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Abstract

Sudden Infant Death Syndrome (SIDS) is one of the leading causes of postnatal mortality, with the
prone sleeping position identified as a critical risk factor. This article presents the design,
implementation, and validation of a low-cost embedded system for unobtrusive, real-time
monitoring of infant posture. The system acquires data from a pressure mat on which the infant rests,
converting the pressure matrix into an image representing the postural imprint. A Convolutional
Neural Network (CNN) has been trained to classify these images and distinguish between prone and
supine positions with high accuracy. The trained model was optimized and deployed in a data
acquisition and processing system (DAQ) based on the Raspberry Pi platform, enabling local and
autonomous inference. To prevent false positives, the system activates a visual and audible alarm
upon detection of a sustained risk position, alongside remote notifications via the MQTT protocol.
The results demonstrate that the prototype is capable of reliably and continuously identifying the
infant’s posture when used by people who are not technology experts. We conclude that it is feasible
to develop an autonomous, accessible, and effective monitoring system that can serve as a support
tool for caregivers and as a technological basis for new strategies in SIDS prevention.

Keywords: sudden infant death syndrome (SIDS); convolutional neural network (CNN); embedded
systems; Raspberry Pi (DAQ); posture monitoring; pressure mat

1. Introduction

Sudden Infant Death Syndrome (SIDS) is defined as the sudden and unexpected death of an
apparently healthy infant under one year of age, with no identifiable cause even after a thorough
post-mortem investigation [1-3]. This phenomenon remains one of the leading causes of infant
mortality in developed countries, with peak incidence occurring between two and six months of age
[4-6]. Despite decades of research, its precise aetiology remains multifactorial and not fully
understood, leading to considerable distress among families and posing an ongoing challenge to the
pediatric medical community.

Research has identified multiple risk factors associated with SIDS, including genetic
predisposition, exposure to tobacco smoke, and unsafe sleeping environments [7-9]. Some studies
have also suggested correlations with family history [10] or environments with abnormal
temperatures [11]. Among all these factors, sleep position has been identified as the most significant
and, crucially, the most easily modifiable. There is overwhelming scientific consensus that the supine
position (lying on the back) significantly reduces the risk compared to the prone position (lying on
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the stomach) [1,12]. This finding has driven global public health campaigns, such as "Back to Sleep",
which have significantly reduced SIDS rates [13]. However, the risk remains and may even increase
as infants acquire the ability to change position during sleep, thereby requiring continuous
monitoring autonomously.

In response to this need, various technological solutions for infant monitoring have been
explored. Some approaches involve video-based systems [14], which present notable limitations such
as dependence on lighting conditions, possible occlusion of the field of view, and, fundamentally,
privacy concerns. Other strategies utilize body-worn sensors attached to the infant to measure vital
signs such as heart rate, respiration, or oxygen saturation [15-18]. While effective at capturing
physiological data, these solutions are intrusive, may cause discomfort to the infant, and are at risk
of accidental detachment.

To address the limitations of current systems, this article presents an alternative, non-invasive,
privacy-preserving solution. It proposes the design and implementation of a system based on a
pressure-sensing mat placed beneath the infant's mattress. The objective is to autonomously and
continuously monitor the infant's posture, issuing reliable alerts in the event of detecting a prolonged
risky position. This work demonstrates the feasibility of using pressure data, transformed into images
and classified by a convolutional neural network (CNN) deployed on an embedded system, as an
effective and accessible tool for the prevention of SIDS.

The remainder of the article is organized as follows: first, a review of pressure-sensing mats used
as the primary data acquisition device is presented. This is followed by a description of the data
acquisition process and the characteristics of the collected data. Subsequently, the data processing
methodology is detailed, including transformation and analysis using deep learning techniques.
Finally, the developed autonomous system is described, and the study’s conclusions are presented.

