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Abstract 

Achieving precise pesticide spraying tasks in irregular farmland faces multiple challenges such as 
multi-UAV path coordination, coverage efficiency optimization, and energy consumption control, 
especially in environments with complex terrain and significant changes in crop density. To this 
end, this paper proposes a multi-UAV collaborative coverage and path planning model (SI-MUCCPP) 
based on swarm intelligence, which is improved on the basis of the existing artificial bee colony 
algorithm (ABC), and integrates the Voronoi adaptive zoning strategy and dynamic Dubins curve 
path planning method with area awareness. Model includes three core innovations: (1) The adaptive 
regional subdivision module, which constructs the load- balanced Voronoi division of irregular 
farmland by introducing crop density and terrain complexity weights. (2) The role-dividing group 
collaboration mechanism simulates the foraging behavior of bee colonies, and dynamically assigns 
the roles of detectors, boundary followers and replenishers to improve the efficiency of multi-
machine cooperation and reduce repeated spraying. (3) The hybrid fitness function design 
comprehensively considers the coverage integrity, flight time, energy consumption minimization 
and obstacle avoidance constraints, and introduces an improved search operator based on reverse 
learning and local perturbation to achieve optimal path convergence under complex terrain in the 
global-local two-stage iteration. Experimental results show that the proposed SI-MUCCCPP model 
improves the coverage efficiency by 17.6% and reduces the total energy consumption by 12.3% 
compared with the traditional method. 

Keywords: swarm intelligence; irregular farmlands; coverage path planning; precision pesticide 
spraying 
 

I. Introduction 

Precision agriculture is one of the areas that the United States Department of Agriculture 
(USDA) has supported in recent years, in particular, seeking the holy grail, "planting, spraying 
and fertilizing with high precision at the right time, in the right amount [1], in the right place" 
process management in agriculture. 

Precision agriculture, as cited in USDA reports and GAO technical assessments, represents 
further developments to enhance resource input use-efficiencies and increased sustainability, with 
new emerging sensor technologies providing the key ingredients including GPS, GIS, variable 
rate technology (VRT) with a promising reduction in risk of crop contamination from 
unnecessary applications of chemical fertilizers and pesticides [2]. This is especially true with the 
USDA commenting that with the technologies development has also seen hundreds of millions 
of dollars expenditures during the past three years by USDA and NSF on technology 
development, research, and outreach related to sensors, automated spraying systems, and data 
decision support tools, as recent work has shown that generative-AI frameworks can 
proactively mitigate incidents in large-scale infrastructure [13] , thereby inspiring smarter 
agricultural operations. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2025 doi:10.20944/preprints202508.0382.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0382.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 7 

 

The labour shortage in the United States, and in particular rural agricultural locations 
has become more pronounced as manual high-intensity work has reached some limits. Multi- UAV 
collaboration is gaining considerable attention as a potential solution, with examples 
incorporated in agricultural drone spraying systems displacing manual control, with manual 
control costs are affected by complex terrain or irregular field shapes, where the mobility and 
accuracy of the drone is seen as an advantage when compared to traditional mechanization or 
aerial spraying methods [3]. The report observations included farms expanding where the 
dependency on external mechanical forces were also adopted with increasing UAV services used 
to rationalize pressure induced from labour shortages on farm. 

That said multi-drone spraying operations are large complexities with route planning 
strategies in distorted rural farmland or hilly field layouts. In simple terms, route planning can 
be typically be modeled conventionally as grid squares or geometric shape which can 
complicate coverage routines while maintaining trajectory comply-ability, collision risk degrees, 
and energy control [4]. In addition to the irregular boundaries, crop density variability, complex 
topography present technical problems that generally do not exist other problems. Notably, to date 
there is not yet any systematic swarm intelligence based solutions to problems of how 
multiple UAV's help to partition mission space, construct and optimize route paths, and which 
path is dynamically the most appropriate pathway when avoiding obstacles [5] . 

