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Abstract 

Sudden Infant Death Syndrome (SIDS) is one of the leading causes of postnatal mortality, with the 

prone sleeping position identified as a critical risk factor. This article presents the design, 

implementation, and validation of a low-cost embedded system for unobtrusive, real-time 

monitoring of infant posture. The system acquires data from a pressure mat on which the infant rests, 

converting the pressure matrix into an image representing the postural imprint. A Convolutional 

Neural Network (CNN) has been trained to classify these images and distinguish between prone and 

supine positions with high accuracy. The trained model was optimized and deployed in a data 

acquisition and processing system (DAQ) based on the Raspberry Pi platform, enabling local and 

autonomous inference. To prevent false positives, the system activates a visual and audible alarm 

upon detection of a sustained risk position, alongside remote notifications via the MQTT protocol. 

The results demonstrate that the prototype is capable of reliably and continuously identifying the 

infant’s posture when used by people who are not technology experts. We conclude that it is feasible 

to develop an autonomous, accessible, and effective monitoring system that can serve as a support 

tool for caregivers and as a technological basis for new strategies in SIDS prevention. 

Keywords: sudden infant death syndrome (SIDS); convolutional neural network (CNN); embedded 

systems; Raspberry Pi (DAQ); posture monitoring; pressure mat 

 

1. Introduction 

Sudden Infant Death Syndrome (SIDS) is defined as the sudden and unexpected death of an 

apparently healthy infant under one year of age, with no identifiable cause even after a thorough 

post-mortem investigation [1–3]. This phenomenon remains one of the leading causes of infant 

mortality in developed countries, with peak incidence occurring between two and six months of age 

[4–6]. Despite decades of research, its precise aetiology remains multifactorial and not fully 

understood, leading to considerable distress among families and posing an ongoing challenge to the 

pediatric medical community. 

Research has identified multiple risk factors associated with SIDS, including genetic 

predisposition, exposure to tobacco smoke, and unsafe sleeping environments [7–9]. Some studies 

have also suggested correlations with family history [10] or environments with abnormal 

temperatures [11]. Among all these factors, sleep position has been identified as the most significant 

and, crucially, the most easily modifiable. There is overwhelming scientific consensus that the supine 

position (lying on the back) significantly reduces the risk compared to the prone position (lying on 
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the stomach) [1,12]. This finding has driven global public health campaigns, such as "Back to Sleep", 

which have significantly reduced SIDS rates [13]. However, the risk remains and may even increase 

as infants acquire the ability to change position during sleep, thereby requiring continuous 

monitoring autonomously. 

In response to this need, various technological solutions for infant monitoring have been 

explored. Some approaches involve video-based systems [14], which present notable limitations such 

as dependence on lighting conditions, possible occlusion of the field of view, and, fundamentally, 

privacy concerns. Other strategies utilize body-worn sensors attached to the infant to measure vital 

signs such as heart rate, respiration, or oxygen saturation [15–18]. While effective at capturing 

physiological data, these solutions are intrusive, may cause discomfort to the infant, and are at risk 

of accidental detachment. 

To address the limitations of current systems, this article presents an alternative, non-invasive, 

privacy-preserving solution. It proposes the design and implementation of a system based on a 

pressure-sensing mat placed beneath the infant's mattress. The objective is to autonomously and 

continuously monitor the infant's posture, issuing reliable alerts in the event of detecting a prolonged 

risky position. This work demonstrates the feasibility of using pressure data, transformed into images 

and classified by a convolutional neural network (CNN) deployed on an embedded system, as an 

effective and accessible tool for the prevention of SIDS. 

The remainder of the article is organized as follows: first, a review of pressure-sensing mats used 

as the primary data acquisition device is presented. This is followed by a description of the data 

acquisition process and the characteristics of the collected data. Subsequently, the data processing 

methodology is detailed, including transformation and analysis using deep learning techniques. 

Finally, the developed autonomous system is described, and the study’s conclusions are presented. 