2. Pressure-Sensing Mats: Principles and Application
2.1. Operating Principle and Applications

Pressure-sensing mats are data acquisition devices that capture the distribution of force across a
surface. This technology constitutes a cornerstone in the field of Human Activity Recognition (HAR),
with applications ranging from healthcare—such as patient monitoring and the prevention of
pressure ulcers [19,20] or heart failure detection [21]—to collaborative robotics, where it enhances
human-robot interaction.

The technology is based on a matrix of discrete sensing points. Each point, or sensor, typically
functions as a variable resistor (piezoresistor), whose resistance value changes depending on the
applied pressure. The most common reading principle for each sensor (R1 in Figure 1) relies on a
voltage divider circuit. In this setup, the sensor (R1) is connected in series with a fixed reference
resistor (R2) between a supply voltage (Vcc) and ground (GND). The output voltage (Vo), which is
proportional to the exerted pressure, is measured between the two resistors and is given by the

equation:

oy R1
0=V R T R2 1)

where R1(P) represents the resistance of the sensor as a function of pressure P. The choice of the
reference resistor R2 is critical, as it determines the sensitivity and operational range of the sensor,
allowing for the adjustment of the response curve to be either more linear or logarithmic, as
illustrated in Figure 2.
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Figure 1. Electronic schematic of a voltage divider used for reading a piezoresistive pressure sensor (R1).

RI Value

Figure 2. Behaviour of the output voltage (Vo) as a function of the sensor resistance (R1) for different values of
the reference resistor (R2), showing the circuit’s capability to adjust sensitivity.

2.2. From Individual Sensors to Textile Matrices

While individual force sensors such as those in the FSR400 series [22] can be employed for point-
specific measurements, constructing a high-density pressure-sensitive surface using discrete sensors
becomes impractical due to the complexity of wiring. To overcome this limitation, advanced textile
materials such as Velostat, Carbo-Text, or Polypyrrole have emerged, integrating the sensor matrix
directly into the fabric structure [23].

The construction of these pressure-sensing mats entails a trade-off between spatial resolution
(sensor density), the total sensing area, and the sampling frequency. As the number of sensors in the
matrix increases (Figure 3), more complex control electronics are required, typically involving
multiplexers and buffers to manage the sequential reading of all points. This introduces inherent
latency: with a fixed reading system, scanning a larger number of sensors leads to a lower acquisition
frequency for the complete matrix. Alternatively, maintaining a high acquisition rate across a large
matrix necessitates parallel reading hardware, which significantly increases the overall system cost.
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Figure 3. Scaling of sensor matrices. a) Single matrix. b) Multiple interconnected matrices covering a larger

surface, managed by central control electronics. (source: Technical documentation of the Company Sensing Tex).

2.3. Data Acquisition System Used in This Study

This study utilized two non-commercial prototypes of pressure mats developed by the company
Sensing Tex [24], based on their Sensing Mat Dev Kits platform. The key technical specifications of
these devices are summarized below:

e  Physical Dimensions: 1000 x 1000 mm.

e  Sensing Area: 950 x 950 mm

e  Matrix Resolution: 80 x 80 sensors, totaling 6,400 measurement points

e  Spatial Resolution: Approximately 11.87 mm center-to-center distance between sensors

e  Optimized Pressure Range: At the specific request of this project, the mats were calibrated for
optimal performance with weights ranging from 5 to 10 kg, corresponding to the target infant
population

e  Measurement Resolution: The internal analogue-to-digital converter (ADC) operates at 12 bits,
providing 4096 distinct pressure levels per sensor

e  Materials: Neoprene top layer and anti-slip base (see Figure 4)

e  Sampling Frequency: Data acquisition was performed via the USB interface. Although the
manufacturer specifies a rate of 5 Hz, empirical measurements taken from the captured data
revealed an effective sampling rate between 10 and 11 Hz

The manufacturer provides a software application compatible with Windows, Android, and iOS
that allows for real-time visualization and data capture (Figure 5), as well as a Software Development
Kit (SDK) [25]. This SDK was employed in our work to develop a custom application, enabling direct
integration with the mat from a Linux environment and offering complete programmatic control over
the data acquisition process.

