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Abstract

Mathematical modeling is indispensable in oncology for unraveling the complex interplay between
tumor growth, vascular remodeling, and therapeutic resistance. Here, we address the critical need for
integrative frameworks capturing bidirectional feedback between hypoxia-driven angiogenesis and
stochastic resistance evolution, an aspect often treated in isolation by previous continuum or agent-
based models. We develop a novel hybrid partial differential equation-agent-based model (PDE-ABM)
formulation unifying reaction-diffusion equations for oxygen, drug, and tumor angiogenic factor (TAF)
with Gillespie-driven stochastic phenotype switching and discrete vessel-agent dynamics. Our work
fills a methodological gap by providing the first rigorous well-posedness proof for this class of coupled
systems, alongside detailed numerical analysis of discretization schemes and derivation of analytically
tractable mean-field PDE limits via moment-closure techniques. The mean-field limit unifies the hybrid
system into one PDE system, linking stochastic microdynamics with deterministic macrodynamics.
By combining mathematical rigor with biologically interpretable outputs, our framework establishes
a foundation for predictive multiscale oncology models and enables future data-driven therapeutic
design.

Keywords: mathematical oncology; tumor resistance; angiogenesis; hypoxia; hybrid and multiscale
modeling; reaction-diffusion equations; agent-based model; mean-field limit; stochastic phenotypic
switching

1. Introduction

Cancer remains a leading cause of global mortality, accounting for 16.8% of all deaths and
22.8% of noncommunicable diseases-related deaths [1]. Despite advances in targeted therapy, im-
munotherapy, and radiotherapy, therapeutic resistance persists as the primary barrier to achieving
durable cures, often resulting in relapse or refractory disease [2]. Here, we focus on how resistance
mechanisms—particularly those driven by tumor angiogenesis—undermine current treatments and
perpetuate poor prognosis. Resistance arises from both intrinsic tumor heterogeneity (e.g., spatial
and temporal genetic diversity [3]) and adaptive responses to therapy, with the tumor microenviron-
ment (TME) playing a pivotal role. Among these factors, dysregulated angiogenesis emerges as a
critical facilitator of resistance. Tumors hijack pro-angiogenic pathways (e.g., vascular endothelial
growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR), hypoxia-inducible factor
1la (HIF-1a)) to sustain growth, while suppressing anti-angiogenic signals (e.g., thrombospondin-1
(TSP-1)) [4]. This "angiogenic switch" not only fuels tumor progression but also establishes a resilient
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vascular niche that evades therapy. Although anti-angiogenic agents (e.g., bevacizumab) initially
improve progression-free survival by blocking VEGE, their long-term efficacy is limited by rapid
resistance [5,6]. Critically, tumors activate compensatory pathways (e.g., fibroblast growth factor 2
(FGEF-2), Interleukin-8 (IL-8), and Angiopoietin-2 (ANGPT-2)) to restore angiogenesis [7], while stromal
components (e.g., tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs))
further sustain vascular remodeling via cytokine secretion [8]. These findings reveal a paradox: angio-
genesis inhibition may inadvertently select for more aggressive, adaptive phenotypes. To overcome
this challenge, we argue that disrupting the dynamic crosstalk between tumor cells and the angiogenic
TME is essential. Recent studies suggest that combinatorial targeting of both VEGF and compensatory
pathways (e.g., FGF-2/IL-8) may delay resistance [9]. However, a systematic framework to predict
tumor adaptive responses and optimize combination regimens is still lacking. In this study, we propose
a computational hybrid model to identify vulnerabilities in angiogenic networks and investigate the
bidirectional coupling between angiogenesis and tumor resistance evolution. To address this need, we
first contextualize existing modeling paradigms that inform such integrative frameworks.

Continuum models efficiently capture bulk tumor growth and transient dynamics. The Keller-
Segel framework describes cell migration via partial differential equations (PDEs), where endothelial
cells follow chemical gradients [10]. Such models assume continuous cell densities, overlooking
individual cell heterogeneity. The Fisher-KPP equation [11,12] links proliferation and motility to model
tumor spread as reaction-diffusion waves, but cannot resolve rare stochastic events like resistance
mutations. Discrete models track individual cell behaviors and microenvironment heterogeneity.
Anderson et al. [13] pioneered agent-based models (ABMs) to simulate capillary sprouting through
stochastic tip-cell migration rules, but lack coupling to continuum metabolite fields (e.g., oxygen
gradients) and microenvironmental feedback (e.g., hypoxia-driven angiogenesis). Despite these
advances, both approaches face inherent limitations: Continuum models lack single-cell resolution
for stochastic events (e.g., mutations, phenotype switching) and spatiotemporal heterogeneity, while
discrete models are computationally prohibitive for large-scale dynamics (e.g., diffusion, fluid flow).
This dichotomy motivates hybrid frameworks that transcend scale constraints.

Hybrid discrete-continuum (HDC) models integrate agent-based rules with reaction-diffusion
equations to reflect cancer’s multiscale nature [14-16]. Some hybrid models address drug resistance
evolution. Gevertz et al. [17] coupled continuous drug and oxygen fields with agent-based tumor
dynamics to study preexisting and acquired resistance, but assumed stationary vessels, uniform
resistance acquisition capacity, and continuous drug administration. Picco et al. [18] modeled envi-
ronmentally mediated drug resistance (EMDR) using drug and signaling fields, generating EMDR by
increasing vascular density but neglecting vascular remodeling. Other hybrid models coupled tumor
growth with angiogenesis [19,20]. Macklin et al. [21] developed a multiscale framework integrating
extracellular matrix, angiogenesis, and tumor progression. Despite these innovations, a critical gap
persists: Most models simulate vascular remodeling or resistance in isolation, omitting spatiotemporal
feedback where vessel adaptation alters resistance trajectories. One exception is Wang et al. [22], which
proposed a hybrid model coupling hypoxia-induced angiogenesis with resistance selection, but left
unresolved three limitations: (i) inadequate mathematical analysis of the hybrid system, insufficient
numerical scheme analysis, and absence of derived mean-field limits for agent dynamics. Our work
directly addresses these gaps while extending their framework.

We advance the hybrid paradigm in [22] through three innovations: First, we introduced a
spatially resolved model unifying stochastic phenotypic switching via a Gillespie algorithm to capture
drug-induced resistance transitions. Second, we incorporate metabolite-regulated angiogenesis where
vessel agents respond to dynamic hypoxia (0) and tumor angiogenic factor (TAF) (c) gradients. Third,
we establish bidirectional coupling enabling emergent feedback between hypoxia, angiogenesis, and
resistance evolution. Consequently, this framework yields three contributions: rigorous mathematical
analysis of the coupled PDE-ABM system and numerical analysis of PDE discretization schemes;
integration of exact stochastic resistance (Gillespie ABM) with physics-driven angiogenesis (PDE-
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coupled ABM); and derivation of analytically tractable continuum mean-field limits from discrete
rules. The mean-field limit integrates the hybrid system into one PDE system, linking stochastic
microdynamics with deterministic macrodynamics. It motivates innovative hybrid numerical schemes
that selectively retain the full ABM structure in critical regions while replacing it with efficient PDE
surrogates elsewhere. By unifying PDE analysis, stochastic analysis, and numerical analysis, our
framework moves beyond descriptive modeling to establish rigorous mathematical foundations for
hybrid PDE-ABM systems.

The paper is structured as follows: Section 2 details the hybrid formulation. Section 3 links
our model to classical mathematical biology frameworks and outlines contributions. Section 4 pro-
vides mathematical analysis of the coupled system. Section 5 presents numerical analysis, including
consistency, stability, convergence, and conservation properties. Section 6 concludes.

2. Material & Methods

Building on the Introduction’s biological foundations, we formalize a hybrid PDE-ABM with
bidirectional coupling between continuum fields (TAF, drug, oxygen) and discrete agents (tumor
and vessel cells). Reaction-diffusion equations govern TAF (c), drug (d), and oxygen (0) dynamics.
Endothelial cell (n) migration follows increasing TAF concentrations via the chemotaxis equation:

_ . X0
Jon = DyAn—V <1+achc).

Discrete tumor and vessel agents interact with the TME through stochastic rule-based ABM
dynamics. We denote tumor, normoxic, hypoxic, tip, and vessel agent sets at time t as A;, A}, A?,
T, and V4, respectively. Local oxygen levels partition the tumor population into normoxic (A}) and
hypoxic (Af) subpopulations. Full model details appear in [22]. We present the non-dimensionalized
system for (1, ¢, d, 0); the original dimensional system and non-dimensionalization procedure derive

from Appendix A.
. v X0
oin =DyAn—V <1 +MnVc),
dic =DcAc—Cec+1 Y, Xa—AC Y Xos
N eV (2.1)

01d = DyAd —Cgd —pgd Y Xa+Si L Xos

acN; veV;
0t0 = DyA0— o0 — 00 ¥ Xa+So(l—0) ¥ xo

acN; vEV:

Here, Dy, D, Dy, D, are diffusion coefficients; xo is the chemotactic sensitivity; « is the saturation
parameter; ., G4, Co are decay rates; pg, po are cellular uptake rates; S, S, are supply rates from blood
vessels; and 7, A are production/uptake rates of TAF. x,, xo» are characteristic functions that equal 1
within disks of cellular radius R.:

e i Ay L LI B

Xa(x,t) =
0 otherwise, 0 otherwise.

Here, a(X'Y), v(XY) denote the position center of a and v. We choose a closed domain U C R? with

C® boundary oU and impose homogeneous Neumann conditions:

7l - Vu|au = 0,
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where 7 is the outward unit normal at oU.

Tumor and vessel agents evolve on a lattice Uapm discretizing the ABM domain Uapy = [0, 1]2
into N? squares of side length Ax = 1/N. Tip cell motion uses the Von Neumann neighborhood
structure (four orthogonal neighbors), while agent-microenvironment interactions use the Moore
structure (eight neighbors including diagonals).

We construct a PDE domain Uppg C R? with C® boundary approximating Uapm. Appendix B
details the mapping Uspym — Uppg and the numerical derivation of the discrete lattice Uagy in the
ABM. Briefly, define the open é-neighborhood U of Uapy with 6 < %Ax. Convolve its characteristic
Xu; with a compactly supported C* mollifier 5, and set

Urpe = { (x,y) € B2 (xu, * 95)(x,y) > 1—¢,

for small € > 0 ensuring Uppg C Uy 6. This yields a domain dUppg whose C* boundary oUppg
is proximal to dUspy. We obtain the discrete approximation Unpm by sampling ¥ = (xy, * ¢5) on
the ABM lattice, thresholding at level 1 — ¢, and identifying boundary agents as those with Moore
neighbors outside Uppg. Algorithm Al summarizes the construction.

