
Article Not peer-reviewed version

Digital Twin-Based Learning Analytics

with Fog Computing and LLAMA

Abdelkawy A. Abdelaziz * , Sameh Abd EL-Ghany , A. S. Tolba

Posted Date: 5 August 2025

doi: 10.20944/preprints202508.0255.v1

Keywords: digital twin; learning analytics; fog computing; large language model; generative ai; personalized

learning

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4447679
https://sciprofiles.com/profile/2295811
https://sciprofiles.com/profile/2106681


 

 

Article 

Digital Twin-Based Learning Analytics with Fog 

Computing and LLAMA 

Abdelkawy A. Abdelaziz 1,3, Sameh Abd EL-Ghany 2,3 and A. S. Tolba 4 

1 Modern College of Business and Science (MCBS), Muscat, Oman 
2 Jouf University, College of Computer and Information Sciences, Department of Information Systems, Al-Jouf, Saudi 

Arabia 
3 Mansoura University, Faculty of Computers and Information, Information Systems Department, Mansoura 35516, Egypt 
4 Mansoura University, Faculty of Computers and Information, Computer Sciences Department, Mansoura 35516, Egypt 

* Correspondence: abdelkawy@mcbs.edu.om 

Abstract 

Real-time learning analytics in higher education are often constrained by the latency, 

bandwidth, and privacy limitations of cloud-only architectures, which hinder the 

de-livery of timely, actionable feedback; this study addresses that gap. We introduce 

Learner’s Digital Twin, a framework that integrates fog computing at the network 

edge with Meta-LLAMA to interpret multimodal student data and provide instant, 

personalized feedback and educator insights. The architecture performs local 

processing on fog nodes to reduce delay and limit data movement, while LLAMA 

generates context-aware text analyses; predictive components include linear 

regression to forecast final-exam scores from attendance, assignment averages, and 

participation, and K-means clustering to profile learning patterns. We evaluated the 

framework in a real educational setting over three months, using Postman-based 

latency tests and user surveys. The system reduced average response latency by 

~300ms. The feedback generated was personalized, and survey responses indicated 

positive user perceptions: for students, 80% reported overall satisfaction, with >90% 

perceiving the feedback as personalized and >75% finding it relevant; teachers 

similarly reported ~80% satisfaction. These findings indicate that combining a 

digital-twin paradigm with fog computing and LLM can support timely, 

personalized feedback and actionable insights in high-er-education contexts; future 

work should examine scalability and generalizability across diverse settings. 

Keywords: digital twin; learning analytics; fog computing; large language model; generative ai; 

personalized learning 

 

1. Introduction 

In the rapidly changing face of today's digital world, educational technology has become an 

essential disruptor of how students learn and how instructors teach. A fitting example of this is the 

emergent field of real-time learning analytics, which seeks to provide immediate data collection, 

analysis, and interpretation for timely feedback and support directly to students (Hernández-de-

Menéndez et al., 2022; L. Lim et al., 2023). However, prolonged periods of time have been required 

in traditional cloud-based learning analytics systems to aggregate and evaluate the requisite data; 

this extends latency (the delay before a transfer begins), bandwidth constraints due to excessive 
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transmission, and privacy issues associated with collecting raw data that can inhibit beneficial real-

time feedback (Pardo et al., 2019). 

These are the challenges that demand out-of-the-box and often unconventional solutions to work 

around cloud-based infrastructure (Ometov et al., 2022). We present a new framework known as 

"Learner's Digital Twin", which integrates digital twin technology with leading-edge fog computing 

and LLAMA to advance real-time learning analytics. The digital twin technology, which was 

pioneered for industrial use, is a modern take on the same concept in an educational context: giving 

us a live mirror of how and what our students are doing(Fuller et al., 2020). 

The incorporation of fog computing in this framework resolves the inherent latency and 

bandwidth problems associated with conventional cloud computing; it enables data processing on 

the network edge (closer to the learner) (Karatza, 2020; Zarzycka et al., 2021). Therefore, to reduce the 

amount of time needed to process and analyze the data, the system should be closer so that feedback 

can be delivered with minimum latency (Wise et al., 2014). In addition, LLAMA enhances the system 

by providing answers in personalized forms with greater context sensitivity, which are produced 

after analyzing more complex student processed data (Devlin et al., 2018). 

A linear regression model is built to predict student performance — leveraging historical 

statistics for the system to foresee academic results. Next, students are clustered using K-means 

clustering by means of learning behavior and engagement patterns to provide detailed interventions 

(Hudli et al., 2012; Moubayed et al., 2020). 

In this research, the problem has been formulated as that of exploring whether fog computing 

can contribute to processing big data generated within Learner's digital twin framework by using 

LLAMA and then performing linear regression and K-means clustering on processed results in real 

time (Roumeliotis et al., 2024). We predict that such a framework will enhance the relevance and 

timeliness of feedback provided to students, with clear gains (that the above hypotheses suggest) in 

learning outcomes and the ability to evolve teaching strategies. This paper is structured as follows: 

Section 2 presents related work on digital twin technology, real-time learning analytics and fog 

computing before introducing the proposed LLAMA model, which uses regression and clustering 

techniques. In Section 3, we will describe our proposed framework, “Learner’s Digital Twin”, 

including the building blocks, underlying models utilized, and procedure for generating feedback 

personally suitable for a learner from his usage data. Section 4 presents the results obtained when 

applying our proposed framework, and in Section 5, we discuss the outcomes, highlighting some of 

the typical challenges faced by similar measures and pointing out future directions. Next, Section 6 

concludes the paper. 

2. Theoretical and conceptual Framework 

Digital Twin-based learning analytics, empowered by Fog Computing and LLAMA, represents 

a sea change in personalized education. Such a framework leverages real-time data processing and 

advanced AI models for dynamically responding to the learning environment. Integration of such 

technologies enables immediate feedback and tailored learning experiences, improving educational 

outcomes significantly (Abdelaziz et al.,2024, Qin et al.,2024).  

Digital Twin Framework The "Learner's Digital Twin" enables real-time analytics by interpreting 

multimodal data, providing personalized alerts and insights for educators. It employs predictive 

analytics through Linear Regression and clustering techniques like K-means to identify learning 

patterns (Abdelaziz et al., 2024). Role of Fog Computing Fog Computing processes data at the 

network edge, reducing latency and enhancing the responsiveness of learning systems (Pushpa & 

Kalyani, 2020). This architecture supports efficient handling of data generated from different 

educational activities for timely feedback to students and educators Pushpa & Kalyani, 2020. 

Integrating LLAMA The LLAMA model extracts context from texts. With this, the nuances in the 

interaction between different students and their learning behaviors come into light Abdelaziz et al., 

2024. This enables a great degree of personalization of the learning experience, adapting to individual 

needs in real time Abdelaziz et al., 2024. While the integrated approach has a lot of benefits, 

challenges like data privacy and the need for robust infrastructure need to be addressed if it must be 

put to optimal use in educational settings. 
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Learning analytics theories encompasses a range of frameworks that inform the use of data to 

enhance educational practices. These theories have evolved significantly, integrating insights from 

various disciplines such as educational psychology, sociology, and cognitive science. The interplay 

between learning analytics and established educational theories is crucial for developing effective 

pedagogical strategies and improving student outcomes (Drugova et al.,2024). 

2.1. Learning Analytics Theories 

1. Learning Analytics Theory (LAT): Focuses on using data to inform teaching practices and 

improve learning outcomes by analyzing student interactions and engagement (Alam, 2023). 

2. Cognitive Load Theory: Addresses the mental effort required for learning, guiding the design of 

instructional materials to optimize learning experiences (Giannakos & Cukurova, 2023). 

3. Control–Value Theory of Achievement Emotions: Explores how students' emotions influence 

their learning processes and outcomes, providing insights for emotional support in educational 

settings (Giannakos & Cukurova, 2023). 

2.2. Learning Analytics Theory 

Provides a series of frameworks and methodologies that are based on data for improving 

education. It captures insights from several disciplines, including education research and sociology, 

that inform pedagogical strategy and the improvement of learning outcomes. Understanding student 

engagement and learning processes has become more nuanced with the development of learning 

analytics; this nuanced understanding shows that theoretical considerations are central to 

interpreting data effectively.  

Key Theoretical Foundations Cognitive and Affective Theories, Many MMLA studies use 

theoretical frameworks such as cognitive load theory and control-value theory for analyzing learning 

behaviors and emotional responses of learners. Examples include Giannakos and Cukurova (2023). 

