (fire+1), post-fire recovery period (post-fire), and post-fire period after NDVI 
recovery (post-recover). Source: Climate Engine [51,72]. 

Meanwhile, dNBR values match dNDVI in a wide range of situations, from a decline of just 0.093 
in the Azuebar fire in 1992 to a more substantial drop of 0.233 following the Toga fire. However, the 
largest declines in dNDVI do not coincide with those in dNBR. The other major difference is that 
NBR recovers more slowly than NDVI. There are only seven fires with recovery rates above 75%, 
which is the minimum recovery value for NDVI. The minimum NBR value is 32.8%, less than half 
that figure. Even so, two wildfires, Salsadella and Cabanes, have exceeded 100% recovery, both 
occurring in areas dominated by scrub and/or herbaceous vegetation associations. Alongside the 
unique case of Artana, these are the only fires with recovery above 85% (Table 4). 

The seasonal behaviour of NDVI in the various periods before and after the fire is intriguing 
(Figure 6). Typical Mediterranean vegetation, characterized by summer drought and dominated by 
scrubland and pine trees, exhibits a secondary NDVI peak in May–June, indicating heightened spring 
growth after reaching a low point around March. NDVI values fall in summer when plants, impacted 
by water stress, become less active. From the summer nadir in August, activity resumes with the rains 
and cooler temperatures of autumn. The highest values are recorded in winter [75]. This characteristic 
curve is disrupted in the two periods most affected by the wildfire, i.e., the year of the fire itself and 
the year following it. The curve for the year of the fire shows a drop in the month in which it occurs, 
although this is not apparent in the Castellon and Culla fires which took place in December 1992 and 
2017, as the fall in NDVI shifted to January of the following year. 

4. Discussion 

There is no shortage of studies and news reports announcing an increase in wildfires [13,56,76–
83], including the IPCC Sixth Assessment Report: Impacts, Adaptation and Vulnerability [84]. Based 
on models predicting a warmer and drier world [8], the conclusion is obvious. All this is 
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notwithstanding the uncertainty surrounding the issue [17,82,85] and the actual situation reflected in 
the data, which show varying trends depending on the territory and period considered. Numerous 
studies have found a downward shift [31,85–90] explained by significant management and 
prevention efforts. There are a number of meteorological and climate aspects (precipitation, 
temperature, relative humidity and wind speed) associated with wildfires [91], but the human 
footprint is evident both in the causes [15,31] and in prevention and extinction. Climate appears to 
be a determining factor in the high incidence of large-scale wildfires in the early 1990s, especially in 
1994, which was a period of severe drought, yet studies do not always reflect this, insofar as wildfires 
can be restricted under dry conditions by low plant productivity which reduces available fuel, but 
also under wet conditions. The largest areas burned are usually in areas of intermediate humidity 
[85,92]. 

The Spanish Mediterranean region has also experienced a decline in wildfires. The trends 
already seen in Castellon province can be extended to the entire Valencian Region [31], to which it 
belongs, and to much of Spain [86]. This trend persists despite the fact that many parts of Spain, 
especially coastal areas like Castellon [93], have experienced changes that increase the risk of 
wildfires: rural depopulation with more scrubland and forests, fewer pastures and farmland, rising 
tourism in natural areas and more second homes near forests [8]. Across Spain as a whole, the overall 
number and area of wildfires greater than one hectare, as well as large-scale wildfires over 500 
hectares, have fallen significantly following high figures between the mid-1970s and mid-1990s [95]. 
This upward trend peaked in the early 1990s and was clearly reflected in Castellon province, where 
a series of devastating wildfires coincided with a severe drought [9,31,96]. The year 1994 set a similar 
record for all of Spain [90] (Figure 7). A similar decline in the number of fires has also been observed 
in southern Europe during the 21st century [17]. 

 
Figure 7. Annual change in the number of wildfires and area burned in hectares for all fires (top) and large fires 
(bottom) in Spain (1968-2024). Source: Spanish Government [37,38]. 
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It is no coincidence that the two peaks in wildfire occurrence and burned area correlate with 
holiday periods, particularly August, the holiday month par excellence, when summer drought 
conditions intensify and storms with lightning become more frequent. There are few studies that 
examine this issue. The timing of the summer peak has been consistently observed [90,97,98] yet in 
Huelva province, Spain, it shifts to July in the most recent study period, 2000-2019 [98]. The Italian 
region of Tuscany shows the same secondary spring peak [97], as does the whole of Spain in terms of 
the number of large-scale wildfires [90], but Huelva is the only case in 21st-century fires [98]. 

