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Abstract

This work presents the active control of nonlinear vibrations of a piezoelectric-elastic-piezoelectric
sandwich beam, subjected to transverse excitation while neglecting axial displacement effects. By
using a structure with piezoelectric actuators and sensors, and taking into account geometric
nonlinearities, a nonlinear vibration control model was obtained through a feedback control law. The
dynamic equation of the structure is derived by applying the variational principle and Hamilton's
principle. This equation is solved under primary and secondary resonance by adopting the method
of averaging as a perturbation scheme and Galerkin’s approximation. The simulation results of
amplitude-frequency responses are presented and discussed for different values of control gains and
for three boundary conditions. Our results are in good agreement with those obtained by other
methods.
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1. Introduction

Structural vibrations are highly undesirable, as they can lead to issues such as structural fatigue,
transmission of vibrations to other systems, and external or internal noise due to acoustic radiation,
among others [1-3]. In many industrial and defense applications, noise and vibrations represent a
major challenge. Conventional mitigation methods, which rely on passive damping techniques, often
prove ineffective at low frequencies. In this context, active control methods appear to be more suitable
[4-9]. The principle of these so-called active techniques is to generate a field that interferes with the
disturbance field. The superimposed field must therefore match the disturbance in amplitude but be
opposite in phase for each relevant frequency. While the principle is straightforward, its
implementation is much more complex, as the disturbance is often unpredictable and composed of
multiple frequencies. Moreover, disturbance minimization is often required over a wide spatial
domain, further complicating the problem [10].

Although active control was conceived in the 1930s, it only truly advanced with the emergence
of digital signal processors in the 1980s. While some applications of this technology have already
been developed, many are still under research, particularly in the aerospace, avionics, and
automotive sectors. Focusing specifically on active vibration control, advancements remain relatively
recent. In fact, the additional size and mass introduced by the sensors and actuators required for
active vibration control have long hindered the development of many applications. Only in the last
few decades has the use of piezoelectric material-based transducers enabled significant progress. Due
to their compactness, low weight, and electro-mechanical conversion capabilities, piezoelectric
materials exhibit all the necessary qualities for use in active vibration control systems. Moreover, they
can serve both as electromechanical actuators and vibration sensors in the system [11,12].
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To reduce stresses in materials, extend their service life, enhance structural safety (e.g., in
transportation), and improve user comfort, the control and damping of mechanical vibrations has
been the subject of extensive scientific research over many decades. Furthermore, the recent
proliferation of so-called “smart materials” which couple multiple physical fields such as mechanics
and electricity has led to the development of reliable, robust, and efficient vibration control
techniques that are also highly integrable. These techniques are therefore well-suited for embedded
systems or structures with strict space constraints [11]. In this regard, Rechdaoui et al. [12-14]
developed an active control method for nonlinear vibrations of a piezoelectric—elastic sandwich beam
based on the method of multiple scales. Similarly, Belouettar et al. [15] proposed an active control
approach for the same structure based on the harmonic balance method. Despite such contributions,
vibration-related damage remains a persistent problem in our societies, and many avenues still
remain to be explored hence the ongoing need for research efforts.

This work aims to contribute to the active control of nonlinear vibrations of a sandwich beam
using the method of averaging [16-20].

1.1. Mathematical Modeling

1.1.1. Theoretical Formulation

The beam under investigation consists of an elastic core sandwiched between two piezoelectric
face sheets polarized through their thickness, as shown in Figure 1. Euler-Bernoulli beam theory is
applied to the face sheets, which are assumed to resist membrane and bending stresses. Timoshenko
beam theory is adopted for the core, which is assumed to also resist transverse shear stress. The
piezoelectric layers are fully covered on their top and bottom surfaces with electrodes. The elastic
and piezoelectric materials are considered orthotropic, with their orthotropy axes aligned with those
of the sandwich beam. All layers are assumed to be perfectly bonded. The transverse normal stress
is considered negligible compared to the other stress components [21-24]. The length, width, and
thickness of the beam are denoted by L, H, and F, respectively. The subscripts 4, s, and c refer to the
quantities associated with the bottom and top face sheets, and the core, respectively.

z
/ S =hH, S =hH,S =hH h=h, z,=—z, /
— piezoelectric I el
ZS L
elastic h, I x Dp=0
z,| ©
— piezoelectric \ h, — o,

Figure 1. Piezoelectric-elastic-piezoelectric sandwich beam [14].

1.1.2. Kinematic Description of the Beam

According to the classical laminate theory based on the aforementioned assumptions, the
displacement fields are described by [1,11,13,24].

u(x,z,t) =u(x,t) —zw (x,1)
v(x,z,t)=0 1)
w(x,z,t) = w(x,t)

In the theory of beams undergoing large deformations, the Green-Lagrange strain tensor is
considered without linearization and simplified according to the Von Karman assumptions.
U :longitudinal displacement;
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W :transverse displacement;
z :coordinate along the beam thickness (thickness direction).
Thus, the strain in the x-direction is given by:

R A

1.1.3. Electromechanical Coupling

It is well known that in piezoelectric materials, the electric field and strain mutually influence
each other. This property enables the use of piezoelectric materials as sensors and actuators for
vibration control. More specifically, this relationship can be described by constitutive equations that
characterize the coupling effects between mechanical and electrical properties [1,24].

oc=cs—¢e'E
)
D=ec+ekE

O : Stress tensor;

& : Strain tensor;

D : Electric displacement vector;

E : Electric field vector;

C : Elasticity matrix;

€ : Piezoelectric matrix;

€ : Dielectric permittivity.

