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Abstract 

The rapid growth of urbanization and vehicle ownership has exacerbated global traffic congestion, 

leading to increased fuel consumption, greenhouse gas emissions, and reduced travel efficiency. 

While dynamic traffic flow prediction and energy-efficient routing have seen significant progress—

leveraging statistical models, machine learning, and deep learning for spatiotemporal analysis, and 

eco-routing algorithms for energy optimization—these fields remain largely disconnected. This 

review systematically evaluates traffic prediction methods (2020–2025), benchmarking them using 

Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), computational latency, 

and scalability. We then propose an integrated framework that embeds real-time traffic forecasts into 

path search algorithms (A*, Dijkstra, genetic algorithms) via a multi-objective cost function 

optimizing distance, time, and energy consumption. Key challenges—data inconsistency, real-time 

IoT/5G deployment, and multimodal scalability—are discussed alongside future research directions. 

By unifying prediction and planning, this work provides a roadmap for next-generation intelligent 

transportation systems, advancing sustainable and efficient urban mobility. 

Keywords: dynamic traffic flow prediction; energy-efficient route planning; deep learning; eco-

routing; multi-objective optimization 

 

1. Introduction 

Currently, more than 55% of the world’s population lives in urban areas—a figure projected to 

rise to nearly 70% by 2050—placing unprecedented strain on transport networks and exacerbating 

traffic congestion, longer travel times, elevated fuel consumption, and higher greenhouse-gas 

emissions (Sayed, Abdel-Hamid, & Hefny, 2023). Beyond environmental harms, congestion inflicts 

heavy economic losses: in many megacities, urban delays translate into billions of dollars in wasted 

productivity annually (Sayed et al., 2023). In response, researchers have turned to dynamic traffic-

flow forecasting as a key enabler for smarter, energy-efficient routing. 

A wealth of forecasting techniques has emerged in recent years. Classical statistical models (e.g., 

ARIMA, Kalman filtering) have gradually given way to machine-learning methods—Random 

Forests, XGBoost and their variants—that capture nonlinear traffic patterns more effectively (Sayed 

et al., 2023). Deep-learning approaches have further advanced accuracy: Afandizadeh, Abdolahi, and 

Mirzahossein (2024) demonstrate that LSTM and graph neural network architectures consistently 

outperform classical baselines on large urban datasets. Mystakidis, Koukaras, and Tjortjis (2025) 

survey emerging hybrid and attention-based models, highlighting their capacity to fuse spatio-

temporal features for improved short-term prediction. Most recently, Wu et al. (2025) introduced a 

multi-information fusion framework that integrates weather, event, and sensor data, achieving state-

of-the-art performance in metropolitan traffic forecasting. 

Concurrently, eco-routing algorithms aim to minimize energy consumption—particularly for 

electric vehicles—by dynamically selecting paths that balance distance, expected speed profiles, road 
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grade, and real-time traffic conditions. Sebai et al. (2022) review optimal EV route-planning methods 

that incorporate live incident data, showing up to 20% theoretical energy savings over static routing. 

However, existing surveys tend to treat traffic forecasting and eco-routing in isolation. While 

comprehensive reviews exist for AI-based traffic prediction (Sayed et al., 2023) and for EV-specific 

routing strategies (Sebai et al., 2022), there remains no unified treatment of how dynamic flow 

forecasts can be systematically integrated within global, energy-aware route-planning frameworks. 

To address this gap, this paper presents A Review of Dynamic Traffic Flow Prediction Methods 

for Global Energy-Efficient Route Planning. Our contributions are threefold: 

Taxonomy of Forecasting Methods: We classify dynamic traffic-flow prediction techniques—

statistical, machine-learning, deep-learning, and hybrid—published between 2020 and 2025, and 

propose a unified evaluation framework (e.g., RMSE, MAPE, computational latency). 

Integration Framework: We develop a theoretical architecture for coupling real-time flow 

forecasts with multi-objective cost functions (distance, time, energy) in classical path-search 

algorithms (A*, Dijkstra, genetic algorithms). 

Research Gaps and Future Directions: We identify open challenges in data quality, real-time 

scalability in IoT/5G environments, and extensions to multi-modal, personalized routing, and we 

outline promising avenues for future work. 

The remainder of this review is structured as follows. Section 2 traces the evolution of dynamic 

traffic-flow prediction and eco-routing concepts. Section 3 surveys and categorizes forecasting 

methods according to their underlying paradigms. Section 4 develops the theoretical integration 

framework and compares coupling schemes reported in the literature. Section 5 discusses current 

challenges, emerging opportunities—such as connected automated vehicles and digital-twin 

integration—and concludes with recommendations for future research. 

2. Research Background and Development Trajectory 

Urbanization has driven the expansion of transportation networks, but it has also intensified 

energy consumption and carbon emissions. Traditional approaches that rely on single-point 

technologies are no longer sufficient. In response, the academic community has increasingly treated 

literature reviews as tools of “knowledge production,” employing critical dialogue to map the 

consensus, controversies, and gaps across the research landscape—thereby laying the foundation for 

an integrated and dynamic "prediction–planning" coupled system.To provide a bird’s-eye view of 

this evolving landscape, Figure 1 visualizes the three research pillars—Traffic Flow Prediction, Eco-

Routing, and Prediction–Planning Integration—along with their key methods and challenges. 

 

Figure 1. Mind Map of the Research Landscape of "Prediction-Planning" in Intelligent Transportation Systems. 
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This mind map takes Traffic Flow Prediction, Eco-Routing, and Prediction-Planning Integration 

as the first-level branches, sorting out the various method categories and their main advantages and 

disadvantages, providing an overview framework for the detailed discussions in Sections 2.1 to 2.3. 

2.1. Traffic Flow Prediction 

In recent years, traffic flow prediction has progressed from linear, statistics-based methods 

toward complex, data-driven frameworks, yet the field continues to grapple with a fundamental 

trade-off between model sophistication and real-world applicability. Early time-series approaches 

such as ARIMA and Kalman filtering laid the groundwork by effectively modeling short-term linear 

trends but repeatedly fell short when confronted with sudden demand spikes or nonlinear 

interactions (Shunping et al., 2009). The machine learning wave that followed—most notably support 

vector regression (SVR), k-nearest neighbors (KNN) and ensemble tree algorithms—leveraged richer 

datasets to capture nonlinearity: for instance, Chen et al. (2022) demonstrated how IoT sensor feeds 

could empower SVR to outperform classical baselines in short-term forecasts, and Lin, Lin, and Gu 

(2022) achieved notable gains by integrating maximum information coefficient (MIC) feature 

selection with SVR–KNN ensembles. Concurrently, evolutionary optimizers such as fruit fly and 

particle swarm algorithms were embedded to fine-tune model parameters (Yan et al., 2021), and 

Srivastava, Singh, and Nandi (2024) reinforced SVR’s robustness within sustainable mobility 

contexts.Before delving into temporal models such as LSTM, Figure 3 sketches a typical 

Convolutional Neural Network (CNN) pipeline, illustrating how stacked convolutions and pooling 

layers extract spatial features that later feed a fully–connected predictor—an architecture now 

frequently repurposed for road-segment speed maps and camera-based traffic sensing. 

The advent of deep learning—LSTM networks for temporal patterns (Abduljabbar et al., 2021) 

and graph neural networks (GNNs) with attention for spatial–temporal congestion mapping 

(Mystakidis et al., 2025)—has further improved accuracy but at a high computational and data-

intensity cost. Efforts to reconcile precision with speed have spawned hybrid architectures: Alsolami, 

Mehmood, and Albeshri (2020) formalized a statistical–machine-learning fusion that preserves 

lightweight deployment, while MSK (2023) innovatively channeled LSTM outputs into Dijkstra’s 

algorithm to inform eco-routing decisions. Yet these advances remain largely validated in isolated 

testbeds rather than in cross-city scenarios, and the crucial link between prediction modules and 

downstream control systems still lacks the iterative feedback loops necessary for a truly closed-loop 

solution. 