II. Related Work 

Mukhamediev et al. (2023) [6] propped up drone cooperation and regional feature 
perception to optimize global coverage paths with varying complexity in farmland. Nonetheless, 
the process is most appropriate to plots that are regular or near-regular, meaning flexibility 
in division and deviations in path planning are still restricted in irregular plots. Huang et al. 
(2024) [7] formulated a task allocation and path planning model for UAV collaborative 
spraying tasks in hilly areas, which they modelled as a single warehouse-single endpoint multi-
traveller problem (mTSP) and it is a way to generate paths based on terrain relief feature 
characteristics. Xu et al. (2022) [8] imposed constraints of multiple dosing and charging points 
and achieve refined scheduling of multiple UAV tasks in segmented farmland, whilst 
heuristically minimizing the path energy consumption and time cost, while Chen (2023) 
demonstrated that advanced data-mining techniques can further enhance analytical 
performance in similar pipelines [14] . 

To propose a more realistic method of estimating coverage volume, while developing an 
effective path planning algorithm solution in bounded environments, to circumvent flying off of 
and potentially colliding with the target area boundary, Vazquez-Carmona et al. (2022) [9] 
combined the paraboloid sprinkler model that accounted for the effective sprayer and, Hu et al.  
(2023) [10]  reformulated the CPP problem statement into an online optimization searching for 
a feasible solution, and realized real time information sharing among UAVs with the 
environmental infographic fusion strategy, based on distributed deep Q-learning online coverage 
paths generation algorithm. 

Guo et al. (2025) [11] explored merging artificial intelligence and swarm intelligence strategies 
into a multi-UAV cooperative decision making module that produced planned paths for 
optimal coverage vector, while influencing several variables like irregular crop density and 
uneven terrain. Plessen (2025) [12] started the route sequence using the TSP method, later 
generating specific routes with regional coverage planning, while testing the methodology with 3 
actual test rides. 

III. Methodologies 

A. Adaptive Zone Division and Task Modeling 
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We represent the irregular farmland area as a two- dimensional polygon set ℱ  ⊂ ℝ2  ,  where 
there are N drones, whose initial positions constitute the set P = {pi = (xi,yi)兴 1  。  Each UAV is 
responsible for a non-overlapping subregion ℱi, which satisfies the division constraints of 
Equation 1: 

N 

⋃ℱi = ℱ , ℱ i ∩ ℱj = φ for i ≠ j, (1) 

i=1 

where ℱ i represents the mission sub-area assigned to the i-th UAV to ensure that the global 
coverage does not overlap with the mission. 

To reflect the spraying load in different areas, we introduce a weighting function based on 
crop density d(x ,y) and terrain complexity c(x ,y) .  This function synthesizes the intensity of the 
spraying task per unit area and serves as a regulator for 

Voronoi' s division, defined as in Equations 2 and 3 : 

w(x,y) = α . d(x,y) + β . c(x,y), (2) 

α +β = 1, α, β ∈ [0,1], (3) 

where α and β represent the weighted contribution of crop density and terrain complexity to the 
intensity of the spraying task, respectively. This function can be assigned based on remote sensing 
images or prior knowledge, so as to guide the Voronoi division results to be more in line with 
the actual load requirements. 

Based on the above weight functions, we construct a weighted Voronoi graph to realize the 
load balancing area division of irregular farmland. Each subregion ℱ i is defined as a collection 
of points that satisfy the following Equation 4 conditions: 

 
In the formula, Ⅱ pi 一 (x,y) Ⅱ represents the Euclidean distance between point (x,y) and the 

position of the i-th drone, and w(x ,y) is the task weight of the point. This weighted Voronoi 
division can dynamically adapt to the load difference within the region and realize the equal 
distribution of the task area. 