Self-Regulated Learning, Many studies use theories of self-regulated learning to interpret data and 

improve student engagement through analytics, such as Wang et al. (2022). Application in Learning 

Design Data-Driven Decisions, Learning analytics also offer insights into students' activities, thus 

enabling educators to understand where to improve for raising course completion rates (Kesylė & 

Melnikova, 2024). Peer Review Engagement, Theory-based approaches have demonstrated their 

potential for learning analytics in analyzing engagement patterns by students in peer review activities 

to find unexpected behaviors and refine exiting theories (Er et al., 2021). 

A gap still exists in the integration of theory within learning analytics, with many studies 

remaining firmly data-driven (Wang et al., 2022). This contributes to further theoretical development 

if the full impact of the field is to be realized in improving educational practices. In contrast, others 

say that over-reliance on theory can hold back the innovative potential of learning analytics; thus, a 

balance between empirical data and theoretical frameworks in future research and practice is 

necessary. 

The field of learning analytics has transitioned from a focus on data and systems to a broader 

integration of educational theories, enhancing the understanding of learning processes(Lodge et al., 

2023).The establishment of organizations like the Society of Learning Analytics Research (SoLAR) has 

facilitated the growth of this field, promoting collaboration and research dissemination("Learning 

Analytics in Higher Education", 2023).Learning analytics can identify student learning styles and 

predict academic performance, allowing for personalized learning experiences (Alam, 2023). Ethical 

considerations, such as student privacy and data security, remain paramount as the field expands 

(Čalopa, et al.,2023). While the integration of learning analytics with educational theories shows 

promise for enhancing learning outcomes, challenges remain in ensuring that these theories are 

effectively applied in practice. The ongoing dialogue about the role of theory in learning analytics is 

essential for addressing these challenges and advancing the field. 

2.3. Cognitive Load Theory (CLT)  
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Provides a framework for appreciating the mental effort required by learners in education. It 

classifies cognitive load into three categories: intrinsic, extraneous, and germane, which differently 

affect learning outcomes. CLT has been used in a variety of educational areas, including medical 

training, nursing education, and machine learning, showing its usefulness in improving teaching 

methods. Major Components of Cognitive Load, Theory Intrinsic Load, this refers to the complexity 

of the material one is learning. For example, students in anesthesia training reported a high intrinsic 

load because the tasks were complex (Spijkerman et al., 2024). Extraneous Load, this consists of 

distractions and unhelpful teaching methods. In nursing education, extraneous load was found to 

largely affect decision-making skills, implying that handling this load is very important for good 

learning (Tabatabaee et al., 2024). Germane Load,This refers to the mental effort put into processing 

and making sense of information. Increased germane load might lead to improved learning 

outcomes, as demonstrated in specialized training for clinical reasoning among medical students (Si, 

2024). Although CLT gives quite a strong base for the understanding of learning processes, some 

would criticize that it does not sufficiently account for individual differences in cognitive processing, 

which hints toward the necessity of more personalized strategies in education. 

2.4. The Control-Value Theory (CVT) of Achievement Emotions 

Posits that individuals' emotional experiences in academic contexts are influenced by their 

perceptions of control and value regarding their tasks. Emphasized in this theory is the fact that 

emotions such as enjoyment, anxiety, and boredom can have strong effects on motivation and 

academic performance. The following sections elucidate important aspects of CVT. Key Components 

of Control-Value Theory, first, Control Appraisals, refers to students' beliefs about their ability to 

influence outcomes. Higher perceptions of control are related to positive emotions such as enjoyment 

and hope (Armstrong, 2023). Second, Value Appraisals, Relates to the perceived meaningfulness or 

utility of a task. Intrinsic value in particular exerts strong influence as it can overpower negative 

feelings like anxiety and boredom (Abuzant et al., 2023). Affective Outcomes in Learning Settings 

Positive Emotions: Positive leadership and clear instructional communication enhance teachers' and 

students' positive emotions, fostering a supportive learning environment (Goetz et al., 2024) 

(Armstrong, 2023). Negative Emotions: Factors like test anxiety and boredom, therefore, discourage 

students from continuing with higher education, since it indicates the negative outcomes of 

achievement emotions (Yim et al., 2023). Implications for Teachers Educators can utilize CVT by 

increasing students' sense of control and value through clear communication and relevant content to 

promote positive emotional experiences, which in turn fosters academic success (Armstrong, 2023). 

On the other hand, while C VT focuses on the centrality of emotions in learning, others argue that 

cognitive aspects like prior knowledge and learning strategies may equally be strong determinants 

of academic achievement, suggesting a more holistic approach toward understanding student 

outcomes. 

3. Digital Twin Technology 

Refers to the process of making virtual models of physical ones to enhance real-time monitoring, 

simulation, and optimization in various industries. Technology enhances operational efficiency, 

predictive maintenance, and decision-making, therefore being an important tool in manufacturing, 

healthcare, and renewable energy. The following sections discuss the major aspects of DTT. 

Manufacturing Applications Smart Manufacturing: DTT allows real-time data gathering and 

analysis, thus bringing improvements in operational effectiveness and product quality. Reference or 

citations: Sethi et al., 2024 and Singh & Gameti, 2024. Predictive Maintenance: Under simulated real-

world conditions, the DTT helps in forecasting failures in equipment, thus lessening downtime. 

Reference: Singh & Gameti, 2024 Impact on Renewable Energy Microgrid Management: DTT helps 

in optimizing the performance of renewable energy microgrids through demand-supply balancing 

for improving efficiency and ensuring stability. Resilience and Contingency Planning: It models the 

impact of extreme weather, which helps develop appropriate contingency plans (Bassey et al., 2024). 

Challenges and Future Directions Implementation Challenges are Technical, ethical, and privacy 

issues hamper the acceptance of DTT(Zhou et al., 2024). Future Trends are Advancements in AI, edge 
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computing, and 5G are expected to further increase the capability of DTT. While DTT comes with 

several advantages, it also has its set of challenges, such as management and security of data. Further 

developments on this technology show promise in the future across several sectors (Delerm & 

Pilottin, 2024). 

Digital Twin Technology faces significant challenges and future directions in various fields, such 

as interoperability, legal frameworks, data integrity, and security issues. With the advancement of 

digital twins, these challenges must be addressed to ensure their effective deployment and 

integration into existing systems. The following sections outline the main challenges and future 

directions for the development of digital twin technology. Interoperability Issues Inadequate 

Interoperability, Nowadays, interoperability problems are common in existing digital twin systems, 

which undermines their effectiveness in integrated environments (Dávid et al., 2024). Setting 

common standards is vital in enabling efficient communication between different digital twins and 

hence enhancing their general functionality (Dávid et al., 2024). Legal and Ethical Considerations 

Data Privacy Issues: The application of digital twins in the health sector faces significant legal 

challenges regarding data privacy and possible surveillance, which requires stronger regulatory 

frameworks (Delerm & Pilottin, 2024). Ethical Consideration: Integration of artificial and machine 

learning into digital twins raises several ethical issues within the digital health sector regarding data 

usage and patients' rights (Abayadeera & Ganegoda, 2024). Data Quality and Security Data Quality 

Assurance: High-quality data is imperative for the accurate functioning of digital twins, but many 

industries face challenges in terms of data integration and the control of quality (Zhou et al., 2024). 

Security Measures is very important to protect sensitive data from breaches, especially in applications 

involving personal health information (Zhou et al., 2024). Future Directions Research on 

Standardization: Future research should focus on developing robust standards and methodologies 

to enhance interoperability and data integration across domains (Abayadeera & Ganegoda, 2024). 

Regulatory Improvements: The legal frameworks will need to be updated to deal with complexities 

brought about by digital twins for safe and efficient use in public health and other sectors (Delerm & 

Pilottin, 2024). While digital twin technology holds transformative potential, its successful 

implementation hinges on overcoming these challenges. Conversely, the rapid evolution of digital 

twins may outpace regulatory and ethical considerations, leading to potential misuse or unintended 

consequences if not carefully managed (Yang et al., 2024). 

• Simulation and replication theories  

Are at the core of any advance in empirical research and theoretical development in most fields. 

They stress the need for the replication of simulation experiments in establishing results that 

strengthen the resilience of theoretical conclusions. The main elements of these theories are discussed 

in the following sections. The Role of Replication in Theory Development Replicated simulations 

have the potential to strengthen existing theoretical models by exploring new situations, such as 

organizational mergers, and testing the impact of variables like memory on performance (Hauke et 

al., 2020). Initiatives in standardization, such as the ODD protocol and DOE principles, now make 

replication easier, increasing transparency and reproducibility of simulations (Hauke et al., 2020). 