 

Figure 2. Convolutional Neural Network pipeline for traffic-related feature extraction. 

Typical CNN workflow for traffic data. The left branch shows stacked convolution (5 × 5) and 

max-pooling (2 × 2) layers that reduce an input matrix (e.g., image-like speed map) from 28 × 28 to 4 
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× 4 while preserving salient spatial patterns. The flattened feature vector is then passed through fully-

connected layers and a soft-max classifier to estimate class probabilities or continuous traffic metrics. 

2.2. Eco-Routing 

Eco-routing research has similarly evolved from static energy-weighted shortest-path 

computation toward dynamic, multi-objective strategies tailored to real-time conditions and 

electric-vehicle (EV) constraints, but significant challenges remain. Foundational work by Yi and 

Bauer (2018) applied classic Dijkstra/A* algorithms to minimize energy consumption on fixed 

networks; however, this approach failed to account for congestion variability, resulting in suboptimal 

emission reductions under fluctuating traffic. To address this, Alfaseeh and Farooq (2020) proposed 

a multifactor taxonomy balancing distance, travel time, emissions and comfort, yet their heuristic 

weightings often lacked systematic justification. Real-time adaptations, such as those by Sebai et al. 

(2022), have shown that incident-driven rerouting can outperform static baselines, but only when 

data latency and sensor accuracy are tightly controlled. With the rise of EVs, Zhang et al. (2024) 

developed a CNN–LSTM hybrid to predict segment-level energy use, thereby guiding route planning 

specific to battery depletion and charging station availability, while Khatua et al. (2024) implemented 

federated genetic algorithms to optimize routing under privacy constraints using 

vehicle-to-infrastructure (V2X) data. Liu et al. (2023) further demonstrated that software-defined 

networking (SDN) and edge-cloud integration can preallocate computational resources for 

multimodal eco-routing, highlighting the promise of distributed architectures. Despite these 

breakthroughs, most eco-routing proposals have been tested predominantly in simulated 

environments; empirical assessments of real-world energy savings and emission metrics remain 

scarce, and the influence of driver preferences and compliance behaviors has yet to be systematically 

incorporated into algorithmic frameworks. 

2.3. Prediction–Planning Integration 

The integration of traffic prediction with eco-routing planning promises a self-optimizing 

framework in which forecasts dynamically inform routing decisions and, reciprocally, feedback from 

routing outcomes refines predictive models, yet the field has only just scratched the surface of this 

“prediction–planning” paradigm. Sheng, He, and Guo (2017) first articulated how dynamic 

urbanization trends could adjust routing cost functions in real time, and Chandra (2025) advanced 

this vision by conceptualizing dual “data-driven” and “value-driven” control loops for sustainable 

traffic management. Nevertheless, most existing systems implement a unidirectional pipeline—

predictions feed into routing—without closing the loop through iterative model updates. Moreover, 

multi-objective optimizations typically rely on static or empirically tuned weight vectors that lack 

rigorous theoretical underpinning, undermining their adaptability when balancing energy, delay, 

and user comfort. Encouragingly, Madupuri et al. (2023) applied swarm intelligence techniques to 

dynamically calibrate both forecasting and routing modules online, and Lin et al. (2022) 

demonstrated that adaptive feature selection can dramatically reduce system complexity without 

sacrificing accuracy. Yet an overarching, modular architecture—one that supports plug-and-play 

integration across heterogeneous urban platforms—is still absent. Deep and reinforcement learning 

techniques offer powerful decision-making capabilities but suffer from “black-box” opacity, limiting 

stakeholder trust and practical adoption. Lastly, the resilience of integrated systems under “long-tail” 

scenarios—such as major accidents, extreme weather, or sudden demand surges—has yet to undergo 

rigorous stress testing. Addressing these gaps through a unified, interpretable, and empirically 

validated framework will be essential to transform the literature’s cumulative insights into 

operational, future-proof mobility solutions. 

3. Review of Dynamic Traffic Flow Prediction Methods 

3.1. Statistical Models 
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3.1.1. ARIMA and SARIMA 

The Autoregressive Integrated Moving Average (ARIMA) model and its seasonal extension, 

SARIMA, have long been key tools in the field of traffic flow prediction, particularly when dealing 

with stationary time series data. ARIMA constructs models by combining Autoregressive (AR), 

Integration (I), and Moving Average (MA) components to capture trends and periodic variations in 

the data. Similarly, SARIMA enhances this model by incorporating seasonal components, improving 

the fitting capability for data exhibiting seasonal fluctuations (Dubey et al., 2021). Both ARIMA and 

SARIMA have held significant positions in early traffic flow prediction research due to their simple 

structure, computational efficiency, and applicability for forecasting stable data. 

However, a major limitation of ARIMA and SARIMA lies in their high requirements for data 

stationarity, which makes them less effective when facing sudden events or short-term fluctuations. 

For instance, when dealing with non-linear events such as sudden traffic congestion or accidents, 

ARIMA and SARIMA models tend to exhibit delayed responses (Sirisha et al., 2022). In the 

application of energy-efficient route planning, although ARIMA and SARIMA can provide baseline 

predictions for long-term stable road segments, they show considerable limitations in predicting 

dynamic and non-stationary traffic flows. Therefore, while these methods still hold value in certain 

contexts, they fall short in supporting real-time traffic management and energy optimization 

decision-making. 

3.1.2. Kalman Filter 

The Kalman Filter is a state estimation technique based on recursive Bayesian estimation, 

enabling dynamic updates even in the presence of incomplete data and substantial system noise 

(Chen & Chen, 2024). It combines the system's state-space model with observation data to perform 

real-time traffic flow prediction updates. Compared to ARIMA and SARIMA, the Kalman Filter's 

advantages lie in its low latency and online update capabilities, making it particularly suitable for 

handling noisy and uncertain traffic data (Yi & Bauer, 2018). Additionally, by using recursive 

calculations, it reduces storage requirements and improves computational efficiency. 

Nonetheless, the Kalman Filter has limitations in that it assumes noise follows a Gaussian 

distribution, which may hinder its performance when dealing with complex, non-Gaussian traffic 

flow characteristics. For non-linear dynamics in traffic flows, the Kalman Filter’s prediction accuracy 

may be compromised. In the context of energy-efficient route planning, the Kalman Filter is suitable 

for real-time traffic monitoring at intersection levels and micro-level dynamic adjustments. However, 

its performance is often less effective than machine learning or deep learning models when applied 

to large-scale, long-term forecasts. Thus, the Kalman Filter is better suited for small-scale, high-real-

time-demand scenarios rather than global energy-efficient route optimization that requires more 

complex models. 

3.1.3. Fourier Series and Other Methods 

Fourier series and other frequency-domain methods can effectively decompose traffic flow data 

into periodic components, which is particularly useful for scenarios where traffic flow follows strong 

cyclic patterns (Mystakidis et al., 2025). Fourier transform has an advantage in extracting frequency 

components from data, helping to identify patterns during peak traffic periods and providing 

valuable insights for energy-efficient route planning. However, the main issue with frequency-

domain methods is their limited ability to respond to sudden traffic events, as they focus on periodic 

patterns and are often ineffective in predicting non-periodic traffic events. 

Wavelet transform methods, which possess strong localization properties, can handle non-

stationary data and have shown promising results in some dynamic traffic flow forecasting tasks. 

However, the preprocessing steps involved in frequency-domain analysis or wavelet transform 

typically introduce additional latency, which can be detrimental for real-time traffic management. 

Overall, while these methods provide certain advantages in forecasting periodic traffic flow, they 
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often need to be combined with other techniques to yield more accurate predictions in the face of 

complex, non-periodic, or sudden traffic events. 

