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Abstract 

This paper reviews recent advancements in fog computing and deep reinforcement learning for smart 

grid demand response systems. It analyzes key developments in fog architectures, learning 

techniques, and energy optimization for distributed energy management. With the rise of IoT devices 

and renewable energy, traditional cloud-based systems face challenges such as high latency, limited 

scalability, and energy inefficiency. Through analysis of recent literature, we highlight major gaps, 

including the lack of integrated fog-reinforcement learning frameworks, limited adaptability to real-

time demand fluctuations, and the absence of holistic solutions addressing multiple performance 

issues simultaneously. While current methods show improvements in specific areas (e.g., 15–35% 

energy savings or 47% latency reduction), they lack integrated frameworks to deliver comprehensive, 

real-time optimization for future smart grids. This review provides a systematic framework for 

developing integrated approaches that address these complexities, offering actionable insights for 

real-world smart grid deployment. 

Keywords: fog computing; demand response; deep reinforcement learning; smart grid; energy 

optimization; edge computing (a subset of fog computing focused on device-level processing); IoT;  

federated learning 

 

 

1. Introduction 

The modern energy industry is experiencing a tremendous transformation triggered by the 

popularization of renewable energy, upgrades to outdated smart grid infrastructure, and the 

phenomenal development of Internet of Things (IoT) devices. This development offers great potential 

and massive challenges to energy management systems. Smart grids nowadays have to effectively 

cope with the real-time data of billions of connected devices and be able to deliver response times 

under the sub-second level (especially in case of stressful situations or peak demands). Nevertheless, 

classic cloud-based topologies of the centralized architecture are becoming less suitable to meet these 

requirements because of their innate flaws that lie in latency restrictions, scaling, and flexibility 

[64,65]. 

The current systems have three major gaps in research that still limit the use of smart grid 

demand response strategies. The first gap involves architectural limitations in dynamic response. 

Cloud-based power systems also have problems with latency, going well above 500 milliseconds on 

peak times, when less than 100 milliseconds are needed to achieve grid stability [64]. The massive 
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volume of IoT-generated data creates communication congestion and latency, undermining real-time 

responsiveness and limiting optimal energy flows [63]. The current solutions have focused on either 

improving fog computing solely without smart decision-making or reinforced learning (RL) included 

in the cloud framework, failing to look at the important aspect of reducing latency. 

The second gap is in the absence of integrated optimization frameworks. The existing literature 

dedicates their attention to the separate aspects of the problem in the form of the investigation of the 

benefits of latency offered by fog computing on the one hand or the adaptability of RL algorithms on 

the other hand. A striking shortage is the existence of holistic models that will balance various 

performance indicators, such as, latency, energy efficiency, and scale up all at once [66]. As an 

example, although multi-agent deep reinforcement learning has had some success in generating 

energy savings of 15-20% in a building-level implementation, these solutions are frequently targeted 

at islands of operation and do not allow the integration with the larger grid [46]. 

The third major drawback is associated with the lack of real-time flexibility of modern systems. 

The sources of renewable energy are solar and wind which are variable in nature hence a good grid 

system must be able to change dynamically to these changes. Current methods refer to static policies 

or fixed policies that cannot be changed to adapt to the rapidly changing requirements and are 

therefore insufficient in case of fast demand fluctuation or emergency. 

This review aims at answering these shortcomings by providing an in-depth discussion of how 

fog computing and deep reinforcement learning can be combined to construct the next generation 

demand response systems. This is the first integrated analysis of the synergistic potential of fog 

computing and deep reinforcement learning in smart grid applications, contrasting with prior studies 

that treated these technologies in isolation. It will seek to provide a theoretical and practical reference 

to systems that can achieve sub-100 milliseconds response time, super-30 percent energy savings and 

enable scalability to over 15,000 simultaneously running devices. 

Specifically, the complexity of multi-source data—including smart meter readings, weather 

data, building characteristics, and socioeconomic factors [1]—in modern residential areas demands 

computational systems capable of real-time synthesis of these diverse sources. These include smart 

meters, weather stations, building characteristics, and socioeconomic factors. The current paper 

addresses the question of how the decentralized processing power of fog computing could be used 

alongside sophisticated deep Q-learning-based algorithms, e.g., the Double Deep Q-Networks 

(DDQN) or Dueling DQN variations, to satisfy the multi-dimensional requirements of smart grid 

energy management. In this way, this review preconditions the future research and application of 

intelligent, flexible, and scalable energy management systems that could fulfill the requirements of a 

fast-changing power environment. 

Although integration of federated reinforcement learning with advanced DQN variants in a 

building energy system has been carried out previously [46], little has been proposed regarding how 

federated reinforcement learning and advanced DQN variants can be integrated into handling large-

scale, grid-level demand response. Also, policy sharing in distributed systems has been little studied 

with the help of blockchain-enabled model coordination, a secure and tamper-resistant method. 

Combinations of these technologies hold potential to scale-privacy preserving energy management 

in heterogeneous grid environments to achieve real-time energy management in future frameworks. 

2. Fog Computing in Smart Grid Applications 

2.1. Evolution from Cloud-Centric to Distributed Paradigms 

The shift from centralized cloud computing to distributed fog computing marks a paradigm shift 

in addressing gaps in cloud-centric energy management systems. Based on past observation of 

applications of fog computing, Atlam et al. [66] recognized four specific attributes that make fog 

computing a good fit to IoT based energy applications such as location awareness to minimize 

communication overhead, geographical dispersion to achieve higher fault tolerance, horizontal 
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flexibility to accommodate a large number of devices and real-time interactivity insofar as there are 

sub-100ms response need applications. 

The average response times of traditional cloud-based demand response systems are around 

500-800ms because of the multi-hop communication and central processing bottlenecks [64]. Fog 

computing, in turn, enables on-site processing in less than 50–100ms, representing a 5–8x latency 

reduction compared to the sub-100ms threshold required to sustain grid stability during demand 

spikes. 

The recent trends confirm great possibilities in different spheres, which set the precedents in the 

field of energy management application. The combination of fog computing and IoT has 

demonstrated optimistic values in smart traffic management incorporating 60 percent lower latency 

and health monitoring with 45 percent energy-saving percentages [10], which have the direct 

architectural designs in smart grid set-ups. 

2.2. Hierarchical Fog Computing Architectures for Energy Systems 

Hierarchical three-tier architectures are employed in current fog computing designs for energy 

systems, balancing the computational power of cloud computing with the low latency of edge 

computing. This architecture is especially suitable in cases where both local, real-time, control as well 

as global optimization coordination is needed in the demand response application. 