L.Pr

oyecto de investigacién RT12018-101962-8-100 (MCU/AEY, FEDER, \\
, UE)

Figure 4. Prototype of the Sensing Tex pressure mat used in the study, with a mannequin illustrating the capture

of the pressure imprint.
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Figure 5. Software provided by the manufacturer. a) Device selection screen. b) Real-time interface for

visualizing the pressure matrix.

3. Data Collection

Data collection was conducted within the framework of a broader project, leveraging routine
paediatric check-ups that infants are required to undergo by the healthcare protocol of the
Community of Madrid (Spain). To participate in the study, parents were informed in advance about
the procedures to be performed and provided explicit written consent. The relevant ethics
committees of both the sponsoring university and the associated healthcare area approved both the
consent process and the procedures involving nominal data.

During data acquisition, the paediatrician carried out the standard clinical assessments, but in
this case using a pressure-sensing mat placed on the examination table. Simultaneously, a specialized
technician operated the computer connected to the mat using the software provided by the
manufacturer.

In total, data were collected from 87 infants. Subsequently, a thorough review of the recorded
samples was conducted —using both the manufacturer’s software (see Figure 6) and supplementary
video recordings captured during the sessions—with the involvement of physiotherapists and
technologists. As a result, certain samples from specific infants, in both the prone and supine
positions, were excluded. The main reasons for discarding samples included the presence of signal
interference, such as additional pressure marks caused by objects used to capture the infant’s
attention, or unintentional contact between the paediatrician and the mat. Other samples were
excluded in cases where proper testing could not be completed due to the infant crying or becoming
distressed, most likely due to the unfamiliar presence of the doctor [26].

Following this filtering process, a total of 55 samples in the supine position and 54 in the prone
position were ultimately selected.
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Figure 6. Example of visualization of one of the captured files.

3.1. Data Obtained

Two main types of files were generated for each infant:

e  Pressure imprint file, capturing the data recorded by the mat
e  Timestamp and position annotation file, marking the time intervals during which the infant
remained in each posture (prone or supine)

3.1.1. Pressure Imprint File

The manufacturer’s software allows for the export of the pressure imprints recorded during the
session in JSON format [27]. This file (see Text Box 1 for an example) contains the complete sequence
of samples collected during the session.

The JSON file includes several variables, such as metadata (e.g., software version and
configuration parameters), which are not relevant to this study but have been retained to ensure
reproducibility in future data analyses.

For this work, the standard software configuration was used, without applying capture limits
or thresholds. This choice aimed to preserve the integrity of the samples, even at the expense of
allowing the presence of “shadows” or potential interferences, in order to simulate as realistic an
environment as possible.

The key variable for analysis is pressureData, which contains an array of samples. Each sample
consists of two fields:

o dateTime: timestamp in ISO 8601 format [28]
o pressureMatrix: an 80 x 80 pressure matrix, where each element represents the integer value
recorded by each sensor, though presented in the file as a decimal
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Text Box 1. Example of JSON File Exported by the Manufacturer's Application