Challenges in Replicability The replicability of statistical simulation studies varies highly; some 

provide enough detail that a reader can accurately replicate them, while others omit crucial 

information (Luijken et al., 2023) ( "Replicability of Simulation Studies for the Investigation of 

Statistical Methods: The RepliSims Project", 2023). Factors that increase reproducibility include open 

access to coding data and detailed descriptions of methods, which are usually not included in original 

publications (Luijken et al., 2023). Applications in Education In teacher education, simulations offer 

a safe space for active engagement and successfully model real-life situations for improved 

educational outcomes (Orland-Barak & Maskit, 2017). The theoretical frameworks underpinning 

such simulations highlight their efficacy in delivering experiential activities for teacher learning 

(Orland-Barak & Maskit, 2017). While replication is essential for validating simulation studies, it is 

also crucial to recognize that not all simulations yield universally applicable results. Contextual 
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factors can significantly influence the outcomes, necessitating careful interpretation of findings 

(Edmonds & Hales, 2005). 

• Continuous feedback mechanisms 

Are integral, be it in neuroscience, quantum physics, or even organizational management. These 

systems enable the making of real-time adjustments and improvements with ongoing input, which 

improves performance and adaptability. The subsequent sections develop the applications and 

implications of continuous feedback across the various domains. Neuroscience and Reward 

Processing In neuroscience, continuous feedback refers to the processing of the brain in terms of 

ongoing rewards. Evidence has shown that midbrain dopaminergic activity can track moment-to-

moment changes in reward, suggesting a nuanced understanding of reward prediction errors, or 

RPEs (Hassall et al., 2023). EEG studies have demonstrated that continuous feedback can be measured 

through scalp potential coupled with reward anticipation, reflecting the adaptability of the brain 

based on the expectation of rewards versus no rewards (Hassall et al., 2023). Quantum Systems In 

quantum physics, continuous feedback is used to stabilize the state of a quantum gas in real time. A 

micro-processor-controlled feedback architecture maintains a constant intra-cavity photon number, 

enabling precise control near critical phase transitions (Kroeger et al., 2020). This technique illustrates 

the possibility to drive complex many-body phases in quantum systems with tailored feedback 

mechanisms (Kroeger et al., 2020). Material Science Continuous feedback mechanisms are also 

applied in the tuning of vanadium dioxide films for precise phase transitions. A robust feedback 

control approach suppresses hysteresis and thus enables continuous phase tuning without detailed 

modeling (Dai et al., 2019). Organizational Management In business, continuous performance 

management (CPM) replaces traditional annual reviews with regular feedback sessions. This agile 

approach fosters ongoing communication between managers and employees, adapting goals to meet 

evolving business needs (Traynor et al., 2021). While continuous feedback mechanisms have a very 

high degree of advantage when it comes to adaptability and performance in many fields, they also 

have their pitfalls, such as the need for quite sophisticated systems to process and respond with 

feedback. Balancing these facets is important to maximize these advantages of continuous feedback. 

Fog Computing Paradigm  

Represents an emerging paradigm that extends the capability of cloud computing toward the 

network edge, enabling real-time processing and storage of data closer to users and devices. It helps 

solve the shortfalls that traditional cloud computing presents when faced with scenarios that involve 

many devices generating huge amounts of data, such as IoT applications. Fog computing improves 

performance, decreasing latency while serving various applications for health, education, and 

marketing. Further sections discuss its architecture, application, and challenges. Architecture of Fog 

Computing The decentralized structure, fog computing has an architecture based on a decentralized 

system that spreads computing resources throughout the network rather than being confined to some 

cloud servers in the center (Paul, 2024). Integration with IoT: It acts as an intermediary between IoT 

devices and cloud services, enabling local data processing and reducing bandwidth usage 

(Swarnakar, 2024). Applications of Fog Computing Healthcare: Fog computing provides real-time 

monitoring and diagnostic services, addressing challenges like doctor shortages and high treatment 

costs (Datta & Datta, 2024). Marketing: It supports data management for marketing research, allowing 

for more agile and responsive strategies in fast-paced markets (Hornik & Rachamim, 2024). 

Education: It enhances online learning management and operational efficiency in educational 

institutions by 2024. Challenges and Future Directions Data Security: Data integrity and security are 

paramount concerns in the implementation of fog computing. Standardization: Standardized 

protocols and models are a must if this technology must find wider acceptance. Fog computing offers 

a bunch of advantages, but there is always a challenge that requires more research and development 

to make it completely implementable for every industry. 

• Distributed Computing Theory:  
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Distributed computing theory refers to concepts and methodologies that, when put into practice, 

help to process and handle data across several computing resources. It has become prominent since 

there has been an increasing need for better handling of data, which big data and machine learning 

bring forth. The following sections outline key aspects of distributed computing theory. Overview of 

Distributed Computing Distributed computing is a technique of performing complex computations 

with multiple interconnected computers sharing resources and data. It plays a crucial role in several 

applications, including cloud computing, where resources are managed across different service 

providers (Thakur et al.,2023). Synchronization Methods Synchronization plays a critical role in 

distributed systems to ensure consistency and coordination among processes. There exist four major 

synchronization methods or barriers that are commonly used, each with different performance trade-

offs (Wang& Zhao,2022). Big Data and Machine Learning Applications Distributed computing has 

helped deal with handling vast sets of data, thus solving some problems involved with processing 

and storing data (Aggarwal, 2020). In Machine Learning applications, several methodologies 

involving Queuing theory maximize the correct usage of resources that ensures processes are well-

streamlined Azarnova & Polukhin 2021 Ethics The rapid evolution of distributed computing brings 

along different ethical concerns related to privacy, security, and potential biases in handling data 

(Aggarwal, 2020). Although distributed computing ensures huge efficiency and scalability 

advantages, at the same time, it also raises various challenges that require due care to be shown, 

particularly in ethical consequences and potential abuse of technology. 

• Edge Processing Models:  

signify a radical re-echnology in computing that analyzes and makes decisions on the real-time 

data at the edge of the network. Such an evolution addresses the challenges-ensuring low latency, 

band limitations-associated with cloud-centric AI by embedding artificial intelligence right at the 

edge devices themselves. The following sections discuss important aspects of edge processing 

models. Overview of Edge Processing Model Real-time Processing: Edge AI enables the processing 

of data in real time, which is critical in applications such as autonomous vehicles and smart cities. -

Chandrasekaran et al. (2024) Resource Optimization: Complex models such as SSD and YOLO are 

optimized using techniques such as model quantization and pruning for resource-constrained 

environments. Paul& Patel (2024); Babaei (2024) Improved Privacy and Security: In that the data is 

processed locally, edge models reduce the risk of data breaches associated with cloud storage. – (Jain 

et al.,2023). Applications and Use Cases Smart Surveillance: Real-time object detection systems 

enhance security measures in urban areas (Paul& Patel,2024). Healthcare Monitoring: Edge AI 

enables timely health data analysis, improving patient outcomes (Jain et al., 2023). IoT Integration: 

Edge processing supports efficient resource management in IoT applications, optimizing power 

usage and task scheduling (Nandhakumar et al., 2023). As powerful as these edge processing models 

might sound, challenges are abound-for one, the need for rigorous security measures, coupled with 

edge-oriented algorithm development. Meeting such critical issues will form the cornerstone for 

wide-scale acceptance of Edge AI technologies. 

4. Large Language Models (LLMs) with LLAMA 

Large Language Models have really opened the door to many interesting applications in NLP, 

everything from chatbots to more complex data analysis. Among these, LLaMA stands out because 

of its open-source nature and advanced capabilities developed by Meta, formerly Facebook. Key 

Features of LLaMA Model Architecture LLaMA uses transformer architecture, meaning a model 

having layers of attention and feed-forward networks. The model can take in text as input to predict 

the next word or generate coherent responses. The latest version, LLaMA , is better pre-trained and 

post-trained, increasing performance in multiple tasks such as reasoning and code generation (Xie et 

al.,2024).  

Parameter Efficiency The model is optimized for efficiency in its parameters. In the case of 

LLaMA, for example, parameters are stored using a 16-bit floating-point format, allowing compact 

representation. This allows for versions like LLaMA 3 to go up to 70 billion parameters, enabling its 
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deployment on consumer hardware while requiring substantial storage. Training Data and Processes 

LLaMA was trained on 10 terabytes of text, all scraped from various internet content (Wu et al.,2024).  