● Tier 1: IoT Device tier 

Smart meters, environmental sensors and controllable appliances are devices, which need to 

respond in real time and work in a stream of data coming in and called devices layer. This layer 

performs low level data collection and simple directives with response time of less than 10ms. 

● Tier 2: Layer of Fog Node 

Intermediate fog nodes will usually be installed in distribution substations or within a 

neighborhood aggregation point; intermediate fog nodes will process the data, make local 

optimization decisions, and coordinate devices in real-time. Mahapatra et al. [12] showed that energy-

sensitive task offloading and load- balancing at this layer can achieve up to 27% in energy efficiency 

when compared to cloud-centric approaches, and still have sub-100ms response times, due to the 

energy-awareness made possible by this layer. 

● Tier 3: Cloud Integration Layer 

The regional cloud infrastructure is in charge of long term optimization, predictive analytics as 

well as coordination across multiple regions of fog. This hybrid model enables millisecond-level local 

responsiveness while retaining global optimization capabilities. 

The concept of the fog-cloud continuum has been making lots of progress in the field of energy 

management studies because of its capabilities to mix global coordination and sense of local 

autonomy. Alwabel and Swain [18] investigated the deadline and energy aware application module 

placement in fog-cloud systems, and showed that both energy efficiency (32 percent improvement) 

and response time (improved by 65 percent) can be improved extensively by using smart decisions 

about the placement based on the computational needs and the cost communication. 

Branannvall et al. [17] addressed the problem of cost optimization in edge-cloud continuum 

using energy-based workload placement and their findings offer significant help to resource-

constrained utilities that aim at deploying fog computing environments cost-effectively. Its strategic 

workload placement strategy showed that 40 percent cost savings by utilities are achievable without 

violating performance requirements, to build more sustainable and economically viable edge 

computing architecture. 

2.3. IoT Integration and Real-Time Data Processing 

With the current rate of adoption of IoT in smart grid and the forecast that there would be more 

than 75 billion connected devices by 2025, the energy management systems face unprecedented 

opportunities, as well as enormous challenges. The distributed processing nature of fog computing 
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is not only extremely useful but also necessary to manage this scale and be able to respond to events 

in real-time. 

An exhaustive study of fog data analytics in the context of traffic in IoT was presented by Bhatia 

et al. [10], in which various traffic data analytical methods using fog computing have been illustrated 

in detail based on the data on smart meter readings, weather data and occupancy patterns with 

application of real-time insights in improving demand response. Their structure was able to handle 

more than 10,000 parallel data streams on average latency processing times less than 50ms. 

In 5G cellular networks, Muhamad et al. [28] explored the benefits of energy efficient task 

offloading in fog computing, and they showed how contemporary communication infrastructure can 

collaborate seamlessly through the fog computing frameworks in establishing energy efficient 

devices in the context of an IoT-based energy management. What they did managed to reduce the 

communication energy overhead 35% and keep the response times less than 100ms. Their successive 

work [39] has further streamlined task offloading mechanisms indicating further reduction in energy 

consumption with smart assignments of workload according to device capabilities and network 

conditions. 

Guo et al. [29] discussed the integration of fog and cloud computing in enhancing the energy 

efficiency of telehealth IoT systems, with considerable energy savings resulting as a consequence of 

requiring fewer overhead data to be transmitted. Their simulation experiments showed that savings 

in IoT implementations were 40% based on energy savings, but the principles thus laid down are 

very applicable in smart grid implementation where saving of communication system energy is 

essential to overall efficiency of the system. 

3. Deep Reinforcement Learning in Energy Management 

3.1. Foundations of Deep Q-Network (DQN) Applications in Fog Environments 

Deep Reinforcement Learning has been found a game-changer in the optimization of complex 

dynamic systems and Deep Q-Network (DQN) algorithms have been specifically found to work 

efficiently in energy management applications that involve sequential decision-making under 

uncertainty. The DQN method works with deep neural networks to approximate value functions to 

work in high-dimensional state spaces and thus the DQN method is ideally suited to dynamic smart 

grid environments in which the agents need to find optimal policies to distribute energy, balance 

their loads and allocate their resources as the conditions in the environment change constantly. 

Integrating DQN algorithms into fog computing infrastructure addresses a critical limitation in 

existing demand response systems: the capacity to make smart, responsive decisions at the network 

edge nearly in real-time and to continue learning and enhancing performance continuously. The 

classical system from the rule-based approach does not offer flexibility, whereas the cloud-based AI 

systems present an unacceptable latency period when it comes to real-time management of the grid. 

A detailed deep Q-learning approach focused on improving Quality of Experience (QoE) and 

energy-efficient optimization of fog computing systems was offered by Sumona et al. [4]. This was 

proven in their work and showed DQN would be an effective way to learn how to balance competing 

goals minimizing energy usage on fog nodes, high quality of user experience, and a low response 

time of less than 100ms. In the framework, there was an agreement to adjust to the dynamic network 

conditions in real-time and meet stringent energy requirements of energy consumption 25 per cent 

less-energetic consumptions when related to the stationary schemes of assignment and 99 per cent 

availability of services. 

3.2. Advanced DQN Variants for Enhanced Performance 

The major area of research in recent times has been to overcome the inherent shortage of 

commonly used DQN algorithms, by making more advanced architecture-wise enhancements on 

them, tailored to the fog computing setup. 
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● Double Deep Q-Network (DDQN) Integration Double Deep Q-Network (DDQN) solves the 

overestimation problem where a standalone network combines the processes of action selection and 

value estimation. Such a design fix also results in more stable and predictable learning and this 

becomes critical when faced with complicated resource contracting choices in fog nodes where a lot 

of variables and uncertainties will arise. This stability is relevant in fog computing environments where 

there is increased stability in peak demand period where decision reliability is vital. 

● Dueling Deep Q-Network Architecture: It would also be a huge architectural breakthrough whereby 

the estimation of the value of the state and the advantage of the action are decoupled as two separate 

neural network branches. In this design the agents learn which system states in fact hold intrinsic value 

regardless of action selections, leading to a far more efficient learning process in dynamic foggy 

environments. In demand response applications, this implies reducing the speed at which new grid 

situations are detected and offering a better utilization of the resources when the loads fluctuate. 

Zhong et al.[5] proposed an efficient offloading scheme focused on fair and energy-efficient task 

distribution based on Dueling Double Deep Q-Network (D3QN) that is entirely specific to 

heterogenous fog-enabled IoT systems. This strategy showed that the proposed intelligent device-

offloading strategy allowed to balance the two conflicting goals of fairness and energy efficiency 

using the sophisticated RL algorithms. The D3QN implementation produced an energy consumption 

efficiency of 35 percent as opposed to traditional DQN methods without prejudice among the various 

types or the level of needs amongst various types of devices, a remarkable breakthrough of multi-

objective optimization on the fog-based systems of energy. 