{"softwareVersion":"1.9","calibrationConfiguration":{"calibrationTable":{"conversionT
able":null,"name":null}, "customCalibrationTable":null,"calibrationUnits":0,"isVoltage
SharingCompensationActivated":true, "isOutputImpedanceCompensationActivated"”:false,"is
AutomaticBrokenRowsCompensationActivated"”:false, "isRoundMatrixFilterActivated"”:false,
"isManualRowInterpolationActivated":[false,false,false,false,false,false,false,false,
false], "manualRowInterpolationvalue":[0,0,0,0,0,0,0,0,0],"isManualColumnInterpolation
Activated":[false,false,false], "manualColumnInterpolationvalue":[0,0,0], "Compensation
Direction":false}, "representationConfiguration”:{"threshold":0,"scaleSetting":0,"auto
maticScaleDefinition":0,"manualScaleDefinition":0,"manualScaleMax":50,"isContourActiv
ated":false, "rotateDegrees":0,"flip":2,"plotBackgroundColor":{"A":255,"B":255,"G":255
,"R":255},"colorScale":{"Colors":[{"A":255,"B":139,"G":0,"R":0},{"A":255,"B":190,"G":
113,"R":0},{"A":255,"B":242,"G":226,"R":0},{"A":255,"B":170,"G":255,"R":84},{"A":255,
"B":56,"G":255,"R":198},{"A":255,"B":0,"G":235,"R":255},{"A":255,"B":0,"G":195,"R":25
5},{"A":255,"B":0,"G":146,"R":242},{"A":255,"B":0,"G":73,"R":190}, {"A":255,"B":0,"G":
0,"R":139}]}, "isDiscardBorderActivated":false, "numDiscardedBorderLines":0,"isShowNumb
ersActivated":true}, "pressureData":[{"dateTime":"2024-01-

27T17:14:41.6112986+01:00", "pressureMatrix":[[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0],[(0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],[0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.01,[0.0,0.0,0.0,0.0,0.0,0.0,0.

3.1.2. Annotation File

The review process described above also enabled the precise definition of the time intervals
corresponding to each posture adopted by the infant.

The annotation file (Text Box 2) contains lines of text indicating the video frames at which
posture changes occurred, visually identified using the manufacturer’s application. Each line
includes the frame number and a letter marking the beginning or end of a posture: S for supine and
P for prone. For example, in Figure 6, the frame number is shown as 664 (visible at the bottom of the
interface, above the video playback controls), indicating the relevant point in the recording.
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Text Box 2. Example of an Annotation File Indicating Start and End Points for Supine and Prone

Positions.
162 S
504 S
658 P
91 P

This annotation file follows an internal protocol developed to facilitate automated data analysis. It
typically contains an even number of lines, representing paired start and end events for each posture.
If a start marker is detected without a corresponding end marker, that entry is automatically
discarded.

4. Data Analysis

The analysis of each infant’s data involved jointly processing the pressure imprint file and the
annotation file, to extract the samples corresponding to the time intervals during which the infant
remained in a specific posture.

To achieve this, the JSON pressure data file was read sequentially to identify the frame ranges
associated with each posture, as specified in the annotation file. From that point, the corresponding
pressure matrices were extracted one by one and converted into PNG-format images. These images
were stored in directories labelled with both the posture (prone or supine) and the infant’s identifier.
The name of each PNG file corresponds to the frame number of the matrix within the JSON file,
allowing direct traceability to its original position in the data sequence if required.

This task was implemented in Python using, among other tools, the OpenCV library for
processing and converting matrices into images.

Figure 7 shows a set of six sample images, corresponding to three prone and three supine
examples from different infants. Each image has a resolution of 80 x 80 pixels, corresponding to the
number of sensors in the pressure mat. Given that the images were saved in greyscale PNG format
with lossless compression, the resulting file size is typically below 1 KB in most cases.

..

Samplesin prone position

Samplesin Supine position

Figure 7. Examples of infant pressure imprint images.

After processing all the infant samples using this procedure, a total of 44,559 supine images and
24,769 prone images were obtained. This substantial difference in sample count reflects practical
considerations: due to the young age of the participants, in many cases only supine position tests
were conducted, or the infant was kept in the prone position for a significantly shorter duration. As
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noted in several studies [29-32], one of the most widely used international tools for assessing infant
motor development is the Alberta Infant Motor Scale (AIMS). According to this scale, as infants grow,
more time is spent testing them in the prone position and other postures, which also accounts for the
variation in posture duration observed during data collection.

5. Image Analysis

Once the images have been generated from the pressure footprints of the infants on the mattress,
the objective is to automatically determine whether each image corresponds to a prone or supine
position. To achieve this, artificial intelligence techniques based on convolutional neural networks
(CNNSs) are employed.

