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Abstract

Achieving precise pesticide spraying tasks in irregular farmland faces multiple challenges such as
multi-UAV path coordination, coverage efficiency optimization, and energy consumption control,
especially in environments with complex terrain and significant changes in crop density. To this
end, this paper proposes a multi-UAV collaborative coverage and path planning model (SI-MUCCPP)
based on swarm intelligence, which is improved on the basis of the existing artificial bee colony
algorithm (ABC), and integrates the Voronoi adaptive zoning strategy and dynamic Dubins curve
path planning method with area awareness. Model includes three core innovations: (1) The adaptive
regional subdivision module, which constructs the load- balanced Voronoi division of irregular
farmland by introducing crop density and terrain complexity weights. (2) The role-dividing group
collaboration mechanism simulates the foraging behavior of bee colonies, and dynamically assigns
the roles of detectors, boundary followers and replenishers to improve the efficiency of multi-
machine cooperation and reduce repeated spraying. (3) The hybrid fitness function design
comprehensively considers the coverage integrity, flight time, energy consumption minimization
and obstacle avoidance constraints, and introduces an improved search operator based on reverse
learning and local perturbation to achieve optimal path convergence under complex terrain in the
global-local two-stage iteration. Experimental results show that the proposed SI-MUCCCPP model
improves the coverage efficiency by 17.6% and reduces the total energy consumption by 12.3%
compared with the traditional method.

Keywords: swarm intelligence; irregular farmlands; coverage path planning; precision pesticide
spraying

I. Introduction

Precision agriculture is one ofthe areas that the United States Department of Agriculture
(USDA) has supported in recent years, in particular, seeking the holy grail, "planting, spraying
and fertilizing with high precision at the right time, in the right amount [1], in the right place"
process management in agriculture.

Precision agriculture, as cited in USDA reports and GAO technical assessments, represents
further developments to enhance resource input use-efficiencies and increased sustainability, with
new emerging sensor technologies providing the key ingredients including GPS, GIS, variable
rate technology (VRT) with a promising reduction in risk of crop contamination from
unnecessary applications of chemical fertilizers and pesticides [2]. This is especially true with the
USDA commenting that with the technologies development has also seen hundreds ofmillions
of dollars expenditures during the past three years by USDA and NSF on technology
development, research, and outreach related to sensors, automated spraying systems, and data
decision support tools, as recent work has shown that generative-Al frameworks can
proactively mitigate incidents in large-scale infrastructure [13], thereby inspiring smarter
agricultural operations.
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The labour shortage in the United States, and in particular rural agricultural locations
has become more pronounced as manual high-intensity work has reached some limits. Multi- UAV
collaboration is gaining considerable attention as a potential solution, with examples
incorporated in agricultural drone spraying systems displacing manual control, with manual
control costs are affected by complex terrain or irregular field shapes, where the mobility and
accuracy of the drone is seen as an advantage when compared to traditional mechanization or
aerial spraying methods [3]. The report observations included farms expanding where the
dependency on external mechanical forces were also adopted with increasing UAV services used
to rationalize pressure induced from labour shortages on farm.

That said multi-drone spraying operations are large complexities with route planning
strategies in distorted rural farmland or hilly field layouts. In simple terms, route planning can
be typically be modeled conventionally as grid squares or geometric shape which can
complicate coverage routines while maintaining trajectory comply-ability, collision risk degrees,
and energy control [4]. In addition to the irregular boundaries, crop density variability, complex
topography present technical problems that generally do not exist other problems. Notably, to date
there is not yet any systematic swarm intelligence based solutions to problems of how
multiple UAV's help to partition mission space, construct and optimize route paths, and which
path is dynamically the most appropriate pathway when avoiding obstacles [5].

I1. Related Work

Mukhamediev et al. (2023) [6] propped up drone cooperation and regional feature
perception to optimize global coverage paths with varying complexity in farmland. Nonetheless,
the process is most appropriate to plots that are regular or near-regular, meaning flexibility
in division and deviations in path planning are still restricted in irregular plots. Huang et al.
(2024) [7] formulated a task allocation and path planning model for UAV collaborative
spraying tasks in hilly areas, which they modelled as a single warehouse-single endpoint multi-
traveller problem (mTSP) and it is a way to generate paths based on terrain relief feature
characteristics. Xu et al. (2022) [8] imposed constraints of multiple dosing and charging points
and achieve refined scheduling of multiple UAV tasks in segmented farmland, whilst
heuristically minimizing the path energy consumption and time cost, while Chen (2023)
demonstrated that advanced data-mining techniques can further enhance analytical
performance in similar pipelines [14].

To propose a more realistic method of estimating coverage volume, while developing an
effective path planning algorithm solution in bounded environments, to circumvent flying off of
and potentially colliding with the target area boundary, Vazquez-Carmona et al. (2022) [9]
combined the paraboloid sprinkler model that accounted for the effective sprayer and, Hu et al.
(2023) [10] reformulated the CPP problem statement into an online optimization searching for
a feasible solution, and realized real time information sharing among UAVs with the
environmental infographic fusion strategy, based on distributed deep Q-learning online coverage
paths generation algorithm.

