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Article 
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Universidad Pedagógica y Tecnológica de Colombia - Uptc, Colombia
* Correspondence: rafael.garcia01@uptc.edu.co

Abstract 

This study focuses on developing a decision support system to facilitate inventory decision-making 
in the retail sector. The proposed model incorporates both stochastic and deterministic parameters, 
integrating elements that have rarely been jointly addressed in the literature. The research formulates 
a stochastic mixed-integer programming model and a two-step solution procedure for inventory 
planning in a multi-product, multi-warehouse, and multi-period context with resource constraints. 
The first step applies a chance-constrained planning approach to handle uncertainty. The second step 
incorporates warm-start heuristics and relaxation-based preprocessing to improve computational 
efficiency. The model is validated through instance analysis and sensitivity testing, demonstrating 
favorable CPU performance with significant time reductions in medium-scale cases. 

Keywords: inventory; retail; mathematical programming; stochastic optimization; MIP 

1. Introducción

Stock management involves the acquisition and disposition of physical assets to ensure efficient
operations within an organization’s commercial dynamics. It aims to optimize the costs associated 
with replenishment processes while also enhancing the firm’s competitive position, all under the 
constraints imposed by demand fluctuations and lead times (Taylor, 2008). While holding stock 
entails carrying and obsolescence costs, it also enables firms to benefit from economies of scale and 
quantity discounts (Ghiani et al., 2013). The complexity of stock management lies in the need to 
consider organizational characteristics, as well as product, service, customer-specific, and regulatory 
requirements (Gutiérrez & Vidal, 2008). 

Decision-making in this domain must account for factors such as uncertain demand, 
replenishment lead time, and associated costs (Shenoy & Rosas, 2017). Traditional methodologies 
focus on cost minimization using nonlinear mathematical models (Andriolo et al., 2014), relying on 
control variables such as fixed order quantities and static reorder points. Stock optimization becomes 
especially relevant in the retail sector, where purchasing and sales dynamics expose firms to 
significant risks (Bowersox et al., 2020). 

Despite its importance, the literature offers limited attention to general stock management 
problems, often focusing instead on narrow, problem-specific formulations. This study proposes a 
mathematical programming model that integrates multiple relevant aspects of stock management 
through an optimization approach aimed at minimizing total costs. The proposed solution procedure 
is composed of two stages: a stochastic formulation is first developed and transformed via chance-
constrained programming; subsequently, a warm-start heuristic is employed to enhance the 
performance of the mixed-integer solver. The model demonstrated computational efficiency for 
medium-sized instances. This approach not only enriches the existing literature but also provides 
practical solutions for stock management in the retail sector. 
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The research begins by identifying the stock management problem, which is subsequently 
refined and precisely defined following the literature review. The problem is characterized in terms 
of its scope, constraints, and objective, through the specification of parameters, decision variables, 
and constraints. Based on this, the model formulation is developed to address the defined stock 
problem. This leads to the design of a solution approach that balances computational efficiency and 
solution accuracy. 

2. Literature Review 

The literature review focused on the Scopus and Web of Science (WoS) databases. Table 1 
presents a summary of the reviewed literature, detailing the study objectives, modeling approach, 
and the solution procedures applied. 

Table 1. Literature Review. 

Reference Objective of the study Model Solution procedure 
Björk (2009) 

 
Develop an analytical solution to an EOQ 

problem with demand uncertainty. FNLO1 Analytical solution. 

Chung et al., 
(2018) 

Incorporate the concepts of two levels of 
commercial credit (retail and customers). NLO2 Analytical solution. 

Thorsen & Yao 
(2017) 

Develop a robust optimization model with 
uncertainty in demand and lead time. 

LP3 Benders decomposition 
algorithm. 

Yang et al., (2017) Propose a multi-item inventory classification 
and control optimization model.  

MILP4 MILP (Branch and 
Bound algorithm). 

Shi et al., (2022) 
Formulate and apply an inventory 

optimization model. MILP 
MILP (Branch and 
Bound algorithm). 