It required thousands of GPUs, considering the huge computation that needed to be handled for 

this process. It is mended with language patterns by a next-word prediction task, the major training 

objective of the model. Not only does it improve the understanding of languages, but it also has aided 

in compressing information into its parameters. Enhancements in LLaMA 3 Where the LLaMA 3 

differs significantly from its earlier models are the critical features listed below: Better Tokenization: 

New tokenizer featuring a 128K-token vocabulary and therefore giving better encoding efficiency. 

GQA, or Grouped Query Attention, enhances the inference efficiency of both the 8B and 70B 

parameter models (Li et al., 2025).  

Quality Data Filtering: There were long filtering pipelines that guaranteed high-quality training 

data featuring heuristic filters and semantic deduplication methods. Applications and Implications 

Besides generating text, LLaMA can be fine-tuned for a wide variety of applications, making it quite 

versatile for use in many different NLP tasks. Its open-source nature invites and encourages research 

and development by the AI community, thus promoting innovation and collaboration. In conclusion, 

LLaMA represents an important advance in the area of large language models, combining efficiency 

with powerful performance across diverse applications in natural language processing Minaee et al., 

(2024). 

5. Clustering and Predictive Analytics 

Clustering and predictive analytics form the backbone of data mining and machine learning, 

especially in educational data. These methodologies allow pattern identification and forecasting of 

outcomes from historical data. Clustering Techniques K-Means Clustering K-means clustering is an 

unsupervised learning algorithm that groups data points into clusters based on their similarities. The 

algorithm works in a greedy manner: it iteratively assigns each data point to the closest cluster 

centroid, recomputes centroids, and refines cluster assignments in an iterative fashion until 

convergence (Srividhya et al.,2024).  

This method is very effective in educational contexts to group learners based on metrics about 

performance and behavioral patterns. Applications in Education: K-means help educators identify 

distinct student profiles, allowing targeted interventions that can enhance learning outcomes. It 

allows institutions to adapt educational strategies to diverse needs by clustering students according 

to similar performance features. Predictive Analytics Predictive analytics involves the use of 

historical data to predict future outcomes. Techniques such as linear regression analyze past 

behaviors in order to predict future performance. In conjunction with clustering, predictive models 

can be trained separately for each identified cluster, thereby improving accuracy and relevance of 

forecasts (Valli ,2024).  

Integration with Clustering, the integration of clustering with predictive analytics will help 

organizations bring out hidden insights from their data. Segmentation of learners into clusters can be 

followed by building predictive models for each cluster to predict learners' academic performance or 

to identify at-risk students35. Segmentation Theory Segmentation theory plays a crucial role in 

understanding learner profiles. By creating distinct segments based on various characteristics—such 

as demographics, behaviors, and performance metrics, educators can implement targeted 

interventions (Bhaskaran, 2024 ,Goriparthi2024). 

This approach fosters inclusive and effective learning environments, ensuring that diverse 

learner needs are addressed appropriately. Conclusion The integration of K-means clustering 

techniques with predictive analytics provides powerful tools for informed decision-making in 

education. The application of these methodologies can help educational organizations increase their 

knowledge about learners' behaviors and improve academic performance for better interventions (Li 

et al., 2024). 

5.1. Practical Work  

There is an evolution of learning analytics that continues to drive beyond simple accumulation 

and signaling work being performed toward a greater focus on understanding student behavior, 
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engagement, and performance in real time (Pardo et al., 2019; Wise et al., 2014). Empowered through 

data, we have seen amazing innovation over the last ten years in the tools and frameworks available 

to support new ways of understanding better user experiences for learning. This section discusses 

the related literature on digital twins, real-time learning analytics, and fog computing and discusses 

how technologies such as the large language model (LLM), regression models and clustering 

techniques are being applied in educational settings to create the groundwork for our proposed 

framework. 

5.2. Digital Twins in Education 

Originating in the industrial sector, digital twins have been extrapolated to a multitude of other 

fields, such as healthcare, urban planning and, recently, education (Fuller et al., 2020). A digital twin 

is a simulation model of a physical entity that behaves and interacts with the real world in the same 

way. As described, the "digital twin" of the student acts as an up-to-date simulation reflecting their 

learning activities and interactions with educational content or devices (Eriksson et al., 2022). 

There is less research on the use of digital twins in education, and many studies are either 

conceptual or concerned with pilot applications (Zhang et al., 2022). Indeed, as discussed, the 

possibility of digital twins providing a highly personalized learning paradigm in which customized 

content and assessment approaches are used for each student in real time is performative data. Digital 

twins were found to be fundamental in the provision of adaptive learning pathways because they 

allow real-time feedback and interventions aimed at addressing a learner's challenge when those 

challenges arise. 

For instance, in 2021, scholars studied the possibility of using digital twins to monitor remote 

learners to reduce student academic dropout (Kinsner, 2021). They also warn that the real-time nature 

of responses will be essential, particularly in online learning, as physical presence is not suggestive 

of learner engagement or understanding. 

5.3. Real-Time Learning Analytics 

Learning analytics represents an emergent scientific field of research that explores potential 

analysis techniques for the data stored in educational databases and is based on a process of 

capacitance-based collection information for learners (Hernández-de-Menéndez et al., 2022). The rise 

in the availability of digital learning platforms that capture rich data on student interactions, 

behaviors and performance has made this possible. The aim of real-time learning analytics is to 

operationalize these data into practical insights that can help improve students' learning experience 

(L.-A. Lim et al., 2021), diagnose those who are at risk and enable decision-making in education. 

However, many analytics systems currently in use are based on architectures that reside in the 

cloud and can add latency and interfere with delivering feedback quite promptly. Fog computing can 

be seen as a potential solution for these issues, which were presented in 2012 (Gerla et al., n.d.). Fog 

computing is an extension of the Cloud where data processing and analytics are performed closer to 

the source of the data, typically via the EDGE network. It has controls to reduce latency, minimize 

bandwidth usage and address confidentiality concerns, which are the absolute necessity for real-time 

learning analytics. 

The findings showed that on-time and real-time feedback to students is possible in scenarios 

where instant interventions are mandatory for achieving certain learning outcomes through fog 

computing. This is one of the studies that showed how fog computing can lead to real-time learning 

analytics, enabling local data processing and no longer depending on cloud infrastructure to reduce 

other similar delays due to latency. 

5.4. Fog Computing and Edge Analytics 

Fog computing is an extension of cloud computing to network edges that places computations, 

storage, and networking close to data sources, where it provides advantages over traditional Cloud-

based approaches (Ometov et al., 2022). They are located closer to the data and process it for 

applications that require real-time responses, such as learning analytics (Alshammari et al., 2020; 

Karatza, 2020). 
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Education-related: This is one of the use cases where fog computing has substantial benefits in 

comparison to conventional cloud-based systems. Fog computing reduces latency (time lag) and 

allows quicker delivery of real-time feedback, which translates into faster responsive learning 

experiences (Karatza, 2020). It also decreases the bandwidth needed to move data into or out of the 

cloud, which is instructive in some areas where both network access and excellent quality are 

continuous limitations. 

Moreover, fog computing increases data privacy and safety by allowing personal information to 

be stored at its place of origin, which reduces online transfer risks (Alwakeel, 2021). Learning literacy 

is especially critical in the context of learning environments, as educational institutions are obligated 

to protect student data. Fog computing for real-time learning analytics and improving system 

performance and scalability without compromising data privacy and security. 

5.5. Meta-LLAMA and Large Language Models 

The meta-LLAMA breaks new ground in large language models (LLMs) and provides 

remarkable power to generate personalized education feedback. We leverage pretrained models that 

are specifically trained for understanding and generating human language in context; these models 

are particularly well suited for analyzing student-generated content, e.g., essays or discussion posts 

(Radford et al., 2021). Through LLAMA, educational systems could generate feedback tailored more 

to each student’s individual learning styles. 

LLAMA Standard Setting Official Release, such as BERT and GPT-3, are built on top of the 

original models by using massive amounts of data as a seed question," writes the Twitter user Ben 

Levine in response to some examples given (Michelet & Breitinger, 2024). Models such as these are 

trained by learning repeated patterns in different languages, which enables them to understand how 

language works and then use their understanding across many tasks. LLAMA can then assess a 

student's work by identifying where they require improvements and recommending resources or 

strategies that will enable these areas to be addressed in the context of personalized feedback, which, 

as suggested, leads to improved learning outcomes (Devlin et al., 2018; Touvron et al., 2023). 