However fascinating this question may be, it is secondary to our main research question: the 
regenerative capacity of Mediterranean vegetation. Although it might seem obvious, it should be 
pointed out that wildfires destroy vegetation instantly, leading to a decrease in NDVI after the fire. 
The NDVI value is usually lower in the first year after the fire, though sometimes it occurs in the 
second year [72]. However, there are plenty of cases in the large-scale wildfires in Castellon where 
the lowest annual NDVI was recorded in the same year as the wildfire, such as Borriol, Castillo de 
Villamalefa, Cabanes and Gaibiel. These fires occurred in March and April, thus bringing forward 
the decline in NDVI for the year. 

By contrast, recovery is a longer process. NDVI recovery is typically considered complete when 
values reach 80% of pre-fire levels [99]. In most of Castellon province’s large-scale wildfires, this 
threshold was met or exceeded within five years. This benchmark estimate, based on a study in 
Florida, USA, in an area dominated by herbaceous vegetation, scrubland and pine trees, seems overly 
optimistic for the situation in our study. We will come back to this point when we explore the 
recovery in the Artana and Bejis fires in greater detail. 

The vegetation cover’s regenerative capacity is clearly demonstrated by the swift increase in 
NDVI. Within just five years, values often reach at least 75% of their pre-fire levels. This represents a 
good example of vegetation's ability to regenerate and gradually return to a state similar to its pre-
fire condition [14], as shown in images of the areas affected by the Argelita fire in 1993 (Figures 8 and 
9). Nevertheless, analysis using NBR reveals NDVI’s limitations as a standalone indicator of 
vegetative regeneration. NBR recovery rates are considerably more modest as shown in previous 
research which estimates NDVI recovery times at 3–5 years, while for NBR they tend to be longer 
[11]. 

The data here do not show a relationship between pre-fire NDVI or dNBR and the speed of 
recovery, as observed in other studies [3]. Our results suggest that recovery speed is influenced by 
initial vegetation type and fire severity [18], yet the influence of other environmental factors [13,18], 
such as phenology, temperature and precipitation as well as management [3] and the small number 
of cases, makes it hard to pin down a clear relationship. Thus, wildfires with dNDVI above 0.200 and 
low forest cover values showed the lowest recovery rates, below 80%. In contrast, the Artana fire, 
which had high forest cover, achieved a regeneration rate close to 95%. Interestingly, this same 
recovery percentage was also reached after fires with very different dNDVI values (between 0.10 and 
0.185) and vegetation types. A similar pattern is observed when relating dNBR data and vegetation 
regeneration. The most common species in forest areas is Pinus halepensis whose regeneration is aided 
by moisture and heat. Contrary to the studies cited above, our findings suggest a possible positive 
relationship between fire severity and regeneration, as this heliophilous species thrives in open 
spaces, which are more common in high-severity burn areas [100]. 

We also found no evidence that the month in which a wildfire occurs affects the speed of 
recovery, contrary to previous studies that show a faster recovery when fires occur during vegetation 
growth periods in spring and autumn [99]. The conclusions drawn are undoubtedly influenced by 
the clustering of fires in the summer months, particularly in August with 10 fires out of a total of 25, 
as well as another four fires which occurred in July. Spring wildfires show similar recovery rates to 
others in midsummer, even though it has to be said that the wildfire with the best recovery, the one 
in Cabanes in April 1999, happened in spring while those with the worst recovery rates at below 80% 
were all in summer. However, there are also other cases in summer with recovery rates above 90%. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 August 2025 doi:10.20944/preprints202508.0467.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0467.v1
http://creativecommons.org/licenses/by/4.0/


 17 of 29 

 

  
(a) (b) 

Figure 8. View from the village of Argelita where the fire broke out on 12/09/1993, with the distinctive skyline 
of the “Peñas negras” as a reference point: (a) Photo from 1993, immediately after the fire; (b) Photo from 2025, 
32 years later. Source: (a) Ms Bienvenida Garcés Fortanet; (b) Mr Enrique Montón Chiva. 