Zhang (2010) 
Develop a multi-period, newsboy-type model 

with budget constraints and quantity 
discounts. 

MINLP5 
Lagrangian relaxation 

heuristic. 

Sicilia et al., (2022) 
Develop a multi-product, single-period, 

stochastic demand and power pattern model 
in the inventory cycle. 

SNLP6 Lagrangian relaxation 
heuristic. 

Maiti & Maiti 
(2007) 

Develop a multi-product inventory model, in 
two warehouses, with fuzzy stochastic 

demand and costs. 
NLFSP7 Genetic region reduction 

algorithm (RRGA). 

Taleizadeh et al., 
(2011) 

Build a multi-restrictive joint product model 
for purchasing high-priced raw materials. INLFP8 

Hybrid harmony search 
method, fuzzy and 

approximate simulation. 

Saracoglu et al., 
(2014) 

Formulate a reorder point model focused on 
multi-product management, under budget, 

storage, and shelf-life restrictions. 
ILP9 Genetic algorithm (GA). 

 
1 FNLO: Fuzzy nonlinear optimization 
2 NLO: Nonlinear optimization 
3 LP: Linear programming 
4 MILP: Mixed integer linear programming 
5 MINLP: Mixed integer nonlinear programming 
6 SNLP: Stochastic nonlinear programming 
7 NLFSP: Nonlinear fuzzy stochastic programming 
8 INLFP: Integer nonlinear fuzzy programming 
9 ILP: Integer linear programming 
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Hammami et al., 
(2014) 

Formulate an inventory model with supplier 
selection, multiple warehouses, quantity 

discounts, and uncertainty in the purchasing 
process. 

MISP10 
MILP (Branch and 
Bound algorithm). 

Abginehchi et al., 
(2013) 

Develop a mathematical model that 
incorporates multiple suppliers, with a single 

product and retailer under probabilistic 
demand. 

SO11 
Sequential quadratic 

programming algorithm 
(SQP). 

Güder & Zydiak 
(2000) 

Solving a multi-joint inventory problem with 
storage limitations, using a heuristic 

procedure. 
NLO12 Fixed cycle heuristic. 

Đorđević et al., 
(2017) 

Solving the storage-constrained EOQ model 
using a metaheuristic approach. 

NLO 

Local Search Heuristic 
and Variable 

Neighborhood 
Metaheuristic. 

Jana & Das (2017) 

Study a two-warehouse inventory model 
with multiple discounted items nested in unit 

cost and inventory costs over a fixed-cost 
period. 

MINLP 
Multi-objective genetic 
algorithm with variable 
population (MOGAVP). 

Kumar & 
Mahapatra (2021) 

 

Plantear un modelo de minimización de 
costos asociado a la gestión de inventarios de 

múltiples artículos, con múltiples 
proveedores y múltiples almacenes. 

NLO 
Metaheurística de 

optimización de lluvia 
(ROA). 

Source: The authors. 

Despite the extensive literature on inventory models with stochastic demand, few studies 
simultaneously consider multi-product, multi-warehouse, and multi-period environments under 
investment constraints, supplier credit conditions, and deterministic lead times. Moreover, many 
works limit their scope to simplified settings with single suppliers or fixed lot sizes, and they often 
neglect the integration of practical financial restrictions into the modeling framework. The model 
proposed in this study advances the state of the art by holistically incorporating these dimensions, 
and by adopting a stochastic pure integer linear programming (SPILP) approach combined with 
chance-constrained programming to ensure service levels while respecting budget limitations and 
supplier-specific constraints. This comprehensive formulation enhances applicability and bridges a 
critical gap in both academic modeling and real-world retail inventory planning. 

In the reviewed studies, optimization-based techniques for modeling multi-faceted problems 
involving multiple products, multiple warehouses, or multiple suppliers are associated with NP-hard 
combinatorial problems (Đorđević et al., 2017), typically formulated as MIP (Mixed-Integer 
Programming) or MINLP (Mixed-Integer Nonlinear Programming) models, and solved using hybrid 
approaches that combine mathematical programming with heuristics or metaheuristics, or by means 
of linearization techniques; this is the approach adopted in the present work due to its computational 
efficiency. Some modeling approaches also incorporate queuing theory models (Vidal, 2022). Authors 
such as Svoboda et al. (2021) and Thorsen & Yao (2017) propose linear programming formulations as 
both modeling and solution frameworks. 