2. Pressure-Sensing Mats: Principles and Application 

2.1. Operating Principle and Applications 

Pressure-sensing mats are data acquisition devices that capture the distribution of force across a 

surface. This technology constitutes a cornerstone in the field of Human Activity Recognition (HAR), 

with applications ranging from healthcare—such as patient monitoring and the prevention of 

pressure ulcers [19,20] or heart failure detection [21]—to collaborative robotics, where it enhances 

human–robot interaction. 

The technology is based on a matrix of discrete sensing points. Each point, or sensor, typically 

functions as a variable resistor (piezoresistor), whose resistance value changes depending on the 

applied pressure. The most common reading principle for each sensor (R1 in Figure 1) relies on a 

voltage divider circuit. In this setup, the sensor (R1) is connected in series with a fixed reference 

resistor (R2) between a supply voltage (Vcc) and ground (GND). The output voltage (Vo), which is 

proportional to the exerted pressure, is measured between the two resistors and is given by the 

equation: 

𝑉𝑜 = 𝑉𝑐𝑐 ·
𝑅1

𝑅1 + 𝑅2
 (1) 

where R1(P) represents the resistance of the sensor as a function of pressure P. The choice of the 

reference resistor R2 is critical, as it determines the sensitivity and operational range of the sensor, 

allowing for the adjustment of the response curve to be either more linear or logarithmic, as 

illustrated in Figure 2. 
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Figure 1. Electronic schematic of a voltage divider used for reading a piezoresistive pressure sensor (R1). 

 

Figure 2. Behaviour of the output voltage (Vo) as a function of the sensor resistance (R1) for different values of 

the reference resistor (R2), showing the circuit’s capability to adjust sensitivity. 

2.2. From Individual Sensors to Textile Matrices 

While individual force sensors such as those in the FSR400 series [22] can be employed for point-

specific measurements, constructing a high-density pressure-sensitive surface using discrete sensors 

becomes impractical due to the complexity of wiring. To overcome this limitation, advanced textile 

materials such as Velostat, Carbo-Text, or Polypyrrole have emerged, integrating the sensor matrix 

directly into the fabric structure [23]. 

The construction of these pressure-sensing mats entails a trade-off between spatial resolution 

(sensor density), the total sensing area, and the sampling frequency. As the number of sensors in the 

matrix increases (Figure 3), more complex control electronics are required, typically involving 

multiplexers and buffers to manage the sequential reading of all points. This introduces inherent 

latency: with a fixed reading system, scanning a larger number of sensors leads to a lower acquisition 

frequency for the complete matrix. Alternatively, maintaining a high acquisition rate across a large 

matrix necessitates parallel reading hardware, which significantly increases the overall system cost. 
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Figure 3. Scaling of sensor matrices. a) Single matrix. b) Multiple interconnected matrices covering a larger 

surface, managed by central control electronics. (source: Technical documentation of the Company Sensing Tex). 

2.3. Data Acquisition System Used in This Study 

This study utilized two non-commercial prototypes of pressure mats developed by the company 

Sensing Tex [24], based on their Sensing Mat Dev Kits platform. The key technical specifications of 

these devices are summarized below: 

• Physical Dimensions: 1000 × 1000 mm.  

• Sensing Area: 950 × 950 mm 

• Matrix Resolution: 80 × 80 sensors, totaling 6,400 measurement points 

• Spatial Resolution: Approximately 11.87 mm center-to-center distance between sensors 

• Optimized Pressure Range: At the specific request of this project, the mats were calibrated for 

optimal performance with weights ranging from 5 to 10 kg, corresponding to the target infant 

population 

• Measurement Resolution: The internal analogue-to-digital converter (ADC) operates at 12 bits, 

providing 4096 distinct pressure levels per sensor 

• Materials: Neoprene top layer and anti-slip base (see Figure 4) 

• Sampling Frequency: Data acquisition was performed via the USB interface. Although the 

manufacturer specifies a rate of 5 Hz, empirical measurements taken from the captured data 

revealed an effective sampling rate between 10 and 11 Hz 

The manufacturer provides a software application compatible with Windows, Android, and iOS 

that allows for real-time visualization and data capture (Figure 5), as well as a Software Development 

Kit (SDK) [25]. This SDK was employed in our work to develop a custom application, enabling direct 

integration with the mat from a Linux environment and offering complete programmatic control over 

the data acquisition process. 