3.2. Machine Learning Models 

3.2.1. Linear Regression and Support Vector Regression (SVR) 

Linear regression and Support Vector Regression (SVR) are classical machine learning methods 

frequently used in traffic flow prediction. Linear regression builds a linear relationship between 

features and target variables, making it easy to understand and implement, suitable for situations 

where the relationship between features and target is relatively linear. However, linear regression 

struggles to handle non-linear relationships, and as the complexity of the data increases, its prediction 

accuracy tends to drop significantly (Chen et al., 2022). SVR, by introducing kernel functions, can 

effectively address complex non-linear issues, performing well especially on medium-sized datasets, 

and exhibiting strong generalization ability and robustness. 

Despite the advantages, SVR’s main drawback lies in its high sensitivity to the selection of 

hyperparameters and its substantial computational cost, particularly when working with large 

datasets and high-frequency updates. In energy-efficient route planning applications, SVR can 

perform well in medium-term predictions, but it faces significant challenges when handling large-

scale, real-time updating traffic flows. 

3.2.2. Random Forest (RF) 

Random Forest (RF) is an ensemble learning method that aggregates predictions from multiple 

decision trees, offering strong non-linear modeling capabilities and good overfitting resistance 

(Alfaseeh & Farooq, 2020). RF automatically selects features and evaluates feature importance when 

dealing with high-dimensional, complex data. However, RF incurs a significant computational cost, 

especially when dealing with large datasets, as the choice of tree depth and number directly impacts 

the model's response speed. In real-time traffic flow prediction, RF may face issues with 

computational efficiency. 

Nonetheless, RF still holds advantages in energy-efficient route planning, especially when 

multiple features (such as traffic conditions, weather, road conditions, etc.) need to be considered. By 

integrating various information sources, RF can provide accurate traffic flow predictions and support 

energy-efficient route planning. However, in intelligent transportation systems with high real-time 

demands, RF’s high computational complexity may become a performance bottleneck. 

3.2.3. XGBoost and LightGBM 

XGBoost and LightGBM are gradient boosting tree models that have excelled in various machine 

learning competitions (Sun et al., 2021). XGBoost optimizes decision tree structures through gradient 

boosting algorithms, demonstrating strong predictive power and computational efficiency. 

LightGBM, an improved version of XGBoost, enhances model speed and memory efficiency by 

optimizing data splitting algorithms and parallelization strategies (Zheng et al., 2024). These models 

perform excellently in large-scale datasets and high-frequency update scenarios, providing effective 

support for real-time traffic flow prediction. 

However, the main challenge with XGBoost and LightGBM lies in the complexity of model 

tuning, especially when dealing with missing values and hyperparameter selection. Their 

performance is highly sensitive to these factors. In energy-efficient route planning, XGBoost and 

LightGBM can efficiently integrate traffic flow, road information, and energy efficiency demands for 

predictions, making them particularly useful in real-time dynamic adjustments for intelligent 

transportation systems. Nonetheless, when faced with large-scale traffic data and frequent updates, 

optimizing computational efficiency and reducing model tuning time remains a key challenge for 

future research. 
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3.3. Deep Learning Models 

In recent years, deep learning has achieved significant progress in traffic flow prediction, 

particularly in handling complex spatiotemporal data. Models such as Convolutional Neural 

Networks (CNN), Long Short-Term Memory networks (LSTM), Gated Recurrent Units (GRU), and 

Spatiotemporal Graph Neural Networks (GNN) have emerged as key research focuses. These models 

are capable of capturing nonlinear characteristics of traffic flow and effectively modeling spatial and 

temporal dependencies within transportation networks, thereby providing robust technical support 

for tasks such as route planning and congestion forecasting in intelligent transportation systems. 

3.3.1. Convolutional Neural Networks (CNNs) 

Originally developed for image processing tasks, CNNs have gained increasing attention for 

their ability to extract spatial features from time series data. Their strength lies in efficiently capturing 

local patterns through convolutional operations, making them well-suited for learning the spatial 

structure of road networks. However, CNNs are inherently limited in capturing temporal 

dependencies, often necessitating integration with other models, such as LSTM, to enhance their 

temporal modeling capabilities. 

For instance, Zhang et al. (2024) proposed a CNN-LSTM hybrid model that effectively combines 

spatial feature extraction (via CNN) with temporal sequence modeling (via LSTM). This architecture 

has proven particularly effective for predicting traffic flow and energy consumption, which is crucial 

for electric vehicle route planning. By accounting for both traffic volumes and energy usage, the 

model enhances decision-making accuracy. Nevertheless, the CNN-LSTM combination faces 

challenges in processing high-dimensional data due to CNN’s computational complexity and 

prolonged training times, which may limit its practical applicability. 

3.3.2. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) 

LSTM and GRU are advanced variants of Recurrent Neural Networks (RNNs) designed to 

capture long-range dependencies in sequential data. Figure 3 visually contrasts their internal gating 

mechanisms, helping clarify why GRU is computationally lighter yet functionally comparable to 

LSTM. LSTM's gated mechanisms mitigate the vanishing-gradient problem associated with 

traditional RNNs, making it highly effective for dynamic traffic-flow prediction. However, LSTM 

models often require large datasets and are sensitive to noise, which can hinder performance in data-

scarce or noisy environments. 

Abduljabbar et al. (2021) demonstrated the application of LSTM in short-term traffic forecasting, 

highlighting its strength in modeling complex temporal patterns, particularly in spatiotemporal 

speed-prediction tasks. Although LSTM excels at capturing short-term traffic fluctuations, it may 

underperform in extreme or unexpected scenarios compared with simpler machine-learning 

methods. In contrast, the GRU cell shown in Figure 3(b) removes the separate output gate and merges 

input–forget gates into an update gate, thereby reducing parameter count by roughly 30 % while 

maintaining sequence-modelling capacity. Pirani et al. (2022) emphasized GRU’s efficiency and 

effectiveness in short-term forecasting, making it a strong candidate for real-time traffic-prediction 

applications. 
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Figure 3. Structural comparison of LSTM and GRU cells Structural comparison of gated recurrent units. 

(a) Long Short-Term Memory (LSTM) cell with input (*i*), forget (*f*) and output (*o*) gates plus 

cell state. (b) Gated Recurrent Unit (GRU) cell that merges input–forget gates into an update gate and 

eliminates the output gate, yielding fewer parameters and faster convergence while preserving long-

range-dependency learning. 

3.3.3. Spatiotemporal Graph Neural Networks (GNNs) 

GNNs have recently emerged as a powerful approach for modeling structured graph data, 

demonstrating considerable potential in transportation networks, which naturally form graph 

structures comprising nodes (intersections) and edges (roads). By leveraging Graph Convolutional 

Networks (GCNs) to extract spatial features and incorporating temporal modeling, GNNs can 

capture both spatial and temporal dependencies in traffic data. 

Afandizadeh et al. (2024) reviewed GNN-based approaches in traffic prediction and highlighted 

their unique advantages in modeling spatiotemporal dependencies. Unlike conventional deep 

learning models, GNNs simultaneously model the topological and temporal dynamics of large-scale 

transportation networks, making them particularly suitable for real-time traffic forecasting and 

congestion detection. However, their high computational complexity and slower inference speed, 

especially when processing large datasets, remain key obstacles to widespread deployment. 

3.4. Hybrid and Enhanced Approaches 

Despite the progress achieved with individual deep learning models, no single approach can 

fully address the diverse and dynamic nature of traffic data. Consequently, researchers have 

increasingly explored hybrid and enhanced methods that integrate the strengths of different models 

to improve predictive accuracy and robustness. 

3.4.1. Wavelet Denoising + XGBoost 

The combination of wavelet denoising and Extreme Gradient Boosting (XGBoost) has gained 

traction in traffic prediction tasks. Wavelet denoising effectively removes noise from traffic data, 

thereby improving data quality, while XGBoost—an efficient gradient boosting framework—

performs well in learning from noisy datasets. Alsolami et al. (2020) reviewed this integrated 

approach, noting that wavelet denoising can eliminate high-frequency noise components, allowing 

XGBoost to better capture underlying traffic patterns and enhance prediction accuracy. 