Recent comprehensive literature reviews have suggested several directions for future research 
in stock models. For instance, Alfares and Ghaithan (2019) recommend incorporating the variability 
of multiple parameters, as well as considering multi-objective and multi-criteria decision-making 
frameworks. Additionally, both Alfares & Ghaithan (2019) and Svoboda et al. (2021) highlight the 

 
10 MISP: Mixed integer stochastic programming 

11 SO: Stochastic optimization 
12 NLO: Nonlinear optimization 
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need to extend existing models, often developed for single-item, single-supplier, and single-
warehouse settings, to more complex contexts involving multiple items, multiple suppliers, and 
multiple stocking locations. They also emphasize the importance of integrating practical constraints 
such as time, space, budget, capacity, and other resources, which are typical limitations in real-world 
production and stock control systems (Alfares & Ghaithan, 2019), since unconstrained problems are 
unlikely in industrial applications (Svoboda et al., 2021). 

A critical comparative analysis of the reviewed literature reveals several methodological 
limitations that the present model addresses. First, many studies rely on simplifications such as a 
single-echelon structure, neglecting the complexities introduced by managing multiple warehouses 
with heterogeneous capacities. Second, the majority of models focus on unit-level demand 
satisfaction without integrating supplier-specific purchase constraints such as trade credit terms, lot-
size restrictions, or differentiated lead times. Third, while hybrid solution procedures are often 
employed, they are rarely tested under scenarios that combine budget constraints, service-level 
requirements, and stochastic demand simultaneously. Finally, the practical applicability of previous 
models is often limited by the use of theoretical assumptions, such as fixed lot sizes or unlimited 
inventory capacity, that diverge from real-world retail conditions. The proposed model addresses 
these gaps through a rigorous and integrated formulation that embeds multiple realistic constraints, 
adopts chance-constrained programming for demand uncertainty, and validates results with 
computational experiments grounded in retail data. 

In conclusion, there is limited literature on stock models that jointly address a significant number 
of the aspects identified by Andriolo et al. (2014), some of which are highlighted in the review 
summarized in Table 2. The main reason lies in the inherent complexity of modeling and solving real-
world scenarios that incorporate a large set of relevant features in an optimization framework, an 
effort that, however, is undertaken comprehensively in this work. 

Table 2. Hardware specifications. 

Processor AMD RYZEN 5, 2,8 Ghz. 
RAM 24 Gb 

Operating System 64 bits.  Windows 11 
Optimization Software LINGO 19 

Integer optimality tolerances 1*10-6 (absolute), 8*10-6 (relative) 
Linear optimality tolerances 1*10-7 (absolute). 

Source: The authors. 

On the other hand, warm-start heuristics, such as those applied in Ferrer et al. (2009), prove 
effective in supply chain design problems with high-dimensional binary structures, similar to the 
inventory configuration addressed in this study. In line with Gupta and Maranas (2003), applying 
relaxation-based preprocessing, such as Lagrangian relaxation, can tighten the feasible space and 
improve solver convergence. Despite extensive use of hybrid and metaheuristic approaches 
(Đorđević et al., 2017; Saracoglu et al., 2014), few studies explicitly discuss warm-start heuristics as 
part of structured solution procedures (Bixby, 2012). 

The proposed model and its solution method are validated within a real-world retail setting. 
The model is implemented, and the results are analyzed and evaluated. This research adopts a 
quantitative, theoretical-practical, non-experimental, and deductive approach. The stock problem is 
addressed using mathematical procedures, initially from a theoretical perspective, with data that are 
not experimentally controlled. The study aims to evaluate a general problem and derive both specific 
and general conclusions. 