Each tumor cell a € A; has state:

7

q4= {LZ(X’Y), a°, ad{ adam, adeath’ %8¢, amat}

denoting position, local oxygen, accumulated drug, DNA damage, death threshold, age, and
maturation time. Each tip cell b has state:

b= (XM (1), (1)},

for position and age since the last branching. Agent states update via Markov processes under
the time discretization 0 =ty < t] < fp < --- < tpy = T of [0, T):

xX(ter1) = Far(e( tr), d(e t), 0(-, ), M(tr)),

2.2)
x(t) = x(tey1), € [ tiyr),

where F, ; is the Markov transition operator [22]. Algorithm A2 summarizes the transition
operator F, \ for each mark x. for tumor and endothelial tip cells. Local cell density includes tumor-
vessel interactions in our current model:

F(x,t) =) Xbg. (x - a(X'Y)(t)) + Y X, (x - U(X’Y)(t)) (2.3)

ac\; veV;

We decouple phenotype switching from cell division. Unlike classical mutation models linking
resistance acquisition to division events, stochastic S = R transitions occur through continuous-time
Markov processes independent of division cycles. Mutation elevates the death threshold, DNA repair
rate, and oxygen consumption rate but reduces the proliferation rate. Phenotypic traits

x € {death threshold, repair rate, oxygen consumption rate, proliferation rate }

take sensitive (xg) and resistant (xg) values:
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xg : drug-sensitive trait value,

xR : drug-resistant trait value.

Cells stochastically switch between these states according to the reaction channels

k . . .
xg —% xg  (induction of resistance),

k . cpe
xg =5 xs (reversion to sensitivity),

where baseline rates k; and kj, drug sensitivity coefficients a; and f;, sensitive-to-resistant
mutation rate kgg and resistant-to-sensitive mutation rate kg

kSR(-xr t) = kl + D(dd(x, t)/ kRS (X, t) = max{ol k2 - :de<xr t)}

govern phenotypic switching. Each tumor cell a; € A; bears a phenotypic mark 0; € {S,R},
updated independently of the cell cycle via the Gillespie algorithm [23]. Waiting times follow an
exponential distribution with mean 1/ Ag (Ag: total propensity):

1

At = —
Ay

1
log<r1), r1 ~ Uniform(0, 1).

Algorithm 1 Stochastic phenotype switching via the Gillespie Direct Method
(X,Y)

i

Require: Initial tumor agents A, positions a
krs(x,t), and ABM time horizon Tagy-
1: Sett + 0.
2: while t < Tagym do
for each agent a; € A; do

, phenotypes 0; € {S, R}, mutation rates ksg(x, ),

3

4 Compute local mutation rates: k « kSR(aEX’Y) (1), 1), kg kRS(al(X’Y) (1), t).
5 Set propensity A; < kiSR, ifo; =S; A; + klﬁs if o; = R.

6: end for
7
8
9

Compute total propensity Ag < Zl-ﬁtl‘ A;.
if Ag = 0 then
: break > No further switches possible
10: end if N
11: Draw rq, 1) iid Uniform(0,1).
12 Compute exponential waiting time At < Aio log(%) .

13:  Find minimal j satisfying Z{Zl Aj 2 1 Ay.
14: Flip 0j: 0 - Rifo; = §;0; <~ Sifoj = R.
15: Update t < t 4 At.

16: Update:
() local drug d(algx’y) (t),1),
(ii) mutation rates kg R’ k%s,
(iii) Ay and {0},
(iv) phenotype-associated traits: death threshold, repair rate, oxygen consumption rate, prolif-

eration rate.

17: end while
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Each switching event selects the reacting agent by propensities, flips its phenotype (S <+ R), and
updates time-dependent quantities. Algorithm 1 encapsulates phenotype switching procedures. This
Gillespie framework permits resistance emergence independent of cell division, capturing stochastic
gene expression fluctuations. It thus recovers resistance in rare subpopulations that deterministic
ordinary differential equation (ODE)/PDE models average out, and naturally quantifies treatment
schedule effects on resistance probability and timing. Table 1 summarizes all parameters in our hybrid
PDE-ABM, categorized by continuum PDEs, discrete ABM rules, and numerical implementation.

Our model uniquely captures bidirectional feedback: how hypoxia induces angiogenesis, which
alters drug delivery and selects for resistance. The theoretical framework justifies how small changes
in local oxygen or vessel density can produce nonlinear shifts in resistance trajectories. These feedback
mechanisms align with clinical observations where anti-angiogenic therapies may paradoxically
increase resistance risk. Thus, the model could be used to explore: (i) critical thresholds in vessel
remodeling that shift tumor response from chemosensitive to chemoresistant, and (ii) timing effects,
e.g., whether anti-angiogenic pre-treatment amplifies or delays resistant onset.

3. Connection to Classical Mathematical Biology Frameworks and Contributions

Having formalized our multiscale framework, we contextualize its biological relevance through
its mathematical lineage. This section demonstrates that limiting cases of our hybrid PDE-ABM system
reduce rigorously to three foundational frameworks: Keller-Segel chemotaxis, Fisher-KPP invasion
waves, and Galton-Watson branching processes. These connections are mathematically exact. For a
small chemokine concentration ¢ such that 1 + ac ~ 1, the endothelial cell equation simplifies to the
classical Keller-Segel form:

orn = DyAn — xoV - (nVe).

Our model generalizes Keller-Segel by incorporating nonlinear chemotactic saturation and ABM
coupling.

While endothelial migration follows chemotactic principles, tumor proliferation exhibits distinct
spatiotemporal dynamics. This divergence aligns with the Fisher-KPP paradigm, governed by the
equation:

_ _r
0tp = DAp +ap (1 K)'
where p(x, t) denotes density, D diffusion, « growth rate, and K carrying capacity. Under normoxic
conditions (0 & omax) and negligible drug (4 — 0), tumor density equation (Equation (4.5) reduces to

0ip = DAp—l—ucnp(l— P )
Fmax

This predicts traveling wavefronts with minimal speed 2/Da;,. Crucially, our full model ex-
tends this framework by incorporating microenvironmental heterogeneity (oxygen gradients, drug
distribution), which distorts wavefronts into clinically observed asymmetric invasion patterns.

Complementing continuum-scale dynamics, cellular-scale proliferation exhibits stochastic foun-
dations. Absent spatial coupling and microenvironmental feedback (e.g., well-mixed conditions),
tumor lineage expansion follows a Galton-Watson branching process. A normoxic cell divides with
probability p; or dies with probability pjeqq, in time interval Af. yielding the offspring distribution:

P(offspring = 2) = p;, P(offspring = 0) = pgean, P(offspring =1) =1 — py — Paeatn-
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Table 1. Table 1 provides the complete parameters for the hybrid model. It categorizes parameters into partial

differential equation (PDE) systems, agent-based models (ABMs), and numerical parameters. Entries marked

"n/a" denote non-applicable or unavailable parameters.

Parameter Description Dimensional Value Non-Dimensional Value Source
PDE Parameters
Dy Endothelial cell diffusion coefficient 2.00 x 1073 m2/s 4.61 x 104 [13]
D, Tumor angiogenic factor (TAF) 521 x 10711 m2/s 0.12 [24,25]
diffusion coefficient
Dy Drug diffusion coefficient Scaled 0.5 Scaled
D, Oxygen diffusion coefficient 278 x 10710 m?/s 0.64 [26]
X0 Max chemotactic sensitivity 2.60 x 10~* m2/ (s - mol/m3) 0.38 [13]
« Chemotaxis saturation parameter Scaled 0.6 [13]
& TAF decay rate 347 x 108571 0.002 [27]
Ca Drug decay rate Scaled 0.01 [17]
o Oxygen decay rate 434x 1077571 0.025 [28]
Ui TAF production rate 1.7 x 1072 mol /(cell - s) 6.27 x 103 [29]
A TAF uptake rate n/a, nondimensionalized 0.1 [13]
04 Drug uptake rate by tumor cells Scaled 0.5 [17]
0o Oxygen uptake rate by tumor cells 6.25 x 10717 mol/(cell - s) 34.39 [17]
Sq Drug supply rate from vessels Scaled 2 [17]
So Oxygen supply rate from vessels Calibrated 35 Calibrated
u Spatial domain n/a n/a Bounded subset of
R? with C* bound-
ary oU
ABM Parameters
R, Cell radius for tumor and endothelial ~ 1.25 x 107> m 0.005 [30]
cells
Xas Xo Characteristic functions for tumorand n/a Xa(x,t) = Br (x —aXV) (1) [22]
vessel agents
Xo(x,t) = Br.(x = o* V(1))
Ay, A}, Af’, Ty, Vi Tumor, normoxic, hypoxic, tip and n/a n/a [22]
vessel cell sets at time ¢
u(X'Y)(t), h(X'y)(t), Positionsof a € Ay, b € Ty, v € V; at n/a n/a [22]
oXY)(1) time £
a’(t), ud(t), a%am(t), Local oxygen, drug level, damage, n/a n/a [22]
ateath(t), guse(t), g™at death threshold, age, and cell cycle for
tumor cell a € V;
b8 (t) Tip cell b’s age n/a n/a [22]
o; Phenotype marks (sensitive S or n/a n/a Gillespie algorithm
resistant R)
€ Tumor movement rate Modeling choice 0.01 Modeling choice
Omax Maximum oxygen level 6.7 mol/m3 1 [29]
Onyp Hypoxia threshold for tumor cells Threshold setting 0.25 [29]
Oapop Apoptosis threshold for tumor cells Threshold setting 0.05 [29]
ksr Sensitive-to-resistant mutation rate n/a ky + aqd Gillespie algorithm
krs Resistant-to-sensitive mutation rate n/a max(0, kp — Bgd) Gillespie algorithm
Ap Total propensity n/a n/a Gillespie algorithm
pr DNA Damage clearance rate Scaled 0.2 [17]
Thyati Death threshold ratio 100-1000 100-1000 [31]
Page Cell cycle duration Uniform[3.24 x 10%,3.96 x 10*] s 0.56-0.69 [32-37]
ap Normoxic proliferation rate Derived from log(2)/ ©age 1.0082-1.2323 Derived
Fax Crowding threshold for proliferation ~ Modeling choice 10 [38]
P Tip cell branching age threshold Scaled 0.5 [13]
Cpr Branching intensity coefficient Modeling choice 1 [38]
Py, Py, Py, P53, Py Endothelial cell remaining stationary n/a n/a [22]
or moving left, right, down, or up
probabilities
Numerical Parameters
Ax Spatial discretization step 5x 1075 m 0.01 Courant-Friedrichs-Lewy
(CFL) condition
At PDE Temporal discretization step 2.88 x 102 s 0.005 CFL condition
AY ABM update time step 5.76 x 10> s 0.1 Modeling choice
Ly, Ly Domain side length 5x 1073 m 1 [22]
N, Ny, Ny Grid size n/a 99 Modeling choice
é Domain smoothing radius n/a < %Ax Algorithm 1
€ Domain threshold for Uppg n/a Small Algorithm 1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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For two phenotypes (drug-sensitive S, drug-resistant R), this extends to a two-type Galton-Watson
process with expected offspring matrix:

Crucially, classical branching models restrict phenotypic switching to division events. In contrast,
our framework implements phenotype switching via a continuous-time Markov process simulated
using the Gillespie algorithm (Algorithm 1), enabling asynchronous phenotype evolution independent
of the cell cycle. Figure 1 illustrates interactions between branching proliferation and stochastic
phenotype switching.