 

Figure 4. Prototype of the Sensing Tex pressure mat used in the study, with a mannequin illustrating the capture 

of the pressure imprint. 
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Figure 5. Software provided by the manufacturer. a) Device selection screen. b) Real-time interface for 

visualizing the pressure matrix. 

3. Data Collection 

Data collection was conducted within the framework of a broader project, leveraging routine 

paediatric check-ups that infants are required to undergo by the healthcare protocol of the 

Community of Madrid (Spain). To participate in the study, parents were informed in advance about 

the procedures to be performed and provided explicit written consent. The relevant ethics 

committees of both the sponsoring university and the associated healthcare area approved both the 

consent process and the procedures involving nominal data. 

During data acquisition, the paediatrician carried out the standard clinical assessments, but in 

this case using a pressure-sensing mat placed on the examination table. Simultaneously, a specialized 

technician operated the computer connected to the mat using the software provided by the 

manufacturer. 

In total, data were collected from 87 infants. Subsequently, a thorough review of the recorded 

samples was conducted—using both the manufacturer’s software (see Figure 6) and supplementary 

video recordings captured during the sessions—with the involvement of physiotherapists and 

technologists. As a result, certain samples from specific infants, in both the prone and supine 

positions, were excluded. The main reasons for discarding samples included the presence of signal 

interference, such as additional pressure marks caused by objects used to capture the infant’s 

attention, or unintentional contact between the paediatrician and the mat. Other samples were 

excluded in cases where proper testing could not be completed due to the infant crying or becoming 

distressed, most likely due to the unfamiliar presence of the doctor [26]. 

Following this filtering process, a total of 55 samples in the supine position and 54 in the prone 

position were ultimately selected. 
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Figure 6. Example of visualization of one of the captured files. 

3.1. Data Obtained 

Two main types of files were generated for each infant: 

• Pressure imprint file, capturing the data recorded by the mat 

• Timestamp and position annotation file, marking the time intervals during which the infant 

remained in each posture (prone or supine) 

3.1.1. Pressure Imprint File 

The manufacturer’s software allows for the export of the pressure imprints recorded during the 

session in JSON format [27]. This file (see Text Box 1 for an example) contains the complete sequence 

of samples collected during the session. 

The JSON file includes several variables, such as metadata (e.g., software version and 

configuration parameters), which are not relevant to this study but have been retained to ensure 

reproducibility in future data analyses. 

For this work, the standard software configuration was used, without applying capture limits 

or thresholds. This choice aimed to preserve the integrity of the samples, even at the expense of 

allowing the presence of “shadows” or potential interferences, in order to simulate as realistic an 

environment as possible. 

The key variable for analysis is pressureData, which contains an array of samples. Each sample 

consists of two fields: 

• dateTime: timestamp in ISO 8601 format [28] 

• pressureMatrix: an 80 × 80 pressure matrix, where each element represents the integer value 

recorded by each sensor, though presented in the file as a decimal 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2025 doi:10.20944/preprints202508.0127.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0127.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 19 

 

 

3.1.2. Annotation File 

The review process described above also enabled the precise definition of the time intervals 

corresponding to each posture adopted by the infant. 

The annotation file (Text Box 2) contains lines of text indicating the video frames at which 

posture changes occurred, visually identified using the manufacturer’s application. Each line 

includes the frame number and a letter marking the beginning or end of a posture: S for supine and 

P for prone. For example, in Figure 6, the frame number is shown as 664 (visible at the bottom of the 

interface, above the video playback controls), indicating the relevant point in the recording. 