3. The Model 

The stock management problem described in the problem statement can be summarized as 
follows: In a retail context involving the sale of multiple products subject to stochastic demand, 
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replenishment decisions must be made for each period within the planning horizon. These decisions 
are linked to a network of warehouses with limited storage capacity and are dependent on multiple 
suppliers for product provisioning. The stock problem exhibits the following characteristics and 
considerations: 

Investment constraint: There is a budget cap for each period, which limits the volume of 
products that can be procured. 

Trade credit conditions: Each supplier imposes specific payment terms with defined credit 
periods that must be honored. 

Purchase conditions: Suppliers also set minimum and maximum order size constraints for each 
replenishment. 

Lead time and safety stock: The lead time is deterministic, meaning the delivery time after 
ordering is known with certainty. However, potential delivery delays justify the use of safety stock 
to mitigate disruptions. In the business environment, deterministic lead time is commonly adopted 
to reduce uncertainty in material supply, typically formalized through supplier–customer contracts 
to ensure compliance with the agreed-upon service level. 

Deterministic costs: The costs associated with the replenishment process include unit purchase 
costs, fixed setup costs per order, and stock holding costs. 

Service level requirements: A specific service level must be ensured, i.e., a minimum percentage 
of demand that must be met without incurring stockouts. 

The objective is to develop a mathematical optimization model that minimizes total cost over 
the planning horizon. Total cost comprises: (1) the unit purchase cost per product and supplier; (2) a 
fixed setup cost incurred whenever an order is placed from a specific warehouse to a specific supplier, 
regardless of quantity or product type; and (3) the holding cost per warehouse. Instead of modeling 
backorders and their associated penalty cost, due to estimation difficulties, a service level approach 
is adopted. The service level is interpreted as the probability of meeting demand in each period of 
the planning horizon. 

The decision to exclude explicit backorder penalties in the model formulation stems from both 
methodological and practical considerations. In real-world retail contexts, accurately estimating the 
cost of a stockout, including lost sales, customer dissatisfaction, and future demand disruption, is 
highly complex and context dependent. Assigning arbitrary penalty costs may introduce significant 
bias and misrepresent the economic impact of unmet demand. Instead, the model employs a service 
level constraint, which directly controls the probability of fulfilling demand without incurring 
stockouts. This approach offers a more robust and interpretable mechanism for inventory planning 
under uncertainty, while preserving model linearity and computational tractability. Moreover, using 
a probabilistic service level aligns with practical inventory management policies, where 
organizations often set service goals (e.g., 95%) based on business strategy rather than attempting to 
quantify every instance of shortage cost. 

The planning horizon is composed of n equally spaced periods (e.g., weeks, fortnights, months). 
Considering the effect of lead time, a pre-horizon period is included to account for procurement 
decisions that must be made in advance to cover at least the first period of the planning horizon. 
Therefore, the full set of periods is defined as the union of the pre-horizon period and the actual 
demand periods. 

Replenishment decisions allow for multiple sourcing: demand for a product may be fulfilled by 
orders from one or more suppliers. Suppliers may impose lower and upper bounds on the monetary 
value of each order. Furthermore, they may or may not offer trade credit, allowing the retailer a 
deferred payment period. In cases where payments exceed the allowed credit period, suppliers may 
impose a penalty cost, typically a percentage surcharge on the total order value. Allowing late 
payments would only be beneficial if it conferred an advantage, this is not the case in the present 
stock problem. Therefore, payments must occur within the supplier's credit window to avoid 
additional costs. 
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Products are sold either partially or entirely through the warehouses, where sales behavior is 
modeled as a random variable with a known probability distribution. Each warehouse has a 
predefined storage capacity, expressed in volume, weight or throughput. Orders are placed 
individually by each warehouse; inter-warehouse consolidated orders are not considered, but 
consolidation across products from the same supplier is permitted. 

Orders placed to each supplier must be paid within the planning horizon, even if the payment 
deadline extends beyond it. This implies that in each period, a budget or investment capacity is 
defined by the retailer.  