Our mathematically rigorous, biologically grounded HDC framework extends classical theories
through multiscale feedback, stochastic switching, and microenvironmental coupling. It advances
hybrid modeling by integrating agent-based stochastic phenotypic switching, continuum reaction-
diffusion metabolite fields, and bidirectional vascular-resistance coupling. We provide analytical
guarantees for model well-posedness, numerical robustness, and mean-field limits. Our contributions
distinguish themselves from existing oncology hybrid models (e.g., [39-41]) in four key aspects:

(i) Mean-Field Limits: Unlike direct continuum PDE-ABM coupling or variance reduction
methods [39,40], we prove convergence from the stochastic agent-based description to a
deterministic PDE limit using chemical master equations (CMEs) and moment closures. This
yields a unified continuum system (4.6), linking stochastic microdynamics to deterministic
macrodynamics. It motivates innovative hybrid numerical schemes retaining ABM structures
in critical regions while employing efficient PDE surrogates elsewhere.

(if) Well-Posedness Analysis: While most stochastic-hybrid models prioritize computation over
analytical soundness [40,41], we establish complete well-posedness for our hybrid PDE-ABM
system. This includes the existence, uniqueness, and regularity of weak solutions (Theo-
rems 1-3), plus analysis of numerical schemes: consistency (Section 5.2), conditional stability
(Theorem 6), convergence (Theorem 7), nonnegativity (Theorem 8) and mass conservation
(Theorem 9).

(iii) Stochastic-Deterministic Feedback: Unlike [39], who model virus spread in lung tissue, our
hybrid system couples cell phenotype switching, angiogenic fields, and vascular remodel-
ing. This reveals nonlinear resistance dynamics driven by environment-phenotype feedback,
underpinned by rigorous mathematics and mean-field approximations.

(iv) Clinical interpretability: While stochastic interacting particle fields (SIPFs) [41] or variance
reduction techniques [40] emphasize algorithmic efficiency, our model explicitly links parame-
ters (e.g., mutation rates, oxygen thresholds, drug uptake) to clinical outcomes (e.g., tumor
front speed, resistance emergence). This offers a framework for optimizing treatment timing
and dosage.

Thus, our work uniquely combines mathematical rigor (well-posedness, mean-field limits) with bio-
logically interpretable hybrid modeling, delivering methodological novelty and translational potential
beyond current stochastic-hybrid cancer models.

4. Mathematical Analysis of the Coupled PDE-ABM System & Results

Biological motivation supports the hybrid model design, but rigorous mathematical analysis
remains essential to establish its validity and predictive reliability. This section systematically inves-
tigates the coupled PDE-ABM framework through three analytical pillars: (i) well-posedness of the
PDE-ABM system (Section 4.1), guaranteeing solution existence, uniqueness, and regularity; (ii) master
equation and mean-field analysis (Section 4.2), connecting discrete stochastic dynamics to deterministic
continuum-scale approximations; and (iii) validity regimes for moment closure approximations, link-
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ksr

division - division

krs

Figure 1. ABM representation of tumor cell proliferation and phenotype switching. Drug-sensitive (S) and
drug-resistant (R) cells undergo stochastic phenotype transitions (S = R) governed by mutation rates kg and
kgrs. These transitions occur independently of cell division events and follow branching processes within each
phenotypic state.

ing microscopic randomness with macroscopic behavior. This triad ensures mathematical robustness
for therapeutic applications, including chemotherapy optimization and anti-angiogenic interventions.

4.1. Well-Posedness

We establish existence, uniqueness, and regularity of weak solutions for the coupled PDE-ABM
system governing the continuous fields u = (c,d,0) . Without agent interactions, the PDEs reduce
to a classical linear parabolic system with guaranteed well-posedness. We formalize this foundation
using the Lions—Gelfand triple framework [42, Theorem 10.9]; see [43] for detailed proofs.

Lemma 1 (J.-L. Lions). Let V. .C H C V* be a Gelfand triple, with V and H Hilbert spaces and V densely and
continuously embedded into H. The scalar product and norm for H are (-,-) and | - |, and the norm for V is
Il - ||. Let T > 0. Suppose for almost every t € [0, T], a(t;u,v) : V x V — R is a time-dependent bilinear form

satisfying:
(i) Forall u,v € V, the function t — a(t;u,v) is measurable.
(ii) la(t; u,v)| < M||ul|||v| for almost every t € [0, T] and all u,v € V.

(iii) a(t;v,v) > al|v||? — C|o|? for almost every t € [0, T) and allv € V.
where o > 0, M, and C are constants. Then for f € L*(0, T; V*) and ug € H, there exists a unique function

ueL*0,T;V)NC([0,T|; H), o € L*(0,T;V*)

satisfying the weak formulation:

(0pu(t),v) +a(t;u(t),v) = (f(t),v) forae.te (0,T), VoveV,
with initial condition u(0) = u.

We now apply this result to the coupled reaction-diffusion equations on the finite time interval
telo,T]:

oru = DAu+ G(x,t,u), xeU, te(0T],
u(x,0) = up(x) = (co(x),do(x),00(x)), x e U, 4.1)
dyu =0, xeu,te(0,T],

where D = diag(D., Dy, D,) and G = (G1, Gy, Gs) ' incorporates agent-dependent reaction terms:
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Gi(x, t,u) = =Ccc+n L Xa—Ac L Xo

acAl veV;
Gz(x/ tl u) == _gdd - Pdd Z Xﬂ + Sd Z X?J/
aeN; veV;
Gs(x,t,u) = =G0 —po ¥ Xa+So(1—0) ¥ Xo-
acN; veVy

We omit the analysis of the endothelial density equation:

oin = DpAn —V - (x(c)nVe).
Classical two-dimensional Keller-Segel systems exhibit chemotactic blow-up, that is, unbounded

density in finite time [44,45], but admit global solutions under small-mass conditions. In particular,
consider the following parabolic-elliptic Keller-Segel system:

om —xAn+V - (xnVe) =0, xc UCR? t>0,

—Ac=n— (n), xel, t>0,

4.2)
n(x,0) = ny(x), xel,
n-Vn=1-Vec=0, xeadl, t>0,

where 7 is the outward unit normal to oU and (n) = ‘1?' Ju 1(x,t) dx denotes the spatial average
of n. Assume the initial mass satisfies:

Coptk i} 87, if U=R2
/ np(x)dx < —/—, Copt =
u X 47, if Uis a bounded, connected C2 domain.

Then, a global-in-time weak solution exists under the following conditions:

(1) Bounded domain case: If U is a bounded, connected C?> domain and ny € L®(U),
(ii) Whole space case: If U = R?, with (1 + |x|*)ng € L(R?) and nglogng € L'(R?).
This follows from [44,46].!

Discrete agents represent the endothelial population in our hybrid formulation, replacing con-
tinuous density and further regularizing dynamics. Each tip occupies at most one lattice site. Vessel
elongation occurs with a fixed period 7, and branching requires the tip cell age to exceed the threshold
P (b8 > 1p). Anastomosis stabilizes the system: tip encounters cause emerging, reducing the tip
count. These rules ensure a finite agent population | T;| and prevent uncontrolled mass concentration,
consistent with lattice-based chemotaxis ABMs [13,28,47,48]. We thus focus our analysis on the (c,d, 0)
subsystem. To manage PDE-ABM coupling, we introduce:

Assumption 1 (PDE-ABM Coupling). (i) The spatial domain U C R? is bounded with C* boundary
au.

(ii) The initial data ug = (co, do, 00) is nonnegative and belongs to [L2(U) N L= (U)]3.

(i) Forall t € [0, T] and lattice sites x € Uppp:

1 Our endothelial PDE is parabolic—parabolic. Experimental observations of large chemoattractant diffusion coefficients justify

the quasi-steady-state approximation d¢c ~ 0, reducing the system to parabolic—-elliptic Keller-Segel form. The small-mass
global existence criteria then apply. We will rigorously derive analogous results for the full parabolic—parabolic case in future
work.
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F(ot) = X xie, (x— a0 (0) + X xg, (v — 050 (1)) < Fa.
acN; veVy

Assumption 1 (iii) imposes a uniform local density bound, not global agent boundedness, as
tumor proliferation may increase |A¢| + |V;| over time. This aligns with the biological crowding
constraint Fnax in ABM rules: lattice sites accommodate finitely many agents within radius R, and
cell division halts at local density Fnax. Consequently, global agent growth does not compromise the
local boundedness of PDE source terms, which is essential for coupled system well-posedness.

We define the weak formulation by seeking u = (c,d,0) " satisfying u € L?(0, T; H'(U)) and
oiu € L2(0, T; H'(U)') for each u € {c,d, 0}, with:

(@114, 9) + Du(Vi, V) 12y = (Gu, @) 12y, V¢ € HY(U)?, ae,t€(0,T),

and initial conditions u(x,0) = uo(x). Here (-, -);2(;;) denotes the L? inner product, and (-, -) is
the H' (U) duality pairing.

Theorem 1 (Existence and Uniqueness of Weak Solutions). Assumption 1 guarantees unique weak
solutions for the coupled PDE-ABM system (4.1) with:

u € L2(0, T; HY(U)) N C([0, T); L2(U)), o € L*(0, T; HY(U)"), u € {c,d,o}.