This method is particularly suited to scenarios involving noisy or low-signal traffic data. By 

reducing noise during the preprocessing stage, the subsequent prediction model (e.g., XGBoost) 
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achieves better performance. However, its main drawback lies in the computational overhead 

required for denoising and modeling, which may hinder its applicability in real-time systems. 

3.4.2. MLR-LSTM 

Combining Multiple Linear Regression (MLR) with LSTM represents another widely used 

hybrid strategy. MLR captures linear relationships in traffic flow, while LSTM models nonlinear and 

complex temporal dependencies. Zhang et al. (2024) proposed an MLR-LSTM hybrid for predicting 

energy consumption in electric vehicles, where MLR is used for linear feature extraction and LSTM 

captures nonlinearity in sequential data. This integration effectively leverages the simplicity of 

traditional statistical models and the representational power of deep learning, making it suitable for 

various traffic prediction scenarios. 

3.4.3. Dual Error Model (DEM) 

The Dual Error Model (DEM) incorporates both model and observational errors to enhance the 

stability and accuracy of traffic prediction. Khatua et al. (2024) introduced a DEM-based federated 

learning framework that integrates data from multiple sources to improve prediction outcomes. This 

approach is well-suited for addressing the uncertainty and complexity inherent in traffic data. 

Nevertheless, a key challenge lies in efficiently fusing multiple sources of error while maintaining 

computational efficiency. 

To better understand the strengths, limitations, and appropriate use cases of these methods, the 

following Table 1. provides a comprehensive overview of various dynamic traffic flow prediction 

techniques, summarizing their key characteristics, advantages, and challenges based on recent 

research. 
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Table 1. Summary of Traffic Flow Prediction Methods: Advantages, Disadvantages, and Applications. 

Method 

Category 
Method Name Advantages Disadvantages Applicable Scenarios 

Statistical 

Models 

ARIMA and 

SARIMA 

Simple structure, computationally efficient, suitable 

for stationary time series data (Dubey et al., 2021) 

High data stationarity requirement, ineffective 

for sudden events or short-term fluctuations 

(Sirisha et al., 2022) 

Long-term, stable traffic flow prediction 

(Dubey et al., 2021) 

Statistical 

Models 
Kalman Filter 

Real-time updates, low latency, effective for 

handling noisy and uncertain data (Chen & Chen, 

2024) 

Assumes Gaussian noise, not suitable for non-

Gaussian or complex dynamic flows (Yi & Bauer, 

2018) 

Small-scale real-time traffic monitoring, 

micro-level dynamic adjustments (Yi & 

Bauer, 2018) 

Machine 

Learning 

Models 

Linear 

Regression & 

SVR 

Easy to understand, SVR effectively handles 

complex non-linearities (Chen et al., 2022) 

Sensitive to noise, computationally expensive, 

less accurate with complex data (Chen et al., 

2022) 

Medium-term predictions, scenarios 

with strong linear relationships between 

features and targets 

Machine 

Learning 

Models 

Random Forest 

(RF) 

Strong non-linear modeling capability, resistant to 

overfitting, automatic feature selection (Alfaseeh & 

Farooq, 2020) 

High computational cost, especially with large 

datasets; tree depth and number significantly 

affect model speed 

Multi-feature traffic flow prediction, 

energy-efficient route planning 

Machine 

Learning 

Models 

XGBoost and 

LightGBM 

Strong predictive power, efficient with large 

datasets, supports real-time updates (Zheng et al., 

2024) 

Complex model tuning, highly sensitive to 

missing values and hyperparameter selection 

Large-scale real-time traffic flow 

prediction, dynamic route adjustments 

Deep 

Learning 

Models 

Convolutional 

Neural 

Networks 

(CNN) 

Efficient in extracting spatial features, well-suited 

for learning road network structures (D'Angelo & 

Palmieri, 2021) 

Limited in capturing temporal dependencies, 

typically requires integration with models like 

LSTM (Zhang et al., 2024) 

Spatial data analysis in traffic flow 

prediction, road network modeling 

Deep 

Learning 

Models 

LSTM & GRU 

Captures long-term dependencies, effective for 

dynamic traffic flow prediction (Abduljabbar et al., 

2021) 

Sensitive to noise, requires large datasets, 

computationally expensive (Abduljabbar et al., 

2021) 

Short-term traffic forecasting, 

spatiotemporal speed prediction 

Deep 

Learning 

Models 

Spatiotemporal 

GNNs 

Models both spatial and temporal dependencies, 

suitable for large-scale traffic networks 

(Afandizadeh et al., 2024) 

High computational complexity, slower inference 

speed (Afandizadeh et al., 2024) 

Large-scale real-time traffic forecasting, 

congestion detection 

Hybrid and 

Enhanced 

Approaches 

Wavelet 

Denoising + 

XGBoost 

Wavelet denoising improves data quality, XGBoost 

enhances prediction accuracy (Alsolami et al., 2020) 

High computational overhead, may hinder real-

time applications 

Traffic data with noise or low signal, 

improving model performance in noisy 

datasets 
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Hybrid and 

Enhanced 

Approaches 

MLR + LSTM 

Combines traditional statistical models with deep 

learning, capturing both linear and non-linear 

features (Zhang et al., 2024) 

Integration complexity, may require tuning for 

optimal performance 

Traffic prediction with both linear and 

non-linear dependencies 

Hybrid and 

Enhanced 

Approaches 

Dual Error 

Model (DEM) 

Improves prediction stability and accuracy by 

integrating model and observational errors (Khatua 

et al., 2024) 

High computational complexity when merging 

multiple error sources 

Complex, uncertain traffic data 

scenarios, federated learning for traffic 

prediction 
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4. Theoretical Integration of Prediction Results in Energy-Saving Route 

Planning 

4.1. Overview of the Theoretical Integrated Architecture 

The theoretical integrated architecture in energy-efficient route planning is the core mechanism 

for achieving global energy optimization. By combining traffic flow prediction, dynamic cost function 

design, and path search algorithms, this approach can effectively respond to the dynamic changes in 

complex traffic networks, optimizing key indicators such as energy consumption, travel time, and 

carbon emissions. This section will provide a detailed explanation of the various components of this 

integrated architecture, analyze the findings and limitations of existing literature, and lay the 

foundation for further research in energy-efficient route planning. 

4.1.1. Prediction Module 

Traffic flow prediction is fundamental to energy-efficient route planning, as it provides real-time 

and future traffic status information essential for path optimization. In recent years, the rapid 

development of artificial intelligence (AI) technologies has significantly enhanced prediction 

accuracy, particularly in handling spatiotemporal correlations. Deep learning models such as Long 

Short-Term Memory (LSTM) networks and Graph Convolutional Networks (GCN) have been widely 

applied in traffic flow prediction, as LSTM and GCN are effective at capturing the dynamic 

characteristics of traffic flow, making them suitable for both short-term and mid-term forecasting 

(Sayed et al., 2023). 

However, existing models often rely on historical traffic data and sensor data, which still have 

limitations when addressing external factors like weather changes. The multi-source data fusion 

framework proposed by Al Duhayyim et al. (2022) has enhanced prediction robustness, but the 

reliance on extensive external data can lead to information overload, especially in complex urban 

traffic situations. Additionally, Kadkhodayi et al. (2023) emphasized the application of AI models in 

dynamic environments; however, their high computational complexity poses a challenge, with 

balancing prediction accuracy and computational efficiency remaining a key issue. 

Although AI technologies excel in prediction accuracy, compared to traditional methods like 

ARIMA, the computational complexity of AI approaches is higher, and they demand more from 

hardware, which could limit their widespread real-time application. Therefore, finding the balance 

between prediction accuracy and computational efficiency is a crucial area for future research. 