Each period includes an inventory flow, where incoming flows consist of the initial stock (or the 
ending stock from the previous period) and new purchases, and outgoing flows correspond to 
demand fulfillment and ending stock levels. 

Although lead times are assumed to be known, unexpected delays may occur, potentially 
disrupting operations. To address this, safety stock levels are maintained. These disruptions are not 
modeled as a stochastic component of lead time; rather, the additional time required due to delays is 
assumed to be deterministically estimable. 

The described stock problem is represented by a pure stochastic linear integer programming 
model that minimizes total cost over the planning horizon, subject to constraints on demand 
satisfaction, minimum stock levels, inventory flow, warehouse capacity, investment limits, and 
minimum/maximum lot sizes. The formulation of this model is presented in the following section. 

Mathematical formulation. 

Sets and indexes: 𝑇 ≜ ሼ𝑡଴, 𝑡ଵ, … , 𝑡௡ሽ: Set of time periods where supply decisions are made. 𝐽 ≜ ሼ𝑡 ∈ 𝑇: 𝑡 ≠ 𝑡଴ሽ = ሼ𝑗ଵ, 𝑗ଶ, … , 𝑗௛ሽ: Set of periods in which ordered products are received and 

made available for use during the planning horizon. 𝑃 ≜ ሼ𝑝ଵ,𝑝ଶ, … ,𝑝௥ሽ: Product set. 𝑆 ≜ ሼ𝑠ଵ, 𝑠ଶ, … , 𝑠௠ሽ: Set of suppliers. 𝑊 ≜ ሼ𝑤ଵ,𝑤ଶ, … ,𝑤௟ሽ: Warehouse complex. 𝑃(𝑤): Set of products p that are marketed in warehouses w. 𝑆(𝑝): Set of suppliers s that offer the products p. 𝑃(𝑠,𝑤): Set of products p offered by suppliers s that are marketed in warehouses w. 𝐽(𝑠, 𝑡): Set of periods j whose payment periods are the periods t associated with supplier s. 

Parameters: 𝐷௪௣௧ : Demanda estocástica del producto p en el almacén w durante el periodo t (≠ 𝑡଴). La 

demanda se rige con función de densidad de probabilidad 𝑓஽(𝜉) y función de distribución 

acumulada de probabilidad 𝐹஽(𝜉) = 𝑃(𝐷 ≤ 𝜉). 𝐶1௦௣: Unit cost of purchasing product p from supplier s. 𝐶2௦௪: Fixed cost per order placed with supplier s from warehouse w. 
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𝐶3௪௣: Unit cost of storing product p in warehouse w. 𝜶௪௣௧ : Probability of shortage of product p in warehouse w during period t (minus period 0). 𝑆𝐶௪: Warehouse storage capacity w. 𝐼𝐶௧: Investment capacity or budget in period t. 𝐿𝑇௦: Supplier-associated replenishment time s. 𝐼𝑆௪௣: Initial inventory of product p existing in warehouse w. 𝑆𝑆௪௣௧ : Safety stock associated with product p, in warehouse w, required in period t (minus 

period 0). 𝑀𝑋𝐿𝑆௦: Maximum joint purchase per order allowed by the supplier s. 𝑀𝑁𝐿𝑆௦: Minimum joint purchase per order allowed by the supplier s. 𝑉௣: Product volume p. 𝑃𝑃௦: Payment periods for trade credit offered by the supplier s. 

Variables: 𝑥௦௪௣௝ : Number of units of product p, purchased from supplier s, for warehouse w, received 

in period j. 𝑑௪௣௧ : Inventory units available to be demanded in period t (minus period 0) of product p in 

warehouse w. 𝑖௪௣௧ : Units of product p stored at the end of period t warehouse w. 𝑏௪௦௝ : Binary variable, defined as 1 when an order is executed to supplier s, from warehouse 

w, received in period j; otherwise, it is defined as 0. 