The constitutive equations of piezoelectric materials can be written in the following expanded

form:
o, __Cn ¢, ¢3 0 0 O 11 0 0 _313__ &
o, Gy € S 0 0 0 0 0 ~€ &,
o, G G Gz 0 0 0 0 0 6 &
o, 0O 0 0 S 0 O 0O 4 0 &,
oslr=[|0 0 0 0 S 0 €53 0 0 s
o, L0 0 0 0 0 %] L O 0 0 &
D, O 0 O 0 & 0 €1 0 0 E,
D, 0O 0 0 €& 0 0 0 €» 0 E,
D, € €, €3 0 0 0 0 0 Ss33 E,

- - (4)

Displacements are considered independent of y and zero along the y-direction; the stress tensor
is uniaxial, and the directions of the vectors D and E are parallel to the z-axis. Thus, the reduced
constitutive relations are given by:

g =0 1
= & =—1(euE;—¢6) (4)
o,=0 iy

It follows that:

(O-lj: Cl*l _e; (‘9 j (5)
D, e €5 [\

2 2
e, 43 s~ e S
337 =33 s 31 T %31 33> ~11 7 ™11
With: 3 & 3
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1.1.4. Feedback Control Law

Let us now consider an arbitrary piezoelectric layer, actuator or sensor, placed between
z,z,(z<z,), with center z, =(z +2z,)/2 and thickness h. The electrostatic equilibrium

equation, assuming no volume charge density, is given by:

oD
2=0 (6)
4

Using the boundary conditions, D(z_) =0 ou D(z,)=0, we have:

Dy(z)=0 (7)

Thus, the electric field in the sensor, as a function of displacement, is given by:
e, e, 1

E(z)=—e=—3L(u _+=—w>—zw_) (8
S35 €y 27 ’

Since the electric field derives from a potential, we have:

o¢

E,=—— (9
} oz
Consequently, the potential difference is given by:
z, e, 1
Ap=4(z)-p(z )=~ Ej(2)dz==h(u, +=w . —zw,,
= €33 2 (10)
h,
z =z, ——
2
i=a,s
hi
zZ, =z, +—
With:
From Equations (8) and (10), we have:
Ap e
E,(2)= ——¢+%(z —z)w_ (11)
h ey ’

The core of the beam is assumed to be conductive with a uniform potential set to zero. The sensor
potential, denoted ¢, (x), is then given by:
e |
¢s = A¢s = hs (u,x +_w,x - st,xx) (12)
33 2
The actuator potential ¢ (x) depends on the sensor output potential ¢ (x) through a

proportional-derivative control law described by:

9,=G,0.+G,9 (13)

Using Equations (11) and (12), the electric fields in the sensor and actuator are respectively given
by:

S Ky e
E;(2)= —%+§(z —z)w,, (14)
s 33

e*
E{(2)= ﬁ+%(z —z)w . (15)
h, &y ’
The potentials 2 and 2 are independent of z and z,=(h +h, )/ 2 et z,=—(h +h, )/ 2.
The direct and inverse piezoelectric coefficients were taken into account in these formulations
and will be involved in the dynamic behavior of the beam [1,12,25,26].
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1.1.5. Dynamic Equation

To determine the dynamic equation of the beam, we use the variational formulation, Hamilton’s
principle, and Equations (5), (14), and (15). The beam is subjected to axial and transverse excitations

Fxand F:[1,24,27,28].
For the variational principle, we have:

[o0edv=[o0edv, + [ o0edv, + [ o56dv, = j: (NSs, + MSw)dx
V V. V. v,
= [ (Fy6u+ F,5w)dx—(pS). || (iidu+ itdw)dx

(ps)* = psss +pcsc +pusa
0&y =0uU _+w ow
With MGG

(16)

According to Hamilton’s principle, we have:

N, jad ES[ZZ l(%”ﬂ

o*w
ox*

If we integrate over the entire thickness and width, and assume that the piezoelectric layers are

(17)

M = Izaxxds =-FEI

symmetrical (4, =h,), the axial force N and the bending moment M are determined from the
previous equation as follows:

N=0o/S,+0/S.+0/S, = (0',“ +o; )SS +E.S.e (18)

Using Equation (5), we obtain:

ol +0y =2c,6-e, (B +E}) (19)

El+Ej = %=t P —. (20)

Using Equations (2), (12)-(15), we obtain:
* N2
N= (26»115 +ES, +(1-G,)s, (ey ) j ~(1-G,)s, e,
=)

33

-G,S, (31) (u +W oW, —zsw’xx)

E33 (21)
We also obtain the moment in the same manner; thus, we have:
N =(ES).¢,—Byw, —(ES),G,(u, +ww —Ww, z)
22
M:—BMgOJr(E])*w{ —(ES), z,G,(u +w w —w z) 22
(ES).=E.S. +2611S +(ES) (1-G )
(ES), =5,
S33
B, = (ES)pe(l—Gp)zs;
= (ES)pe (1+ Gp )z,;
. (ES),,
(EI).=EI +2c,(I,+8 z>)+— (21, +(1+G, )z,’S.).
. S
With: §
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By applying the variational principle to the displacements # and w, and integrating by parts

once for the terms in 5”x and 5Wx, and twice for the terms in 5Wxx, we obtain the following

partial differential equations [1,12-15].