(a) (b) 

Figure 9. View from the CV-193 road between Lucena del Cid and Argelita where the fire broke out on 
12/09/1993, with the landmark known as “Roca Alta” as a reference point: (a) Photo from 1993, immediately after 
the fire; (b) Photo from 2025, 32 years later. Source: (a), Ms Bienvenida Garcés Fortanet; (b), Mr Enrique Montón 
Chiva. 

The role of moisture is equally uncertain. In principle, moisture aids post-fire recovery [100]. 
However, the high number of fires in 1994 suggests that this environmental variable is not that 
significant. There were seven wildfires in 1994. Two of them occurred in March: Castillo de 
Villamalefa and Borriol. The NDVI regeneration values were quite similar at around 85% but differed 
in NBR recovery at 55.2% and 32.8%, respectively. The limited influence of rainfall becomes even 
more apparent with summer fires: Olocau del Rey and Espadilla started just one day apart, and 
despite having nearly identical LULC data with about 40% forest cover, their regeneration outcomes 
varied greatly. Wildfires in August of the same year showed similar contrasting results. Recovery 
during the first seven years appears to depend primarily on the time elapsed since the fire, with little 
impact from environmental factors such as rainfall and rock type. Beyond that period, rainfall does 
seem to influence NDVI recovery [24]. The complexity and uncertainty surrounding these factors 
make it difficult to explain why trees recover in some areas but fail to do so in others [101]. 
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Figure 10. View during regeneration work in 2011 in Fuentes de Ayodar, a village hit by the Espadilla wildfire 
on 2 July 1994. Source: Mr Adrián Casado de Madariaga. 

The optimism derived from the recovery in NDVI values contrasts sharply with the weaker NBR 
data and also with the fact that Pinus halepensis vegetation needs at least 15 years to recover after a 
fire, given that it takes between 12 and 20 years for seed-bearing species to surpass the juvenile 
reproductive phase and fully replenish their seed bank [11]. Whilst vegetation cover may recover 
after a wildfire, its height remains reduced, even 26 years later. This recovery in cover can be 
accounted for by the regrowth of trees and a high density of stems per hectare (Figure 10) which 
requires forestry services to undertake regeneration work. The minimum interval commonly used to 
consider a forest is recovered is 15–20 years, reflecting the time needed to reach the juvenile 
reproductive phase (20 years), meaning a minimum of 15 and up to 30 years to achieve reproductive 
maturity [73,102]. In summary, these indices tend to overestimate the speed of recovery [73]. 

Photos of the Bejis fire illustrate the Mediterranean vegetation’s strong regenerative capacity but 
also highlight the limitations of satellite indices. Although the wildfire occurred just three years ago, 
its NBR has recovered by an average of 90%. However, the landscape is nowhere near what it was 
before the fire broke out (Figure 11). The pine trees affected were over 50 years old, as shown by the 
growth rings in Figure 12b, and were therefore fully mature with a complete seed bank. This has 
fostered the emergence of new shoots (Figure 12a). The growth of herbaceous plants and shrubs after 
the spring rains has completed the vegetation cover of the burned soil, but by no means constitutes 
the entirety of the original forest’s vegetation structure (Figure 12). 
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(a) (b) 

 
(c) 

Figure 11. Views of the village of Bejis where the fire broke out on 15/08/2022 from the Las Ventas viewpoint on 
the CV-235 road. In addition to Bejis, the distinctive shape of the “Peña Escabia” rock formation stands out in all 
three photos as a reference: (a) Photo from 2021, before the fire; (b) Photo from 2022, immediately after the fire; 
(c) Photo from 2025, three years after the fire. Source: (a) and (b) Mr José Manuel Mon Dols; (c) Mr Enrique 
Montón Chiva. 

  
(a) (b) 
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Figure 12. Pictures of the area damaged by the Bejis fire on 15/08/2022: (a) Photo from 2025, three years after the 
fire near Bejis, with pine trees growing; (b) Trunk cut at the same spot. Source: Mr Enrique Montón Chiva. 