Objective function: 
Minimization of total cost over the planning horizon. 𝑀𝑖𝑛 ൣ∑ ∑ ∑ ∑ ൫𝐶1௦௣ ∙ 𝑥௦௪௣௧ ൯௣∈௉(௦,௪)௪∈ௐ௦∈ௌ௧∈்∖ሼ଴ሽ + ∑ ∑ ∑ (𝐶2௦௪ ∙ 𝑏௪௦௧ )௪∈ௐ௦∈ௌ௧∈்∖ሼ଴ሽ +∑ ∑ ∑ ൫𝐶3௪௣ ∙ 𝑖௪௦௧ ൯௣∈௉(௪)௪∈ௐ௧∈்∖ሼ଴ሽ ൧  (1)

Equation (1) presents the objective function, which minimizes total costs over the planning 
horizon. The first term computes the total cost of the units of each product purchased in each period. 
The index j refers to the period in which the ordered products are received. Products are received at 
the very beginning of the period, not during it. The second term calculates the fixed setup cost 
associated with the number of orders placed to each supplier from each warehouse, received during 
each period of the planning horizon. The number of orders placed is tracked using the binary variable 
b. The third term represents the total holding cost for units stored over the planning horizon. The 
quantity held in each period corresponds to the end-of-period stock, represented by the variable i. 

Subject to: 
Initial inventory: 
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𝑖௪௣଴ =  𝐼𝑆௪௣ ,       𝑤 ∈ 𝑊,   𝑝 ∈ 𝑃(𝑤) (2)

Equation (2) initializes the stock variable for each product and warehouse. 
Safety stock: 𝑖௪௣௧ ≥  𝑆𝑆௪௦௧  ,       𝑤 ∈ 𝑊,   𝑝 ∈ 𝑃(𝑤),   𝑡 ∈ 𝑇 ∖ ሼ0ሽ (3)

Equation (3) sets a lower bound for stock levels in each period (excluding period 0), ensuring 
that the final stock is not lower than the required safety stock (SS). If replenishment delays are 
bounded, safety stock can be determined based on the possible additional lead time caused by such 
delays or through analytical considerations,either theoretical or practical, derived from experience 
(Silver et al., 1998). 

Stochastic demand: 𝑃൛ ൣ𝑑௪௣௧ ൧ ≥  𝐷௪௣௧ (𝜉) ൟ ≥ 1 − 𝛼௪௣௧  ,       𝑤 ∈ 𝑊,   𝑝 ∈ 𝑃(𝑤),   𝑡 ∈ 𝑇 ∖ ሼ0ሽ (4)

Equation (4) introduces the stochastic service level constraint, expressed in probabilistic terms, 
for each period (excluding period 0). This constraint ensures that the quantity delivered d satisfies 
the stochastic demand D at least (1–α)% of the time. This formulation allows for a controlled level of 
risk: some demand realizations may violate the constraint, as long as the required service level is met 
with the specified probability (1–α)%. 

Bill of materials: ∑ ൫𝑥௦௪௣௧ି௅ ೞ்൯௦∈ௌ(௣) + 𝑖௪௣௧ିଵ =  𝑖௪௣௧ + 𝑑௪௣௧  ,       𝑤 ∈ 𝑊,   𝑝 ∈ 𝑃(𝑤),   𝑡 ∈ 𝑇 ∖ ሼ0ሽ˄ 𝑡 − 𝐿𝑇௦ ≥ 1   (5)

Equation (5) presents the inventory balance (mass flow) constraint for each period, product, and 
warehouse. The incoming flows, represented by variables x and it-1, must equal the outgoing flows, 
represented by it and d. This equality holds when the product reception period j coincides with the 
planning period t. 

Investment capacity per period:  ∑ ∑ ∑ ∑ ൫𝐶1௦௣ ∙ 𝑥௦௪௣௝ା௉௉ೞ൯௣∈௉(௦,௪)௪∈ௐ௦∈ௌ௝∈்∖(௝ା௉௉ೞୀ௧ஸ|்|) ≤  𝐼𝐶௧ ,       𝑡 ∈ 𝑇  (6)

Equation (6) establishes the investment or budget constraint. It ensures that the total payments 
made in period t do not exceed the available budget for that period. As previously mentioned, all 
supplier orders must be paid within the planning horizon, even if the supplier's credit terms would 
otherwise allow for deferred payment beyond the final period. This means that each reception period 
j is associated with a payment period t, depending on the supplier s.  