_N,x +(pS)*u =FX
23
M, —(Nw,) +(pS).iw=F, *

Assuming that the axial force and the axial displacement inertia are negligible, system (23)

becomes:
-N_ = 0
’ .. (24)
M. —(Nw,) +(pS).w=F,

The axial force depending only on time (N (x,t)=N (t)) , system (24) becomes:

N=L(ES)w 2 -Bw. —(ES),,G,(w v, Wz,
2 ’ ’ R (25)

xx s

M = %BMM{X2 +(ED.w,, —(ES), Gz, (W W, —Ww z)

En intégrant la premiere équation du systeme (25) entre (O et L), on obtient :

(ES),,
L (26)

By substituting (26) into the second equation of system (25), the following dynamic equation is

_ 1 Lo, BN L L X .
N(@O) = - (ES). [ w. dx—=L- [ W~ G, [ (b, =2, )dx

obtained:

(P10 + (D)W, =N ()W, = By (" w0, w,,)

(08, G2, (0, 20,0, 0 =)=

This differential equation describes the transverse dynamic behavior of the piezoelectric-elastic-
piezoelectric beam subjected to a transverse excitation and active control based on the feedback
control law, when the axial force and axial displacement effects are neglected. The free and forced
nonlinear vibrations, as well as the active control of the beam, can be analyzed by solving Equation
(24) or (27) [12].

In this work, the axial effects are neglected; therefore, only Equation (27), which describes the
dynamic behavior of the beam without axial effects, will be solved.

2. Solution Methodology

To solve Equation (27), and in order to simplify the calculations, the Galerkin approximation
given by Equation (29) below is applied. The beam is transversely excited by an external uniformly
distributed harmonic force of the form:

F.(x,1) = f(x)cos(ot) (28)
The Galerkin approximation [12,28] is given by:

w0 =Y 4,0, () @9)

o, (x) :are the vibration modes of the beam;

g, (t) :are the associated time-dependent amplitudes.

This mode superposition leads to a reduced-order approximate dynamic system model. To
perform control in a simple manner, we consider a single mode. By substituting Equation (29) into
Equation (27), integrating over the entire length, and omitting the indices since only one mode is
considered, we obtain:

G(O) +2u4(1) + @,q(1) + a,q” (6) + a,q” (1) + g ()G (8) + asq” (1)4(1) = F, cos(ax) (30)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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SEDLGE 1, (par:
W} = (ED. j 0. (Dp(x)dx;
— jo 0. (W], 9, (=2 [ {(p, () + 9, (D, (0} o)
@=L [N (s (o, () ds
ES) Gz (1t . . i

g =~ G J; o] g (o2 [ 9. (o) +¢x<x)¢m<x)¢(x)dx)];
a; = (ES) G el [ (x| (p, () d

F=— L S @p(x)dx;

M =(pS). [ (p,(x)dx.

These coefficients depend on the control parameters Gp and G4, and consequently, they can be
significantly influenced by the control law considered. The resolution of Equation (30) will be carried
out in the following using the method of averaging.

2.1. Primary Resonance

According to the principle of the method of averaging, Equation (30) can be rewritten by
introducing the perturbation parameter, thus we have:

j+0jq=—¢|2uG+a,q’ +a,q +a,qq+asq’g—F cos(n) | (31)

If &£ =0, the general solution of Equation (31) is given by:

g=acos(w,t+ ) (32)

Since@ and [/ are constants, the derivative of Equation (32) is:

g =—aw, sin(w,t+ f) (33)

If &€ #0, the solution of Equation (31) takes the form of Equation (33), but with aand £ now
varying with time. Differentiating Equation (32) then yields:

q =—-aw, sm(w,t+ )+ acos(w,t+ ) — af sin(w, t+ ) (34)

By comparing Equations (33) and (34), we obtain:

acos(w,t+ ) — af sin(w,t+ ) =0 (35)

Let us differentiate Equation (33) with respect to time:

§ =—aw, sin(w,t+ B)—aw; cos(w,t+ B)— a,BcoL cos(w,t + ) (36)

By substituting (33), (34), and (36) into (31), we obtain:

aw, sin(w,t + B) + afw, cos(w,t + f) =2 s (aw, sin(w,t+ f3))

‘o, (a2 cos’ (@, t + ﬂ)) +a,e (a3 cos’ (w,t + ﬂ))
(37)
—a,& (aza)L cos(w,t + B)sin(w,t + ﬂ))
—a.e (a3a)L cos’(w,t+ B)sin(w,t + ﬁ’)) — &F, cos(wt)