The integration of LLAMA into education platforms is an example of how AI-powered tools are 

designed to evolve feedback systems that have been ingrained in tradition. Unlike traditional 

feedback systems, tailored responses are formulated during production that are not only relevant to 

the content itself but also respectful of previous exchanges and progress. This enables educators to 

provide timely, specific, and actionable feedback, which will create a more engaging and supportive 

learning experience. 

5.6. Regression Models and Clustering Techniques 

Regression models and clustering techniques are the most common tools used in educational 

data mining to forecast student performance and determine clusters of students with comparable 

learning behavior. A core regression is used to understand the relationship between a dependent 

variable such as student performance and one or more independent variables (such as engagement 

metrics and attendance). Linear regression can also predict future outcomes by means of historical 

data — which is how the model helps to identify students who might need more individual attention. 

Clustering techniques, such as K-means clustering, are applied to cluster students according to 

their learning behavior and engagement pattern as well as their performance metrics (Moubayed et 

al., 2020). Kearn is a well-known unsupervised learning algorithm based on clustering; this method 

helps to separate the dataset into K groups of clusters where each cluster has similar students. By 

identifying these clusters, educators can develop better positions to develop interventions and 

support targeted toward each group's unique need for educational programs to have a greater 

impact. 

7. Proposed Learner's Digital Twin-LDT Framework 

In the following section, we describe a framework called “Learner's Digital Twin”, which 

leverages Fog Computing and LLAMA using linear regression and K-means clustering to generate 

actionable information for educators as well as real-time personalized feedback for students. The 
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framework is, in fact, devised to circumvent the limitations of conventional cloud-based systems by 

handling data at on-network edges that could diminish latencies and support responsive times for 

time-sensitive responses. 

7.1. System Architecture and Components 

The architecture used in our learner's digital twin framework to process the data and provide 

feedback is based on combining fog computing with LLAMA. The system consists of several 

components that fulfill a particular purpose to make the framework capable and efficient. Fig 1. 

shows the proposed system architecture, the components and layers of interactions and the data flow. 

 

Figure 1. System Architecture and Components. 

7.1.1. Edge Devices 

Student Devices — Laptops, Tablets and Smartphones the students use to interact with LMS. 

The devices create data, including student engagement measures, submission of assignments and 

exam scores. 

RFID Attendance Devices: Installed in classrooms that keep the record of student attendance. 

In turn, it feeds real-time data that allows students to understand when they are engaged, which is 

vital to their learning. 

7.1.2. Fog Nodes 

Data Aggregation: Fog nodes collect the data from edge devices and RFID attendance devices 

and aggregate it for local processing. In other words, this approach helps to reduce the amount of 

raw data that needs to be sent down to the cloud, hence reducing latency and bandwidth 

consumption. 

Localized processing- Fog nodes perform initial data processing operations, such as computing 

engagement scores, identifying outliers and elevating real-time feedback to students. Because fog 

nodes conduct analyses on site, the response time is reduced to zero compared with the number of 

cloud processing steps. Fog nodes will work with Meta-LLAMA3 to analyze students’ data and 

provide personalized feedback. 

Data Filtering: This method acts as a filter between edge devices to the cloud and filters the raw 

data into relevant high-quality data before they are transmitted to the Cloud. This approach also 
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helps take some load off the cloud servers and increases data privacy, as many features can work 

without sending sensitive information to the network. 

7.1.3. Cloud Services 

Additionally, cloud services perform heavy-duty tasks such as complex data analyses, 

predictive modeling, analyzing trends, and aggregating large volumes of data. Furthermore, they 

will store the processed data and analytics results in a central place accessible by educators, students, 

and other college staff for further analysis and reporting; finally, the cloud services will work with 

Meta-LLAMA3 to analyze big data and provide insights and recommendations. 

7.1.4. LMS (Learn Management System) 

Content Management: The LMS acts as the central hub from which educational content can be 

delivered, assignments and assessments can be planned and graded, etc. It is also the face where 

students access their learning publications. 

Data Collection: The LMS captures and logs student interactions (e.g., quiz results, assignment 

submissions, time spent on tasks), and the fog nodes then process these data. 

7.1.5. Dashboards 

Student Dashboard–Represents personal feedback and recommendations and visualizes 

performance metrics for the student. 

Teacher Dashboard–represents insights into the informed class, at-risk students' identification 

and teaching strategy suggestions and recommendations. 

Admin Dashboard: Provides a performance dashboard showing trends, common issues across 

the system and proposed intelligent policies. The dashboard gives administrative staff all the 

information they need to successfully run and develop their institute. 

7.2. Applying the Digital Twin Model 

As such, a critical part of the learner's digital twin framework is its implementation: the digital 

twin model (DT), which captures learner interactions, behaviors, and progress in real time. As new 

data are generated, the digital twin constantly updates to deliver immediate feedback and adapt 

learning strategies based on what could be happening "now" in that system for a given learner. 

7.2.1. Data Collection 

The digital twin model is based on continuous data from various sources, such as student 

interactions with learning management systems (LMSs), online tests, assignment submissions and 

other digital tools. Sources from which data are collected: 

• Behavioral Data: Information about the level of engagement by a student, including time spent 

on the task and interactions with the content. 

• Performance Data: Assessments of scores, exam grades and other performance metrics along with 

feedback from course instructors. 

• Context Data: included the learning environment, such as the type of device used while 

conducting the session and the time. 

These data are fed back into the digital twin, creating a full picture of the student's journey 

through learning. These data are used by the system to recognize patterns, predict future 

performance and recommend individualized interventions. 

7.2.2. Real-Time Updates 

With every new data generated, the same data generated in real time are updated and stored in 

a digital twin. In this way, the system provides immediate feedback, which adapts automatically 

according to the learner's current needs. If a student has trouble with a specific concept, for instance, 
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the digital twin can identify this challenge and recommend resources or interventions that will assist 

him/her in tackling that obstacle. 

7.3. Predicting Student Outcomes using Linear Regression 

In the context of our framework, linear regression is used to predict a desired result (e.g., final 

exam grade) based on an independent dataset (features). It has features such as attendance, scores in 

assignment and participation rates that are directly proportionate to a successful academic result. 

The objective is to determine the score on the final exam given the student’s attendance, 

assignment grade and participation. 

Assumptions: 

Independent Variables (Features): 

• 𝑥1: Attendance rate (as a percentage); 

• 𝑥2: Average assignment score (as a percentage); 

• -𝑥3: Participation rate (as a percentage); 

Dependent Variable (Target): 

• 𝑦: Final Exam Score (as a percentage). 

Initial Coefficients: 

• (𝛽0 = 10) (initial intercept, assuming all features have minimal effect). 

• (𝛽1 = 0.5) (initial coefficient for the attack rate). 

• (𝛽2 = 0.3) (the initial coefficient for assignment score). 

• (𝛽3 = 0.2) (initial coefficient for the participation rate). 

Linear Regression Equation 

𝑦̂ = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3     (1) 

where 

 𝑦̂ is the predicted final exam score. 

 𝑥1, 𝑥2, 𝑥3are the independent variables (features). 

 𝛽0, 𝛽1, 𝛽2, 𝛽3 are the coefficients. 

The Linear Regression Algorithm used in LDT 

Input: 

• A dataset 𝑋 with 𝑛 students, where each student has features 𝑥1, 𝑥2, 𝑥3. 

• The corresponding target variable 𝑦  (final exam score) for each student. 

Output: 

• Final exam score prediction via linear regression. 

Steps: 

1- Initialize the parameters: Set initial values for the coefficients 𝛽0, 𝛽1, 𝛽2, 𝛽3. 

2- Compute Predictions: For each student 𝑖  in the dataset, calculate the predicted final 

examination score 𝑦𝑖̂ using the current coefficients: 

𝑦𝑖̂ = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3     (2) 

3- Compute the cost function (mean squared error):  

Do for each student  𝑖 Calculate the error: 

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖̂      (3) 

Calculate the mean squared error (MSE): 

MSE =
1

𝑛
∑ 𝑒𝑖

2𝑛
𝑖=1       (4) 

4- Optimization of Parameters (Gradient Descent): The coefficients are adjusted to minimize 

the MSE: 

𝛽𝑗 ≔ 𝛽𝑗 − 𝛼
𝜕

𝜕𝛽𝑗
MSE         (5) 
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where 𝛼 is the learning rate. 

5- Iterate: 

Replay steps 2 to 4 until the changes in the MSE at convergence become extremely compact or 

the maximum ranges of iterations are reached. 

Final Model: 

Once the algorithm converges, the coefficients 𝛽0, 𝛽1, 𝛽2, 𝛽3 represent the final model. 