{"softwareVersion":"1.9","calibrationConfiguration":{"calibrationTable":{"conversionT

able":null,"name":null},"customCalibrationTable":null,"calibrationUnits":0,"isVoltage

SharingCompensationActivated":true,"isOutputImpedanceCompensationActivated":false,"is

AutomaticBrokenRowsCompensationActivated":false,"isRoundMatrixFilterActivated":false,

"isManualRowInterpolationActivated":[false,false,false,false,false,false,false,false,

false],"manualRowInterpolationValue":[0,0,0,0,0,0,0,0,0],"isManualColumnInterpolation

Activated":[false,false,false],"manualColumnInterpolationValue":[0,0,0],"Compensation

Direction":false},"representationConfiguration":{"threshold":0,"scaleSetting":0,"auto

maticScaleDefinition":0,"manualScaleDefinition":0,"manualScaleMax":50,"isContourActiv

ated":false,"rotateDegrees":0,"flip":2,"plotBackgroundColor":{"A":255,"B":255,"G":255

,"R":255},"colorScale":{"Colors":[{"A":255,"B":139,"G":0,"R":0},{"A":255,"B":190,"G":

113,"R":0},{"A":255,"B":242,"G":226,"R":0},{"A":255,"B":170,"G":255,"R":84},{"A":255,

"B":56,"G":255,"R":198},{"A":255,"B":0,"G":235,"R":255},{"A":255,"B":0,"G":195,"R":25

5},{"A":255,"B":0,"G":146,"R":242},{"A":255,"B":0,"G":73,"R":190},{"A":255,"B":0,"G":

0,"R":139}]},"isDiscardBorderActivated":false,"numDiscardedBorderLines":0,"isShowNumb

ersActivated":true},"pressureData":[{"dateTime":"2024-01-

27T17:14:41.6112986+01:00","pressureMatrix":[[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0

.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0

.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.0,0.0],[0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0

.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0

.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.

0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,0.0,0.0,0.0,0.0,0.

Text Box 1. Example of JSON File Exported by the Manufacturer's Application 
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This annotation file follows an internal protocol developed to facilitate automated data analysis. It 

typically contains an even number of lines, representing paired start and end events for each posture. 

If a start marker is detected without a corresponding end marker, that entry is automatically 

discarded. 

4. Data Analysis 

The analysis of each infant’s data involved jointly processing the pressure imprint file and the 

annotation file, to extract the samples corresponding to the time intervals during which the infant 

remained in a specific posture. 

To achieve this, the JSON pressure data file was read sequentially to identify the frame ranges 

associated with each posture, as specified in the annotation file. From that point, the corresponding 

pressure matrices were extracted one by one and converted into PNG-format images. These images 

were stored in directories labelled with both the posture (prone or supine) and the infant’s identifier. 

The name of each PNG file corresponds to the frame number of the matrix within the JSON file, 

allowing direct traceability to its original position in the data sequence if required. 

This task was implemented in Python using, among other tools, the OpenCV library for 

processing and converting matrices into images. 

Figure 7 shows a set of six sample images, corresponding to three prone and three supine 

examples from different infants. Each image has a resolution of 80 × 80 pixels, corresponding to the 

number of sensors in the pressure mat. Given that the images were saved in greyscale PNG format 

with lossless compression, the resulting file size is typically below 1 KB in most cases. 

 

Figure 7. Examples of infant pressure imprint images. 

After processing all the infant samples using this procedure, a total of 44,559 supine images and 

24,769 prone images were obtained. This substantial difference in sample count reflects practical 

considerations: due to the young age of the participants, in many cases only supine position tests 

were conducted, or the infant was kept in the prone position for a significantly shorter duration. As 

162 S 

504 S 

658 P 

901 P 

 

Text Box 2. Example of an Annotation File Indicating Start and End Points for Supine and Prone 

Positions. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2025 doi:10.20944/preprints202508.0127.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0127.v1
http://creativecommons.org/licenses/by/4.0/


 9 of 19 

 

noted in several studies [29–32], one of the most widely used international tools for assessing infant 

motor development is the Alberta Infant Motor Scale (AIMS). According to this scale, as infants grow, 

more time is spent testing them in the prone position and other postures, which also accounts for the 

variation in posture duration observed during data collection. 

5. Image Analysis 

Once the images have been generated from the pressure footprints of the infants on the mattress, 

the objective is to automatically determine whether each image corresponds to a prone or supine 

position. To achieve this, artificial intelligence techniques based on convolutional neural networks 

(CNNs) are employed. 