By using (35) and (37), we have:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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1 2 . 1 2 .
—paw, + paw, cos(Qw,t+24)+a, Za sin(w,t + B)+ Za sin(3w,t +3/)
1 3 . 1 3 . 1 .
+a, Za sin(2w,t+23) +§a sin(4w,t+4p) _EFI sin((w, — @)t + B)
i i I |
DL -a, (Z a’w, cos(w,t+ ff) —Zaza)L cos(3ew,t + S,B)j - EE sin((@, + @)t + f)
—o;| —a’ o, ——a , cos(4w,t +45)
8 8 (38)

By substituting (38) into (35), we obtain:

2 2
—pao, sin(Qo,t+24)+«a, (%cos(aht +/5) +%cos(3a)Lt + 3,8))

w

3 3 3
ta %+%cos(2a)Lt +28) +%cos(4a)Lt + 4,6’)]

. &
afp=— 2 2
@y a . a . FI
| o sin(w, t + ) S sin(3w, 1 +3) Y cos((w, —w)t+ )
1
a a F
5| sin(2aw,t +2 /) T sin(4a,t + 4ﬁ)} —?lcos (o, + @)t + B)

(39)
In primary resonance, @%@, and the expressions in Sin((a)L -+ p ) and
cos ((a)L -+ p ) vary slowly with respect to time in Equations (38) and (39), respectively. We

then have:
3
) a  &F .
a =—pae - o ———Lsin((o, - w)t + B)
8 2o,

cos((w, —w)t+ B)

3 (40)

: 3a°  ¢H
aff =a,e———
8w, 2w,

By setting y = (C()L —o)t+f and 0= W, + €0 , the system (40) becomes:
. a ¢F .
a=-pac— ag;? ——sin(y)

o,
(41)
. 3@’ ¢F,
ay+eaoc = a,& ————cos(y)
8w, 2w,

Initially, @ and y oscillate, and as time increases, they become constants. Thus, for @ =0 and

y =0, we have:
2
M asa F12 sin(7)
o, 8w, 2aw,
) . (42)
o354 -~ =-cos(y)

8w, 2aw;

From system (42), the following equation is obtained:

aa | aa’ | F Y
L1432 || | A B o ] @)
, 8w; w, 3w, 2aw;

2.2. Secondary Resonance
In the case of secondary resonance, Equation (30) can be rewritten by introducing the

perturbation parameter in the following form:

j+0jq=—¢[2uG+a,q’ +a,q +a,qd + a,q’q |+ F, cos(ar) (44)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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If € =0 and using the principle of superposition, the general solution of Equation (44) is given

g =acos(w,t+ f)+2Acos(wt) (45)

2A = % (46)

L
The derivative of (45) is given by:

g =-aw, sin(w,t+ f)-2Awsin(wt) 47)

If &€ #0, as in primary resonance, the derivative of (46), using the variation of constants, gives:
4 =—aw, sin(w,t + B)+acos(w,t + B)—afsin(w,t + B) — 2Awsin(wt) (48)

By comparing (47) and (48), we obtain:

acos(w,t+ ) —apsin(w,t+ f)=0 (49)

The derivative of (47) gives:

§ = —aw} cos(w,t + f) — o, sin(w,t + ) —afo, cos(o,t + f)—2Aa’ cos(wt) (50)

By substituting (45), (47), and (29) into (44), we obtain:

aw, sin(w,t+ f)+ af cos(w,t+ f) =-2ue [aa)L sin(w, t + fB) + 2Aa)sin(a)t)]

+a,e[acos(w,t+ f)+2A cos(a)t)]2 +a,e[acos(w,t+ f)+2A cos(a)t)]3
+a,e [(a cos(w,t+ B)+2A cos(wr) ) (—aw, sin(w,t + ) —2Aw sin(a)t))] G
‘o [(a cos(@,t+ ) +2A cos(a)t))2 (—aw, sin(w,t+ f)—2Aw sin(a)t))]

Using (49) and (51), we obtain:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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a= i{—,uaa)L (1-cosRa,t +2))+2uAwcos((@, + @)t + B) -2 uAwcos((w, — o)t +,B)}
a)L

2

2
- [2/\2 + %)sin(th + ) +%sin(3a)Lt +38)+ A’ sin((w, +20) + )

“ +A’ sin((a)L —2a))t+ﬁ)+aA sin((2a)L +a))t+2ﬂ)+a/\ sin((Za)L —a))t+2ﬂ)
[3(11\2 + %3] sinw,t +20) +%3sin(4a)Lt +4p5)
as [3A3 + 3a:A]sin((a)L + o)t +ﬂ) + (3A3 + 3aZAJSin((a)L — o)t +ﬂ)

, 2 2

A sin (2w, +2w)t+28)+ @A sin (2w, —2w)t+28)+ A’ sin((o, +3w)t + )