3.3. Multi-Agent and Federated Learning Paradigms 

Rather than being centred around single-agent systems as earlier software architectures, more 

recent reinforcement learning methods have been developed, leveraging the inherently decentralised 

design of modern energy systems to scale and stabilise distributed solutions to smart grid 

applications. 

● Multi-Agent Deep Reinforcement Learning (MADRL) 

Shen et al., [46] developed a multi-agent deep reinforcement learning framework for building 

energy systems that also incorporate renewable energy resources and energy storage. While this 

framework achieved 15-20% energy savings in building-scale applications, it lacks scalability to grid-

level demand response—highlighting the need for federated learning approaches [32] to coordinate 

distributed nodes. Their distributed style proved to save offices up to 15-20 percent energy-wise in 

comparison with traditional rule-based systems without jeopardizing the stability of the system or 

the requirements of the users trying to be comfortable. Using the multi-agent approach, the multi-

agent framework allows the different agents (each agent representing a different building system like 

HVAC systems, lighting systems, the renewable energy systems and the energy storage systems) to 

learn and modify their policies keeping in view the actions and states of other agents. 

This paradigm of distributed learning can greatly increase the power, as well as the scalability, 

of the system by allowing a local decision-making process but still ensuring global coordination. The 

multi-agent framework, unlike centralized approaches with its computational intractability with 

system size, naturally scales with the number of participating entities and thus is very applicable in 

large-scale smart grid implementation with thousands of buildings and distributed energy resources 

and resources. 

● The Federated Deep Reinforcement Learning (FedDRL) 

Federated reinforcement learning is one such paradigm shift in the distributed learning methods 

which is the direct answer to the challenge of privacy and scalability of smart grid applications. Shi 

et al., [32] analyzed federated deep reinforcement learning and applied it to task allocation in 

vehicular fog computing through which multiple edge devices can together train their models based 

on their own raw data, but without exchanging the raw data. 
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In contrast to the conventional centralized learning methods that demand the combination of 

sensitive consumer energy consumption data with the possible privacy infringement, federated 

learning allows distributed fog nodes to learn the optimal demand response policies but without 

revealing consumer data at their level. Local data remain private; only local model parameters are 

shared as fog nodes train individual models on their respective datasets. This also avoids a locality 

of the privacy as well as minimizing overhead in communication and increasing the robustness of 

the systems against the points of failure. 

Fu et al. [31] set one step ahead by combining blockchain along with federated learning-

grounded resource management within smart IoT settings. Their design deals with security and trust 

concerns associated with distributed learning systems to manage energy without giving up on the 

efficiency due to local processing. They have integrated the use of blockchain in the secure exchange 

of model parameters that make the federated learning system tamper-proof and able to identify and 

stop any malicious member of the learning system in a bid to affect the learning process. 

4. Energy Efficiency in Fog Computing 

4.1. Resource Allocation and Management Strategies 

The most important part of sustainable fog computing deployment is energy efficiency, 

especially when it comes to large IoT deployments in the smart grid setting where thousands of fog 

nodes must operate 24/7 with minimal environmental impact. The problem is even harder than the 

trivial energy minimization: it must achieve a balanced allocation of intelligent resources to take the 

needs of precision and service requirements into consideration with computational efficiency and 

communication overhead requirements. 

Kopras et al. [59] explored extensive task division optimization in distribution energy-efficient 

computing systems with rigid latency limitation by inserting mathematical models that consider both 

energy advisability and latency limitations on cloud systems. According to their findings, task 

allocations that are smarter produce a 30 percent saving of energy without sacrificing sub-100ms 

critical applications needed in demand response. The fundamentals of the mathematical framework 

of trade-offs between energy and performance in distributed fog settings discovered by them forms 

a basis to understand the trade-off between energy consumption and performance. 

Singh et al., [11] proposed a high-order machine learning-based resource allocation scheme, 

particularly in Software-Defined Network (SDN)-enabled fog computing. Their strategy showed 

considerable improvement in energy efficient features by being smart in the control of network 

resources and dynamic routing of traffic. The ML-based system outperformed the static allocation 

strategies by 40 percent in energy efficiency and was also scalable to the diverse conditions and load 

patterns in a network, a property that makes it very flexible in multiple real-world situations created 

in smart grids. 

Centralizing network control, but preserving all of the advantages of distributed processing, 

represents the potential of the integrated application of SDN capabilities to provide a global 

optimization of computer resources and also the communication resources. It is useful in this hybrid 

approach especially in applications of smart grid with network topology and traffic patterns shifting 

in dynamic scenarios according to the demands and patterns of the energy generation. 

Premalatha and Prakasam [48] kept a resource-efficient allocation and fault-tolerant energy-

efficient task offloading scheme exclusively used in IoT-fog computing networks. Their work dealt 

with energy efficiency and system reliability, the two important attributes of the mission-critical 

energy management applications where system failure may lead to disastrous impacts on the grid 

stability. The presented scheme reduced the energy consumption by 25% and increased system 

reliability by 60% and reduced the latency to less than 75ms which is a critical parameter in 

implementing a real-time task in IoT-based smart grids. 

In surveyed research, simulation such as iFogSim was generally applied to study the system 

performance in large-scale deployments. Parameters commonly used are 10,000 to 20,000 IoT devices 
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(e.g., smart meters, environmental sensors), hierarchical layers of fog nodes or fog node architectures, 

illustration of latency of 100ms or less and energy-scheduling low-power scheduling plans. Other 

research like Massrur et al. [35] have simulated 15,000 devices to capture the real world density in a 

smart grid deployment in cities in a residential area with thousands of users. These setups assist in 

evaluating instant response potential, energy efficiency and network flexibility when subjected to 

shifting load environments. 

4.2. Advanced Energy Optimization Techniques 

Some advanced methods have been designed to reduce energy consumption to implement fog 

computing with high levels of performance and reliability needed in smart grid applications. 

● Communication and Computational Energy Optimization 

Kopras et al. [3] carried out an extensive survey study over the energy consumption 

minimization issue in fog networks by speaking both on communication as well as computational 

energy-efficient methods. Their survey pointed out the following preferred techniques to address 

this: workload consolidation to ensure fewer nodes in active state, dynamic voltage and frequency 

scaling (DVFS) to ensure adaptive power consumption, renewable energy integration to ensure 

sustainable operations, and smart caching policies to dilute redundant computations. 