CNNs [33-37] are a type of neural network specialized in processing data structured in a grid-
like format, such as images. These networks have revolutionized visual analysis across numerous
fields, from medical diagnostics to autonomous driving, owing to their ability to extract hierarchical
features and detect complex spatial patterns without the need to design such features manually.

In this study, a CNN was developed using Python, with the open-source libraries Keras and
TensorFlow, which are widely used for the development and training of deep learning models.

5.1. Image Preprocessing

Before using the images as input for the model, they must undergo a preprocessing stage. This
step aims to adjust both the quality and quantity of data to optimize model performance and reduce
training time.

Given the imbalance between the number of images in each class (supine and prone), it is
necessary to equalize the two sets. To balance unbalanced classes, strategies such as oversampling
using techniques like SMOTE [38,39] or synthetic data generation exist. However, due to the large
availability of images, the approach chosen was to reduce the number of images in the majority class
(supine) by randomly discarding around 20,000 samples. As a result, two balanced sets were
obtained, each with approximately 25,000 images.

Subsequently, the data are split into two subsets: one for training (70%) and one for testing (30%).
This split is not performed randomly on the images themselves, but at the individual level; that is,
different infants are selected for each subset. In this way, the presence of images from the same baby
in both sets is avoided, which could otherwise create a false impression of high performance due to
the similarity between samples.

6. Neural Network Architecture

The architecture of the CNN was designed using Python code (Text Box 3). As the first step in
data processing, the original 80 x 80 pixel images are reduced to a size of 40 x 40 pixels to decrease
computational complexity. Subsequently, pixel values are normalised to the range [0, 1], which
facilitates the model’s learning process.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Text Box 3. Example Code Defining the CNN Used

num_classes = len(class_names) # class_names: prone, supine

40

img_height
img_width = 40

model = Sequential([
layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),

layers.Dense(num_classes)

D

The network consists of several layers arranged sequentially (Text Box 4). In its initial structure,
it includes three convolutional layer blocks, which act as filters capable of detecting relevant features
such as edges, shapes, or textures. Each of these blocks is followed by a max pooling layer, which
reduces the dimensionality of the data while preserving the most significant information. This
process helps to decrease the risk of overfitting and improves computational efficiency.

Text Box 4. Result of the CNN Generation Code Compilation.

Layer (type) Output Shape Param #
rescaling 1 (Rescaling) (None, 40, 40, 3) 0
conv2d (Conv2D) (None, 40, 40, 16) 448
max_pooling2d (MaxPooling2D) (None, 20, 20, 16) 0

conv2d_1 (Conv2D) (None, 20, 20, 32) 4640
max_pooling2d_1 (MaxPooling2D) (None, 10, 10, 32) 0

conv2d_2 (Conv2D) (None, 10, 10, 64) 18496
max_pooling2d_2 (MaxPooling2D) (None, 5, 5, 64) 0

flatten (Flatten) (None, 1600) 0
dense (Dense) (None, 128) 204928
dense_1 (Dense) (None, 2) 258
Total params: 228,770

Trainable params: 228,770

Non-trainable params: ©
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As the network progresses, the number of filters per block increases (from 16 to 64), enabling it
to learn increasingly complex patterns (Figure 8). After the convolutional blocks, the data are
flattened (using a flatten layer), converting them into a one-dimensional vector, which serves as input
for the final dense layers.

Block
Coavelutional Block

128 Units

Figure 8. Graphical representation of the CNN used.

In the final phase, the vector passes through an intermediate dense layer with 128 neurons,
whose function is to combine the extracted features. The output layer consists of 2 neurons, allowing
binary classification between the two positions: prone and supine.

In total, the network has approximately 229,000 trainable parameters, which are automatically
adjusted during the training process, enabling the model to improve its predictive capacity
progressively. This architecture provides an appropriate balance between accuracy and
computational efficiency.