CNNs [33–37] are a type of neural network specialized in processing data structured in a grid-

like format, such as images. These networks have revolutionized visual analysis across numerous 

fields, from medical diagnostics to autonomous driving, owing to their ability to extract hierarchical 

features and detect complex spatial patterns without the need to design such features manually. 

In this study, a CNN was developed using Python, with the open-source libraries Keras and 

TensorFlow, which are widely used for the development and training of deep learning models. 

5.1. Image Preprocessing 

Before using the images as input for the model, they must undergo a preprocessing stage. This 

step aims to adjust both the quality and quantity of data to optimize model performance and reduce 

training time. 

Given the imbalance between the number of images in each class (supine and prone), it is 

necessary to equalize the two sets. To balance unbalanced classes, strategies such as oversampling 

using techniques like SMOTE [38,39] or synthetic data generation exist. However, due to the large 

availability of images, the approach chosen was to reduce the number of images in the majority class 

(supine) by randomly discarding around 20,000 samples. As a result, two balanced sets were 

obtained, each with approximately 25,000 images. 

Subsequently, the data are split into two subsets: one for training (70%) and one for testing (30%). 

This split is not performed randomly on the images themselves, but at the individual level; that is, 

different infants are selected for each subset. In this way, the presence of images from the same baby 

in both sets is avoided, which could otherwise create a false impression of high performance due to 

the similarity between samples. 

6. Neural Network Architecture 

The architecture of the CNN was designed using Python code (Text Box 3). As the first step in 

data processing, the original 80 × 80 pixel images are reduced to a size of 40 × 40 pixels to decrease 

computational complexity. Subsequently, pixel values are normalised to the range [0, 1], which 

facilitates the model’s learning process. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2025 doi:10.20944/preprints202508.0127.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0127.v1
http://creativecommons.org/licenses/by/4.0/


 10 of 19 

 

 

The network consists of several layers arranged sequentially (Text Box 4). In its initial structure, 

it includes three convolutional layer blocks, which act as filters capable of detecting relevant features 

such as edges, shapes, or textures. Each of these blocks is followed by a max pooling layer, which 

reduces the dimensionality of the data while preserving the most significant information. This 

process helps to decrease the risk of overfitting and improves computational efficiency. 

 

num_classes = len(class_names) # class_names: prone, supine 

img_height = 40 

img_width  = 40 

 

model = Sequential([ 

  layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)), 

  layers.Conv2D(16, 3, padding='same', activation='relu'), 

  layers.MaxPooling2D(), 

  layers.Conv2D(32, 3, padding='same', activation='relu'), 

  layers.MaxPooling2D(), 

  layers.Conv2D(64, 3, padding='same', activation='relu'), 

  layers.MaxPooling2D(), 

  layers.Flatten(), 

  layers.Dense(128, activation='relu'), 

  layers.Dense(num_classes) 

]) 

 

Text Box 3. Example Code Defining the CNN Used 

Layer (type)                 Output Shape             Param #    

================================================================= 

rescaling_1 (Rescaling)      (None, 40, 40, 3)         0           

conv2d (Conv2D)             (None, 40, 40, 16)        448        

max_pooling2d (MaxPooling2D) (None, 20, 20, 16)        0          

conv2d_1 (Conv2D)           (None, 20, 20, 32)        4640       

max_pooling2d_1 (MaxPooling2D) (None, 10, 10, 32)        0          

conv2d_2 (Conv2D)           (None, 10, 10, 64)        18496      

max_pooling2d_2 (MaxPooling2D) (None, 5, 5, 64)          0          

flatten (Flatten)           (None, 1600)            0          

dense (Dense)               (None, 128)               204928     

dense_1 (Dense)             (None, 2)                 258      

================================================================= 

Total params: 228,770 

Trainable params: 228,770 

Non-trainable params: 0 

 

Text Box 4. Result of the CNN Generation Code Compilation. 
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As the network progresses, the number of filters per block increases (from 16 to 64), enabling it 

to learn increasingly complex patterns (Figure 8). After the convolutional blocks, the data are 

flattened (using a flatten layer), converting them into a one-dimensional vector, which serves as input 

for the final dense layers. 

 

Figure 8. Graphical representation of the CNN used. 