Guo et al. (2025) [11] explored merging artificial intelligence and swarm intelligence strategies
into a multi-UAV cooperative decision making module that produced planned paths for
optimal coverage vector, while influencing several variables like irregular crop density and
uneven terrain. Plessen (2025) [12] started the route sequence using the TSP method, later
generating specific routes with regional coverage planning, while testing the methodology with 3
actual test rides.

III. Methodologies
A. Adaptive Zone Division and Task Modeling
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We represent the irregular farmland area as a two- dimensional polygon set # c [R?, where
there are N drones, whose initial positions constitute the set P = {p;= (x;,y:)>%¢ 1. Each UAV is
responsible for a non-overlapping subregion #;, which satisfies the division constraints of
Equation 1:

N
UFi=F, FinF = pfori=j, (1)
i=1

where & represents the mission sub-area assigned to the i-th UAV to ensure that the global
coverage does not overlap with the mission.

To reflect the spraying load in different areas, we introduce a weighting function based on
crop density d(x,y) and terrain complexity c(x,y). This function synthesizes the intensity of the
spraying task per unit area and serves as a regulator for

Voronoi's division, defined as in Equations 2 and 3:

wxy)=a.dxy)+p.cxy), (2)

o=l a3€[01], ©)
where a and {3 represent the weighted contribution of crop density and terrain complexity to the
intensity of the spraying task, respectively. This function can be assigned based on remote sensing
images or prior knowledge, so as to guide the Voronoi division results to be more in line with
the actual load requirements.

Based on the above weight functions, we construct a weighted Voronoi graph to realize the
load balancing area division ofirregular farmland. Each subregion & is defined as a collection
of points that satisfy the following Equation 4 conditions:

=B _Ip =Gy i
= w(:(c.y))) "< oy Y ‘}'(4)
In the formula, II'p; — (xy) Ilrepresents the Euclidean distance between point (x,y) and the

Fi= {(r.y) cF

position of the i-th drone, and w(x,y) is the task weight of the point. This weighted Voronoi
division can dynamically adapt to the load difference within the region and realize the equal
distribution of the task area.

To further balance the amount of spraying tasks in each sub- area, we introduce a definition
of the weighted area to measure the required task load for each area, as shown in Equation 5:

A; = ff}_w(»\’.y)dxdy, ©)

where A;represents the total task weight area of the i-th sub- region. The higher the value, the
more heavy the spraying task in the area, which needs to be assigned to drones with short paths
or low energy consumption. To achieve load balancing optimization, we take the standard
deviation of the weighted area as the optimization goal, defined as in Equations 6 and 7:

ming, =

N
1 o
5D Ai-D2, @
=1

where Ais the average weighted area ofall task areas, and o, is the load imbalance index. In
the swarm algorithm, we use this target as the fitness feedback of local search, guiding the partition
center {p;}iterative adjustment.

B. Multi—objective Path Optimization Mechanism
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In the path planning, we use the Dubins path construction method to meet the minimum
turning radius limit of the UAV, and the flight path of each UAV is composed of a series of
steerable Dubins path segments, and the total path length is Equation 8:

Li = X D(pi, i1 ;Pmin), VPk € F; (8)
(k,k+1)
where D(px, pr+1;Pmin) represents the shortest Dubins curve length between points px and pi1,
and Pmin is the minimum turning radius of the drone. This modeling guarantees path physical
enforceability and reduces energy consumption.
In order to coordinate multiple optimization objectives, we introduce the following hybrid

fitness function to synthesize the path length, energy consumption, coverage and safety
indicators, as shown in Equations 9 and 10:

N

. .
min]=/\12 Li+/\zZ E+ s Y+A,.6,(9)

i=1 i=1

Ei=n.L+p. 1Ak, (10)

where L; is the path length, E;is the energy consumption estimate, Y represents the
proportion of uncovered area in the mission area, and O measures the risk of conflict between
flight paths. Weight A;~A4 can be set according to task requirements.

In the process of swarm intelligent search, we improve the traditional ABC algorithm in
two aspects: First, the reverse learning strategy is introduced to improve the search quality, and
it generates a new solution as shown in Equation 11:

X5 = Xbest+ T . (Xbest -xi), r~u(0,1), (11)

where x;is the current individual, Xpestis the historical optimal solution, and ris the uniform
random variable. This strategy can accelerate convergence and jump out of the local optimum.
When the group falls into convergence and stagnation, the Gaussian perturbation mechanism is
introduced, as Equation 12:

Xiperturbed.zxi+E, ENN (O/ 0‘2) (12)
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Figure 1. Swarm Cooperative Architecture for Multi-UAV Precision Spraying.