Final equation: 

𝑦̂ = 10 + 0.3𝑥1 + 0.4𝑥2 + 0.2𝑥3     (6) 

Example of Prediction: 

For a student with 85% attendance, 78% average assignment score, and 90% participation, the 

predicted final exam score would be 

𝑦̂ = 10 + 0.3(85) + 0.4(78) + 0.2(90) = 10 + 25.5 + 31.2 + 18 = 𝟖𝟒. 𝟕% 

7.4. Clustering Students into Groups with K-means Clustering 

The system clusters students using K-means clustering for personalized feedback and 

recommendations based on their (attendance rate, assignment scores, test scores, participation rate, 

submission timeliness, interaction with learning materials). The student data are automatically 

partitioned into K clusters, which can act as clusters of similar kinds of students. K=3 to K=5—the 1st 

bucket—we can put students in high-level groupings but not get too granular, which is a good place 

to start. We can then return, tuning that K to represent more of the subtleties in student behavior and 

performance for better targeted insights/interventions. For example: 

𝐾 = 3  might produce clusters of high-achieving students, moderate-achieving students, and 

low-performing students 

𝐾 = 5 will result in more detailed groupings, such as high performers, consistent performers, 

improving students, struggling students, and at-risk students. 

K-Means Clustering Algorithm (Starting with𝐊 = 3) 

Input: 

• 𝐾 = 3: The initial number of clusters. 

• 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛: The dataset of 𝑛 students, where each 𝑥𝑖 is a vector of features representing 

student behavior and performance metrics (e.g., attendance rate, assignment scores, test scores, 

participation rate, etc.). 

Output: 

• A set of 3 clusters, each containing a group of students, was constructed. 

• The centroid of each cluster. 

Steps: 

Initialize Centroids: Three students are randomly selected from 𝑋  as the initial centroids 

𝜇1, 𝜇2, 𝜇3. 

Assign Students to Clusters: For each student 𝑥𝑖 in the dataset:  

• Compute the Euclidean distance between 𝑥𝑖 and each centroid 𝜇𝑗 for 𝑗 = 1𝑡𝑜 3. 

𝑑(𝑥𝑖 , μ𝑗) = √∑ (𝑥𝑖𝑘 − μ𝑗𝑘)
2𝑚

𝑘=1      (7) 

𝑑(𝑥𝑖, 𝜇𝑗) represents the Euclidean distance between the student vector 𝑥𝑖 and the centroid 𝜇𝑗. 

𝑚 is the number of features (attributes) in the student vector. 

𝑥𝑖𝑘 is the𝑘 − 𝑡ℎ feature of the student vector 𝑥𝑖. 

𝜇𝑗𝑘 is the 𝑘 − 𝑡ℎ feature of the centroid 𝜇𝑗. 

• Assign 𝑥𝑖 to the cluster 𝐶𝑗 with the closest centroid 𝜇𝑗. 

Update centroids: 
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• For each cluster 𝐶𝑗, recalculate the centroid 𝜇𝑗 as the mean of all student vectors assigned to 

that cluster: 

μj =
1

|Cj|
∑ xixi∈Cj

      (8) 

• Here, ∣ 𝐶𝑗 ∣ is the number of students in cluster 𝐶𝑗. 

Check for convergence: 

• If the centroids 𝜇1, 𝜇2, 𝜇3 do not change (or change truly little) after updating, the algorithm has 

converged, and you can stop. 

• Otherwise, go back to Step 2, and repeat the process. 

Interpret and refine𝑲: 

• The resulting clusters were analyzed to determine whether they provided meaningful groupings 

of students. 

• If the clusters are too broad or too narrow, adjust 𝐾  (e.g., increase 𝐾 to 4 or 5) and rerun the 

algorithm. 

• Methods such as the elbow method or silhouette analysis were used to determine the optimal 

number of clusters. 

Output the final clusters: 

• Once satisfied with the clustering, the final clusters  C1, C2, C3  and their corresponding 

centroids are output. 

• Each cluster should represent a distinct group of students with similar behaviors and 

performance metrics. 

7.5. Generating Personalized Feedback and Recommendation using Meta-LLAMA-3 

We integrate LLAMA into the Learner's Digital Twin framework so that it can analyze student-

processed data. LLAMA will return different outputs for each learner because it can understand and 

process text personally using advanced natural language processing (NLP). 

We take advantage of advanced features provided by Meta-LLAMA3, which provides 

personalized feedback and recommendations matched to the specific performance measures of each 

student. It starts with capturing and making sense of a holistic dataset for each student — attendance, 

assignment scores, test results, levels of participation in class & historical data. These features are 

formatted into a structured input that can then be passed through Meta-LLAMA3.  

After preparing the data, these actions are processed through different deep learning layers to 

generate an internal representation that captures complex interactions between a set of indicators and 

other performance metrics. The meta-LLAMA3 applies its pretrained knowledge and inference 

abilities to the data, generating insights that correspond with student performance and highlighting 

both strengths and weak areas where improvement is needed. 

The feedback and recommendations-stage two Meta-LLAMA3 were generated, after which the 

inferred insights were mapped to personalized feedback for the students, after which the students 

were outfitted with coordinate bearings on how they could improve or maintain their performance.  

At the same time, recommendations for teachers are generated by the model to suggest 

actionable strategies for how they can continue supporting a student throughout their learning. These 

outputs are saved into a PostgreSQL database to be available for real-time visualization on student 

and teacher dashboards. If applied to every student in the institution, it could certainly make both 

learning outcomes more personalized and teachers empowered with insights that allow for a better 

outcome. 

Algorithm for Data Collection, Processing and Generation of Personalized Feedback and 

Recommendations using Meta-LLAMA3 
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This algorithm describes in a logical step-by-step how the system gathers and processes student 

data, creates a contextual prompt, and produces custom feedback involving the LLAMA 3 model.  

This approach personalizes the feedback for each individual student through statistical analysis 

and utilizing LLAMA 3's advanced natural language processing. By also processing statistical data 

and context directly into prompt generation, the feedback serves as highly relevant to every student. 

Input Data Collection: 

Input: Collect raw student data 𝐷where𝐷𝑠 =  {𝐴, 𝑆, 𝐺} 

• 𝐴: Attendance records. 

• 𝑆: Assignment submissions and their respective scores. 

• 𝐺: Assessment scores (e.g., quizzes, exams). 

Data Preprocessing: 

Normalize Attendance Data- Calculate the attendance rate 𝑅𝐴 for each student 𝑠𝑖: 

𝑅𝐴(𝑠𝑖) =
Total Attended Classes

Total Scheduled Classes
× 100     (9) 

Aggregate assignment scores: Compute the average assignment score 𝑆(𝑠𝑖) for each student: 

𝑆(𝑠𝑖) =
∑ 𝑆𝑖𝑗

𝑛𝑆
𝑗=1

𝑛𝑆
      (10) 

where 𝑆𝑖𝑗  is the score of the 𝑗 − 𝑡ℎ assignment and 𝑛𝑆 is the total number of assignments. 

Normalize Assessment Scores - Calculate the overall assessment performance 𝐺norm(𝑠𝑖)  by 

normalizing the assessment scores against the maximum possible score: 

𝐺norm(𝑠𝑖) =
𝐺(𝑠𝑖)

𝐺max
× 100     (11) 

where 𝐺(𝑠𝑖) is the score of the student 𝑠𝑖 and 𝐺max is the maximum possible score. 

Statistical Data Processing: 

Performance analysis - Statistical summaries, such as the mean, median, and standard deviation, 

were generated for 𝑅𝐴, 𝑆, and 𝐺normacross the entire student cohort. 

Identify Outliers - Identify students whose performance metrics significantly deviate from the 

cohort’s average using Z scores: 

𝑍(𝑥) =
𝑥−μ

σ
        (12) 

where 𝑥 is the student’s score, μ is the mean, and σ is the standard deviation. 