6.1. Model Training

Once the architecture is defined, the model training process begins (Text Box 5). This process
involves adjusting the internal parameters (weights and biases) so that the network learns to identify
patterns in the images. The model is trained for 10 epochs, that is, 10 complete cycles over the training
dataset (train_ds). During each epoch, the network makes predictions that are compared with the
actual labels, and its parameters are adjusted using backpropagation and optimization algorithms.

Text Box 5. Definition of the Number of Epochs and CNN Training.

epochs = 10
history = model.fit(
train_ds,

validation_data=val_ds,
epochs=epochs

Additionally, a validation set (val_ds) is used, which does not participate in direct training but
allows the evaluation of the model’s performance at the end of each epoch. This is essential for
detecting potential signs of overfitting (Text Box 6).
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Text Box 6. Output of the CNN Training for Each Epoch.

Epoch 1/10
2588/2588 [ ===========] - 436s 154ms/step - loss: 0.0829 -

accuracy: 0.9678 - val_loss: 0.0307 - val_accuracy: 0.9870
Epoch 2/10
2588/2588 [ ===========] - 44s 17ms/step - loss: 0.0276 -

accuracy: 0.9873 - val_loss: 0.0250 - val_accuracy: 0.9877
Epoch 3/10
2588/2588 [ ===========] - 45s 17ms/step - loss: 0.0229 -

accuracy: 0.9882 - val_loss: 0.0204 - val_accuracy: 0.9890
Epoch 4/10
2588/2588 [ ===========] - 43s 17ms/step - loss: 0.0198 -

accuracy: 0.9888 - val_loss: 0.0188 - val_accuracy: 0.9888
Epoch 5/10
2588/2588 [ ===========] - 44s 17ms/step - loss: 0.0193 -

accuracy: 0.9893 - val_loss: 0.0178 - val_accuracy: 0.9890
Epoch 6/10
2588/2588 [ ===========] - 47s 18ms/step - loss: 0.0171 -

accuracy: 0.9898 - val_loss: 0.0169 - val_accuracy: 0.9895
Epoch 7/10
2588/2588 [ ===========] - 43s 17ms/step - loss: 0.0179 -

accuracy: 0.9893 - val_loss: 0.0184 - val_accuracy: 0.9888
Epoch 8/10
2588/2588 [ ===========] - 46s 18ms/step - loss: 0.0176 -

accuracy: 0.9896 - val_loss: 0.0177 - val_accuracy: 0.9889
Epoch 9/10
2588/2588 [ ===========] - 46s 18ms/step - loss: 0.0166 -

accuracy: 0.9899 - val_loss: 0.0183 - val_accuracy: 0.9900
Epoch 10/10
2588/2588 [ ===========] - 42s 16ms/step - loss: 0.0168 -

accuracy: 0.9899 - val_loss: 0.0158 - val_accuracy: 0.9893

6.2. Training Results

After training, key metrics such as accuracy and loss are obtained for both the training and
validation datasets. These metrics are stored in the variable history within the code and can be
graphically represented to analyze the model’s progression (Figure 9).

o The graph on the left shows the evolution of accuracy. From the earliest epochs, the model achieves high
accuracy, exceeding 97% in both training and validation. From there, both curves continue to rise and
stabilize above 99%.

o The graph on the right displays the loss progression. Initially, the loss decreases rapidly, as is typical
during the early learning phases. It then stabilizes, progressively falling below a value of 0.02.
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Figure 9. Comparative graphs of accuracy and loss in training and validation.

The close alignment of the training and validation curves in both metrics indicates that the model
shows no significant signs of overfitting and generalizes well to data not seen during training.

In summary, the results show that the model has been successfully trained, achieving high
accuracy and low loss on both the training and validation data. The strong correspondence between
both curves is a clear indication that the model has effectively learned the relevant features of the
images and is ready to be reliably used in the practical application described in the following section.