To further balance the amount of spraying tasks in each sub- area, we introduce a definition 
of the weighted area to measure the required task load for each area, as shown in Equation 5 : 

(5) 

 
where Ai represents the total task weight area of the i-th sub- region . The higher the value, the 
more heavy the spraying task in the area, which needs to be assigned to drones with short paths 
or low energy consumption. To achieve load balancing optimization, we take the standard 
deviation of the weighted area as the optimization goal, defined as in Equations 6 and 7: 

 (6) 

  (7) 

where A is the average weighted area of all task areas, and σA is the load imbalance index. In 
the swarm algorithm, we use this target as the fitness feedback of local search, guiding the partition 
center {pi} iterative adjustment. 

B. Multi—objective Path Optimization Mechanism 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2025 doi:10.20944/preprints202508.0382.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0382.v1
http://creativecommons.org/licenses/by/4.0/


 4 of 7 

 

In the path planning, we use the Dubins path construction method to meet the minimum 
turning radius limit of the UAV, and the flight path of each UAV is composed of a series of 
steerable Dubins path segments, and the total path length is Equation 8:  

Li = ∑ D(pk,pk+1 ;pmin), ∀pk ∈ ℱ i , (8) 

(k,k+1) 

where D(pk,pk+1 ;pm in) represents the shortest Dubins curve length between points pk and pk+1, 
and pm in is the minimum turning radius of the drone. This modeling guarantees path physical 
enforceability and reduces energy consumption. 

In order to coordinate multiple optimization objectives, we introduce the following hybrid 
fitness function to synthesize the path length, energy consumption, coverage and safety 
indicators, as shown in Equations 9 and 10: 

minJ = λ1  Li + λ2  Ei + λ3 . Y + λ4 . θ, (9) 

Ei = η . Li + μ . |∆ℎi |,  (10) 
where Li is the path length, Ei is the energy consumption estimate, Y represents the 

proportion of uncovered area in the mission area, and θ measures the risk of conflict between 
flight paths. Weight λ1~ λ4 can be set according to task requirements. 

In the process of swarm intelligent search, we improve the traditional ABC algorithm in 
two aspects: First, the reverse learning strategy is introduced to improve the search quality, and 
it generates a new solution as shown in Equation 11 : 

xn
i 
ew = xbest + r . (xbest - xi), r~u(0,1), (11) 

where xi is the current individual, xbest is the historical optimal solution, and r is the uniform 
random variable. This strategy can accelerate convergence and jump out of the local optimum. 
When the group falls into convergence and stagnation, the Gaussian perturbation mechanism is 
introduced, as Equation 12 : 

xi
perturbed. = xi + E, E~N (0, σ 2) . (12) 

 
Figure 1. Swarm Cooperative Architecture for Multi-UAV Precision Spraying. 

Figure 1 illustrates the core composition of a multi-UAV collaborative spraying system based 
on swarm intelligence in heterogeneous farmland. The whole system consists of four modules 
as follows: Adaptive Partitioning mechanism for load balancing based on actual terrain and 
crop density; The Role- Division Swarm Mechanism involve use of drones as detectors, 
boundary followers to supply drones. Path Planning module integrates Dubins curves to create 
valid executable spraying paths. The hybrid fitness function module takes into account coverage 
integrity, flight time, energy efficiency and obstacle avoidance strategy, in guiding the 
optimization of global paths. 

IV. Experiments 
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A. Experimental Setup 
The experimentation employs Agriculture-Vision, a real remote sensing farmland dataset, 

which consists of high- resolution aerial images of farmland across multiple states in the United 
States, featuring RGB and near-infrared (NIR) band channels, and provides semantic annotation 
information, and recent semi-supervised GIS-integrated U-Net models have proved highly 
effective for large-scale remote-sensing change detection [16] , enabling finer crop-density 
weighting. The data provides spatially accurate with realistic environmental characteristics, 
and consists of a number of irregular field borders along with changing crop densities, terrain 
texture patterns, and agricultural anomalous areas. We have selected four representative 
comparison methods: 

• Dubins Ant Colony Optimization (Dubins-ACO) integrates an ant colony optimization 
algorithm and Dubins curve model to address the path planning problem which takes into account 
constraints associated with minimum turning radius. 