In the final phase, the vector passes through an intermediate dense layer with 128 neurons, 

whose function is to combine the extracted features. The output layer consists of 2 neurons, allowing 

binary classification between the two positions: prone and supine. 

In total, the network has approximately 229,000 trainable parameters, which are automatically 

adjusted during the training process, enabling the model to improve its predictive capacity 

progressively. This architecture provides an appropriate balance between accuracy and 

computational efficiency. 

6.1. Model Training 

Once the architecture is defined, the model training process begins (Text Box 5). This process 

involves adjusting the internal parameters (weights and biases) so that the network learns to identify 

patterns in the images. The model is trained for 10 epochs, that is, 10 complete cycles over the training 

dataset (train_ds). During each epoch, the network makes predictions that are compared with the 

actual labels, and its parameters are adjusted using backpropagation and optimization algorithms. 

 

Additionally, a validation set (val_ds) is used, which does not participate in direct training but 

allows the evaluation of the model’s performance at the end of each epoch. This is essential for 

detecting potential signs of overfitting (Text Box 6). 

epochs = 10 

history = model.fit( 

  train_ds, 

  validation_data=val_ds, 

  epochs=epochs 

) 

Text Box 5. Definition of the Number of Epochs and CNN Training. 
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6.2. Training Results 

After training, key metrics such as accuracy and loss are obtained for both the training and 

validation datasets. These metrics are stored in the variable history within the code and can be 

graphically represented to analyze the model’s progression (Figure 9). 

• The graph on the left shows the evolution of accuracy. From the earliest epochs, the model achieves high 

accuracy, exceeding 97% in both training and validation. From there, both curves continue to rise and 

stabilize above 99%. 

• The graph on the right displays the loss progression. Initially, the loss decreases rapidly, as is typical 

during the early learning phases. It then stabilizes, progressively falling below a value of 0.02. 

Epoch 1/10 

2588/2588 [==============================] - 436s 154ms/step - loss: 0.0829 –  

accuracy: 0.9678 - val_loss: 0.0307 - val_accuracy: 0.9870 

Epoch 2/10 

2588/2588 [==============================] - 44s 17ms/step - loss: 0.0276 –  

accuracy: 0.9873 – val_loss: 0.0250 - val_accuracy: 0.9877 

Epoch 3/10 

2588/2588 [==============================] - 45s 17ms/step - loss: 0.0229 –  

accuracy: 0.9882 – val_loss: 0.0204 - val_accuracy: 0.9890 

Epoch 4/10 

2588/2588 [==============================] - 43s 17ms/step - loss: 0.0198 –  

accuracy: 0.9888 – val_loss: 0.0188 - val_accuracy: 0.9888 

Epoch 5/10 

2588/2588 [==============================] - 44s 17ms/step - loss: 0.0193 –  

accuracy: 0.9893 – val_loss: 0.0178 - val_accuracy: 0.9890 

Epoch 6/10 

2588/2588 [==============================] - 47s 18ms/step - loss: 0.0171 –  

accuracy: 0.9898 – val_loss: 0.0169 - val_accuracy: 0.9895 

Epoch 7/10 

2588/2588 [==============================] - 43s 17ms/step - loss: 0.0179 –  

accuracy: 0.9893 – val_loss: 0.0184 - val_accuracy: 0.9888 

Epoch 8/10 

2588/2588 [==============================] - 46s 18ms/step - loss: 0.0176 –  

accuracy: 0.9896 – val_loss: 0.0177 - val_accuracy: 0.9889 

Epoch 9/10 

2588/2588 [==============================] - 46s 18ms/step - loss: 0.0166 –  

accuracy: 0.9899 – val_loss: 0.0183 - val_accuracy: 0.9900 

Epoch 10/10 

2588/2588 [==============================] - 42s 16ms/step - loss: 0.0168 –  

accuracy: 0.9899 – val_loss: 0.0158 - val_accuracy: 0.9893 

 

Text Box 6. Output of the CNN Training for Each Epoch. 
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Figure 9. Comparative graphs of accuracy and loss in training and validation. 

The close alignment of the training and validation curves in both metrics indicates that the model 

shows no significant signs of overfitting and generalizes well to data not seen during training. 