7. Autonomous System

Following the training and validation of the neural network model, the implementation of the
final system proposed in this article proceeds. This system is designed to operate autonomously in
the usual environments where children sleep, such as their homes or nurseries.

7.1. Hardware and System Environment

For data acquisition and processing system (DAQ), a Raspberry Pi 4 Model B with 4 GB of RAM
was selected, running the Raspberry Pi OS Lite operating system. This version of the system lacks a
graphical user interface, which reduces resource consumption and facilitates its operation as an
embedded system. The choice of this platform is based on its low cost, compact size, and adequate
processing capacity for the required tasks.

7.2. Data Acquisition from the Mattress

One of the initial steps in developing the system was to replicate the data acquisition
functionality using the pressure mattress. Although the manufacturer does not provide a reading
application compatible with Linux systems, they do offer a USB communication SDK. Using this API,
direct reading from the mattress was programmed, obtaining a pressure matrix representing the
weight distribution across the surface (an 80x80 pixels image).

At this stage, the data obtained from the pressure mattress undergo preprocessing, which
includes, among other operations, adapting the original resolution (for example, 80 x 80) to a unified
40 x40 format. This transformation standardizes the model’s input, facilitating compatibility with
different sensor configurations. Should the input parameters be modified, minimal adjustments to
the code would be necessary to ensure correct integration with the analysis system.
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7.3. System Operation

The system is designed to operate autonomously and continuously. Using a Python script, the
DAQ takes samples from the mattress at regular intervals. Each reading generates a matrix containing
the pressure values. Before performing classification, it verifies whether the child is present on the
mattress by checking if the matrix contains a significant number of non-zero values.

If the child is detected, the classification system is activated. Part of the preprocessing code used
during model training is reused for this purpose. Specifically, the images are reduced to 40 x 40 pixels,
the values are normalized to the range [0, 1], and they are adapted to the input format expected by
the neural network.

The preprocessed matrix is passed to the model loaded in memory, which performs inference
and returns a probability for each class (prone or supine). The class with the highest probability is
considered the current posture.

7.4. Decision Logic and Buffer System

Since it is unlikely for a baby to change position multiple times within a few seconds, a filtering
mechanism is implemented to avoid false alarms. This is based on a circular buffer that stores the last
5 predictions:

e  Avalue of 1is entered if the prone position is detected.
e Avalue of -1 is entered if supine is detected.
e  Avalue of 0 is entered if no presence is detected on the mattress.

If the average of the buffer exceeds a threshold of 0.3, it is considered that the baby has
maintained an incorrect position (i.e., at least 3 of the last 5 predictions were prone), and an alarm
notification is generated.

This threshold and other system parameters can be configured via a local web interface
accessible from the DAQ itself (Figure 10).

os/config_en.hitml R C @

{53 PronoDetect System
Configuration

Readings / second:

1

Buffer size:

5

Alarm threshold:

0.3

Buzzer active:

Led active:

8

MQTT Server:

localhost

User:

Password:

Alarm channel.

/PronoDetect/demo/baby

Save Configuration

Figure 10. Web page for system configuration form.

7.5. Alert System and Additional Sensors

When an incorrect position is detected, the system can notify the alert in various ways:
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1. Local notifications:

e Ared LED is activated to indicate the alarm state.

e A buzzer is available, which is disabled by default but can be configured to emit an audible
signal.

2. Remote notifications:

e A notification system using the MQTT protocol [40] is provided, allowing integration with
monitoring platforms or mobile devices.

The combination of these notification methods enables an effective response to risk situations,
both in the room where the infant is located and in adjacent or remote locations, without the need for
constant on-site supervision.

Additionally, with a view to a future study, the system incorporates a DHT22 (AM2302)
environmental sensor [41], responsible for measuring ambient temperature and humidity (Figure 11)
to evaluate evidence found in the literature suggesting a possible association between abnormal
thermal conditions and an increased risk of sudden infant death syndrome (SIDS) [11].

Figure 11. Schematic of additional sensors connected to the DAQ (source: Own elaboration using Fritzing).