+
’A 3a°A . 5 .
+ sin((3w, +w)t+38)+ sin((3w, —w)t+38)+ A’ sin((w, —3w)t+ f3)
a’w aw
) Lcos(w,t+ f)+—Lcos(Bw,t +3 ) — Aaw, cos(wt)
a6 | al al
= +7(a)L +w)cos((2w, + w)t +2) +7(wL —w)cos((2w, —w)t+2p) (52)
L
oA’ cos ((2a)L + o)t + 2,8) — oA’ cos ((2a)L —o)t+ 2ﬁ)
o N0)
—| am, A* + 3 L j —aw, A’ (cos(2wt) + cos(2w, 1 +23)) + 5 L cos(4w,t+4p3)
ado, N ad’oA ao, A a’oA
+| oA’ - 2L + cos((w, + )t + B)—| oA’ +——+ cos((@w, — @)t + B)
2 2 2 2
at ][ doh a wAJcos(Ga)L +a))t+3ﬂ)+[a @A _a wA]cos((Sa)L —)t+3p)
, 2 2
2 2
+| awA® + aa)éA Jcos((2wL +2)t + 2,8)+(—aa)1\2 + aa)éA jcos((ZwL —2w)t+2)

+oA’ cos((w, +3w)t + B)— oA’ cos((w, —3w)t + )

By substituting (52) into (49), we obtain:
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af =i{—yaa)L (1-sinQa,t+2f))-2uAwsin (@, + @)t + f)+2uAwsin((o, —a))t+ﬁ)}

d0i:10.20944/preprints202508.0085.v1

a)L
, 3a’ a’ N
e 2A +T cos(w,t + B)+2aA cos(a)t)+7cos(3a)Lt+3ﬂ)+A cos((w, +2w)t + )
®
Eol4A? cos((@, —2w)t + f8)+aA cos((2w, + w)t+28)+aAcos((2w, — @)t +23)
, 3a , a a )
3aA +? +| 3aA +? cos(2a)Lt+2ﬂ)+§cos(4a)Lt+4ﬂ)+3aA cos(2wt)
2 2
o (3A3 +28 Ajcos((a)L +a))t+ﬁ)+[3A3 428 AJcos((a}L - o)+ p)
L &E 4
@D a’A 3a’A ,
+ cos((2a)L +2a))t+2ﬁ)+ cos((2a)L —2a))t+2ﬁ)+A cos((a)L +3a))t+,8)
A 3a°A s
+ cos((Bw, +w)t+38)+ cos((3w, —w)t+38)+ A’ cos((w, —3w)t + f3)
adw, . adw, . :
) Lsin(w,t+ ) - 1 Lsin(3w, t+3 ) — Aaw, sin(wt)
%‘9 —%(wL+w)sin((2wL +a))t+2ﬂ)—%(a&—a))sin((2wL—a))t+2ﬂ) (53)
L
—~wA® sin((Za)L + o)t + 2,B)+ oA\’ sin((ZaJL —o)t+ 2ﬂ)
aco aw
~| ao, A* +—L ]Sin(Za)Lt+2,B)—2aa)A2 sin(2ot) ——Lsin(4w,t +4)
, do, A 3d’oA) . , do,A 3d’oA) .
—| oA’ + 2L + sin((@, + @)t + B)+| oA _TL+ sin((w, — )t + B)
2 2 2 2
ae]_|dON  a wAJsin((3a)L+a))t+3ﬂ)—(a oA _a wAjsin(@wL —o)t+3p)
, 2 2
2 2
| awA? +%} sin (20, +20)t +23) —(—awAz +%J sin (20, —20)t +23)

—wA’ sin ((a)L +3w)t + ,B) + oA’ sin ((a)L —3w)t+ ﬂ)

In secondary resonance, there are two cases: superharmonic resonance and subharmonic
resonance.

2.2.1. Superharmonic Resonance

1
In this case, we have: @~ ng et~ 5 , .

1 9F
or-0, AN=—
First case: @

The expressions for sin((a)L -3o)t+p ) and cos((a)L -3o)t+ [ ) vary slowly with time.

Equations (52) and (53) then become:

3

3

a+ pae+
a)L

2
3a,ea’ 3ayeal’  agel’

afp
8w, W, w,

A7 A
0‘5‘;61 +a5£aA2=&Sln((%_3w)t+ﬂ)_a35€

cos((w, —3w)t+ B)+ aseA
3w, (54)

3

o, cos((w, —3w)t + B)

sin((@, —3w)t + B)
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By setting y = (a)L -3w)t+ [ and 3w = W, + €0 , the system (54) becomes:

3 3
. a
a+ pag +—=—+acal’ = sin(y)— cos(y)
wL a)L
(55)

. 3aea’ 3aeal’®  ajeN’ A

ay+¢&ao — — = cos(y)+ sin(y)
8w, @, @, W,

If the system tends toward a steady state, d =0 and 7 =0, we have:
3

N ——sin(y) - oA cos(y)
W, Jaw,
5 (56)
A N A
_dad” SN 4, cos(y)+ % sin(y)
8w, w, aw, aw,

From system (56), we obtain:

2\ T 2 2P 3\? 3\?
o (1 aa oA Hoooaat oA a,A oA
— |ttt || + + + = =+
o, \3 8w o 3w, 240, 3o, 3aw; aw, (57)
1 2K
wo~—w,, =

\S]

30’
Second case : L

The expressions for Sin((a)L —20)t+pf ) and COS((a)L —2w)t+ f ) vary slowly with time.
Equations (52) and (53) then become:

3 2 2
i+ pas + 85 L gah? = %A ——sin((w, -2w)t+ ) - cyfh —=—cos((w, —2w)t + )
, 2w,
X 3 2 AZ A2
af - Sopea’ _Sapeal’  ayé cos((w, —2m)t+ ) +&cos((wL —2w)t+ f3)
8w, W, , 2w, (58)
By setting ¥ = (0, —2w)t+f et 2w=m, +&C, the system (58) becomes:
3 A2
a+ pag+ gan? =222 sin(y) — cos(y)
w, 2a)L
. 3a,ea’ da,eaN’  a,eN’ A
ay +é&ao — %Ed 2% =—2"—cos(y) +———sin(y)
8w, W, @, @, (59)

If the system tends toward a steady state, @ =0 and 7 =0, we have:

a AZ 2
H ——sin(y) - cos(y)
w, 2a)L (©0)
2 AZ 2 2 )
3@ 3o A oA cos(y) + a,A sin(7)
8w, , , 20,

From system (60), we obtain:
w 1 3a,a® 3a,A’ ’ aa’ CZA22 a,\’ ’ a, A\ ’
S I T I B L _| % 4| G
w, \2 l6w, 2w 20, low, 2o, 2am, 4aw, 61)

2.2.2. Subharmonic Resonance

In this case, we have: @~ 3(0L etw= 2a)L

First case:
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The expressions for sin((3a)L -+ pf ) and COS((3a)L -+ p ) vary slowly with time.
Equations (52) and (53) then become:

3 2
A .
a+pae+55% 4 g ean? :M51n((3wL—w)t+3ﬂ)
a)L
A
_&.d ———cos((3w, —w)t+3p)

(62)
3a,ea’ 3 3a,eal’  3ayea’A

af - cos((3a)L—a))t+3ﬂ)

8w, W, 4o,

e Asin((3a) —w)+3p)

By setting y = (a)L —o)t+3f et w= 3w, + &0, the system (62) becomes:
3

2
a’A
a+ pag+ acal’ = Jasea’A sin(y) — 2242 cos(y)
4a)L 4 @)
. a,ea’ Ya,ealN’  Ya,ea’A 3aea’A .
ay+e&ao — - = os(y) +————sin(y)
8w, w, 4

L
If the system tends toward a steady state, d =0 and 7 =0, we have:

2
A
R )
929A29LA 3a,al\ o
_ e TR AR cos(r) + 2522 sin(y)
8w, , 4o,

From system (64), we obtain:

daa® 92 A [3u 3ad® 3an T (9aar) (3awad)
{ﬁ—(3+ a9 ﬂ _{_y+ asa” 3a; } :( aa J +[ asa j
2 2 2
, 8w, ;] o, 8w, o, 4o, 4o, (65)
—k

2
6w,

o220, A=
Second case:
The expressions for sin ((ZO)L - o)t + 2,3) and cos ((260L —o)t+ 2,3) vary slowly with time.

Equations (52) and (53) then become:
3

. asga a,eal
a+pag + +

aseal\’ =——sin((Qw, —®)t+2/3)

L
a,sal\

cos((2m, — o)t +23)

(66)
3a,ea’ _ 3a,eal’  a,eal

af} - e, o y os((2w, — )t +23)

a,eal
+

sin((2w, —w)t+2)

By setting y = (ZG)L —-o)t+2p, o= 2(0L + &0, the system (66) gives:
3

. osea
a+ upas+

cal
+aseal’ = %ean sin(y )— cos(y)

23

(67)
. 3aea’  bazeal®  2a,cal
ay +¢eac — - =

cos(y)+a,Asin(y)

4a)L W L
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In a steady state, we obtain:
2

A . A
,u+a5a +0¢5A2=a2 sm(}/)—a4 cos(y)
@
3a,a’ 6a,A’ Lz A )
o244 DGR _ L% cos(y)+a,Asin(y)
4o, , w,

From system (68), we obtain:

sena® 6an)| [2 * 20 AT (20,0 (A
Q24254 2% T el i e (69)
w, 4] o] o, 4o, o w; w

L

Briefly, the structural modeling allowed us to represent the nonlinear dynamic behavior of the
beam in the form of a differential equation. Then, the application of the method of averaging to the
dynamic equation enabled the calculation of the different resonances. In the following section, we
present the results of the numerical simulations and their discussion.

3. Results and Discussion

3.1. Boundary Conditions and Beam Properties

In this study, three boundary conditions were used:

- 5-S: simply supported beam;

- C-S: clamped-simply supported beam;

- C-C: clamped-clamped beam.

The geometric and material properties are presented in Table 1. The numerical values
corresponding to the different boundary conditions are given in Table 2.

Table 1. Geometric and material properties of the beam [12].

Elastic layer Piezoelectric layer
L: Length (m) 1 1
H: Width (m) H =5h H =5h
h:Total thickness (h = 0.01) h,=5h+6 h,=h =H-+12
Young’s modulus (Pa) E =6910" --
Density (Kg.m?3) p.=2766 p, =7500
c;, (Pa) 6,9810"
e, (C.m?) -23,2
€, (F.m) 1,7310°

Table 2. Coefficient values corresponding to the three boundary conditions [12].