Communication energy portion can be a large part of the overall fog node energy, such as 40-

60%, hence optimization of data transmission patterns is one of the key functions to improve the 

overall efficiency of the whole system. Data compression, adaptive sampling rate and intelligent data 

fusion within fog nodes are some of the techniques that can provide important data reduction in 

communication without compromising data quality to be used in demand response decisions. 

● Artificial Intelligence Energy Management Systems 

As an example, Zhang et al. [7] investigated broad uses of AI in energy-saving in fog computing-

enabled data centers and showed how artificial intelligence algorithms may improve both cooling 

infrastructure and the distribution of computation resources so that the total energy footprint of the 

data center can be reduced. Their approach demonstrated that 25 percent of computational energy 

and 35 percent of cooling energy were saved by employing predictive thermal control and smart 

workload scheduling respectively. 

The incorporation of deep learning models employed in predicting and controlling energy 

consumption patterns in real-time has been a huge milestone in terms of energy efficiency in fog 

computing. Leveraging past energy consumption trends, environmental factors, and the nature of 

workloads, AI systems can take initiative and optimize resource distribution and cooling tactics to 

limit the quantity of energy consumed but still release the necessities of performance. 

● Frameworks of Multi-Objective Optimization 

Pan et al. [49] have suggested an elaborate Lyapunov-based Long Short-Term Memory Particle 

Swarm Optimization (LSTM-PSO) scheme specially designed to optimize energy consumption of IoT 

fog computing application settings. Their algorithm demonstrated a strong capability to conserve 

energy without compromising the overall performance of the system to support strict latency (< 100 

ms) and throughput (>10,000 transactions/sec) requirements. 

The LSTM sub-system ensures proactive allocation of the resources decisions since it predicts 

the future energy loads and state of the system. The PSO algorithm improves resource allocation that 

takes into consideration various goals such as energy consumption, response time and resource 

utilization. The stability analysis developed based on Lyapunov guarantees that the optimization 

decisions will also guarantee system stability even under highly dynamic conditions characteristic of 

smart grids. 
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4.3. Comprehensive Energy-Performance Optimization 

There have been recent studies in the development of multi-dimensional optimization 

approaches aiming at considering optimization of several performance dimensions instead of 

focusing on achieving some specific individual metrics in isolation. 

● Pre-emptive Energy-Aware Scheduling 

Nazeri et al. presented an in-depth predictive energy-saving scientific workflow scheduling 

process in the fog computing scene, where sophisticated simulation and forecasting technology 

helped to minimize 25 percent of energy utilization by fitting a tight deadline environment. They 

combine together machine learning predictive models and optimization methods to pre-schedule 

jobs according to predicted energy cost, computation needs, and time limits. 

The predictive method allows the fog nodes to predict potential energy demands and optimize 

resource utilization ahead of the peak demand periods to avoid the reactive nature of the approach 

to energy usage, thus resulting in energy inefficiency. The given proactive approach is especially 

useful in smart grid applications when demand characteristics fluctuate in a patterned way on both 

a daily and seasonal basis. 

● Real-Time Energy-Cost Optimisation 

Trabelsi and Ahmed [23] specialized in full-fledged real-time task scheduling in fog computing 

that are energy- and deadline driven. Their simulation works could give exerted metrics of the 

performance of a real-time system in line with different loads, supplying some information with 

regards to the balance between energy demands and economic consideration, as well as different 

time factors in demand response. 

They were able to effectively address the 30-percent reduced operation costs with 95-percent 

deadline compliance rates in their framework, and it is successful in terms of feasibility of multi-

objective optimization in practical instances of implementation. The cost-awareness component 

provides utilities with possibilities to maximize not only technical performance, but also economic 

efficiency, which is paramount to a broad use of fog computing technologies in the energy sector. 

Vashisht et al. [26] gave an in-depth evaluation of energy efficient fog computing methods, 

including the description of possible research avenues, as well as emerging trends in this constantly 

developing domain. The focus of their work referred to the significance of hardware-software co-

design methods in terms of energy efficiency enhancement and the need to integrate renewable 

energy sources to the ultimate creation of fog computing systems that can be used in the realm of 

smart grids. 

5. Integration Challenges and Research Gaps 

5.1. Scalability and Dynamic Resource Management 

Rapid expansion of IoT-enabled devices in smart grids—anticipated to exceed 75 billion 

worldwide by 2025—will require advanced resource management techniques that will be able to 

scale efficiently in a performance and energy-resilient manner. Up-to-date literature presents high 

levels of difficulty involved in controlling computational and interconnect resources when system 

scale becomes exponentially magnified. 

● Key barriers to scaling 

The first challenge to scalability in fog-based smart grid systems is the fact that at least 10,000 

devices per fog node cannot be supported since simple, static, load-balancing schemes cannot be used 

to deal with the highly-dynamic requirements of the grid [13]. The current approaches, such as the 

scheduling of standard tasks and load balancing, can be partially used, yet they have many 

limitations, e.g., they can be too rigid or very deterministic. These constraints are particularly 

problematic when dealing with an environment in which the density of the devices used and their 

consumption patterns vary with time of day, weather and grid-wide variations. The adaptation of 

federated deep reinforcement learning (DRL) into fog architectures can be a more dynamic strategy 
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by decentralizing decision-making amongst the nodes [32], but an actual deployment of how model 

aggregations can take place within a normal set-up is still an open research problem. 

An exhaustive literature search on the topic of machine learning applications to resource 

management in fog computing environments also revealed that intelligent strategies of management 

to support different workloads are desirable due to the heterogeneity and distributed nature of fog 

computing systems and reactive requirements that may demand low latency resources [44]. 

According to their analysis, existing methods perform adequately in static environments but fail to 

sustain reasonable performance with device populations exceeding 15,000 units or under dynamic 

workloads. 

Sheikh et al. [45] have presented the dynamic K-means clustering augmented with fuzzy 

reasoning as a means of task scheduling in the fog computing environments, which ensured the 

scalability by intelligently grouping workloads using fuzzy reasoning. Their technique dynamically 

classifies on-coming tasks into groups that may be defined on the basis of resource demand, time 

constraint and execution priority in order to organize better task distribution across the available fog 

nodes. The fuzzy logic integration is useful in the management of the uncertainties and character of 

tasks that are not clear enough in the context of a smart grid of energy demands that have intricate 

temporal and spatial peculiarities. 