Proof. Apply Lemma 1 to each component via the Gelfand triple H'(U) C L?(U) ¢ H'(U)" and
coercive, bounded bilinear forms a,(t; v, w) = D, (Vv,Vw) foru € {c,d,o}. O

We rigorously couple ABM and PDE dynamics through time discretization 0 =ty < t; < tp <
-+ <ty = T and operator splitting:

Theorem 2 (Well-posedness of the Coupled PDE-ABM System). Under Assumption 1 on [0, T| with
time steps ty:

(i) The PDE subsystem admits a unique weak solution with Theorem 1 regularity.

(ii) The ABM subsystem defines cadlag Markov process almost surely for agent marks

M = {a(X,Y)’ a”,ad, adam’ adeath/ %8¢, amat, b(X’Y), bage}/

Proof. Use mathematical induction over intervals Iy = [t;_1,t]. For k = 1, Theorem 1 establishes

existence, uniqueness, and regularity on I; = [0,#;] with initial data (cp,do,09) and fixed agent
(Aty, Vi) Assume the result holds on Iy = [t_1, t]. For I = [ty teya]:
(1) Solve the parabolic subsystem on I | = (t, tgi1]:
oru = DAu+ G(x, g, u), xel tell,,
u(xl tk) = (C(x/ tk)/ d(x/ tk)lo(xl tk))r xel, (43)
J,u=20, xeau,telltﬂ,

which has unique weak solutions by Theorem 1.
(ii) Evolve ABM marks on I,l( 11 = [t trgr) via:
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X(teg1) = Fapsa(eCote), d(, te), 00, ), M(t)),
x(t) = x(tgp1), telly,

where F, ;1 is the Markov transition operator. Piecewise constant agent trajectories with
right-continuous and left limits ensure the cadlag Markov property.

Induction extends the result to [0, T|. O

Remark 1 (Justification of Stepwise Decoupling). Theorem 2 solves the PDE subsystem on each interval
IL, = (t tiy1] with fixed agent configuration (A, V). This approach directly implements the hybrid
model’s operator—splitting scheme: PDE fields evolve continuously via (4.3) on (ty, ty,1]. While agent updates
occur discretely at t. Consequently, PDE source terms G(x, ty, w) are piecewise constant in time, preserving
well-posedness as a linear parabolic problem on each subinterval. The ABM update (2.2) defines a Markov map
at mesh points.

Since the alternating-update rule defines the hybrid model itself, no splitting error accumulates. The
piecewise-constant ABM forcing is an exact model component. The induction argument formalizes this sequential

construction, guaranteeing existence and uniqueness on each Iy and hence on [0, T).

We examine the decoupled system to highlight the ABM’s role. The resulting linear parabolic
PDEs with Neumann boundary conditions admit a classical solution via spectral decomposition of the
Neumann Laplacian (proof in [49]):

Theorem 3 (Well-Posedness of Sole PDE System). The system

ot = DyAu—Euu inl dyu=0 onol u(x,0) = up(x), (4.4)

admits a unique classical solution:

[e)
u(x,t) = Y alle” Pulittutey,
k=1

where the Neumann Laplacian eigenbasis {wy } satisfies:

—Awp = Awy in U 9w =0 ondl, w € H(U)NC®(U),

with eigenvalues 0 = Ay < Ay < A3 < --- — +oo. Coefficients are a;l = (uo,wk)LZ(u). Each
u € {c,d,o} is spatially smooth for t > 0 and temporally analytic for x € U.

The spectral result confirms that without ABM interactions, the PDE subsystem maintains full
regularity and decouples completely. In the coupled system, agent density constraints ensure well-
posedness despite nonlinear agent-driven reaction terms. Thus, our hybrid framework is both analyti-
cally well-posed and biologically interpretable, providing a solid foundation for clinical applications.

Weak solution existence establishes a rigorous mathematical foundation for hybrid models
integrating microscopic interactions with macroscopic behaviors. The proof of well-posedness for the
coupled PDE-ABM system guarantees that the model behaves predictably under biologically relevant
conditions, e.g., bounded agent density due to cell crowding and realistic spatial constraints. This
is critical for ensuring that simulated phenomena like angiogenesis, hypoxia-driven resistance, and
spatial tumor heterogeneity reflect biological processes rather than numerical artifacts. From a clinical
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perspective, this mathematical well-posedness lays the foundation for future optimization of treatment
regimens (e.g., dosing schedules) within a consistent modeling framework.

4.2. Master Equation Formulation and Mean-Field Limit

Having established deterministic well-posedness, we now analyze stochastic aspects of agent
dynamics. Integrating stochastic agent-based dynamics within a continuum PDE framework requires
principled linkages between microscopic randomness and macroscopic observables. The CME provides
this foundation by capturing the probabilistic evolution of the agent state space. This section derives
a lattice-based CME for the hybrid PDE-ABM system, computes first-order moment equations, and
establishes conditions justifying a deterministic mean-field approximation. By unifying the hybrid PDE-
ABM into a continuous description (4.6), our model connects microscale interactions with macroscale
dynamics, replacing the computationally demanding ABM structure in dense tumor regions with an
efficient PDE solver.

We analyze a coarse-grained mesoscopic representation of the ABM component. Consider a
regular lattice Uapy = {x1, X2, ..., xx2 } With spacing Ax = % > 0 over the spatial domain. The local
agent density function M;(t) denotes the tumor agent count at site x; € Uapy and time .

Let M(t) = (My(t),...,Mp2(t)) represent the discrete ABM configuration at time t. A
continuous-time Markov process on Z{\Jz governs the stochastic evolution of M(t), with state-
dependent transition rates determined by agent rules, including proliferation, death, motility, and
phenotypic switching.

Let P(M, t) := P[ABM state = M at time ¢] denote the probability mass function over all ABM
configurations. The CME governing the evolution of P(M, t) is:

where T(M’|M) denotes the transition rate from configuration M to M. Each transition corre-
sponds to elementary stochastic events with specific forms:

(1) Brownian Movement: each cell jumps to neighboring site x; € N (i) at rate
&2
T;(M;) = mMz’,

where N (i) denotes the Von Neumann neighborhood (four orthogonal neighbors) of x;.
The coefficient % originates from the Fokker-Planck equation d;p = %p for tumor agents
undergoing Brownian motion: daXY)(t) = edW! with {W{},c,, independent standard
Brownian motions.

(if) Regulated Proliferation: Using the Heaviside function H to identify normoxic states, only
normoxic cells proliferate at rate

M; *
A(M) = a,H(o: — - -
1(M1) o (01 Ohyp)( Mmax(xi/ Ax)) M;

(iii) Drug-Induced Death: Apoptosis occurs at constant rate «;: p;(M;) = Kd; M;.
(iv) Mutation: mutation preserves cell counts per voxel, and thus does not appear in the CME.

Define the expected local agent density:
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The CME governs the change rate due to proliferation, death, and movement:

% = E[A:(M))] — B[ (M;)]
2 52

€
+ xjgf(i) (—2 A2 EM] = s AXZE[Mi}).

This equation is unclosed because first-order moments depend on higher-order correlations
through nonlinear functions. A tractable macroscopic approximation requires closure. The mean-field
approximation assumes statistical independence between agent states, providing the first-moment
closure:

Applying this closure yields:

dm; €2
L
dt 2Ax? % e ()

. +
m;
H(o; — 1—-—"t — x4d; | ;.
+ |an (01 Ohyp)( Mmax(xi,Ax)> Kq 1] m;

Define the density p(x;, t) == (1) gives ;(t) = p(x;,t)Ax?, producing the CME for p:

Ax?
Wt = S T (ol t) — plx 1))
dt 17 2Ax2 xjeN(i) ]/ 17

_|_

L _ p(xi/t) +_ . .
*Hlo Ohy*’)(l Mmax(xi,Ax)/sz) Fadi i )

The deterministic approximation holds under the law of large numbers when local agent pop-
ulations are large and suppress fluctuations. The continuum limit yields the macroscopic density
equation:

82

+
anH(0 — opyp) (1 _f ) - Kdd] 0,
Pmax

where pmax = lim %. In the continuum limit, the local cell count is

Ax—0
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F(x,t) = /BRC(x) [Otumor (Y, £) + Pvessel (¥, 1)] dy,

where prumor and Pyessel denote tumor and vessel agent spatial densities. The uniform bound
F(x,t) < Fmax implies the tumor cell density constraint:

E 1 F
max max y max
7 t S 7
Ptumor |B C| |B . | 2. (x) Pvessel (y ) y |B . |

where |Bg.| = 7R? begin the disk area. The maximum local cell count follows as

F,
Mmax(xi/ Ax) = p{ﬂ?r)l(orsz = nrr]lgg szz

— 3 MmaX(xi/Ax) — Fmax

thus pmax = AI;SOT = TR
Therefore, applying first-order moment closure E[f(M;)] ~ f(E[M;]) yields a deterministic
approximation of the tumor density dynamics. This closure is valid under large-population and

weak-correlation regimes.

Theorem 4 (Mean-Field Limit for the Tumor Cell Density). Let {Mi(t)}f\i2 1 denote tumor cell agent
counts evolving under the stochastic rules in Section 2 on a lattice Uapm with spacing Ax > 0. Assume:

(i) Initial agent positions and states are i.i.d. with macroscopic density py € L'(U) N L= (U).
(i1) The maximum local occupancy Mmax (x;, Ax) satisfies

Fmax 2
M (x', Ax) - Ax 7
max 1 7TR%

where Fmax 15 the maximal local cell-vessel occupancy value and R the cell radius.

Then, as Ax — 0 and Ny — oo, the tumor cell density satisfies:

+
op :iAp—l—{anH(o—ohyp)(l— p) —Kdd:|p,

Pmax (4.5)
p(0,%) = po(x).

Here pmax = Fmax/ (7TR2) is the macroscopic carrying capacity, H the Heaviside function, (-)* the
positive part, and d the drug concentration. Diffusion arises from cellular Brownian motion; the reaction term
models normoxic proliferation and drug-induced apoptosis.

Theorem 4 provides the leading—order deterministic approximation via first-order moment
closure. Agent-based simulations are computationally intensive for tumor populations. The mean-field
limit unifies the hybrid model into a computationally efficient continuum description:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0408.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2025 d0i:10.20944/preprints202508.0408.v1

16 of 37
& 14 +
oo = 580+ (anH(0 — opyp) (1 - m) —K4d|p,
_ v, Xo
oin = Dy,An —V <1 T MnVc),
(4.6)

dic = DeAc — Gee +11pH (0 — onyp) — Acn,
ord = DyAd — yd — pgdp + Syn,

0t0 = DyAo — &,0 — pop + So(1 — 0)n.