• Particle Swarm Optimization for Capacitated Vehicle Routing Problem (PSO-CVRP) 
addresses the vehicle path problem with capacity limit (CVRP) with particle swarm optimization 
(PSO), treating each UAV as a "vehicle" and the mission area to be served as a node. 

• Improved Artificial Bee Swarm Algorithm (Improved- ABC) applies a reverse learning 
strategy and proposed a local perturbation mechanism to the traditional artificial bee colony 
algorithm, to improve the global bounce and local refinement capability of the search process. 

• Multi-UAV Cooperative Area Coverage System (MUC- ACS) introduced a deep Q network 
and environment map fusion mechanism to facilitate real-time message cooperation between 
UAVs, leveraging emerging cloud- edge collaborative architectures that dynamically guarantee 
QoS for latency-critical services [15] . 

B. Experimental Analysis 
Coverage Completeness (%) measures whether the spray path covers all of the effective work 

space in the target area. Figure 2 demonstrates the confrontation rate of SI-MUCCPP is above 
95% , and does not fluctuate significantly, we classify this as a good robustness and generalization 
ability in very complex field coverage cases (20 irregular fields) . 

 

Figure 2. Coverage Completeness Comparison in 20 Irregular Field Scenarios. 

MUC-ACS is about 90% on average but is not capable of maintaining a consistent coverage 
performance where improved-ABC and Dubins-ACO coverage is limited due to global load 
perception and should not expect better coverage than 86% to 90% . PSO-CVRP was mostly 
concerned with optimizing only the total palh length and therefore suffered from the lowest 
coverage rate of all approaches (80-86%) . 

Total Path Length (m) measures the total distance taken by all drones to perform missions, 
reflecting the overall efficiency of path planning. As illustrated in Figure 3, while the number of 
cooperative UAVs is progressively increased from 2 UAVs to 6 UAVs, total path length for 
each method shows a decreasing trend. Dubins-ACO and PSO-CVRP rely only on local path 
smoothing or capacity constraints. Improved-ABC and MUC- ACS reduced the reduction with 
local search and online scheduling to about 60% . On the other hand, SI-MUCCPP greatly reduced 
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redundancy through the cooperative approach of adaptive regional segmentation and swarm 
intelligence, with a total path of only 1800m in 6 scenarios. 

 

Figure 3. Total Path Length vs. Number of Cooperating UAVs. 

Redundant Coverage Rate (%) indicates the proportion of repeated spraying in an area, 
usually due to unreasonable task division or path overlap. 

 

Figure 4. Redundant Coverage Rate With Terrain Roughness Levels. 

As we can observe in Figure 4, the more difficult overall terrain, results in higher levels of 
redundant spraying rates, but there are significant differences in each method. In extreme terrain, 
the redundancy rates of Dubins-ACO and PSO-CVRP are near 25%, while redundancy rates 
of Improved-ABC and MUC-ACS are capped at 18% , but still fluctuate significantly. SI-
MUCCPP has the lowest redundancy rate overall, with a median rate of less than 9% in extreme 
terrain and very little dispersion, validating its strong advantages in reducing overlap in spray 
patterns and spray efficiency. 

V. Conclusion 

In conclusion, the SI-MUCCPP model introduced in this paper displays better coverage, less 
total path and lowest rate of redundant spraying. Compared to the four baseline methods through 
adaptive partitioning, swarm cooperation and multi- objective optimization anyway. As for 
future improvement, it will be used with airborne multispectral sensing and real-time pest 
and disease detection, to build on continuous across-field operation, and its scalability under 
wind farm disturbance, supply scheduling and mixed formation control will be assessed in 
large scale field experiments to further enhance agricultural aviation intelligence and green 
plant protection. 
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