● Suggested Solutions to Integration 

Scalability issues of future integrated fog-reinforcement learning paradigms can be solved by 

use of federated learning systems, where the computational capacity and learning task are replicated 

over more than one fog node. DQN models based on local data can be trained by each of the fog 

nodes and also engage in protocols of federated learning during which learned policies can be shared 

without sharing any sensitive consumer data. Such a strategy could serve 50,000+ devices 

simultaneously in a fog domain while ensuring sub-100ms response times via localized decision-

making. This builds on Massrur et al.’s [35] simulation of 15,000 devices but extends scalability 

through federated policy sharing—critical for real-world grid density. 

5.2. Security and Privacy Considerations in Distributed Energy Systems 

Nodes used for fog are placed deeper into the network edge and are therefore prone to physical 

attacks, cyber-attacks, and security exposures than the centralized cloud infrastructure. Having 

strong security with maintaining integrity of algorithms is an essential challenge of field deployment 

feasibility in the smart grid environment where breach in security may lead to disastrous effect in 

stability of a grid and in privacy of consumers. 

● Energy Management Privacy Preserving 

Applications in smart grid deal with processing of sensitive consumer energy consumption data 

that unveils considerable details about occupancy pattern, use of appliances, and lifestyle features. 

The classic cloud-based systems imply the aggregation of this highly sensitive information in single 

points, posing severe privacy risks and possible regulatory matters of compliances with the 

frameworks concerning GDPR and newly established forms of energy data protection regulations. 

Fu et al. [31] suggested the combination of blockchain and the federated learning approach to 

resource management of smart IoT environments when planning security and trust concepts of 

distributed learning systems in energy management. This way, their approach provides a tamper-

resistant distributed learning setting: blockchain technology delivers accountability and prevents 

data manipulation, and federated learning preserves privacy locally, protecting the raw information 

of consumers. 

The integration of the blockchain allows exchanging the model parameters between the fog 

nodes safely, without revealing sensitive consumer statistics, whereas smart contracts may be used 

to automate the trust decisions and identify rogue parties that aim to disrupt the learning process. 

This method achieved a 99.9% detection accuracy against malicious model updates with comparable 

performance to centralized methods when learning. 

● Smart Security of Offloading Tasks 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2025 doi:10.20944/preprints202508.0203.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0203.v1
http://creativecommons.org/licenses/by/4.0/


 10 of 21 

 

To offload tasks to fog nodes, Pakmehr, [58] also identified key security considerations on the 

protection of sensitive information by creating intelligent task offloading strategies based on deep 

reinforcement learning techniques. In their work, they showed that security and performance in fog 

computing systems could be improved concurrently by adaptive task handling that balanced both 

efficiency and security requirements of computing. 

Security approach based on DRL learns optimum security policies that meet both the protection 

demands and performance limits, thereby improving the security measures by 40 percent with the 

same 95 percent performance as the baseline. This dynamic security comes in handy when it comes 

to a smart grids application that needs a dynamic security considering the sensitivity of data, 

operational conditions of the grids and threats. 

5.3. Interoperability and Standardization Barriers 

Practical implementation of the integrated fog-reinforcement learning systems implies 

combining the fog nodes, IoT devices, and communication systems of different manufacturers using 

different protocols and data representation. This lack of standardization has become a massive 

impediment to general widespread adoption and being able to build veritable interoperable smart 

grid systems. 

● Integration of Communication Protocol 

To guarantee effective communication among the heterogeneous fog network devices, Jha and 

Tripathy [43] came up with superior communication mechanisms that involved Constrained 

Application Protocol (CoAP) and machine learning to achieve efficient communication. This is 

because they are concerned with making the devices compatible as a way of fostering the connections 

and growth and involvement of fog computing with other systems devoid of compromising 

performance demands. 

Their improved CoAP implementation showed a 60% decrease in the communication overhead 

to that of the conventional HTTP-based architectures with support of reliability to meet the real-time 

requirement of demand response applications. The machine learning part allows protocol adaptive 

optimization in response to network conditions and resource capabilities so that the protocol delivers 

the best performance in a wide range of deployment contexts. 

● The Standards-Based Interoperability Framework 

To build holistic systems of interoperability, several layers of communication stack, including 

interfaces of physical devices and up to the application-layer protocol exchanging data, should be 

addressed. Recent studies show that fog computing systems should support different communication 

protocols at once: Wi-Fi, cellular (4G/5G), LoRaWAN, and Zigbee, with the same performance and 

security in every single interface. 

The deployment and inference of DQN models into future system integrated systems needs a 

standardization of APIs to port trained models easily across heterogeneous fog nodes so that the 

application would give the same behavior experiences on a variety of hardware systems. 

Table 1. Summary of Challenges and Research Directions. 

Identified Challenge Suggested Research Direction 

Latency in cloud-based control systems Local decision-making using edge/fog-based reinforcement learning 

Energy inefficiency in fog infrastructure Energy-aware task scheduling with DDQN and adaptive resource provisioning 

Limited scalability beyond 10k devices Use of federated learning for decentralized policy training 

Privacy and data exposure risks Blockchain-secured federated RL or secure multi-party computation 

Static control policies Online DQN variants capable of real-time adaptability 
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6. Comparative Analysis of Existing Approaches 

6.1. Performance Metrics and Evaluation Frameworks 

Extant literature demonstrates the variability of the evaluation of the fog computing and the 

reinforcement learning application in energy management, with considerable differences in the 

methodology of the evaluation, metrics, and assumptions. This part will offer a detailed comparative 

analysis which does not only involve quantitative comparison but also looks into the reasoning 

behind their variations in performance, and the ramification with regard to the design of an 

integrated system. 

Table 2. Comprehensive Comparative Analysis of Research Approaches. 