The mean-field equation (4.6) allows one to interpret complex, stochastic agent-based behavior
through simpler, deterministic PDEs. This bridge from microscale (single-cell events like stochastic
phenotype switching) to macroscale (tumor cell density evolution) enables: (i) analytical estimation of
tumor front velocity, aiding prognosis (e.g., time to vascular invasion or metastatic risk), (ii) sensitivity
to environmental factors (e.g., hypoxia, drug gradients) to be encoded directly in continuous equations,
which may inform spatially-resolved treatment planning, and (iii) approximate solutions in real
time, supporting integration into clinical decision-support tools, where full ABM simulations may be
computationally prohibitive. On the other hand, mean-field approximations neglect fluctuations, so
we clarify valid parameter regimes and biological relevance.

Remark 2 (Validity Regime of the Moment Closure). Equation (4.5) uses first—order moment closure

E[f(M;)] =~ f(E[M;]), neglecting second-order moments Var(M;) and higher—order cumulants. This requires:

(1) Large local populations: M; > 1 per site x;, making demographic noise O(M[l/ 2) under central
limit scalings;
(ii) Weak correlations: Negligible spatial correlations between neighboring voxels at scale Ax, ensured by

fast mixing (large &) or weakly interactions.

Fluctuations then contribute only O(M;” 1) corrections, so (4.5) captures population dynamics to leading order.
Biologically, these hold in dense tumor regions where local interactions average stochasticity. They fail in:

(i) Early growth stages, invasion fronts, or metastatic niches with small M; and non-negligible extinction;
(ii) Strongly heterogeneous microenvironments where correlations and clustering invalidate the weak—fluctuation
assumption.

Solutions include second-order moment closure (e.g., pair approximations) or hybrid models retaining ABM
structures in critical regions while using PDE surrogates elsewhere. These are active multiscale modeling
research areas.

5. Numerical Analysis & Results

We rigorously evaluate the numerical properties of the hybrid PDE-ABM scheme. First, we detail
the discretization framework for both continuous and agent-based components. We then analyze
consistency, stability, and convergence, verifying critical biological features including nonnegativity
and mass conservation. Finally, we validate theoretical convergence through grid refinement tests.

5.1. Hybrid Time-Stepping Framework

We discretize a square computational domain of area 2.5 x 107> m?

using a uniform Cartesian
grid with Ax = Ay = 5 x 107> m, yielding a 100 x 100 mesh. We evolve TAF, drug, and oxygen fields
via a semi-implicit alternating direction implicit (ADI) scheme, updating reaction terms explicitly.
Endothelial cell density advances using an explicit forward Euler method (5.1), subject to the CFL
condition from Theorem 6.

We select the endothelial cell PDE time step At to ensure stability:
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Ax? Ax
4Dy" 2[|x(c) Vel

At < min( > = (0.0050,

where ||x(c)Vc| =~ 0.9922 denotes the chemotactic flux supremum norm for our parameters.
Choosing At = 0.005 (At = 2.88 x 10% s) with Ax = 0.01 provides a conservative stability margin.

We update the ABM component with a larger time step At' = 0.1 (At' = 5.76 x 10%s), which is
synchronized with the PDE component at each At’ interval. The hybrid time-stepping balances com-
putational efficiency with stability for stiff PDE-ABM couplings. All simulations enforce homogeneous
Neumann boundary conditions.

Table 2 summarizes the numerical parameters and scheme configurations.

Table 2. Discretization parameters and numerical schemes for the hybrid PDE-ABM system. ADI handles
reaction-diffusion fields while endothelial chemotaxis updates explicitly under the CFL constraint.

Parameter Value Description

Domain size 2.5 x 10> m? Physical size

Ly, Ly 1 Nondimensional domain length

Ax, Ay 0.01 Grid spacing

At 0.005 PDE time step

AY 0.1 ABM update interval

Grid points N + 1 100 Grid node count

PDE scheme ¢, d, 0 ADI (semi-implicit) Diffusion implicit, reaction
explicit

PDE scheme n Euler (explicit) Subject to CFL condition

Boundary conditions Neumann (no-flux) All boundaries

Stability Verified CFL satisfied

We detail the numerical scheme for endothelial cell chemotaxis. The discretization employs
second-order central differences in space and forward Euler integration in time [22]. The chemotaxis-
diffusion equation yields deterministic and probabilistic formulations. The deterministic update
is:

Ak K

- e D D 1 1 5
i,j i,j n o2k n 2k F.— — .
7t = < 5 5xni,j + , y2 5}/7’11,] f 5}6 1] ﬁnyGl/])> ( 1)

where F and G encode chemotactic drift computed at cell edges via linear interpolation.
For ABM compatibility, we express the update probabilistically:

k+1 _ k k k k k

with transition probabilities:
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Fo=1- 4DAnxA2t _ffig 1+ uclci+1,j "1 +1¢xci,]~ (Cirj = i)
+i)§g 1+ alCiLj 1 +1Mi,j (cij = ciz1)
_ifig 1+ leCZ"]- PR +1Mi,]. (cije1 —cij)
+f/§)§g 1+ Délci,jl 1 —i—lacilj (cij —cij1) .
L= DAnxAzt _fAt)Jig 1+ oclcz-H,j 1 +1occi,]- (Cirj = i)
= inxAZt +zf/§)§g 1+ alcl-l,j 1 +1aci/j (cij = ci1)
b= DAnxAzt _fAt)Jig 1+ ;CZ"]'+1 + 1 +1occi,]- (Cij+1 = cif)
Py = ?IxAzt +AfAt);g T D‘lcz‘,jl + : +1Mi/j (cij—cij-1)
The implementation uses five intervals
Ro = [0, Py],
(5.4)

j—1 j
R]: <ZP1’ZP1] fOI‘]:1,,4
i=0 i=0

We normalize P; such that Py + - - - + Py = 1 (Assumption 2). Drawing r ~ Uniform[0, 1], cells

4
move according to the interval R; containing r. Sampling from Uniform [0, ) Pi] with directional
i=0
selection via (5.4) is equivalent to the sampling from Uniform[0, 1] post-normalization.

Assumption 2 (Unity Summation). After computing P; from (5.3), we normalize:

Py+Pi+P,+P3+Py=1.

We implement the ADI method for TAF, drug, and oxygen equations (2.1). For a general reaction
diffusion system ot = DAu + f(u, x,y, t), the ADI scheme is:

DAt DAt At
<1 - 2Ax25§) ukt1/2 = (1 + 2Ay25§> uk + 7f(uk),
DAt 5\, ki DAt 5\ ks1yo Dt
(1 2Ay25y>u =(1+ 2Ax25" u t5 fu"),

where U1/2 ~ u((k +1/2)At) and 62, (55 denote second-order central differences.

5.2. Consistency Verification

Section 5.1 established the discretization framework. We now examine approximation fidelity
through a consistency analysis, quantifying local truncation errors. The endothelial chemotaxis scheme
(5.1) and the ADI scheme yields:
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Tendo = O (At + hz), TADI = O(Atz + hz), for Ax = Ay = h.

Appendix D details derivations. The endothelial scheme has O(At + h?) truncation error, indicat-
ing first-order temporal and second-order spatial accuracy. The ADI scheme achieves O(At? + h?),
reflecting second-order convergence. These distinct characteristics motivate adaptive time-stepping
for endothelial components while permitting larger ADI steps.

N_,, define the discrete p-norm (1 < p < co):

For grid discretization V = {Vi,]'}i,j:Of

N 1y
. 2
V], = ( Yy VZ.Z.Ax ) .

i,j=0
We establish iterative ¢, norm control:

Theorem 5 (Discrete Energy Bound). Under one-sided homogeneous Neumann boundary approximation
(5.15) on U = [0,1]2, the scheme satisfies:

AR |nkll2 < [0 12 < 3/ [lnk 3+ O(a¢)

Proof. Forany 1 < p < oo,

1VIlp < VIl (5.5)

Cauchy-Schwartz inequality and (N + 1)Ax = 1 yield:

1/2 1/2
N N N
[n¥]l1 = Y nijax? < ( ) Ax2> ( ) (n’-‘»)zAx2>

1 i,j = 1]

i,j=0 i,j=0 i,j=0
N 172 (5.6)
- (Lotran) =i
i,j=0

Equations (5.5) and (5.6), and mass conservation (5.16) imply:

A |||z < Ao{|n¥]|eo < [lnM[l = " 1 < [0z

4
Given P; > Oand ). P; = 1 (Assumption 2), Jensen’s inequality applied to Equation (5.2) gives:

i=0

k k K k
(”i,;rl)z < (ni,j)ZPO + (”i+1,j)2p1 + (”i-1,j)2p2 + (”12,;+1)P3 + (nlz,j—l)P4'

Thus:

N
1|2 < y ((nﬁ-‘,]-)zPo + (n{FJrl,j)zPl + ("?_1,]-)21’2 + (ni{j+1)2p3 + (nf/]._l)2p4).
0j=0

The difference expands as:
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N
k k k k
[EAEE ((”i,j)2P0 + (ni+1,j)zpl + (”i—l,j)2P2 + (”12,]‘+1)P3 + (”1‘2,];1)134)

i,j=0
- B (07w £ (o)
+i,]i_o((”ﬁf>2‘ (nfj0)*) P+ ,]ZO( — (nfy 1)) Py
telescoping %((n’(;’j)Z _ (”II(\I,]')Z) —P)+ Z( (nfn) )(P3 —Py),

summation j: 0

using one-sided Neumann approximations (5.15). The difference P; — P, satisfies:

At
PL-P=—5 (x(civ1,)(cizr,j — cij) + xlcij)(cij — cij) + x(cij) (civrj — Cif))-

Assuming bounded first-order partial derivatives of ¢, we have |P; — P,| = O <%). Similarly,

|P; — Py| = (9<§;> The extra terms thus bound by 4|#*||Z O(At) < 4[|n°||2,0(At) = O(At). O

We simulate truncation errors by excluding tumor and vessel agents (initialized to zero). This
simplifies the TAF, drug, and oxygen PDEs to:

dic = DcAc — Eec,
ord = DyAd — C4d,
0t0 = DyAo — ¢po0.