An order received in period j must have been placed at an earlier time point. The supplier’s 
credit term is counted from the moment the order was placed. Therefore, the latest time point by 
which the retailer must pay the order is computed accordingly. If this time point falls within the 
planning horizon, the order is paid in the corresponding period. If it falls outside the planning 
horizon, the payment is made in the final period of the planning horizon. 

Storage capacity:  ∑ ൫𝑉௣ ∙ 𝑖௪௣௧ିଵ൯௣∈௉(௪) + ∑ ∑ ൫𝑉௣ ∙ 𝑥௦௪௣௧ି௅ ೞ்൯௣∈௉(௦,௪)௦∈ௌ(௣) ≤  𝑆𝐶௪ ,     𝑤 ∈ 𝑊,   𝑡 ∈ 𝑇 ∖ ሼ0ሽ˄ 𝑡 − 𝐿𝑇௦ ≥1  
(7)

The items handled or stored in a warehouse cannot exceed its maximum capacity limits, whether 
in terms of throughput, volume, or weight. Maximum inventory levels are defined at the beginning 
of each period, where the final inventory from the previous period (iₜ₋₁) is added to the purchased 
orders (x) that arrive at the start of period t. 

Maximum and minimum lot sizes, and binary assignment to the ordering event:  𝑀𝑁𝐿𝑆௦ ∙ 𝑏௦௪௧ ≤ ∑ 𝑥௦௪௣௧௣∈௉(௦,௪) ≤  𝑀𝑋𝐿𝑆௦ ∙ 𝑏௦௪௧ ,        𝑠 ∈ 𝑆,𝑤 ∈ 𝑊, 𝑡 ∈ 𝑇  (8)

Equations (8) define the minimum and maximum lot size constraints. This constraint account 
for the conditions that suppliers may impose on the minimum and maximum aggregate monetary 
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value of orders. Any order placed must fall within a monetary interval specified by the supplier. 
When an order is executed within the allowed interval [MNLS , MXLS], the binary variable used to 
compute the fixed setup cost is activated. 

Variable bounds: 𝑥௦௪௣௧ ∈  ℤା ,       𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆,𝑤 ∈ 𝑊,𝑝 ∈ 𝑃(𝑠,𝑤) 𝑖௪௣௧ ∈  ℤା ,       𝑡 ∈ 𝑇,𝑤 ∈ 𝑊, 𝑝 ∈ 𝑃(𝑤) 𝑑௪௣௧ ∈  ℤା ,       𝑡 ∈ 𝑇,𝑤 ∈ 𝑊,𝑝 ∈ 𝑃(𝑤) 𝑏௪௦௝ ∈ ሼ0,1ሽ ,      𝑗 ∈ 𝐽,𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆 

(9)

4. Solution Procedure 

Step 1: Deterministic equivalent model 
The model proposed in the previous section is classified as a Stochastic Pure Integer Linear 

Programming (SPILP) model. It includes a set of linear, integer, and binary variables and constraints. 
The objective is the minimization of a linear function, subject to linear constraints. The inventory 
problem addressed by the model thus constitutes a mathematical programming problem. Such 
models benefit from solution algorithms implemented in computational environments. 

The stochastic nature of the model is associated with the demand parameter, which is applied 
through the demand fulfillment constraint. This constraint is modeled as a probabilistic (stochastic) 
constraint. As Rao (2019) notes, any stochastic mathematical programming model aims to transform 
it into a deterministic equivalent, which can then be solved using mathematical programming 
techniques aligned with the structure of the optimization problem. Accordingly, the model described 
in the previous section is transformed into its deterministic equivalent using the Chance-Constrained 
Programming (CCP) technique developed by Charnes and Cooper (1959). 

This approach allows for a specified proportion of stochastic events to violate the probabilistic 
constraint. Such constraints enable decision-makers to evaluate optimization objectives in terms of 
the probability of their achievement (Olson & Wu, 2020). 