S-S C-S C-C

m 1,492410° 3,642010° 7,668910°
J7x —3,454810° -2,956510° 0

A ~1,776010’ -2,315110’ —2,188210’
7 —4,836710° —4,392210° 0

s -3,552010’ —4,6302107 —4,376510’
C 1,733310* 4,230010* 8,907010*
C, 1,507510’ 0,1856910’ 0
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G, 4,913310° 6,404710° 6,053710°
Using the feedback control parameters, the 1; and C; coefficients in Table 2 are given by:
2pu=pGy; a,=C,+1,Gp; a; = C+ 1,Gp;
o, =C+uG,; o, =mG,; as = usG,.
1 . (ES),, L
C = M[Eclc +2¢,, (IS +8. 2 ) + S—P(2Is +8 2 )] IO @ (X)p(x)dx;
ES
c,- %{ L oo 0. (0dx [ (0. 0) +0.(0p.. o, (x)dxj;
E I +2C“SS +(ES),, ¢t L 2
C, =~ i [ o p(dx| (p,(x)) dx
(ES),,z,
= —”j P ()P(X)dl;
(ES),, z, L L L
o = Tp[z [} @i, g, (dx+ [ {(0.(0) + 0,00, (D], (x)dxj;
(ES)pe L L )
py = [ oL (x| (¢.()) dx
(ES),,z, (1 ¢ L L
py= TP(Z [, 2. @ox[ 0. (dr+2[ {(0.(0) +0. (0. (e, (x)dxj;

ES L L )
Hs = Tz” [ o Me()dx] (p,(x)) dx

F = ﬁﬁf(x)co(x)dx; M=(pS).J} (o)) ds (ES),, =5, 5

€33

3.2. Primary Resonance

In all the presented figures, the frequency is normalized with respect to the natural frequency of
the studied beam, and the beam is uniformly excited.

Figure 2 compares three analytical methods: the method of averaging (MA), used in this work,
the harmonic balance method (HBM) [16-20,29], and the multiple scales method (MSM) [12,30],
which have been used in the literature. The curves obtained using the method of averaging and the
multiple scales method overlap, as shown in the figure, whereas a slight deviation is observed with
those obtained by the harmonic balance method. This is likely due to the lower accuracy of the latter
method. The method of averaging can thus be considered a reliable technique for vibration control
in structures with good accuracy.
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Gd =0.005; F1 = 100N
0.03 T\ \ T

0.025

0.02

0.015

Amplitude

0.01

0.005

Frequency

Figure 2. Comparison of the three analytical methods on the amplitude-frequency responses of the S-S beam.

Figures 3 and 4 illustrate typical nonlinear phenomena. When Gp = 20, the stiffness increases,
and the system is said to be hardening, which results in a frequency response curve leaning toward
higher frequencies. When Gp = 35, the stiffness decreases, and the system is said to be softening,
leading to a frequency response curve inclined toward lower frequencies. In both cases, multiple
solutions may exist for the same excitation frequency. This gives rise to jump phenomena, depending
on the direction of the frequency sweep.

Gd =0.005; F1 = 100N

0.03

T T T T
Softening _ Hardening

0.025 b

0.02

Amplitude
o
o
o

0.01

0.005

| | | | | | | |
82 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency

Figure 3. Jumps in the increasing direction of frequencies.
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Gd = 0.005; F1 = 100N

0.03 T T T T
B Softening - Hardening N
0.0251- . .
Gp:35 N "‘.‘.:."Gp=20

0.02 =
Q
E

= 0.015 .
(o
g
<

0.01

0.005

| | | | | | | |
82 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency

Figure 4. Jumps in the decreasing direction of frequencies.

Figure 5 presents the effects of boundary conditions on the amplitude-frequency response of the
structure. The S-S beam is highly sensitive to changes in the Gp parameter compared to the C-S beam,
and more sensitive than the C-C beam. The effects of geometric nonlinearities are significantly
reduced when the value of this parameter is increased.

Gd=0.005; F1 = 100N
0.04 T T T T

Gp=20

Frequency

Figure 5. Amplitude-frequency responses for the three boundary conditions.

Figure 6 shows the free responses, i.e., when the external force is zero. However, depending on
the initial shape of the structure at rest, some behaviors can be softening, while others are hardening.
This behavior may depend on the static stiffness of the structure around its equilibrium point and the
presence of nonlinearities.
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Gd =0.005; F1 = 400N
0.04 ‘

0.035

0.031-

0.025

0.021-

Amplitude

0.015

0.011-

0.005F

Frequency

Figure 6. Free nonlinear amplitude-frequency responses for the three boundary conditions.

In Figure 7, the proportional control gain Gy is fixed at 20 while the velocity control gain Ga is
varied. As Ga increases, the vibration amplitudes decrease, and the system remains in the hardening
regime. To observe the opposite effect, i.e., the softening behavior, one simply needs to increase the
value of Gp, as shown in Figure 8. The hardening-softening transition is independent of Ga, since

increasing or decreasing its value always results in a hardening behavior.

Gd =0.001; 0.005; 0.01; Gp=20; F1 = 400N
T T

0.05

0.045

0.04

0.035

o
o
>

Amplitude (a)
5

85 1 15 2 25 3
Frequency

Figure 7. Amplitude-frequency responses of the three boundary conditions.
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Gd=0.001; 0.005; 0.01; Gp=30; F1 = 400N
0.05 T T T T T

0.045
0.04

0.035

o
o
@

Amplitude

Frequency

Figure 8. Amplitude-frequency responses of the three boundary conditions.
3.3. Secondary Resonance

3.3.1. Superharmonic Resonance

Figures 9 and 10 show the effects of nonlinearities on beam S-S.