7.6. Remote Communication via MQTT

For remote notifications, an alarm publication service has been implemented using the MQTT
protocol. Eclipse Mosquitto [42] is used as the MQTT broker, and message transmission is carried out
in Python using the Paho library.

Initially, receiving devices must be connected to the same local network for security reasons and
must be subscribed to the system’s topic channel. However, as shown in the web configuration
interface (Figure 10), it is possible to change the server to a public one if remote access from outside
the local network is desired. This would enhance the system’s capabilities at the cost of placing trust
in the external server to which data are transmitted.

To receive notifications on mobile devices, applications such as MyMQTT [43] or IoT MQTT
Panel [44,45] can be installed. Once notifications are enabled, these apps allow real-time alerts to be
received directly from the system.

The adoption of this protocol enables the integration of alerts generated by multiple autonomous
systems operating within a hospital environment. Furthermore, this architecture could be extended
to the remote monitoring of alarms in private homes, to proactively respond to potential assistance
requests.
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8. Discussion of Results and Conclusions

Throughout this work, the proposed objectives have been successfully achieved: on the one
hand, the design and training of an image classification model based on a convolutional neural
network (CNN); and on the other, the implementation of an autonomous system capable of detecting
a baby's sleeping posture in a non-invasive and human-independent manner. This functionality is of
significant value, as it enables the identification of positions associated with a higher risk of sudden
infant death syndrome (SIDS), contributing to the prevention of such events.

Regarding the first objective, the trained model demonstrated high performance in binary
classification tasks, with accuracy levels exceeding 98% for both the training and validation datasets.
These strong results were supported by a large, properly balanced, and preprocessed dataset, which
enabled the neural network to learn effectively without overfitting. The accuracy and loss graphs
showed stable behavior, indicating good generalisation by the model.

One of the most notable achievements has been the effective deployment of the model on an
embedded platform, specifically a DAQ. This low-cost, low-power device proved sufficiently
powerful to perform real-time inference using the trained model, without the need for external
hardware or server connections.

The architecture of the developed system enables continuous and autonomous detection, based
on regular readings from a sensitized mattress that captures the baby's pressure distribution. The
implementation of a sliding buffer structure added robustness to the decision-making system,
helping to avoid false alarms triggered by isolated readings or temporary anomalies.

In addition, the system provides both local and remote notification mechanisms via LEDs,
buzzers, and MQTT messaging, making it a versatile tool suitable for both home and clinical settings.
Its web-based configuration interface allows critical parameters to be adjusted without modifying the
underlying code, making it accessible to non-technical users.

In summary, the developed system demonstrates the technical and practical feasibility of using
artificial intelligence, combined with pressure sensors and low-cost hardware, to carry out non-
invasive infant posture monitoring. This represents a significant step forward compared to previous
methods, many of which relied on intrusive or less accessible solutions.

The results obtained also open up several avenues for future development, including;:

e  The incorporation of new sensors to enrich the collected data, such as a depth camera.

e Integration with IoT platforms or connected healthcare systems.

e  Expansion of the model to other tasks related to sleep analysis, such as phase detection or
abnormal movement identification.

e  Enhancement of the alarm system, adapting it to personalized scenarios based on each
environment or user type.

Overall, the solution presented is a technological development with high potential impact in the
field of infant care, offering real-world applicability and opportunities for continuous improvement.

Abbreviations

The following abbreviations are used in this manuscript:

SIDS Sudden Infant Death Syndrome

CNN Convolutional Neural Network

MQTT Message Queuing Telemetry Transport
HAR Human Activity Recognition

ADC Analogue-to-Digital Converter

USB Universal Serial Bus

SDK Software Development Kit

JSON JavaScript Object Notation

PNG Portable Network Graphics

SMOTE  Synthetic Minority Over-sampling Technique
API Application Programming Interface
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AIMS Accuracy of the Alberta Infant Motor Scale
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