The research revealed that the Artana fire in July 2016 was the most severe in terms of NDVI 
decline and one of the most significant in NBR loss. Both indices were down by more than 0.200. 
However, in spite of its high forest cover percentage (70%), it shows impressive regeneration data. In 
just five years, its NDVI recovered to 94.3%. The NBR recovery data, which are always less 
impressive, stand at 86.8%, second only to the fires in Salsadella and Cabanes which, by contrast, 
affected areas of scrub and/or herbaceous vegetation associations. As in the case of Bejis, satellite data 
tell only part of the story in these two wildfires. Google Earth images from 18 July 2015 (Figure 13a,b) 
show complete forest cover with the distinctive tree crowns clearly visible. After the fire, the 
landscape has changed completely (Figure 13c,d). The greenery has disappeared, and in the detailed 
image from 16 November 2016 (Figure 13d) the burning of the trees and the disappearance of their 
crowns has exposed the typical agricultural terraces of the Mediterranean mountains. In the last two 
images (Figure 13e,f) taken on 27 February 2022, over five years after the fire, the landscape is once 
again green, as reflected in NDVI, yet the forest structure has not recovered: the terraces are still 
visible, but sadly the original vegetation has not returned, as evidenced by the absence of the tree 
crowns (Figure 13f). Vegetation recovery is a process which takes longer than NDVI suggests. 

The next step in our research is contingent upon the publication of the new CORINE Land Cover 
version for 2024, expected before mid-2026 [42], which will enable us to examine whether the effect 
of fires and subsequent regeneration is discernible in LULC. Our intention is to investigate this 
database and others such as SIOSE [103] and Global Land Cover and Land Use Change, 2000-2020 
[104]. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 13. Sequence of Google Earth images of the area affected by the Artana wildfire which broke out on 25 
July 2016: (a) General view on 18 July 2015, before the fire; (b) Detailed view of the bottom right corner on the 
same date, before the fire; (c) General view on 16 November 2016, after the fire; (d) Detailed view of the bottom 
right corner on the same date, after the fire; (e) General view on 27 February 2022, over 5 years after the fire; (f) 
Detailed view of the bottom right corner on the same date, over 5 years after the fire. Source: Google Earth [105–
110]. 

While we await the new CORINE Land Cover release, we have no shortage of research goals. 
This study has contributed valuable insights into wildfire trends, seasonal behavior, and underlying 
causes, which are only briefly mentioned here as they go beyond the scope of the study. Nevertheless, 
understanding the causes of fires is critical for effective prevention. The sharp decline in fires after 
the devastating early 1990s coincided with an equally steep fall in fires attributed to unknown causes: 
highlighting that accurate identification is a key tool to prevent them. In the next phase, we aim to 
study the seasonal behaviour and causes of fires and exploit the potential of both ground-based and 
remote sensing imagery, to refine the results obtained by vegetation indices. 

5. Conclusions 

This study analyses the regenerative capacity of Mediterranean vegetation affected by summer 
drought and water scarcity during the hottest time of the year, in a climate that is unique in the world. 
This vegetation, whether forests or scrub and/or herbaceous vegetation associations, is adapted to 
this climate and to wildfires, one of the main natural disasters in this ecosystem. 

To demonstrate this adaptation, we analysed wildfires in Castellon, one of Spain's fifty 
provinces, focusing especially on large-scale wildfires which, in Spain, are defined as those affecting 
over 500 hectares. Castellon is the northernmost province of the Valencian Region, straddling the 
Mediterranean Sea and the Iberian mountain range. It was hit by 25 large-scale wildfires between 
1990 and 2024. 

The study also shows that provincial, regional and national data do not support earlier 
predictions, revealing instead a downward trend in the number of wildfires and burned area. More 
importantly, it confirms the strong regenerative capacity of Mediterranean vegetation. In all large-
scale wildfires analyzed, NDVI values recovered to over 75% of their pre-fire levels within just five 
years. This optimism, however, is tempered by the evolution of NBR values which in most cases lags 
behind NDVI recovery. In only a few instances did NBR exceed 75%, while in some areas, values 
remained below 40% of pre-fire levels. Images on the ground and those obtained with Google Earth 
have confirmed the need to qualify this purported regeneration of Mediterranean vegetation, 
restricting it to vegetation cover and not type and structure, a process that requires at least two 
decades. 
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The following abbreviations are used in this manuscript: 

NDVI Normalized Difference Vegetation Index 
LULC Land Use/Land Cover 
GEE Google Earth Engine 
CORINE Coordination of Information on Environment 
CE Climate Engine 
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NBR Normalized Burn Ratio 
Km2 Square kilometers 
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