Authors 
Yea

r 
Focus Area Methodology 

Key 

Quantitative 

Findings 

Performance Analysis Critical Limitations 

Chouikhi 

et al. [24] 
2022 

Energy 

consumption 

scheduling 

Fog computing 

service model 

with game-

theoretic 

optimization 

47% latency 

reduction vs. 

cloud-based 

systems; 23% 

energy savings 

Superior latency 

performance attributed 

to local processing 

capabilities and 

reduced 

communication 

overhead 

Limited scalability 

analysis (tested 

<5,000 devices); 

lacks dynamic 

adaptation 

mechanisms 

Kumar et 

al. [36] 
2022 

Green demand-

aware computing 

Prediction-

based resource 

provisioning 

with machine 

learning 

30% energy 

consumption 

reduction in IoT 

deployments; 

95% prediction 

accuracy 

Energy savings 

achieved through 

proactive resource 

allocation based on 

demand prediction 

Single-objective 

optimization focus; 

lacks integration with 

real-time learning 

systems 

Kopras et 

al. [59] 
2022 

Task allocation 

optimization 

Mathematical 

modeling with 

linear 

programming 

Balanced 

computational 

efficiency with 

25% energy 

reduction while 

meeting latency 

constraints 

Optimal task allocation 

achieved through 

mathematical 

optimization 

considering multiple 

constraints 

Static optimization 

approach; lacks real-

time adaptation to 

changing conditions 

Shen et 

al. [46] 
2022 

Building energy 

systems 

Multi-agent 

DRL with 

distributed 

learning 

15-20% energy 

savings vs. rule-

based systems; 

12% 

improvement in 

occupant 

comfort 

Multi-agent 

coordination enables 

distributed decision-

making while 

maintaining global 

optimization 

Limited to building-

scale applications; 

scalability to grid-

level systems 

unproven 

Zhang et 

al. [51] 
2022 

Blockchain-

enabled fog 

computing 

Deep 

reinforcement 

learning with 

blockchain 

integration 

Optimized 

resource 

allocation with 

35% 

improvement in 

security metrics 

Blockchain integration 

provides security while 

DRL enables adaptive 

resource management 

High computational 

overhead (40% 

increase); potential 

scalability 

bottlenecks 

Zhong et 

al. [5] 
2023 

Energy-efficient 

offloading 

D3QN 

reinforcement 

learning with 

fairness 

constraints 

Fair resource 

allocation with 

35% energy 

optimization 

improvement 

D3QN architecture 

provides stable learning 

and improved fairness 

vs. conventional DQN 

Limited fog node 

diversity in testing; 

homogeneous 

hardware 

assumptions 
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Massrur 

et al. [35] 
2024 

Residential 

demand 

coordination 

Fog-based 

hierarchical 

system with 

distributed 

control 

Improved 

coordination 

between 

residential 

aggregators and 

distribution grids 

Hierarchical fog 

architecture enables 

scalable coordination 

across multiple 

residential clusters 

Simulation-only 

validation; lacks real-

world deployment 

verification 

Nazeri et 

al. [2] 
2024 

Predictive 

scheduling 

Workflow 

simulation with 

energy-aware 

algorithms 

25% energy 

reduction while 

meeting 95% of 

deadline 

constraints 

Predictive approach 

enables proactive 

optimization vs. 

reactive strategies 

Limited to scientific 

workflows; 

applicability to 

dynamic grid 

workloads unclear 

6.2. Critical Analysis of Performance Differences 

● Latency Analysis of Performance 

The most noteworthy improvement of the latency by a factor of 47% that was attained by 

Chouikhi et al. [24] is a game-changer when it comes to a response persistence. This strong 

performance stems from their fog-based service model, which avoids cloud communication for 

demand response decisions. However, their game-theoretic approach lacks adaptive learning, 

limiting optimization during dynamic grid conditions (e.g., renewable input fluctuations or demand 

spikes)—a gap addressed by DRL variants like D3QN [5]. On the other hand, their strategy lacks 

adaptive learning capabilities to maximize performance in dynamic environments. 

Conversely, reinforcement based learning solutions like those of Shen et al. [46] accomplish 

smaller latency advantages (10-15%) but exhibit better flexibility to variation since they are able to 

continue learning. The convergence of fog computing latency advantage with adaptability of the 

reinforcement learning is a major opportunity of the upcoming generation system. 

● Comparison of Energy Efficiency 

The recorded energy efficiency gains vary between 15 percent (Shen et al.) and 35 percent (Zhang 

et al.), with great disparities depending on the nature of the optimization carried out and the scope 

of the system. The improvement achieved by Kumar et al. through prediction-based provisioning (30 

percent) demonstrates the usefulness of proactive resource management whereas Zhang et al., [7] 

achieved 35% energy savings but incurred a 40% increase in computational overhead due to 

blockchain integration. This trade-off highlights the need for lightweight RL models [4] optimized 

for fog nodes, which balance efficiency and resource use. 

● Scalability Analysis 

A majority of the solutions available today lack ample validation of scale with a typical test on 

the systems managing less than 10,000 devices at a time. This is a translational drawback of the smart 

grid application that will require servicing of tens of thousands of devices over the distribution grid. 

● Explanation through focuses on observed performance 

The reported enhancements on performance and latency as well as energy efficiency can be 

credited to a number of architectural and algorithmic improvements. As an example, Dueling DQN 

allows better estimation of state-values, which makes convergence and accuracy of decisions occur 

faster in fluctuating demand. Federated reinforcement learning minimizes the centralized 

computation dependency because it enables local learning with user preservation of privacy. 

Integration of blockchain In other cases, the employment of blockchain in ensuring sharing of the 

model parameters and preventing tampering during the distribution learning process is also possible. 

All these techniques enhance responsiveness reduction of energy, and demand resilience increase in 

the demand response systems, especially in the high-load situations. 

6.3. Identified Critical Research Gaps 

In a logical research of the existing literature, four important study gaps have been reported, 

which restrict the establishment of fully integrated fog computing and reinforcement learning-based 
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smart grid demand-response systems. These gaps point out to main technological and 

methodological missing gaps that need to be addressed to allow smart, real-time and scale-up energy 

management solutions. 

The first biggest open research area is the minimal incorporation of sophisticated Deep Q-

Network (DQN) extension (Double DQN (DDQN) and Dueling DQN) into the fog computing 

platform. Although DDQN and Dueling DQN have shown better results in many reinforcement 

learning works and better learning stability, they have not been successfully joined with fog-based 

architectures in the application of optimizing demand response in smart grid. Current works either 

discuss the advantages of the fog computing ecosystem, including lowering the latency and locally 

processed data, and disregard advanced AI decision-making, or employ the advanced reinforcement 

learning methods in the environment of a centralized cloud system where the problem of latency is 

an acute limitation. Combining DDQN’s bias correction for overestimation, Dueling DQN’s value-

function separation, and fog nodes’ low latency could uniquely address both sub-100ms response 

times and decision accuracy— a synergy absent in cloud-based RL [5] or fog-only systems [24]. Sub-

100ms response times also enhance decision-making accuracy, as low latency enables real-time 

adaptation to grid fluctuations—addressing both speed and precision. 