Homogeneous Neumann conditions apply on U = [0,1]2. We use the ghost point method to
handle Neumann conditions, e.g., at x = 0, we have uk 1= Ufj for U € {c,d, 0}.2 This treatment
introduces O(Ax?) error, in alignment with O(At? + AtAx?) truncation error of the ADI scheme. We
use the following exact solutions as initial conditions:

c(x,y,t) = e~ (4 DetEo)t cos(27x) cos(2my),
d(x,y,t) = e~ (1672 Dy+34)t cos(4mx) cos(4my),

o(x,y,t) = e~ (#7Doto)t cos(271x) cos(2my).
We compute convergence order via:
LTE, (h)
log (LTEu(h/2) )

Odu(h) = log—L/
h/2

2 However, mass conservation (see Section 5.4) requires one-sided approximations for Neumann conditions, e.g., at x = 0, we
have U*, i = Uo i which introduces first-order error O(Ax). In contrast, the ghost point method introduces second-order
error O(Ax?) but does not strictly preserve mass. Unless otherwise stated, we use one-sided approximation for our Neumann
boundary conditions.
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where LTE, (h) is the local truncation error for u € {c,d, 0} at resolution h. Figure 2 demonstrates
convergence. Table 3 lists orders for i € {0.02,0.01,0.005,0.0025} with At = 10~7. Observed orders
approach 2, confirming ADI’s second-order spatial accuracy.

ADI Method LTE Convergence

102

104k 7___‘44——/’
N T
5 Sl
£ [ —o—TAF (0)
w —=—Drug (d)
5 10 Oxygen (o) -
g ———ord
2
2
= -8
= 10
1o
o
)

1070

1072

0.006 0.008 0.0100.012 0.016 0.020

Spatial step size (h)

0.004

Figure 2. Local truncation error convergence for ¢, d, and o using ADI across h € {0.02,0.01,0.005,0.0025},
validating second-order spatial accuracy.

Table 3. Computed local truncation error orders for c, d, 0 across spatial resolutions.

h At odc.(h) ody(h) od,(h)
002 1077 19822 19734 1.9822
001 1077 19920 1.9898 1.9920
0.005 1077 19962 1.9957 1.9962

0.0025 107 n/a n/a n/a

In summary, the endothelial discretization exhibits O(At + hz) truncation error (first-order time,
second-order space). The ADI scheme O(At? + h?) (second-order time and space). These results align
with theory and substantiate the convergence results in subsequent sections.

5.3. Stability Enforcement

While consistency guarantees alignment between the discretization and governing equations, it
does not ensure that bounded or biologically meaningful solutions over time. This subsection analyzes
the numerical stability of the explicitly discretized endothelial cell scheme, which exhibits conditional
stability. We invoke the Lax-Richtmyer equivalence theorem to confirm convergence.

Theorem 6 (Conditional Stability). The ADI scheme maintains unconditional stability for pure linear
diffusion. The finite differenice scheme for endothelial chemotaxis (Equation 5.1) achieves conditional stability
under the time step constraint:

Ax? Ax }
At < min , . 5.7
= {wn 2x©)Velw 67)

Subject to the additional constraints:

D, 1

Ax<2— M Ar< ) (.8)
Ix(c)Velleo 4Dy | lIx(0) Vel

x2 +2

A Ax

all motility probabilities Py, Py, Py, P3, Py remain non-negative.

Proof. Define the auxiliary expressions:
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_ Atxo 1 1 L
Al""z'] = A2 (1+“C1+11 + 1_,'_“%].) (Cz+1,] Cz,])
_ Atxo 1 1 L
Al—%,j — 4Ax2 (l—l—ac,,l,]- + 1+acclj> (Cl,] lelf])
_ Atxo 1 1 L.
Bz,]—s—% 1Ax2 (1+chi,j+1 + 1+rxcz',j) (CWH C’])
_ Atxo 1 1 N(p.. (..
Bl,]*% T 4Ax2 (1+D¢El"]'_1 + 1+1XC1"]> (CZ] CZ']_l)
It follows that
max{)AA 1A 1 B 1|, |B g }< ﬁ||X(C)VC||C>0 (5.9)
+3/] =3/ Lits v=z21) — 2Ax

The requirement

D, At At Ax
> D, > — 1
2 s X(©)Velw = Dy = S x()Vells, (5.10)
ensures Py, P, P3, Py > 0. Express Py from Equation (5.3) as:
Ph=1-4 A2 Ai-&-%,]' + Ai—%,j - Bl-,]-+% + Bi,j—%
Equation (5.9) yields:
DAt 2At
P> 1-470 - 2 () Vel
The At constraint becomes:
At < 1 (5.11)
= 4Dy L x(OVell '
Ax? Ax
Equation (5.10) bounds Ax:
Dy

Ax <27——c—r!.
~x(©Velleo

Under (5.11), this necessarily implies:

1 1 D,
At < < _ ‘
Ax? Ax D 2 Dn
2 Yt
[x(c)Velleo 1x(c)Velfeo

This constitutes the chemotaxis CFL condition, where %n originates from diffusion-dominated

4
constraints in two dimensions. With nonnegative P; and )~ P; = 1 (Assumption 2), update (5.2) forms
i=0

a convex combination. Thus:
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17 oo < 1" floo < [I1°loe

Boundedness of the maximum norm over all time k establishes stability under the CFL and grid
conditions. [

Figure 3 visualizes the stability criteria, showing the admissible (Ax, At) region. This empirically
validates Theorem 6’s CFL-type condition ensuring nonnegative P;. The theorem further guarantees
that the update forms a convex combination, preserving endothelial density nonnegativity. This
maintains biological realism and prevents unphysical numerical artifacts like negative concentrations.

Stability Region for Explicit Chemotaxis Scheme

unstable

10
<
108
At = Az*/(4D,)
At = Az/(2|[xVe||0)
1070 1
-12
10 stable E
10 ‘ i | ‘ ‘
10°® 107 10® 10 10 10° 102

A X

Figure 3. Stability condition characterization. Admissible (Ax, At) region consistent with Theorem 6’s CFL-type
bound.

Consistency and conditional stability imply convergence via the Lax-Richtmyer equivalence
theorem for linear initial value problems.

Theorem 7 (Convergence). Let n(x,y,t) be the exact endothelial chemotaxis solution and ni.‘ j its numerical
approximation. Under Theorem 6's time step constraints and sufficient regularity of n and c, the scheme
converges with:

;= n(xi, v, ) | = OBt + Ax?).

ij
5.4. Biological Constraints Preservation

In addition to consistency, stability, and convergence, biological realism requires that the numerical
scheme preserves the nonnegativity intrinsic to the modeled system. We now analyze whether the
discretization maintains nonnegativity for endothelial cell densities. The explicit update scheme takes
the form of a convex combination of neighboring cell densities:

4
k+1 _ k
ni,j - KZ anneighbor(f)’
=0

where P; > 0 and ):%:0 Py =1 (Assumption 2), provided the CFL condition holds. This structure
guarantees:

k+1

;" >0 whenever nifj >0,VYi,j.
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Theorem 8 (Nonnegativity). The finite difference update preserves nonnegativity of n’ jat each time step,
assuming nonnegative initial data and satisfaction of the CFL constraints (5.7) and (5.8).

The second biological constraint is the conservation law, such as mass conservation or population
invariance. Numerical schemes must respect this constraint, particularly in the absence of sources,
sinks, or boundary fluxes. We therefore verify whether the total endothelial cell count }; n j remains

L,

constant under the proposed numerical scheme. Summing the probabilistic motility update (5.1) over
all grid points (i, j), with Ax = Ay, yield:

D 1
: k+l Z nl] +At2< n 52 k H(M:l'] +5Gl,]>> (512)
i

We expand the second right-hand side term as:

N
2k _ k k k k k
25 b= 2 (ni—l,j F it T _4ni,j)

g b=0 (5.13)
N N )
=Y (n_1j—noj+nnprj—nn,) + Y (11— nig + niNg1 — niN)
j=0 i=0
The telescoping summations simplify to:
N N
Z( j+0Gij) = Z(FNJF;,]'_B%,]‘)+Z(Gi,j+N+% -G 1)
i,j=0 j=0 j=0
B CN+1,j — CN,j Coj —C-1; (5.14)
B ey v
CiN+1 — CiN Cip — Ci—1
FXOiniytiney K@) TR

We impose homogeneous Neumann boundary conditions using one-sided approximations:

874) =0 onodl
on

for ¢ € {n,c,d,o}. At x =0, this yields:

Ug; — U~ ;

=0 = ULy =Ug, (5.15)

Analogous conditions hold at other boundaries: x = 1 implies llzlij 4 = llzlij sy =0 implies
Ulk’fl = Ul’fO, and y = 1 implies UllfN = UlkN Combining (5.12)—(5.14) with these boundary condi-
tions ensures exact mass conservation for pure diffusion or chemotaxis processes:

anﬂ Zni‘] (5.16)
L]

Theorem 9 (Discrete Mass Conservation for Cell Density Update). Let ni-‘, j denote the discrete approx-
imation of endothelial cell density at time step k and grid point (i, j). Under the probability finite difference
scheme (5.2) and one-sided Neumann approximation (5.15), the total mass is conserved:
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Z ”ffl = 2 ”iff'
L] L]

The Neumann boundary conditions reflect biologically plausible zero-flux constraints at tissue
boundaries. This mass conservation property ensures that endothelial cell mass remains invariant up
to machine precision in the absence of external sources or sinks, maintaining physical and biological
realism.

Having established the analytical and qualitative properties of the numerical scheme, we conduct
a spatial grid refinement study to empirically validate the consistency and stability results derived in
Sections 5.2-5.4. This test simulates the system in the absence of tumor and vessel agents.

We evaluate grid spacings Ax € {0.02, 0.01, 0.005} with fixed time steps At = 0.005 for PDE
updates and At' = 0.1 for ABM decisions (disabled here). The simulation runs until T = 30, and
convergence is measured using the step-change metric at each time step k:

Ek = n}?x(kﬁj(h) — K1) + Jol () — ol ()],

where ¢ and o represent TAF and oxygen concentrations, respectively. We choose

xy,0) =1/ (x—052+ (y— 05?2, d(x,y,0) =0, o(x,y0) =05

as initial conditions. No drug treatment or cellular dynamics are applied. Figure 4 shows that
log, E,’j decays consistently across grid levels. Beyond ¢ = 5, the decay becomes nearly linear on a
logarithmic scale, with least-squares regression revealing closely matched slopes for all resolutions.
This confirms the scheme’s temporal stability and spatial consistency. Table 4 reports numerical values
at t = 30 and estimated convergence slopes.