Prompt Generation for LLAMA 3: 

Data Summarization–The processed data 𝑃𝑠  for each student 𝑠𝑖  are summarized into a 

structured text prompt: 

𝑃𝑠 = 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝐼𝐷: 𝑠𝑖, Attendance: 𝑅𝐴(𝑠𝑖), Assignment Avg: 𝑆(𝑠𝑖), Assessment Performance: 

𝐺norm(𝑠𝑖)     (13) 

Contextual Information - Add additional contextual information such as learning objectives, 

areas of difficulty, and past performance trends: 

CProm = 𝑃𝑠 + 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝐿𝑖 + Difficulty Areas: 𝐷𝑖   (14) 

Construct Final Prompt - Combine the data summary with personalized instructions for LLAMA 

3 to generate feedback: 

FProm =  "𝐴𝑛𝑎𝑙𝑦𝑧𝑒 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 𝑑𝑎𝑡𝑎 𝑎𝑛𝑑 𝑝𝑟𝑜𝑣𝑖𝑑𝑒 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 

 𝑎𝑛𝑑 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠: " + CProm    (15) 

Feedback Generation using LLAMA 3: 

Input to LLAMA 3 - Pass the final prompt FProm  to the LLAMA 3 model. 

Text Processing - LLAMA 3 processes the prompt by leveraging its NLP capabilities to 

understand the context and generate feedback. This involves: 

Feedback𝑠 = LLAMA3(FProm)         (16) 

The model outputs a structured response, potentially including praise, constructive criticism, 

and actionable recommendations. 

Personalization- Ensure that the generated feedback is personalized based on the student's data, 

addressing specific strengths and weaknesses and providing guidance for improvement. 

Postprocessing: 
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Grammar and Clarity Check - Refine the feedback Feedback𝑠  to ensure grammatical 

correctness, clarity, and coherence. 

Final Output - Deliver the final personalized feedback Feedback𝑠 to the student through the 

dashboard. 

Feedback loop: 

Student interaction - Students were allowed to review and interact with the 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘  and 

collect responses. 

Model improvement - Use student responses to update and fine-tune LLAMA 3, enhancing its 

future performance and feedback relevance. 

7.6. Process Flow in Learner’s Digital Twin 

Fig 2. shows the process flow of our proposed framework. The process starts with data 

aggregation and preprocessing in the fog nodes, where necessary information is aggregated from the 

student devices and attendance RFID devices; then, the system processes the data by filtering it to 

remove anomalies. Instant feedback is generated and shared with students as needed using LLAMA.  

The students’ processed data are subsequently saved in a PostgreSQL database and published 

to cloud services for further analysis. Then, on the cloud, we perform advanced analyses, such as 

regression models, to predict the outcomes of students and clustering based on behaviors, 

performances, etc., to obtain insights for each cluster. Using Meta-LLAMA3, recommendations are 

generated through students’ processed data stored in the database.  

Additionally, it provides endpoints for obtaining detailed student performance and class 

analytics, which can be visualized on respective dashboards. 

 

Figure 2. Learner's Digital Twin Flowchart. 

8. Results 

A real-world educational setup was used to evaluate the proposed Learner's Digital Twin 

framework for real-time personalized feedback to students and teachers’ insights and 

recommendations. In total, 25 students in two courses were part of this evaluation, and data were 
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collected for 3 months with the previous methods. The study examined metrics such as latency, 

feedback accuracy, student performance and user satisfaction. 

8.1. Latency Reduction 

First and foremost, the goal was to decrease latency in data processing as well as feedback 

delivery. For this reason, Fog Computing was integrated into architecture. To evaluate the 

performance benefits of our Learner's Digital Twin Framework using Fog Computing compared to 

traditional cloud-based systems, we conducted latency tests using Postman. Latency, the time taken 

for data to travel from the source to the destination and back, is critical in real-time learning analytics.  

Lower latency ensures timely feedback, which is essential for effective learning interventions. 

By using Postman, a popular API development tool, we were able to simulate client requests and 

measure the response times for both systems under identical conditions. As shown in Fig 3., the initial 

test results revealed that the LDT system exhibited a significantly lower latency compared to the 

Cloud-Based system. On average, the LDT system was 300 MS faster in responding to requests. 

 

Figure 3. Postman test results. 

8.2. Feedback Accuracy and Personalization 

Because LLAMA can analyze student processed data sent to it in textual prompt format in real 

time, the feedback was highly personalized to students and therefore more likely to provide them 

with information that matched their current learning point.  

Table 1 shows samples of LLAMA-generated feedback and recommendations for students and 

teachers. The sample taken from the performance data (attendance rate, assignment average, and 

assessment performance and difficulty areas) was measured for 4 students for two courses. 

Table 1. Samples of personalized feedback and recommendations. 

Studen

t ID 

Course Final Prompt Personalized 

Feedback 

Student 

Recommendation

s 

Teacher 

Recommendation

s 
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101 Data 

Science 

101 

Analyze the 

following student 

data and provide 

personalized 

feedback and 

recommendation

s: Student ID: 101, 

Attendance: 95%, 

Assignment 

Average: 85%, 

Assessment 

Performance: 

78%. Learning 

Objective: 

Mastering data 

visualization 

techniques. 

Difficulty Areas: 

Struggles with 

advanced Python 

programming 

concepts. 

You have a 

strong 

attendance 

record and 

are 

performing 

well in 

assignments. 

However, 

your 

assessment 

scores suggest 

some 

challenges in 

advanced 

Python 

programming

. You have a 

good grasp of 

data 

visualization 

but need to 

strengthen 

your Python 

skills to excel 

further. 

Focus on 

practicing Python 

coding exercises, 

especially those 

related to data 

manipulation. 

Consider 

attending 

additional 

tutoring sessions 

on advanced 

Python topics. 

Regularly review 

Python 

documentation 

and participate in 

coding forums. 

Consider 

providing more 

practice problems 

focused on Python 

programming, 

particularly on 

data manipulation 

and advanced 

concepts. Offering 

supplementary 

materials or 

tutorials on these 

topics might also 

help students who 

are struggling. 

102 Machine 

Learnin

g 201 

Analyze the 

following student 

data and provide 

personalized 

feedback and 

recommendation

s: Student ID: 102, 

Attendance: 88%, 

Assignment 

Average: 92%, 

Assessment 

Performance: 

90%. Learning 

Objective: 

Understanding 

supervised 

learning 

Your 

performance 

is excellent, 

with high 

scores in both 

assignments 

and 

assessments. 

Your 

understandin

g of 

supervised 

learning 

algorithms is 

strong, but 

there's room 

for 

To deepen your 

understanding, 

focus on the 

mathematical 

foundations of 

algorithms, such 

as linear algebra 

and calculus. 

Engage in 

exercises that 

require you to 

derive and prove 

algorithmic 

concepts. 

Consider 

reviewing 

relevant math 

Offer additional 

resources or 

sessions that focus 

on the 

mathematical 

underpinnings of 

machine learning 

algorithms. 

Consider 

organizing study 

groups or 

recommending 

specific texts that 

help reinforce 

these concepts. 
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algorithms. 

Difficulty Areas: 

Occasionally 

struggles with 

mathematical 

foundations 

behind 

algorithms. 

improvement 

in grasping 

the 

mathematical 

concepts. 

tutorials and 

textbooks. 

103 Data 

Science 

101 

Analyze the 

following student 

data and provide 

personalized 

feedback and 

recommendation

s: Student ID: 103, 

Attendance: 75%, 

Assignment 

Average: 68%, 

Assessment 

Performance: 

65%. Learning 

Objective: 

Gaining 

proficiency in 

data cleaning and 

preprocessing. 

Difficulty Areas: 

Inconsistent with 

assignment 

submissions and 

struggles with 

time 

management. 

Your 

attendance 

and 

assignment 

completion 

rates are 

lower than 

expected, 

which may be 

impacting 

your overall 

performance. 

Consistent 

effort in these 

areas is 

crucial for 

mastering 

data cleaning 

and 

preprocessing 

skills. 

Improve your 

time management 

by setting aside 

dedicated study 

hours each week. 

Prioritize 

completing 

assignments on 

time to reinforce 

your learning. 

Consider using a 

task management 

tool to organize 

your study 

schedule. Seek 

help from peers or 

instructors if 

needed. 

Monitor this 

student's progress 

more closely and 

consider offering 

regular check-ins 

to discuss time 

management 

strategies. 

Providing flexible 

deadlines or 

alternative 

assignments 

might help in 

addressing their 

consistency 

issues. 

104 Machine 

Learnin

g 201 

Analyze the 

following student 

data and provide 

personalized 

feedback and 

recommendation

s: Student ID: 104, 

Attendance: 80%, 

Assignment 

Average: 70%, 

You have a 

good 

understandin

g of machine 

learning 

models, but 

there seems to 

be some 

difficulty in 

evaluating 

Focus on learning 

and applying 

different model 

evaluation metrics 

such as accuracy, 

precision, recall, 

and F1-score. 

Participate in 

study groups or 

online courses 

Consider 

revisiting the 

topic of model 

evaluation metrics 

in class, possibly 

with more 

examples or 

hands-on 

activities. 