Figure 1 illustrates the core composition of a multi-UAV collaborative spraying system based
on swarm intelligence in heterogeneous farmland. The whole system consists of four modules
as follows: Adaptive Partitioning mechanism for load balancing based on actual terrain and
crop density; The Role- Division Swarm Mechanism involve use of drones as detectors,
boundary followers to supply drones. Path Planning module integrates Dubins curves to create
valid executable spraying paths. The hybrid fitness function module takes into account coverage
integrity, flight time, energy efficiency and obstacle avoidance strategy, in guiding the
optimization of global paths.

IV. Experiments
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A. Experimental Setup

The experimentation employs Agriculture-Vision, a real remote sensing farmland dataset,
which consists of high- resolution aerial images of farmland across multiple states in the United
States, featuring RGB and near-infrared (NIR) band channels, and provides semantic annotation
information, and recent semi-supervised GIS-integrated U-Net models have proved highly
effective for large-scale remote-sensing change detection [16], enabling finer crop-density
weighting. The data provides spatially accurate with realistic environmental characteristics,
and consists of a number of irregular field borders along with changing crop densities, terrain
texture patterns, and agricultural anomalous areas. We have selected four representative
comparison methods:

* Dubins Ant Colony Optimization (Dubins-ACO) integrates an ant colony optimization
algorithm and Dubins curve model to address the path planning problem which takes into account
constraints associated with minimum turning radius.

e Particle Swarm Optimization for Capacitated Vehicle Routing Problem (PSO-CVRP)
addresses the vehicle path problem with capacity limit (CVRP) with particle swarm optimization
(PSO), treating each UAV as a "vehicle" and the mission area to be served as a node.

e Improved Artificial Bee Swarm Algorithm (Improved- ABC) applies a reverse learning
strategy and proposed a local perturbation mechanism to the traditional artificial bee colony
algorithm, to improve the global bounce and local refinement capability of the search process.

® Multi-UAV Cooperative Area Coverage System (MUC- ACS) introduced a deep Q network
and environment map fusion mechanism to facilitate real-time message cooperation between
UAVs, leveraging emerging cloud- edge collaborative architectures that dynamically guarantee
QoS for latency-critical services [15].

B. Experimental Analysis

Coverage Completeness (%) measures whether the spray path covers all of the effective work
space in the target area. Figure 2 demonstrates the confrontation rate of S-MUCCPP is above
95%, and does not fluctuate significantly, we classify this as a good robustness and generalization
ability in very complex field coverage cases (20 irregular fields).
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Figure 2. Coverage Completeness Comparison in 20 Irregular Field Scenarios.

MUC-ACS is about 90% on average but is not capable of maintaining a consistent coverage
performance where improved-ABC and Dubins-ACO coverage is limited due to global load
perception and should not expect better coverage than 86% to 90% . PSO-CVRP was mostly
concerned with optimizing only the total palh length and therefore suffered from the lowest
coverage rate ofall approaches (80-86%) .

Total Path Length (m) measures the total distance taken by all drones to perform missions,
reflecting the overall efficiency of path planning. As illustrated in Figure 3, while the number of
cooperative UAVs is progressively increased from 2 UAVs to 6 UAVs, total path length for
each method shows a decreasing trend. Dubins-ACO and PSO-CVRP rely only on local path
smoothing or capacity constraints. Improved-ABC and MUC- ACS reduced the reduction with
local search and online scheduling to about 60% . On the other hand, SI-MUCCPP greatly reduced
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redundancy through the cooperative approach of adaptive regional segmentation and swarm
intelligence, with a total path of only 1800m in 6 scenarios.
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Figure 3. Total Path Length vs. Number of Cooperating UAVs.

Redundant Coverage Rate (%) indicates the proportion of repeated spraying in an area,
usually due to unreasonable task division or path overlap.
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Figure 4. Redundant Coverage Rate With Terrain Roughness Levels.

As we can observe in Figure 4, the more difficult overall terrain, results in higher levels of
redundant spraying rates, but there are significant differences in each method. In extreme terrain,
the redundancy rates of Dubins-ACO and PSO-CVRP are near 25%, while redundancy rates
of Improved-ABC and MUC-ACS are capped at 18% , but still fluctuate significantly. SI-
MUCCPP has the lowest redundancy rate overall, with a median rate of less than 9% in extreme
terrain and very little dispersion, validating its strong advantages in reducing overlap in spray
patterns and spray efficiency.

V. Conclusion

In conclusion, the SI-IMUCCPP model introduced in this paper displays better coverage, less
total path and lowest rate of redundant spraying. Compared to the four baseline methods through
adaptive partitioning, swarm cooperation and multi- objective optimization anyway. As for
future improvement, it will be used with airborne multispectral sensing and real-time pest
and disease detection, to build on continuous across-field operation, and its scalability under
wind farm disturbance, supply scheduling and mixed formation control will be assessed in
large scale field experiments to further enhance agricultural aviation intelligence and green
plant protection.
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