05 Step-change sum vs. time for different h

h=0.02
———=-h=0.01
wwss b = 0,005

251

logyo (2, maxi; [uf ! — ul;])

35 . : . . . .
0 5 10 15 20 25 30

t
Figure 4. The maximum norm E’,i for the oxygen and TAF fields is shown log EE plotted against t, for grid
spacings h = 0.02, 0.01, and 0.005. Fixed time steps At = 0.005 and At' = 0.1 are used. The near-identical decay

slopes beyond t = 5 verify asymptotic stability and second-order spatial consistency of the PDE solver.

In summary, the hybrid numerical framework, combining explicit probabilistic updates for
endothelial dynamics with ADI-based diffusion solvers, demonstrates mathematical consistency,
conditional stability, and convergence. Rigorous verification of non-negativity, mass conservation, and
discrete energy control ensures biologically faithful and numerically reliable simulations of tumor
growth and vascular remodeling.
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Table 4. Maximum temporal step changes E’,; and logarithmic decay rates from Figure 4 for spatial resolutions
h = Ax. All simulations use fixed At = 0.005 and At = 0.1 (see Table 2). Least-squares slopes of log;, Ellj are
computed over t € [5,30]. The consistent magnitudes and slopes confirm spatial consistency and numerical
stability.

Grid spacing i Step size At Step size A’  Max norm Eﬁ att =30 Slope of loglO(Eﬁ )

0.02 0.005 0.1 7.0842 x 104 —0.009557
0.01 0.005 0.1 7.0795 x 104 —0.009561
0.005 0.005 0.1 7.0771 x 104 —0.009563

6. Discussion

This study introduced a hybrid PDE-ABM framework (HDC model) that rigorously couples
stochastic cell-level dynamics with tissue-scale continuum processes. Our approach formalizes a
hybrid methodology with precise mathematical guarantees for formulation, numerical discretization,
and closed-form mean field representation. We analyze the well-posedness of the hybrid model and
provide comprehensive numerical evidence for its consistency, stability, convergence, and conservation
properties. The model integrates stochastic phenotypic switching, metabolite-regulated angiogenesis,
and hypoxia-resistance feedback, thereby addressing key limitations in previous hybrid tumor models.
Earlier studies often relied on heuristic simulations without mathematical and numerical analysis or
treated angiogenesis and resistance in isolation [17,22]. Our framework extends the work by Wang et
al. [22] by embedding an exact Gillespie-based mutation and phenotype switching algorithm with
drug-modulated mutation rates, deriving a continuum mean-field limit that connects discrete rules
to continuum equations, and establishing mathematical well-posedness and numerical robustness
for the hybrid scheme. The mean-field limit integrates the hybrid model into a unified PDE system
(4.6), which motivates hybrid numerical schemes that retain full ABM structure in critical regions and
replace it with efficient PDE surrogates elsewhere. These methodological advances enable rigorous and
robust multi-scale tumor modeling not achieved in previous descriptive or simulation-based studies.

Beyond its methodological contributions, the HDC model yields several biological and clinical
insights. First, model-predicted resistance timelines can inform adaptive therapy protocols designed
to suppress or delay resistance [50,51]. Second, simulations of oxygen gradients can guide hypoxia-
targeted interventions and optimize the application of hypoxia-activated prodrugs, which may enhance
the efficacy of subsequent chemotherapy or radiotherapy [52-55]. Third, our framework also motivates
experimental validation and calibration, such as in vitro tracking of endothelial tip cell dynamics
and resistance evolution. Designed for integration with experimental and clinical data, the model
supports a translational modeling pipeline. For example, oxygen partial pressure measurement or PET
imaging with 18F-FMISO can calibrate the simulated oxygen distribution o(x, ), while microvessel
density measurements from CD31-stained immunohistochemistry can validate the vascular network
Vi generated by ABM [52,56]. Time-resolved single-cell RNA-seq data under treatment provide drug-
induced mutation rates ksg (d) by linking transcriptional states to phenotypic transitions. Longitudinal
MRI during therapy offers radiomic profiles (e.g., tumor volume changes) for comparison with
simulated resistance trajectories [57,58]. By supporting multi-scale calibration and validation, the
model enables in silico exploration of therapy optimization strategies.

Several simplifying assumptions in the current framework merit consideration. First, simulations
and analysis occur in a two-dimensional domain, which reduces the complexity of three-dimensional
vascular geometry and cell-TME interactions compared to in vivo tumors. Extending the framework to
three dimensions would capture the full complexity of tumor vasculature but requires greater compu-
tational resources. Second, the model treats TAF and oxygen dynamics with simplified production,
diffusion, and uptake mechanisms. Actual angiogenesis involves multiple signaling pathways such as
VEGEF and DI14/Notch [59]), and diverse cell phenotypes including stalk cells [60] and pericytes [61]),
which are not explicitly represented. Including these features may enhance biological fidelity. Third,
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the immune system remains unmodeled, even though immune infiltration, suppression, and therapy-
induced immunogenicity are recognized as critical regulators of tumor evolution and resistance. This
omission limits the model’s applicability to immunotherapy scenarios. Finally, the model does not
account for pharmacokinetic or pharmacodynamic effects, nor does it simulate treatment-induced
vascular normalization or off-target toxicity. Incorporating these elements would improve clinical
relevance. Despite these simplifications, the current framework offers a tractable and mathematically
robust platform for multiscale tumor dynamics, serving as a foundation for future biological extensions
and clinical applications.

Future work can extend this foundation in several directions. Extending to three-dimensional
geometries will allow investigation of how vascular topology and spatial drug gradients influence re-
sistance dynamics. Incorporating additional microenvironmental features, such as interstitial fluid flow
and matrix density, can improve predictions of drug distribution and cell motility. Beyond single-agent
therapy, simulating sequential and combination therapies, particularly integrating immunotherapy
and anti-angiogenic strategies, could identify schedules that exploit transient vessel normalization
to suppress resistance. Linking model predictions with patient-specific imaging, such as DCE-MRI,
would support personalized therapy strategies. Finally, the mean-field derivation also enables reduced
ODE/PDE systems that approximate complex spatial-stochastic dynamics and facilitate analytical
control strategies.

In summary, the proposed HDC model establishes a rigorous and extensible framework for
coupling discrete stochastic cell behavior with continuum tissue-scale dynamics. By uniting mathemat-
ical rigor, multiscale biological realism, and translational capacity, this work advances the field from
descriptive hybrid models to predictive, clinically actionable in silico platforms for adaptive cancer
therapy.
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TME Tumor microenvironment
VEGF Vascular endothelial growth factor
TSP-1 Thrombospondin-1

VEGFR Vascular endothelial growth factor receptor
HIF-1« Hypoxia-inducible factor 1x

FGF-2 Fibroblast growth factor 2

IL-8 Interleukin-8

ANGPT-2  Angiopoietin-2

PDE Partial differential equation
ABM Agent-based model

HDC Hybrid discrete-continuous
TAM Tumor-associated macrophage
MDSC Myeloid-derived suppressor cell
EMDR Environmentally mediated drug resistance
TAF Tumor angiogenic factor

CME Chemical master equation

ADI Alternating direction implicit
ODE Ordinary differential equation

Appendix A. Nondimensionalization

We begin with the dimensional system for tumor cell density (1), TAF (c), drug (d), and oxygen
(0):

omm = D,An —V - (,ﬁ‘lofchcy

9t = Dele = Gee + 1 Lgeph Xa = A Loev; Xos
ord = DyAd — Egd — pad e n, Xa + Sa(t) Locv, Xor
010 = DyAo — €0 — po ZaEAt Xa + So(0max — 0) ZUEV[ Xov-

Here, Dy, D, Dy, D, are diffusion rates; ¢, ¢4, Co are decay rates; pg, po are cellular uptake rates;

S4, So are supply rates from blood vessels; and 7, A are production and uptake rates of TAF, respectively.

. Xoki
: kl —+c
coefficient and k; corresponds to the half-maximal concentration.

The function x(c) represents the chemotactic sensitivity, where xj is the chemotactic saturation

To nondimensionalize the system, we introduce representative scales for the length (L), time
(t = L?/D), and concentrations of all variables 1y, ¢, dy, Omax:

- d 0
, i=—, 6=—, d=—, 0=

- t
t=— , .
T no Co do Omax

jZ:

x

L 4
In this scaling, D is a representative diffusion rate, chosen to be comparable to the oxygen diffusion

rate D,, and omax is the maximal oxygen concentration in the TME. We select L as the typical distance

between the implanted tumor and vessels in experimental setups [62], which aligns the diffusion time
T with the cell cycle duration [37]. The resulting dimensionless parameter groups are:
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~ D, X0Co O s D,
D = -, = -, = —, D = -,
n D X0 D o ky c D
. ™m ~ ~
= " 0, A= Atng, ¢ = TC,
co
. Dd ~ ~ 5 SdTnO
Dy = D Gd =TG4, Pa = pPaTno, Sq= P
0

~ D, . ~ ™ -

D, = 30/ Co = TGo, Po = Po 0/ So = SoTny.
Omax

Dropping the tildes for notational simplicity yields the dimensionless system used in our study;,
as shown in Equation (2.1).

Appendix B. Implementation of Discrete ABM Lattice Uxpy

This section details the mapping of the ABM domain, Uagy, to a PDE domain Uppg with C*
boundary, and the construction of the ABM lattice Uagv. The ABM domain is Upgy = [0,1]?,
discretized into N? squares of side length Ax = 1/N. Our objective is to construct a small open
neighborhood Uppg of Upapy with C® boundary, such that its corresponding discrete lattice Uagm is
identical to the direct discretization of Ugpm.

We fix a sufficiently small § > 0, specifically § < %Ax, and define the d-neighborhood of the unit
square as:

Uy = {(x,y) € R?: d((x,y), Uapm) < 6}

Here d((x,y), A) is the Euclidean distance from a point (x,y) to aset A C R?. Let ¢ : R> — R be
a standard C* radial mollifier supported in the unit disk, such as:

1
9() = Ce"p(‘l = ||z|12>' Izl <1,

0, otherwise,

where the constant C normalizes the integral [, ¢ = 1. For a given smoothing parameter J, we
define the scaled mollifier ys(z) = 62y(z/5). We then convolve the characteristic function of Uj,
denoted xy;, with this mollifier:

Y(x,y) = (xu; * ¥s)(x,y)-

The resulting function ¥ is C®, with its values in the range [0,1]. It is equal to 1 everywhere
inside Uapwm. We select a small € > 0 such that {¥ > 1 — e} C Uj/6. This allows us to define the PDE

domain as:

Uppg = {(x,y) € R?: ¥(x,y) >1—€}.