For o= 1/ 3 w, , on the stiffening side, the amplitudes decrease as Gy increases; however, on the
softening side, the amplitudes increase with increasing Gp.

For @~1/2®, , the vibration amplitudes decrease on both sides as Gy increases. In this
particular case, the transition can be controlled by the parameter Gp and the resonance shifts.

For C-S beam in Figure 11, nonlinear behaviors occur around the structure’s natural mode. In
Figure 12, the excitation effect is negligible on C-C beam. These behaviors result from the presence of
clamping in the structure.

Gd=0.001; F1 =400N
0.016 T \

T
Gp=25

0.014

0.012

0.011-

Amplitude

0.006~

0.004

0.002-

|
8 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38
Frequency

Figure 9. Amplitude-frequency superharmonic responses for @ ~ 1/ 3@, of beamS-S.
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Gd=0.001; F1=400N
0.06 T T

0.05

o o
o o
@ =

Amplitude

o
o
N

0.01

Frequency

Figure 10. Amplitude-frequency superharmonic responses for @ =~ 1/ 2@, ofbeam S-S.

Gd=0.001; F1 =400N
0.06 T

0.04

o

o

75}
T

Gp=29 Gp=28Gp=27 Gp=26

Gp=30 Gp=25

Amplitude

0.02

: 1 ! 1 ;i
0 0.4 0.45 0.5 0.55 0.6 0.65
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Figure 11. Amplitude-frequency superharmonic responses for @ = 1/ 2, of beam C-S.

Gd=0.001; F1 =400N

0.06

0.051-

0.04-

Amplitude
°
5]

I

o

N
T

0.011-

835 0.4 045 0.5 0.55 0.6 0.65
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Figure 12. Super-harmonic amplitude-frequency response for @ ~ 1/ 2@, of the C-C beam.
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3.3.2. Subharmonic Resonance

In Figure 13, the behavior of beam S-S exhibits hysteresis. This suggests that the nonlinear
relationship between amplitude and frequency is due to mechanical losses within the structure. These
losses, having become a form of energy, dissipate within the structure; therefore, control gains help
reduce these losses by decreasing the area of the amplitude-frequency hysteresis loop. On the
stiffening side for fixed Gq, this area can be reduced by increasing the gain Gy, whereas on the
softening side, the area is instead reduced by decreasing the gain. The same phenomenon is observed
in Figures 14 and 15, with Gp fixed and Ga varied. For all values of Gq, the beam exhibits a stiffening
behavior, and increasing its value reduces the hysteresis area. Thus, by minimizing this energy, the
operational range of the beam can be optimized. These behaviors are significant for energy
harvesting. Similarly, in Figures 16 and 17, second-order nonlinear effects are observed, and one can
also control the vibration amplitudes as well as the stiffening-softening transition. As for Figure 18,
it shows that the influence of excitation is negligible on beam C-C.

Gd=0.001; F1=400N
0.025 ‘ — \

0.021-

Amplitude
o
cl
o

o

o

=
T

0.005

T
|

Il Il Il Il Il Il Il Il Il
%6 2.7 2.8 2.9 3 3.1 3.2 3.3 34 3.5 36
Frequency

Figure 13. Subharmonic amplitude-frequency responses for @ = 3@, of S-S beam.

Gp =25; F1 = 400N
0.025] ‘ ‘ ‘ ]
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| |
3 3.05 3.1 315 32 325 33 335 34 345 35 355
Frequency

Figure 14. Subharmonic amplitude-frequency responses for @ = 3@, of S-S beam.
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Gp =25; F1 = 400N
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Figure 15. Subharmonic amplitude-frequency responses for @ = 3@, of C-Sbeam.
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Figure 16. Subharmonic amplitude-frequency responses for @ = 2@, of S-S beam.
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Figure 17. Subharmonic Amplitude-Frequency Responses for @ ~ 2@, of S-S Beam.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202508.0085.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2025 d0i:10.20944/preprints202508.0085.v1

23 of 24

Gd=0.001; F1=400N
0.05 T

0.0451-

o o
S o 2 o @9
o N o ®© o
SR R N, A S
T

Amplitude

o

=)

=

3
T

o

o

o
T

0.0051-

26

Frequency

Figure 18. Subharmonic amplitude-frequency responses for @ = 2@, of C-C beam.

4. Conclusions

This study aimed to explore the method of averaging for active control of nonlinear vibrations
in a sandwich beam. Based on the results obtained and supported by findings in the literature, this
method proves to be highly effective for active vibration control and may also be very relevant for
energy harvesting. Three boundary conditions were highlighted: simply supported beam, clamped-
simply supported beam, and clamped-clamped beam. In general, the dynamic behavior of the beam
can be controlled through control gains for all these boundary conditions using a retractable control
law. The stiffening-softening transition can be managed via the control gain Gp, while amplitude
reduction is achieved through the parameter Ga.
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