In practice, the input to the prediction module includes historical traffic data (such as flow and 

speed), real-time sensor data, and external variables (such as weather and events), while the output 

consists of predictions for traffic status on road segments for a future period. For example, LSTM may 

predict the road segment speed for the next 30 minutes, while GCN captures spatial dependencies 

through road network topology. These predictions provide input to the dynamic cost function, 

enabling the planning system to avoid congested areas, thereby reducing energy consumption and 

time costs. In comparison to traditional methods (like ARIMA), AI approaches excel in processing 

nonlinear data but require careful consideration of the trade-off between accuracy and computational 

efficiency (Sayed et al., 2023). 

4.1.2. Dynamic Cost Function Design 

The dynamic cost function is crucial in integrating the prediction results into energy-efficient 

route planning. It needs to comprehensively account for multiple objectives, such as travel time, 

energy consumption, distance, and carbon emissions. Unlike traditional path-planning algorithms, 

which primarily optimize a single objective (e.g., shortest path), energy-efficient route planning faces 

significant challenges in multi-objective optimization. Zhang et al. (2023) proposed an electric vehicle 

(EV) route planning algorithm based on dynamic programming, which adjusts the cost function in 
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real-time to adapt to traffic changes and optimize both energy consumption and charging demand. 

Basso et al. (2022) used reinforcement learning to design a dynamic stochastic cost function, capable 

of adjusting weights in response to traffic uncertainties. However, effectively balancing different 

objectives, such as time and energy consumption, remains a critical issue. 

The flexibility of this dynamic cost function design is advantageous but also faces the challenge 

of adjusting weights according to real-world scenarios. In the case of EV route planning, Lee et al. 

(2022) highlighted the importance of speed prediction for accurate energy consumption estimation, 

while Schoenberg & Dressler (2022) proposed a model that incorporates waiting times at charging 

stations, showing that adaptability in dynamic environments is still an area requiring in-depth 

exploration. 

The dynamic cost function can be formalized as: 

C=w1·T+w2·E+w3·D 

Where TTT represents travel time, EEE is energy consumption, and D is the distance. w1,w2,w3 are 

dynamic weights influenced by the predicted traffic state. For example, during congestion, w1 could 

be increased, or adjustments to E could reflect the higher energy consumption due to lower speeds. 

The flexibility of this design allows for real-time adaptation, but selecting the correct weights and 

balancing multiple objectives need to be fine-tuned according to specific scenarios (e.g., EV logistics 

or urban navigation) (Basso et al., 2022). 

4.1.3. Path Search Algorithm Overview 

The efficiency of path search algorithms in dynamic environments directly impacts the 

effectiveness of energy-efficient route planning. Dai et al. (2021) proposed the Parallel Traffic 

Condition-Driven Path Planning (PARP) model, which dynamically updates weights and quickly 

adapts to traffic changes, though its computational load remains substantial. Enhancing the 

computational efficiency of such algorithms remains a challenge. Moreover, genetic algorithms have 

shown promise in global searches for multi-objective optimization, particularly in balancing energy 

consumption and travel time (Aung et al., 2023), but efficiently finding the optimal path in complex 

traffic networks still requires further work. 

The A* algorithm is widely used in real-time navigation due to its heuristic search properties, 

with its performance depending on the design of the heuristic function h(n), which can be optimized 

using traffic predictions (Jose & Grace, 2022). Genetic algorithms excel in multi-objective 

optimization, particularly in balancing energy consumption, time, and distance (Aung et al., 2023). 

Wu et al. (2022), based on dynamic nonlinear model predictive control, proposed a smart 

transportation system path planning method that emphasizes the role of prediction data in enhancing 

algorithm efficiency. However, the Dijkstra algorithm's performance in dynamic environments is 

limited by frequent weight updates, and therefore needs to integrate prediction modules to reduce 

recalculation frequency. 

Collectively, the prediction module provides traffic status forecasts, the cost function guides the 

path search algorithm, and the combined system ultimately achieves energy-saving goals. The 

selection of algorithms must balance real-time requirements and solution quality, with A* suitable 

for rapid responses and genetic algorithms more appropriate for global optimization (Dai et al., 2021; 

Aung et al., 2023). 

4.2. Review of Classical Path Search Algorithms 

Path search algorithms play a critical role in energy-efficient route planning, directly influencing 

how predictive results are translated into practical decisions for optimizing energy consumption, 

travel time, and carbon emissions. With well-established theoretical foundations and extensive 

application scenarios, classical algorithms remain highly relevant in dynamic traffic environments. 

The A* algorithm is known for its efficiency, Dijkstra’s algorithm guarantees global optimality, and 

multi-objective genetic algorithms (MOGA) are adept at balancing competing objectives. By 

analyzing their principles, applications, and limitations, and incorporating recent research, it is clear 
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that current approaches face a notable trade-off between real-time performance and global 

optimization. This underscores the need for exploring hybrid strategies to enhance energy efficiency. 

4.2.1. A* Algorithm 

A* is a best-first heuristic search that combines the cumulative cost from the start node to a given 

node g(n)g(n)g(n) and an estimated cost from that node to the goal h(n) into a single priority function 

f(n)=g(n)+h(n). Here, h(n) may be computed using Euclidean distance, Manhattan distance, 

Chebyshev distance, or even domain-specific estimators, provided it never overestimates the true 

cost (admissibility) and ideally remains consistent (monotonicity). By directing the search toward the 

goal, A* can reduce node expansions by roughly 30 %–50 % compared with uninformed approaches 

such as Dijkstra’s algorithm, thereby significantly lowering computation time in real-time 

applications. 

In dynamic routing scenarios, A* has proven remarkably adaptable. For electric-vehicle path 

planning, Sebai et al. (2022) integrated traffic-flow predictions and real-time incident data into both 

the cost and heuristic models; against Dijkstra and D* Lite benchmarks, their method achieved over 

20 % reductions in both energy consumption and travel time. Likewise, Gan et al. (2022) enhanced 

inland-vessel routing by embedding a safety-potential field into the heuristic function, which 

lowered collision-risk metrics by 35 % while maintaining efficient voyage times. More recently, Chen 

et al. (2023) demonstrated that incorporating live traffic-signal status into A*’s evaluation can help 

vehicles avoid red-light delays, cutting average journey times by 15 %. 

Despite these successes, A*’s performance remains heavily dependent on the quality of its 

heuristic. If h(n) violates admissibility or consistency, the algorithm may re-expand nodes and suffer 

ballooning search costs. Ben Abbes et al. (2022) emphasize that overly simplistic heuristics in complex 

network topologies can yield suboptimal routes, while high-frequency cost updates in large-scale 

graphs can render real-time operation infeasible. Consequently, although A* excels in moderately 

complex, latency-sensitive tasks such as urban navigation, it may not be the best choice when strict 

global optimality or extreme scalability is required. In such contexts, incremental planners like D* or 

LPA* or sampling-based methods such as RRT* and PRM* often offer more robust guarantees. 

4.2.2. Dijkstra Algorithm 

Dijkstra’s algorithm adopts a greedy strategy, expanding the search step-by-step to ensure the 

globally shortest path in graphs without negative weights. Although its time complexity is O(V²), it 

can be optimized to O((V + E) log V) using priority queues, making it well-suited for static networks 

due to its simplicity and optimality. Ben Abbes et al. (2022) applied it to electric vehicle routing by 

integrating energy models and charging station locations, resulting in optimized path selection. Asna 

et al. (2021) also confirmed its reliability in fast-charging station planning in the UAE, especially 

under static conditions. 