Since Y is smooth and 1 — € is a regular value, the Regular Level Set Theorem [63, Corollary 5.14]
ensures that the boundary dUppg = {¥ = 1 — €} is a C® curve (i.e., every point of this curve has
an open neighborhood that is the graph of a diffeomorphism). Our choice of ¢ guarantees that
Uppg C Us 4, making Uppg a close approximation of Uapy. We obtain the discrete approximation
Uapm by sampling ¥ on the ABM lattice with spacing Ax, applying a threshold at 1 — €, and iden-
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tifying boundary agents as those with Moore neighbors outside the defined domain. Algorithm Al
summarizes these steps.

Algorithm A1 Construction of the discrete agent-based domain Uapy approximating the smooth PDE
domain Uppg

Require: Grid spacing Ax = 1/N, smoothing parameter § < %Ax, and tolerance € > 0.
Ensure: Discrete lattice domain Uagy and the set of boundary agents.
1: Define s-neighborhood: U; := {(x,y) € R?: d((x,y), Uapm) < 9}, where d((x,y), Uapy) is the
Euclidean distance to the unit square Uagy = [0, 1]%.
2: Discretize characteristic function: On the uniform grid G = {(iAx, jAx) | 0 < i,j < N}, define

1, (x,y) €U,

at each grid pointin G.
0, otherwise, srcp

the sampled characteristic function x;, (x,y) = {

3: construct discrete mollifier: For integer offsets k € Z? where |kAx| < §, set 5(kAx) o
exp( - W) , and normalize such that Y 5 (kAx) = 1.

4: Perform convolution for smoothed field: Compute ¥ (iAx, jAx) := (xu, * s) (iAx, jAx) for all
points (iAx, jAx) € G.

5: Threshold to  define  discrete  PDE-compatible domain: Uapm =
{(iAx,jAx) € G | ¥ (iAx, jAx) > 1 —€}.

6: Identify boundary agents: A lattice site in Uapy is marked as a boundary agent if at least one of
its Moore neighbors lies outside Uapm.

7: Return the discrete domain Uagy; and the set of boundary agents.

Appendix C. Description of the Markov Transition Operator 7

At each discrete time step, every agent’s state x is updated via the Markov transition operator
F k» which depends on the microenvironmental fields and the agent’s current state:

X(tk+1) = fx,k(C(~, tk)l d(/ tk)/ 0(’/ tk)/ M (tk))
Algorithm A2 summarizes the state transitions for tumor and endothelial tip cells.

Appendix D. Computation of Local Truncation Error
We compute the local truncation error for the explicit finite difference scheme and the semi-implicit

ADI scheme.
First, applying Taylor expansions to the central difference scheme (5.1)

Ak _ K 1

L] L] n 2 k n 2 k 1 N
T - (AxZ éxni,]' + Ayz 5y1/ll,] — BéxFl,] AyéyGl’])>

Applying Taylor expansions in time and space gives:

n;f].H = nf;+ Mo + O(AP),

Ax? Ax®
nfil,j = nf’j + Axdyn + Txain + Txain + O(Ax%)

Ay3

A 2
nf iy = nfj+ Aydyn + Tyaﬁn + 735” +0(ay)

Combining the expansions yields:
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Algorithm A2 Markov transition operator F, x for tumor and vessel agents

Require: Agent set at t;; microenvironmental fields o(-, ) (oxygen), d(-, t) (drug), c(-, tx) (TAF);
spatial step Ax, time step At; tumor motility coefficient e, DNA repair rate p,; oxygen thresholds
Ohyps Oapop; division rate &, (so maturation time 4" = log(2)/ay); crowding threshold Fmax;
branching threshold ¢, branching coefficient cy,; chemotaxis parameters D, xo, « for tip movement;
other required constants for computing P, . . ., P4 as in Equation (5.3).

Ensure: Updated agent states at t;. 1.

1: for each agent x at t; do

2: if x is a tumor cell a then
3: Movement: Update position via random walk: aXY) (t,1) = a&Y) () + e\/At Z, where

Z ~N(0,I).

4: Microenvironment sensing: Update internal states based on local fields: a°(t;y 1) =
0(a®Y) (1), ) and a (ty 1) = a® (1) + d(aXY) (1), t) At.

5; DNA damage and death: Accumulate damage: a/*" (1) = a“*" (t;) + (d(a(X'Y) (tr), t) —
pra®™(t)) At. Remove cell if a®™ (t; 1) > a®" (#) or a° (tg11) < Oapop-

6: Phenotype classification:

() Normoxic: a°(ty1) > opyp,

(ii) Hypoxic: 0apop < a°(tr11) < Opyp,

(iii) Apoptotic: a°(tii1) < 0apop-

7: Aging: If normoxic, advance age: a%8°(t;,1) = a"°(t;) + At; otherwise, a"8¢ remains
unchanged.
8: Division: If %8¢ (t;, 1) > a™ and local cell density F(aXY) (), t;) < Frax:

(1) Place daughter a1 at the mother’s location. Sample 6 ~ Uniform[0, 1] and set aéX’Y) =
aXY) () 4 0.1 (cos(2710) Ax, sin(2716) Ax). If ap overlaps existing centers, resample 6 until
valid.

(if) Daughters inherit mother’s death threshold, proliferation rate, oxygen consumption; half

damage and drug load as a?‘”" = Ladom(t), a?

9: Mutation: Use the Gillespie Direct Method to simulate phenotypic mutations, with mutation
rates dependent on local drug concentration.
10: else if x is a tip endothelial cell b then

= 1a%(t); reset ages to 0.

11: Movement: Choose a Von Neumann neighboring lattice site based on probabilities Py, .. ., Py
derived from the chemotaxis—diffusion model (see Equation (5.3)).

12: if target neighbor occupied by a tip or vessel then

13: Anastomosis: Convert tip cell b into a vessel segment, ceasing its migration and branch-
ing.

14: end if

15: Age update: b%8°(t;, 1) = b8 () + At.

16: Branching: If b%8°(t;, 1) > ¢ and a vacant Moore neighbor exists, branch with probability
N (B, )t = 4, ST p e () — ),
(1) A new tip cell is placed at a random vacant Moore neighbor.
(if) Reset ages of both the original and new tip cells to 0.

17: Proliferation: At regular intervals (i.e., every 18 hours), elongate the sprout by adding a
new vessel agent behind the leading tip.

18: end if

19: end for

20: return Updated agent states at t; 1.
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w0
A—t = t1’l+ (At),
2k 2,k _ 2 2
Ax25 1; -I-Ayzéy ij = An+ O(Ax" + Ay”)

We approximate the chemotaxis fluxes using finite differences:

R T
Gy =X(C 1101 %
Gijoy = Aoy gy

To approximate the midpoint fluxes, we use Taylor expansions of x(c) and c:

X(Cz-i-l]) +X(C1])

xleiyy) = 2 /
/ x"(c) 2
x(eiv) = x(eij) + x0(e)(Civrj = cij) + =5 (Civj = cij)
X/// c
+ 6( ) (ciyrj—cij)’ +0O ((Ci+l,j - Ci,j)4>
93¢ 93¢
Citl,] —c,]—i—achva—A + 22Ax% + O(AxY).

6

similar expansions hold for x(c, 1 j)’ x(c; 41 ), and x(c; i1 ). Combining the Taylor expansions
above, we obtain the following update for the discrete fluxes:

F.1.—-F 1. G.1—F.
l+§,] l*j,] l,]+§ 1,]77 o / 2 .
R v (X (©nl|Vell? + x()Vn - Ve + x(c)nic)

=V-(x(c)nVe)
+HaxAX? + Hay Ay + O (DX + AY),

where the second-order error coefficients are given by

1 1 1 1
Ho x zﬁx(c)naf;c + gx(c)axnaf’cc + Zx(c)ainaic + gx(c)af’cnaxc
1 1 1 1
+§)(’(c)n8xc8§c + Z;(’(C)n(azc)2 + = ’(c)axnaxcaic + Zx’(c)ain(axc)z
3 1
+EX"(C)"(axC)23;2cC + X X" (€)9xn(9xc)® + '"( )n(dxc)?,

1 1 1
Hay = —X(c)aynaic + —x(c)ainaic + —x(c)ainayc

6 4 6
1 1 1 1
+§x’( )nayca3c+ ES X' (c)n (82 )2 Zx’(c)aynaycaﬁc—i— Zx'(c)ain(ayc)z

1 4
ﬁx(c)nayc +

1
16X (©)n(0yc)e + ZX//(C>ay7’l(ayC)3 + X" (e)n(9ye)*.
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Thus, the local truncation error is:
Tendo = O(At) + O(AX% + AY?)
Next, we analyze the ADI scheme for a generic reaction-diffusion equation d;u = DAu +

u,x,y,t). The two-step ADI scheme is:
y P

_ DAt k+1/2 _ DAt 5\ ko Atk

(1 2A2x>u =(1+ y5 +2f(u)
DAt k1 _ DAt o\ k172 | Bt ook

( 202 ) ( 2072 + 5 f)

By substituting the exact solution u(t;) into the scheme and expanding all terms using Taylor

series around (x;, yj, t), we can analyze the error. For the first half step, expanding both sides gives:
Substituting these into the first half-step yields

At? P DAt DAt
g "

RHS = u + %aﬁu + %f(u) + (’)(AtAy ).

82

At
LHS = u+ —-9pu + 0:021 + O(AP + AtAx?),

Thus, the local truncation error of the first half-step is

Af? DAt
Tk+1/2 =2 92y

g 0f 012u + O(AL + AMtAX? + AtAy?)

Similarly, for the second half-step:

A#? DAt DAf?
LHS = u + Atdsu + 78%11 — Taju - Tataiu + O(A2 + AtAY?),
£ A#? DAt DAt2 At
RHS = u + %atu + ?B%u 02u 1 0;02u + if(u) + O(A£ 4 AtAX?).

This yields a local truncation error for the second half-step of

2 2 2 DAt
T+ At A, P ?t 9102u — %8%14

0:0%u + O (AP + AtAX + AtAY?)

Summing both half-step errors, the total local truncation error becomes

2
TADL = Ai(afu — Doydzu — Dosoju) + O(AF + AtAxX* + AtAy?)
Atz 3 2 2
—atf—l—(’)(At + Ax® 4+ Ay?)

Thus, the leading-order truncation error satisfies

TADI = O(At2 + Ax + Ay )
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