The second research implication is the weak mechanisms of real-time adaptability. Most of the 

existing systems work on pre-configured control decisions, fixed parameters of optimization, or 

models trained offline and unable to change effectively with fast-varying grid conditions- including 

unforeseen demand increase, variable renewable energy supply, or device-level faults. An example 

of this is that, even though mathematical optimization methods can provide near-optimal task 

assignments when things are stable, they are unsuitable in dynamically adapting to unanticipated 

circumstances without full recalculation [59]. Since renewable energy sources are inherently variable, 

and the energy demand of consumers continues to become more sporadic, smart grid systems should 

enable the continuous learning behavior, which can update the decision policies in real-time without 

affecting the system reliability. The concept that is needed to fill this gap is to design strong online 

learning frameworks which can be flexibly operated to meet energy demands and predict and 

redistribute resources without causing failures in the grid. 

The third key space revolves around scale out issues. The majority of solutions suggested are 

tested with small-scale testbeds or simplified scale simulation environments which, due to the 

complexities of a modern distribution network with tens of thousands of interconnected IoT devices, 

cannot result in the verification of their effectiveness. The problems associated with distributed 

systems in a large scale system occur not just in computational demands but also in communication 

overheads and coordination complexities and slow convergence of learning algorithms in distributed 

systems. Although federated learning has been discussed as a potentially effective approach to 

handle data decentralization and privacy issues, it has not been yet evaluated in the comprehensive 

manner in the real-world context of the smart grid operation where communication channels can be 

characterized by the high level of latency, low bandwidth, and even discontinuous connectivity. 

Therefore, realistic testing of scalable demand response systems should be based on the stress under 

a realistic deployment operation to guarantee the feasibility and the resilience of the system. 

The fourth and the last-research gap is the subject of aligning the privacy and security functions 

without compromising the performance of the system. Consumer information security is an 

important aspect of smart grid application, but the computational cost of most security systems is too 

high and results in poor reactiveness of the system. As an example, even though blockchain-based 

architectures may be able to provide greater data integrity and tamper resistance, they are usually 

associated with substantial latency issues as well as processing overhead and are therefore not 

feasible in the sub-second response domain [51]. On the same note, secure aggregation in federated 

learning provides privacy but it possibly needs more communication rounds and further encryption 

procedures before the decision making can be made. The challenge lies in developing lightweight, 

privacy-enhancing models, including those using cryptographically protected local training, 
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predictable multiparty computation, or trusted execution environments inside fog machines are 

sufficiently fast to remain real time, but offer security isolation. 

These four gaps in combination support the importance of the design of integrated, adaptive, 

and secure architectures capable of exploiting synergies between fog computing and advanced 

reinforcement learning to a larger extent. The next generation of intelligent, responsive and privacy-

aware demand response systems in future smart grids will require bridging such gaps. 

7. Future Research Directions 

7.1. Integrated Fog-Reinforcement Learning Framework Development 

Further studies ought to put emphasis on the creation of unified models that take advantage of 

enhanced DQN structures in combination with optimized structures of fog computing, with the 

explicit focus on real-time demand response in smart grids. Such integration offers a forward-looking 

approach to addressing the identified research gaps comprehensively. 

To make better decisions in complex circumstances, scientists must investigate the use of 

transformer-based model training in the processing of high-dimensional time-series data in fog 

environments. These architectures which were designed to work with natural language can be used 

to create a model of the temporal pattern of energy consumption. Moreover, Neural Architecture 

Search (NAS) offers a promising direction for constructing lightweight neural networks tailored to 

fog nodes’ computational constraints. Ensemble learning that combines more than one learning 

method (i.e. DQN, policy gradients, heuristic optimization) can potentially result in effective systems 

that can operate in a variety of operating environments and remain robust. 

● Linking Complex Artificial Intelligence with the Existing Methods 

Afachao and Abu-Mahfouz [62] explored the use of smart computing in the edge domain to 

achieve energy efficiency and that intelligent edge computing that uses AI mechanisms such as 

predictive analytics and dynamic workload allocation could play a crucial role in improving the 

performance and sustainability of distributed compute sites at the network edge significantly. The 

future studies should focus on more embedded methods of integration relying on their work: 

○ Transformer-Based Models on High-Dimensional IoT Data: although the DQN variations 

have proven successful, transformer models may represent an improvement on the large-

dimensional, time-series characteristics of a smart grid network. Enhancement with attention 

mechanisms may allow more complex pattern recognition in the data of energy consumption 

at the benefit of preserving edging processing with fog computing. 

○ Ensemble Learning Strategies: There is a possibility to combine several learning algorithms 

(DQN variants, policy gradient methods, and evolutionary approaches) at procedural nodes 

to give more reliable solutions to the decision-making problem. Separate algorithms may 

perform optimization tasks in various areas of demand response and play their part in the 

whole performance of the system. 

○ Neural Architecture Search (NAS) in Fog-Optimized Models: Neural network architectures 

that are designed specifically to target the computational capacity of fog nodes can potentially 

achieve a substantial efficiency improvement with automated design of those networks. NAS 

may find architectures that trade off accuracy with computer power to work in real-time. 

7.2. Enhanced Security and Privacy Frameworks 

Future research on this area ought to aim at coming up with comprehensive security protocols 

to shield the distributed energy management systems without compromising on the efficiency of 

operations that necessitates a real-time approach in grid operation. 

● Privacy-Preserving Federated Learning Development 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2025 doi:10.20944/preprints202508.0203.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0203.v1
http://creativecommons.org/licenses/by/4.0/


 15 of 21 

 

Based on the foundation of federated learning which has been developed in the current research, 

a future framework would ideally include: 

○ Differential Privacy Integration: Differentially private mathematical privacy guarantees can 

be added to federated learning protocols in ways that only affect learning performance to a 

small degree. This is achieved by the development of noise addition mechanisms that retain 

utility and give formal bounds of privacy. 

○ Homomorphic Encryption for Safe Aggregation: Allows performing computation on the 

encrypted model parameters when aggregating the model on federated learning. It would 

make fog nodes be capable of collaborative learning without revealing even aggregated data 

on local energy consumption patterns. 

○ Secure Multi-Party Computation (SMC) Protocols: The design of efficient SMC protocols 

that are unique to fog computing settings and are able to collaboratively optimize fog 

computing settings without exposing isolated consumer data or fog node running states. 

7.3. Integration with Emerging Technologies 

Integration of emerging technologies: A few opportunities are emerging to integrate new 

technologies that need to be investigated systematically to develop smart grids of next generation: 

● Coordination on Electric Vehicles and Vehicle to Grid (V2G) 

The phenomenon of increasing use of electric vehicles is a problem but with enormous 

opportunities for demand response systems. Smart Direct and Reverse Charge of EVs optimised with 

fog architectures may offer significant grid balancing potentials: 

○ Dynamic Charging Optimization: Fog computing infrastructure might facilitate real-time 

optimization of charging schedules, by using DQN-based charging optimization strategies 

which consider changes in grid conditions, renewable energy provision, and user preferences 

and ensure battery health. 