In summary, the results show that the model has been successfully trained, achieving high 

accuracy and low loss on both the training and validation data. The strong correspondence between 

both curves is a clear indication that the model has effectively learned the relevant features of the 

images and is ready to be reliably used in the practical application described in the following section. 

7. Autonomous System 

Following the training and validation of the neural network model, the implementation of the 

final system proposed in this article proceeds. This system is designed to operate autonomously in 

the usual environments where children sleep, such as their homes or nurseries. 

7.1. Hardware and System Environment 

For data acquisition and processing system (DAQ), a Raspberry Pi 4 Model B with 4 GB of RAM 

was selected, running the Raspberry Pi OS Lite operating system. This version of the system lacks a 

graphical user interface, which reduces resource consumption and facilitates its operation as an 

embedded system. The choice of this platform is based on its low cost, compact size, and adequate 

processing capacity for the required tasks. 

7.2. Data Acquisition from the Mattress 

One of the initial steps in developing the system was to replicate the data acquisition 

functionality using the pressure mattress. Although the manufacturer does not provide a reading 

application compatible with Linux systems, they do offer a USB communication SDK. Using this API, 

direct reading from the mattress was programmed, obtaining a pressure matrix representing the 

weight distribution across the surface (an 80×80 pixels image). 

At this stage, the data obtained from the pressure mattress undergo preprocessing, which 

includes, among other operations, adapting the original resolution (for example, 80 × 80) to a unified 

40 × 40 format. This transformation standardizes the model’s input, facilitating compatibility with 

different sensor configurations. Should the input parameters be modified, minimal adjustments to 

the code would be necessary to ensure correct integration with the analysis system. 
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7.3. System Operation 

The system is designed to operate autonomously and continuously. Using a Python script, the 

DAQ takes samples from the mattress at regular intervals. Each reading generates a matrix containing 

the pressure values. Before performing classification, it verifies whether the child is present on the 

mattress by checking if the matrix contains a significant number of non-zero values. 

If the child is detected, the classification system is activated. Part of the preprocessing code used 

during model training is reused for this purpose. Specifically, the images are reduced to 40 × 40 pixels, 

the values are normalized to the range [0, 1], and they are adapted to the input format expected by 

the neural network. 

The preprocessed matrix is passed to the model loaded in memory, which performs inference 

and returns a probability for each class (prone or supine). The class with the highest probability is 

considered the current posture. 

7.4. Decision Logic and Buffer System 

Since it is unlikely for a baby to change position multiple times within a few seconds, a filtering 

mechanism is implemented to avoid false alarms. This is based on a circular buffer that stores the last 

5 predictions: 

• A value of 1 is entered if the prone position is detected. 

• A value of -1 is entered if supine is detected. 

• A value of 0 is entered if no presence is detected on the mattress. 

If the average of the buffer exceeds a threshold of 0.3, it is considered that the baby has 

maintained an incorrect position (i.e., at least 3 of the last 5 predictions were prone), and an alarm 

notification is generated. 

This threshold and other system parameters can be configured via a local web interface 

accessible from the DAQ itself (Figure 10). 

 

Figure 10. Web page for system configuration form. 

7.5. Alert System and Additional Sensors 

When an incorrect position is detected, the system can notify the alert in various ways: 
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1. Local notifications: 

• A red LED is activated to indicate the alarm state. 

• A buzzer is available, which is disabled by default but can be configured to emit an audible 

signal. 

2. Remote notifications: 

• A notification system using the MQTT protocol [40] is provided, allowing integration with 

monitoring platforms or mobile devices. 

The combination of these notification methods enables an effective response to risk situations, 

both in the room where the infant is located and in adjacent or remote locations, without the need for 

constant on-site supervision. 

Additionally, with a view to a future study, the system incorporates a DHT22 (AM2302) 

environmental sensor [41], responsible for measuring ambient temperature and humidity (Figure 11) 

to evaluate evidence found in the literature suggesting a possible association between abnormal 

thermal conditions and an increased risk of sudden infant death syndrome (SIDS) [11]. 