Providing 
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Assessment 

Performance: 

72%. Learning 

Objective: 

Applying 

machine learning 

models to real-

world datasets. 

Difficulty Areas: 

Understanding 

model evaluation 

metrics. 

their 

performance 

effectively. 

Your 

attendance is 

satisfactory, 

but there's 

room for 

improvement 

in both 

assignment 

scores and 

assessment 

performance. 

that focus on these 

metrics. Practice 

with real-world 

datasets to apply 

these concepts 

effectively. 

additional 

exercises or 

workshops that 

focus on these 

metrics could 

benefit students 

struggling in this 

area. 

8.3. User Satisfaction 

We measured user satisfaction with the system via surveys for both students and educators. 

Both groups reported high levels of satisfaction with the intervention in terms of ease of use and 

usefulness of acquiring benefits related to immediate feedback from the system.  

Most users expressed the desire to continue with this system in other learning activities due to 

the quality of personal feedback and the option for just-in-time support from teachers. The analysis 

of students’ and teachers’ responses to the survey is explained below. 

Student Survey Analysis (SSA) 
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Fig 1. SSA-Relevance of 

LDT-Feedback 

More than 75% of students 

found the feedback was 

relevant and 24% found it 

relevant some how. 
 

Fig 2. SSA-Personalization 

of LDT-Feedback 

More than 90% of students 

found the feedback was 

personalized. 

 

Fig 3. SSA-Timeliness of 

LDT-Feedback 

More than 75% of sudents 

found the feedback was 

timely and approximately 

15% found it slightly 

timely. 

 

Fig 4. Clarity of LDT-

Feedback 

More than 85% of students 

found the feedback clear 

and approximately 24% 

found it slightly clear. 

 

Fig 5. Impact of LDT-

Feedback 

More than 75% of students 

noticed feedback impact on 

their learning experience 

and 24% found slight 

impact. 

 

Fig 6. SSA-Students 

Satisfaction 

80% of students are 

satisfied with the new 

system and the 

personalized real-time 

feedback and 20% are 

slightly satisfied. 

Teacher Survey Analysis (TSA) 
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Fig 7. TSA-Accuracy of 

LDT-Feedback 

80% of our teachers found 

the feedback was accurate 

and 20% found it slightly 

accurate. 

 

Fig 8. TSA-Usefulness of 

LDT-Feedback 

 

80% of teachers found the 

feedback was useful and 

20% of them found it 

slightly useful. 

 

Fig 9. TSA-Relevance of 

LDT-Feedback 

 

80% of teachers found the 

context was relevant and 

20% found it slightly 

relevant but 10% found it 

not relevant. 

 

Fig 10. TSA-Impact of 

LDT-Feedback 

70% of our teachers found 

impact on their teaching 

and 30% of them noticed 

slight impact. 

 

Fig 11. TSA-Integration 

into Curriculum 

80% of teachers found it 

easy to integrate it in the 

curriculum and 10% found 

it slightly easy but 10% 

said it is not easy. 

 

Fig 12. TSA-Teachers 

Satisfaction 

 

80% of teachers are 

satisfied with new system 

and 20% of them are 

slightly satisfied. 

8.4. Summary of Findings 

Personalization/Contextual Relevancy: The LLAMA-based system was highly successful at 

personalizing and presenting contextually relevant feedback compared with traditional systems; 

there were very positive reports from both students and teachers regarding the satisfaction of almost 

all aspects. 

Real-Time Analysis: The ability of LLAMA to analyze student data in real time is directly 

related to how the feedback can be useful; thus, this approach improves the overall learning 

experience. 

Satisfaction among students and teachers: The survey showed that both students and educators 

found LLAMA system feedback to be more beneficial for learning than standard nonadaptive 

feedback was, as LLAMA feedback is very modernized, which in turn increases the motivation 

responsible for improved performance. 
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9. Discussion 

The experimentation phase of this research revealed a significant opportunity to improve real-

time learning models using Learner's digital twin model. The study was complemented by Fog 

Computing and LLAMA (LLM). Using linear regression and k-means clustering together enables 

them to analyze large sets of learning data in a talent-based setting. A learner's digital twin is a living 

embodiment of ongoing learning, an up-to-date model that incorporates history and real-time data 

(and possibly even future plans) into what the learner knows today. 

A key advantage of using fog computing in this model is the decreased latency. The processing 

and return times in cloud-based systems are longer than those in traditional systems, which can slow 

learning interventions. In contrast, processing data from a nearby source via fog computing enables 

quick feedback (near real-time). Fog computing reduces latency so that educators can offer quick 

assistance when needed, providing a more responsive and efficient learning environment. 

Incorporating LLAMA provides accurate and highly personalized feedback. The unique 

circumstances of each student and their responses to their needs, strengths, and weaknesses should 

be considered. These breakthroughs are crucial for addressing the wide range of learning styles and 

places present in education environments, making it easier for each student to receive guidance on 

how they learn best. 

9.1. Implications for Educational Practice 

The prospective success of the framework has important implications for educational practice. 

It provides students with immediate and personalized feedback, allowing them to find learning gaps 

more efficiently. This approach also allows for differentiated instruction, where educators can adapt 

teaching strategies to meet the needs of learners. In addition, this system has the capacity to provide 

timely insights for making better decisions by educators and improving learning experience through 

real-time data. 

Education: Creating digital twins in education is a game changer for utilizing learning analytics 

to better serve students. Each virtual model adapts as individuals learn more about the individual 

learner in real time to create a big data-driven understanding of what learners are doing and where 

educators can most effectively intervene. This method leads not only to enhancing overall learning 

experience but also to ensuring a more engaging and personalized way of learning. 

9.2. Limitations and Future Research 

Despite these promising results, several limitations of this study must be considered. The system 

was implemented in a controlled setting with few subjects, and the results may not reflect the 

decreased performance of this target group for generalization. Since the design and participants can 

sometimes affect the outcomes of a study (e.g., whether at home or institution or older than younger 

people), we should take note of this. As such, additional research is needed in diverse educational 

environments to examine whether the system scales with rural and under resourced institutions 

where technology access may be limited. 

Closed laboratories and other traditional teaching spaces are limited, although perhaps 

appropriately, given the need to limit physical interaction. The reliance on technology of some kind 

automatically excludes anyone without access (remembering students who may be in remote 

locations) or who is simply less confident in using digital tools. More efforts must be made to address 

how digital learning resources are distributed fairly and other possible alternatives for personalized 

feedback in low-tech environments. 

In addition, although this particular research was concerned with the effects of the system on 

learner outcomes and user experience after using digital twin-based learning analytics, in an attempt 

to determine whether it is suitable for immediate application (e.g., can we use them now? ), as future 

work aims at how a special type of educational technology such as digital twins that employs visual 

feedback facilitated by multidimensional data visualization opportunities might affect long-term 

student engagement, motivation and retention beyond standard statistics. The use of this technology 

over time—especially over multiple years—will likely yield important longitudinal studies about the 

effect of this technology on educational outcomes. 
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A multiagent system can significantly enhance the performance of a learner's digital twin. The 

digital twin can be even more personalized and effective when multiple independent autonomous 

agents are integrated, which address different facets in the development of the learner. For example, 

one agent might consider the learner’s cognitive capacities, another emotional state and a third their 

social interactions. These agents can work together to determine individual learning needs, tailor 

educational content and provide real-time feedback, which should eventually lead to better learning 

outcomes. 

10. Conclusions 

In this research, we demonstrate a framework for implementing real-time learning analytics 

using fog computing, LLAMA with linear regression and K-means clustering to provide immediate 

feedback, recommendations and predictions. The framework reduces latency, improves the 

personalization of feedback, and supports personalized and adaptive learning journeys. The results 

support the conclusion that combining digital twin technology with recent advances in 

computational models presents a more alarming, nimbler response to educational challenges than 

before—one which can harness data at scale. Digital twins have the ability to rectify wide educational 

practices. This allows educators to create ‘virtual models’ of the learner that demonstrate their 

interactions and progress in real time, providing insight never before possible into learning paths 

that might be particularly beneficial for one student over another. This potential is further enhanced 

by the integration of Fog Computing and LLAMA, ensuring timely personal feedback, which is a 

crucial element of student success. 

There is ample room for further work to adapt and refine the tool and investigate its scalability 

as well as issues related to widening access. Digital twins, fog computing and large language models 

promise to offer much potential in regard to creating more efficient educational technology 

applications as the industry continues to evolve. 
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