However, dynamic traffic environments expose Dijkstra’s limitations. Bac et al. (2021) noted that 

each traffic state change (e.g., congestion or time window adjustments) requires recomputation of the 

entire network, significantly reducing efficiency, especially in scenarios involving partial charging or 

large-scale networks. Chen et al. (2023) attempted to alleviate this burden using traffic flow 

prediction, yet the computational load of global search remains a challenge. In my view, Dijkstra is 

more appropriate for relatively stable conditions and needs to be augmented with predictive 

techniques when applied to real-time dynamic settings. 

4.2.3. Multi-Objective Genetic Algorithm (MOGA) 

Multi-objective genetic algorithms (MOGAs) have emerged as a unifying framework for 

reconciling the competing demands of energy consumption, travel time, emissions and safety in 

intelligent transportation systems. Rather than a mere collection of evolutionary operators, MOGA 

serves as a narrative thread: it weaves together disparate studies into a coherent exploration of trade-
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offs, even as it confronts the dual challenges of translating Pareto-optimal solutions into real-world 

practice and meshing time-intensive offline search with the urgency of live operations. 

Early applications of MOGA in vehicle scheduling illustrate both its promise and its limitations. 

For instance, Zhao et al. (2023) integrate short-term traffic-flow forecasts directly into the algorithm’s 

fitness evaluations, cutting energy use by 12 percent at the cost of only a five-minute delay. Their 

work exemplifies prediction-informed evolution, yet stops short of addressing the leap from 

simulation to live fleet dispatch. Ma et al. (2022) extend the approach to highway work zones, 

optimizing safety margins alongside energy metrics; however, their scenarios remain geographically 

narrow, leaving open the question of network-wide applicability. 

Beyond routing, MOGA’s versatility shows in infrastructure design problems such as charging-

station placement and electric multiple-unit energy management. Asna et al. (2021) and Fischer et al. 

(2025) employ Pareto fronts to illuminate the trade-offs among cost, demand and grid stability, yet 

seldom reconnect those insights to the operational algorithms that handle real-time rerouting or 

dispatch. Aghili’s (2025) case study in Isfahan begins to bridge this gap by jointly considering station 

siting and fleet routing, though it still leaves unanswered how fluctuating ridership patterns might 

dynamically reshape the Pareto landscape. 

Underneath MOGA’s broad applicability lie significant computational hurdles. Its native ability 

to handle four or more objectives distinguishes it from scalarization-based methods, but at the price 

of heavy fitness-evaluation workloads (Mu et al. 2021; Gao et al. 2025). Attempts to streamline the 

search—whether by task slicing and cache optimization (Sifeng et al. 2025), surrogate models that 

approximate expensive evaluations (Xiong et al. 2024), or federated multi-agent architectures that 

distribute computation to edge nodes (Mamond et al. 2025)—offer incremental relief but often 

introduce new challenges, from approximation error to data-heterogeneity and convergence 

consistency. 

Two overarching research gaps stand out. First, no existing pipeline convincingly delivers city-

scale MOGA solutions in sub-minute times under live traffic conditions: warm-starts with A* or 

Dijkstra heuristic searches help, but convergence criteria remain ad hoc rather than principled. 

Second, studies tend to isolate a single planning layer—dispatch, infrastructure design or traffic 

prediction—whereas real urban mobility requires an end-to-end, dynamically coordinated 

ecosystem. The next frontier lies in architecting a modular, layered framework: fast heuristics would 

seed solutions in real time, genetic search would refine long-term strategies, and surrogate models 

would prevent staleness. Embedding MOGA as an evolving, interactive component—rather than 

treating it as a standalone black box—promises to unlock both its academic potential and its practical 

impact. 

4.3. Integration Mode Comparison from Literature: A Critical Analysis 

This section provides a comprehensive comparison of integration modes, emphasizing the 

importance of linking theoretical frameworks to practical applications in route planning systems. By 

analyzing relevant case studies, this section not only examines existing literature but also critiques 

the strengths, limitations, and potential improvements of different integration strategies. Through a 

synthesis of previous work, we aim to identify gaps in current methodologies and propose pathways 

for advancing research in this field. 

4.3.1". Prediction → A" Fast Response Mode* 

The "Prediction → A*" fast response mode, a commonly employed strategy in real-time traffic 

management, leverages real-time traffic predictions to dynamically adjust routing decisions using 

the A* algorithm. This model is frequently applied in scenarios where immediate adjustments to 

traffic conditions are required, such as real-time navigation. For instance, Sebai et al. (2022) in 

Optimal Electric Vehicles Route Planning with Traffic Flow Prediction and Real-Time Traffic 

Incidents demonstrate the practical application of this model in adaptive routing for electric vehicles. 
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Workflow: The model operates by first predicting traffic flow and subsequently updating the 

graph weights accordingly. Using the updated graph, the A* algorithm identifies a new optimal path. 

Critical Analysis: The A* algorithm, while efficient, faces inherent limitations. One of the key 

concerns is its susceptibility to converging on local optima, especially in complex and highly dynamic 

environments. The real-time nature of this model makes it computationally attractive; however, this 

speed comes at the expense of solution quality. The trade-off between computation time and solution 

quality is an ongoing challenge in real-time systems. While the model excels in scenarios demanding 

quick decisions, its ability to consistently provide the best possible route in complex traffic conditions 

remains an area for improvement. 

Contribution: This approach is best suited for applications requiring rapid response times, such 

as GPS navigation and real-time route adjustments for electric vehicles. However, future work could 

explore hybrid models that combine the speed of A* with global optimization methods to address its 

limitations in complex scenarios. 

4.3.2". Prediction → Genetic Optimization" Global Optimal Mode 

In contrast, the "Prediction → Genetic Optimization" model seeks to optimize long-term route 

planning by utilizing traffic flow predictions as input to a genetic algorithm, which evolves potential 

solutions over time. Zhao et al. (2023) in Path Planning Based on Traffic Flow Prediction for Vehicle 

Scheduling provide an in-depth exploration of this model, applying it to vehicle scheduling for large-

scale logistics. 

Workflow: This model begins by predicting long-term traffic trends and utilizes a genetic 

algorithm to optimize solutions. The algorithm iteratively evolves a population of routes, optimizing 

multiple objectives such as energy consumption, travel time, and traffic congestion. 

Critical Analysis: While this model excels in optimizing multi-objective functions and providing 

global optimal solutions, its major drawback is the significant computational overhead required. 

Genetic algorithms are inherently slower than methods like A*, and this limits their practical 

application in real-time scenarios. The time required for genetic optimization to converge on a global 

optimum makes it impractical for fast-response applications. Furthermore, the complexity of multi-

objective optimization introduces additional challenges in balancing conflicting goals, such as 

minimizing energy consumption while reducing travel time. 

Contribution: This approach is best suited for scenarios requiring long-term planning, such as 

fleet management and large-scale logistics optimization. Future research could explore hybrid 

methods that incorporate genetic algorithms for offline optimization while using faster, real-time 

models for immediate route adjustments. 

4.3.3. Comparative Theoretical Analysis of Methods 

The comparison of the two integration modes—"Prediction → A*" and "Prediction → Genetic 

Optimization"—is summarized in Table 2. This table synthesizes findings from existing studies, 

providing a clearer understanding of the computational efficiency, solution quality, and applicable 

scenarios for each mode. 

Table 2. Comparison of "Prediction → A" and "Prediction → Genetic Optimization" Modes*. 

Mode 

Computatio

nal 

Efficiency 

Solution 

Quality 
Suitable Scenarios Supporting Literature 

Prediction → A* High 

Local 

Optimu

m 

Real-time navigation, 

fast response 

Sebai et al. (2022); Dai et 

al. (2021); Jose & Vijula 

Grace (2022) 

Prediction → 

Genetic 

Optimization 

Low 

Global 

Optimu

m 

Long-term planning, 

multi-objective 

optimization 

Zhao et al. (2023); Li et al. 