 

Figure 11. Schematic of additional sensors connected to the DAQ (source: Own elaboration using Fritzing). 

7.6. Remote Communication via MQTT 

For remote notifications, an alarm publication service has been implemented using the MQTT 

protocol. Eclipse Mosquitto [42] is used as the MQTT broker, and message transmission is carried out 

in Python using the Paho library. 

Initially, receiving devices must be connected to the same local network for security reasons and 

must be subscribed to the system’s topic channel. However, as shown in the web configuration 

interface (Figure 10), it is possible to change the server to a public one if remote access from outside 

the local network is desired. This would enhance the system’s capabilities at the cost of placing trust 

in the external server to which data are transmitted. 

To receive notifications on mobile devices, applications such as MyMQTT [43] or IoT MQTT 

Panel [44,45] can be installed. Once notifications are enabled, these apps allow real-time alerts to be 

received directly from the system. 

The adoption of this protocol enables the integration of alerts generated by multiple autonomous 

systems operating within a hospital environment. Furthermore, this architecture could be extended 

to the remote monitoring of alarms in private homes, to proactively respond to potential assistance 

requests. 
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8. Discussion of Results and Conclusions 

Throughout this work, the proposed objectives have been successfully achieved: on the one 

hand, the design and training of an image classification model based on a convolutional neural 

network (CNN); and on the other, the implementation of an autonomous system capable of detecting 

a baby's sleeping posture in a non-invasive and human-independent manner. This functionality is of 

significant value, as it enables the identification of positions associated with a higher risk of sudden 

infant death syndrome (SIDS), contributing to the prevention of such events. 

Regarding the first objective, the trained model demonstrated high performance in binary 

classification tasks, with accuracy levels exceeding 98% for both the training and validation datasets. 

These strong results were supported by a large, properly balanced, and preprocessed dataset, which 

enabled the neural network to learn effectively without overfitting. The accuracy and loss graphs 

showed stable behavior, indicating good generalisation by the model. 

One of the most notable achievements has been the effective deployment of the model on an 

embedded platform, specifically a DAQ. This low-cost, low-power device proved sufficiently 

powerful to perform real-time inference using the trained model, without the need for external 

hardware or server connections. 

The architecture of the developed system enables continuous and autonomous detection, based 

on regular readings from a sensitized mattress that captures the baby's pressure distribution. The 

implementation of a sliding buffer structure added robustness to the decision-making system, 

helping to avoid false alarms triggered by isolated readings or temporary anomalies. 

In addition, the system provides both local and remote notification mechanisms via LEDs, 

buzzers, and MQTT messaging, making it a versatile tool suitable for both home and clinical settings. 

Its web-based configuration interface allows critical parameters to be adjusted without modifying the 

underlying code, making it accessible to non-technical users. 

In summary, the developed system demonstrates the technical and practical feasibility of using 

artificial intelligence, combined with pressure sensors and low-cost hardware, to carry out non-

invasive infant posture monitoring. This represents a significant step forward compared to previous 

methods, many of which relied on intrusive or less accessible solutions. 

The results obtained also open up several avenues for future development, including: 

• The incorporation of new sensors to enrich the collected data, such as a depth camera. 

• Integration with IoT platforms or connected healthcare systems. 

• Expansion of the model to other tasks related to sleep analysis, such as phase detection or 

abnormal movement identification. 

• Enhancement of the alarm system, adapting it to personalized scenarios based on each 

environment or user type. 

Overall, the solution presented is a technological development with high potential impact in the 

field of infant care, offering real-world applicability and opportunities for continuous improvement. 

Abbreviations 

The following abbreviations are used in this manuscript: 

SIDS Sudden Infant Death Syndrome 

CNN Convolutional Neural Network 

MQTT Message Queuing Telemetry Transport 

HAR Human Activity Recognition 

ADC Analogue-to-Digital Converter 

USB Universal Serial Bus 

SDK Software Development Kit 

JSON JavaScript Object Notation 

PNG Portable Network Graphics 

SMOTE Synthetic Minority Over-sampling Technique 

API Application Programming Interface 
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AIMS Accuracy of the Alberta Infant Motor Scale 
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