○ Vehicle-to-Grid Energy Trading: As EVs are plugged into the grid, they may want to form a 

real-time optimization of energy flows through peer-to-peer energy trading with the grid. This 

trading could be facilitated using the fog nodes with the privacy of individual vehicle usage 

patterns preserved. 

○ Mobile Fog with EVs: Electric vehicles may also be used as a mobile fog node to expand the 

scope of computation and offer a backup processing power in case of disaster or high 

consumption during the peak hours.  

● Microgrid Synchronizing and Islanding Features 

The decentralized design of fog computing is highly advantageous in decentralized energy 

production, as well as in consumption, by the use of interconnected micro grids: 

○ Multi-Microgrid Coordination: The creation of DQN-based coordination algorithms that 

maximize energy transfers between multiple microgrids whilst preserving and gaining 

independence and stability to individual microgrids. 

○ Islanding Detection and Management: Fog-based solutions may ensure quick detection of 

disconnection events of a grid and can help microgrids automatically switch to island 

operation, as well as perform optimal internal resources distribution. 

○ Renewable Energy Integration Optimization: Clever algorithms to forecast and control 

distributed renewable energy resources (solar panels, wind turbines, energy storage) in 

interconnected microgrid networks. 

● Development of Advanced Integration of Renewable Energy 
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One of the most important directions of research is sophisticated algorithms to predict and 

regulate renewable sources of energy through fog-based demand response systems: 

○ Weather-Aware Energy Forecasting: Meteorological data by using machine learning models 

via fog nodes to detect hyper-local renewable energy production forecasting. 

○ Distributed Energy Storage Optimization: Reinforcement learning which coordinates control 

over distributed battery storage systems to be implemented over fog infrastructure. 

○ Integration of Renewables at Grid-Scale: Creating algorithms, which address the uncertainty 

of large-scale renewable energy generation and ensure the stability of the grid using real-time 

control algorithms in the form of fogs, which are performed in real time. 

7.4. Real-World Validation and Pilot Deployment Frameworks 

Most of the systems under inspection are tested under simulation only. Future research should 

incorporate real-world data from utility providers, microgrids, or smart neighborhoods. Full-scale 

hardware-in-the-loop testing and digital twinning can offer testbeds through which system 

responsiveness and generalizability may be verified outside the parameters of a simulation. 

Future research should go beyond simulation based validations to systematic pilot deployment 

programs of full scale testing: 

● Large Scale Simulation Environments 

○ Digital Twin Integration: creation of end-to-end digital twin artefacts of smart grid 

infrastructure capable of verifying fog-RL architectures in realistic conditions prior to the 

physical facility. 

○ Hardware-in-the-Loop Testing: Combining real fog computing hardware and simulator grid 

environments to demonstrate performance in real world computational and communication 

limitations. 

● Pilot Deployment Programs 

○ Utility Partnership Programs: Electric utilities may participate in utility partnership programs 

including the placement of pilot fog-RL systems on controlled segments of the distribution 

network that can be used to validate the fog-RL system with actual consumer loads and grid 

conditions. 

○ Microgrid Testbeds: Design of physical microgrid testbeds that are able to test an integrated 

fog-RL system under controlled but real-life operating conditions. 

○ Community-Scale Deployments: Dealing with pilot deployments in residential 

neighborhoods to confirm scalability, user-acceptance, and long-term stability of operation. 

7.5. Standardization and Interoperability Development 

● Standardization of Communication. 

○ Coordinated Fog-Grid Communication Standards: Formulation of standardized 

communication interfaces on fog computing ability to be integrated with smart grid 

infrastructure. 

○ Standardization of APIs for DQN Deployment: Development of standardized APIs that 

facilitate painless deployment of trained DQN models across differing fog node platforms as 

well as permitting migration of trained DQN models seamlessly. 

● Development of Regulatory Framework 

○ Regulation of Privacy: Design of technical systems that do not regulate the changing data 

privacy regulations covering energy data but rather ensure the performance of the system. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2025 doi:10.20944/preprints202508.0203.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0203.v1
http://creativecommons.org/licenses/by/4.0/


 17 of 21 

 

○ Grid Code Integration: cooperation between the regulatory bodies and integration of fog 

computing and AI-controlled decision-making systems into grid code and operation norm. 

8. Conclusion 

The review is also conducted systematically in order to evaluate the literature available on the 

integration of the fog computing and deep reinforcement learning (DRL) into smart grid demand 

response systems. Using the discussion of the broad body of literature concerning the recent future, 

the review presented the current limitation in the shape of latency, scalability, energy efficiency, and 

adaptability of the current isolated or centralized approaches. It also outlined the discussion of how 

convergence of DRL algorithms and fog-based architecture will constitute a revolutionary 

opportunity in developing next-generation energy management systems. 

The reviewed literature highlights the potential of leveraging localized fog computing power 

alongside advanced DRL algorithms (e.g., Double DQN, Dueling DQN) to achieve such benefits as 

flexibility and learning ability of more developed DRL algorithm, in particular Double DQN and 

Dueling DQN, to create the systems that are: 

● Responsive to Real-Time: It can execute important grid stabilization capabilities at less than 100ms 

latencies. 

● Adaptively smart: Able to better choose control modes responding to changing grid conditions, 

consumer loads and renewable generation flows. 

● Privacy-Preserving: Supporting privacy-preserving, collaborative optimization e.g. federated 

optimization, differential privacy and blockchain integration. 

● Scalability and Efficiency: Designed to handle the increasing density of devices, expansion in the 

utilization of electric vehicles and distributed generation with no loss in performance. 

● Techno-Integrative: The scope and plasticity that takes into consideration the possibility of future 

advancements, e.g. smart-city technologies, microgrid, and improved forecasting devices. 

The future research directions that still need to be discovered according to the results of this 

review are implementation in reality through digital twins and pilot testbeds, transformer-based 

backbones to process high-dimensional IoT data and secure federated learning frameworks that are 

expected to operate in the fog environment. Besides this, there is potential in using the electric vehicle 

infrastructure, the renewable energy forecasting, and the distribution storage optimization (in the 

fog-RL systems) to increase the resilience of the grid and the efficiency of the grid. 

The shift to distributed, intelligent, and adaptive energy management frameworks is more than 

a technological change—it is a paradigm shift. This change will be key to meeting sustainability goals, 

enhancing grid reliability, and the demands of the smart cities and the clean energy transition in the 

future. 
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