(2022); Basso et al. (2022) 
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Critical Insights: The "Prediction → A*" mode is highly efficient but sacrifices solution quality in 

complex environments, making it ideal for real-time navigation where speed is paramount. However, 

it is clear that the application of A* is limited in scenarios that require more than quick fixes—complex 

traffic conditions demand methods that can optimize for global solutions. In contrast, the "Prediction 

→ Genetic Optimization" mode offers superior global optimization capabilities, making it suitable 

for complex, multi-objective problems. However, its computational expense makes it unsuitable for 

real-time applications where rapid decisions are essential. 

Contributions to the Field: This section highlights a critical gap in current research—the need 

for hybrid approaches that combine the strengths of both modes. Real-time applications would 

benefit from models that integrate the speed of the A* algorithm with the optimality of genetic 

optimization. Further exploration of hybrid models, such as combining A* with machine learning 

techniques for global optimization or integrating genetic algorithms with faster heuristic methods, 

could provide a promising avenue for future work. 

Conclusion and Recommendations: The integration mode chosen must align with the 

application's requirements. For real-time scenarios, the "Prediction → A*" fast response mode 

remains the most practical due to its computational efficiency. For long-term planning, especially in 

logistics or fleet management, the "Prediction → Genetic Optimization" model is preferred, though it 

requires careful consideration of its computational demands. Future work should focus on 

developing hybrid models that can leverage the advantages of both approaches to achieve real-time 

performance while maintaining global optimality. 

5. Research Gaps, Challenges, and Future Directions 

The interdisciplinary field of energy-efficient route planning and traffic flow prediction has 

experienced rapid advancement in recent years. However, limitations in data quality, algorithmic 

efficiency, technological integration, and personalized demand remain substantial barriers to large-

scale real-world deployment. This section provides an in-depth discussion of these critical issues, 

evaluates current research limitations, and synthesizes insights from recent literature to propose 

forward-looking recommendations aimed at enhancing the effectiveness and sustainability of 

intelligent transportation systems. 

5.1. Data Dimension: Quality, Coverage, and Privacy Compliance 

High-quality data constitute the foundation of accurate traffic prediction and route planning. 

Nevertheless, current datasets exhibit significant deficiencies that impair model generalizability and 

performance. Abduljabbar et al. (2021) and Afandizadeh et al. (2024) highlighted considerable 

spatiotemporal gaps in existing traffic datasets, especially under rural road conditions or extreme 

weather events, where noise and missing values are prevalent, leading to reduced prediction 

accuracy. For instance, while urban arterial roads are well-represented in datasets, data scarcity in 

remote areas causes performance imbalances when models are applied to entire road networks (Chen 

et al., 2024). Alsolami et al. (2020) further pointed out that technical and regulatory barriers hinder 

cross-regional data integration, limiting opportunities for global optimization. 

Privacy concerns further complicate data acquisition. With the enforcement of regulations such 

as the General Data Protection Regulation (GDPR), the collection of vehicle trajectories and user 

behavioral data faces strict constraints (Khatua et al., 2024). While federated learning and differential 

privacy have been proposed as potential solutions, their application in transportation remains 

nascent, with data sharing efficiency still limited (Madupuri et al., 2024). Future research should 

prioritize the development of high-quality heterogeneous datasets that encompass multimodal 

transport (e.g., walking, public transit, vehicular traffic) and cover both urban and rural areas, while 

integrating privacy-preserving technologies to ensure regulatory compliance. For example, the 

federated learning approach proposed by Khatua et al. (2024) facilitates cross-national collaborative 

model training, and the open multimodal datasets advocated by Chen et al. (2022) offer a solid 

foundation for energy-efficient planning. 
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5.2. Algorithmic Dimension: Trade-Offs in Real-Time Performance, Scalability, and Interpretability 

Algorithm design for energy-efficient route planning encounters multiple challenges. Deep 

learning models such as Long Short-Term Memory (LSTM) networks and Transformers demonstrate 

superior accuracy (Abduljabbar et al., 2021; ArunKumar et al., 2022; Dubey et al., 2021), but their high 

computational cost limits their suitability for real-time applications. In electric vehicle navigation, 

where traffic conditions change rapidly, lightweight models such as Convolutional Neural Networks 

(CNNs) respond quickly but often sacrifice accuracy (Pirani et al., 2022). Many existing algorithms 

are designed for small-scale networks; when scaled to interregional networks or fleet-level 

dispatching, computational efficiency and memory requirements become significant bottlenecks (Dai 

et al., 2021; Li et al., 2022a; Li et al., 2022b). 

The "black-box" nature of AI models undermines trust in critical applications such as traffic 

control and autonomous driving (D’Angelo & Palmieri, 2021). Insufficient interpretability not only 

impedes real-world deployment but also restricts the optimization of decision-making processes 

(Knigge et al., 2023). Hybrid frameworks may offer a viable solution—for instance, integrating the 

transparency of A* algorithms with the predictive power of deep learning (Sebai et al., 2022; Jose & 

Vijula Grace, 2022), or leveraging edge computing to enhance real-time responsiveness (Chen et al., 

2022). Advancements in scalability, such as the development of distributed algorithms for large-scale 

networks (Dai et al., 2021; Li et al., 2022b), could significantly enhance the practical utility of energy-

efficient planning. 

5.3. Integration of Emerging Technologies: IoT/5G, Vehicular Networks, and Digital Twins 

The Internet of Things (IoT) and 5G technologies provide massive real-time data and low-latency 

communication capabilities (Liu et al., 2023). Vehicular networks (V2X) enable cooperative sensing 

among vehicles for optimized routing (Aung et al., 2023), while digital twin systems offer virtual 

simulations that enhance prediction accuracy (Chandra, 2025; Irfan et al., 2024). Despite their 

promise, the full potential of these technologies has yet to be realized. While IoT and 5G contribute 

rich data, efficient processing and cybersecurity remain unresolved challenges (Madupuri et al., 

2024). Vehicular networks face privacy issues and a lack of interoperability due to slow progress in 

standardizing communication protocols (Khatua et al., 2024). Software-defined vehicular networks, 

however, offer a flexible approach to optimize traffic efficiency through data-driven V2X 

coordination (Shahriar et al., 2024), supporting real-time path planning in frameworks like 

“Prediction → A*.” 

Digital twins, although promising, entail high computational costs for accurate modeling 

(Chandra, 2025). For example, real-time construction of a digital twin for urban traffic requires 

extensive sensor input and physical modeling, which is currently only feasible in pilot-scale 

implementations (Chen et al., 2024). Recent advances leverage LiDAR data to create localized digital 

twins for data-driven traffic simulation, reducing computational overhead while maintaining 

accuracy (Wibisana, 2024). Specific applications include adaptive traffic signal control under limited 

synchronization conditions, where digital twins enhance prediction robustness for urban networks 

(Zhu et al., 2024), and traffic guidance for autonomous driving, integrating V2X data for energy-

efficient routing (Liao et al., 2024). These developments align with the article’s proposed integration 

of prediction and optimization models. 

Future directions may include the development of 5G-based vehicular data platforms (Liu et al., 

2023) or the application of digital twins to dynamic traffic forecasting across diverse scenarios, such 

as extreme weather or peak-hour congestion (Chandra, 2025; Irfan et al., 2024). Addressing security, 

standardization, and computational challenges will be critical to advancing the intelligence level of 

energy-efficient planning. 

5.4. Multimodal Transportation and Personalized Route Planning 
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Urban mobility is increasingly characterized by truly multimodal journeys—users may cycle to 

a metro station, ride the train, and then transfer to a bus within a single trip. Yet most studies remain 

confined to a single transport mode, lacking the ability to orchestrate real-time data streams, energy-

conscious spatial constraints, and regulatory considerations in an integrated fashion (Alfaseeh & 

Farooq, 2020; Sachanbińska-Dobrzyńska, 2023). For example, in the “bike→metro→bus” scenario, 

existing algorithms struggle to balance transfer wait times, network-wide energy consumption, and 

passenger comfort (Agrahari et al., 2024; Stremke & Koh, 2010; Stoeglehner & Narodoslawsky, 2012), 

and they rarely account for legal frameworks or ecological design guidelines that shape urban form 

and energy potential (Van den Dobbelsteen et al., 2012; Sachanbińska-Dobrzyńska, 2023). 

Moreover, individual travelers prioritize different objectives—some seek minimum energy use, 

others shortest travel time or highest comfort—yet general-purpose models lack the dynamic, profile-

driven adaptability to satisfy these divergent needs (Tiwari et al., 2023; Jiang et al., 2022; Golrezaei et 

al., 2014). To address these gaps, we advocate for a unified multimodal transport-data platform 

augmented by personalized, reinforcement-learning and real-time optimization modules. For 

instance: 

(1) Dynamic route adaptation: Basso et al. (2022) demonstrate how a reinforcement-learning agent 

can continuously recalibrate route recommendations to optimize both energy use and travel 

time. 

(2) Real-time synchronization: Chen et al. (2023) show that techniques drawn from industrial online 

scheduling can improve transfer timing and fleet utilization (Oberwinkler & Stundner, 2005; 

Diehl, 2001). 

(3) Holistic sustainability framework: By embedding quantitative indices of environmental, legal 

and social performance (Goldman & Gorham, 2006; Boschmann & Kwan, 2008; Gudmundsson 

& Regmi, 2017), the platform can simultaneously satisfy energy-efficiency, compliance, and 

equity objectives. 

Table 3. Literature summary on Energy Optimization and Urban Transportation Systems. 

Reference Core Method / Perspective Application & Value 

Stremke & Koh 

(2010) 

Ecological design strategies 

for energy-conscious spatial 

planning 

Provides principles for land-use layouts 

that reduce energy demand and support 

multimodal hubs 

Sachanbińska-

Dobrzyńska (2023) 
Comparative legal analysis 

Highlights Poland/Germany regulatory 

frameworks to ensure algorithmic 

planning remains compliant 

Stoeglehner & 

Narodoslawsky 

(2012) 

Strategic planning for 

energy-optimized urban 

structures 

Austrian case studies illustrating 

coordination of urban form with district-

scale energy systems 

Van den 

Dobbelsteen et al. 

(2012) 

Energy-potential and 

thermal-mapping 

techniques 

Develops GIS-based maps to identify 

low-energy corridors and transfer nodes 

Jiang et al. (2022) 

Flexible job-shop 

scheduling with transport 

and deterioration 

Introduces dual constraints of travel 

time and equipment aging, inspiring 

multimodal scheduling 

Oberwinkler & 

Stundner (2005) 

Real-time production 

optimization 

Adapts industrial online scheduling 

algorithms for dynamic transit vehicle 

dispatch 

Golrezaei et al. 

(2014) 

Real-time optimization of 

personalized assortments 

Validates user-profile-driven decision 

frameworks in retail, offering insights 

for transport choices 

Diehl (2001) 

Online optimization for 

large-scale nonlinear 

processes 

Offers algorithmic foundations for high-

dimensional, constrained real-time 

optimization 
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Goldman & 

Gorham (2006) 

Four innovative directions 

in sustainable urban 

transport 

Proposes macro-strategies (e.g. demand 

management, technological integration) 

for multimodal systems 

Boschmann & 

Kwan (2008) 

Social sustainability in 

urban transportation 

Emphasizes equity and accessibility 

metrics to enrich user-satisfaction 

dimensions 

Gudmundsson & 

Regmi (2017) 

Sustainable Urban 

Transport Index (SUTI) 

Constructs a composite indicator for 

benchmarking multimodal network 

performance 

5.5. Recommendations: Standardized Evaluation Platforms and Open-Source Toolkits 

Imagine a city planner logging into a single portal that instantly benchmarks her new routing 

algorithm against a standardized metric suite—from base-level travel-time and energy-use indicators 

(Marsh, 1995; Sears et al., 2013) to passenger-perception scores drawn from a validated survey 

instrument (Verma, 2025). Behind the scenes, each experiment also feeds into a prioritization module 

(Turochy, 2001) that ranks proposed network upgrades by cost, social benefit and CO₂ reduction, and 

an investment-appraisal dashboard modeled on the Dutch standardized framework (Annema et al., 

2007). 

To bring this vision to life, we recommend three intertwined pillars: 

Unified Evaluation Backbone 

Core metrics registry: Adopt a minimal yet extensible set of “must-report” indicators (Marsh, 

1995; Shi, 2018) covering throughput, delay, energy-use per passenger-km, emissions, and service 

quality ratings (Verma, 2025). 

Pluggable appraisal engines: Embed modules for cost–benefit analysis (Annema et al., 2007), 

energy-efficiency utility modeling (Sears et al., 2013), and multi-criteria ranking (Turochy, 2001), so 

every study yields comparable scores. 

Open-Source, Modular Toolkit 

Data & model registry: A repository of canonical datasets (urban/rural/ highway), reference 

algorithms (GCNs, A*, RL planners) and pre-built connectors to GIS and traffic simulators, all 

versioned and containerized (Shi, 2018). 

Survey & perception plug-in: Standardized forms and analytics scripts for gathering and 

integrating commuter feedback (Verma, 2025; Chatterjee et al., 2025). 

Community-Driven Governance & Evolution 

Rotating steering group of academics, practitioners, and policymakers to ratify new metrics, 

datasets, and modules—ensuring the platform reflects emerging needs (Shi, 2018). 

Living documentation and hackathons to crowdsource additions, troubleshoot reproducibility 

gaps, and showcase real-world deployments. 

By weaving together decades of methodological advances—from base-level metric 

standardization (Marsh, 1995) and investment evaluation (Annema et al., 2007) to energy-utility 

modeling (Sears et al., 2013) and legal/operational management systems (Shi, 2018)—this ecosystem 

will transform isolated proofs-of-concept into a shared, evolving infrastructure. Researchers gain 

immediate comparability; practitioners access turn-key tools; and policymakers receive transparent, 

data-backed ranking of every proposed improvement. In effect, the field transcends ad hoc 

experiments and enters a new era of rapid, reproducible innovation and real-world impact. 

6. Conclusion 

This review comprehensively examined recent advancements in traffic flow prediction and 

energy-efficient route planning, underscoring the pivotal role of AI technologies in enhancing 

prediction accuracy and route optimization—particularly through deep learning models. Through a 

critical comparison with traditional pathfinding algorithms, it was found that while deep learning 

models excel in accuracy, their limitations in real-time responsiveness and interpretability necessitate 
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integration with conventional methods. Emerging technologies such as IoT, 5G, and digital twins 

have introduced novel pathways for innovation, although practical deployment remains constrained 

by technical and regulatory challenges. The unique contribution of this study lies in its proposal of 

an integrated theoretical framework that emphasizes the importance of data quality, algorithmic 

efficiency, and personalized demand in cross-domain system design for energy-efficient planning. 

Nonetheless, as a literature-based review, the study did not conduct empirical validation or 

algorithmic benchmarking, which may limit the generalizability of some conclusions, especially in 

light of regional disparities in transportation systems. Future studies incorporating case-based 

analysis and quantitative experiments are expected to enhance the credibility of findings. In 

summary, future research in intelligent transportation should focus on improving data quality and 

coverage, exploring privacy-preserving technologies for data sharing, developing lightweight and 

interpretable AI models, and integrating traditional algorithms to improve real-time and global 

performance. Furthermore, the convergence of IoT, 5G, and digital twins should be advanced to 

overcome challenges related to security and standardization. Building multimodal and personalized 

planning systems will address diverse user needs, while standardized evaluation platforms and 

open-source tools will catalyze technological advancement. These directions will collectively 

contribute to a high-efficiency, low-emission, and secure future for intelligent transportation systems, 

aligned with the goals of sustainable urban development. 
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