In many industrial problems, attention is focused on reliability and capacity, understood as the 
probability of satisfying a given demand or set of demands (Birge & Louveaux, 2011). This is 
equivalent to modeling the risk inherent in the process. If α is a predefined risk level chosen by the 
decision-maker, the implication is that the demand fulfillment constraint may be violated in α% of 
all possible cases (Olson & Wu, 2020). 

In the context of the inventory problem, Equation 4 defines the demand fulfillment constraint. 
Given a risk level α (i.e., the probability of a stockout), total demand will not be met in α% of the 
realizations for period t, for each product p offered at each warehouse w. Since this is the only 
probabilistic constraint in the model, our requirement is simply that the total available quantity d be 
at least equal to the (1–α) quantile of the cumulative demand in period t for each product p at 
warehouse w. Based on the formulation in Birge & Louveaux (2011), the deterministic equivalent of 
Equation 4 can therefore be written as:  𝑑௪௣௧ ≥  𝑭𝑫ೢ೛೟ (క)ିଵ (𝜉)൫1 − 𝜶௪௣௧ ൯ ,      ∀ 𝑤 ∈ 𝑊,   𝑝 ∈ 𝑃(𝑤),   𝑡 ∈ 𝑇 ∖ ሼ𝑡଴ሽ 
where F denotes the cumulative distribution function (CDF) of the random demand variable D. 
Assuming that D follows a normal distribution, the deterministic equivalent of the probabilistic 
constraint can be derived as follows: 
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𝑃൛ 𝑑௪௣௧ ≥  𝑫௪௣௧ (𝜉) ൟ = 𝑃⎩⎨
⎧ 𝑫௪௣௧ (𝜉) − 𝔼ൣ𝑫௪௣௧ (𝜉)൧ ට𝕍ൣ𝑫௪௣௧ (𝜉)൧ ≤ 𝑑௪௣௧ − 𝔼ൣ𝑫௪௣௧ (𝜉)൧ ට𝕍ൣ𝑫௪௣௧ (𝜉)൧ ⎭⎬

⎫ ≥  1 − 𝜶௪௣௧  ,
∀ 𝑤 ∈ 𝑊,   𝑝 ∈ 𝑃(𝑤),   𝑡 ∈ 𝑇 ∖ ሼ𝑡଴ሽ 

This is true only if: 𝑑௪௣௧ − 𝔼ൣ𝑫௪௣௧ (𝜉)൧ ට𝕍ൣ𝑫௪௣௧ (𝜉)൧  ≥  𝐾𝜶ೢ೛೟  ,      ∀ 𝑤 ∈ 𝑊,   𝑝 ∈ 𝑃(𝑤),   𝑡 ∈ 𝑇 ∖ ሼ𝑡଴ሽ  
Therefore, the stochastic constraint is equivalent to the following deterministic constraint: 𝑑௪௣௧ ≥ 𝔼ൣ𝑫௪௣௧ (𝜉)൧ + 𝐾𝜶ೢ೛೟ ∙ ට𝕍ൣ𝑫௪௣௧ (𝜉)൧ ,      ∀ 𝑤 ∈ 𝑊,   𝑝 ∈ 𝑃(𝑤),   𝑡 ∈ 𝑇 ∖ ሼ𝑡଴ሽ 

when 𝑭(𝐾𝜶ೢ೛೟ ) = 1 − 𝜶௪௣௧  
The parameter D is assumed to follow a normal distribution; therefore, in the above equation, it 

is represented by its mean and variance. 
Step 2: Warm-Start Heuristics and Relaxation-Based Preprocessing 

To improve computational performance, especially for large-scale instances, a warm-start phase is 
integrated prior to solving the deterministic equivalent model. This step involves generating a high-
quality initial solution through linear relaxation, heuristic allocation of order quantities, or rounding 
methods. Selected variables are preassigned values based on relaxed solutions, and infeasibility is 
avoided through constraint-aware projection. This initial solution is injected into the solver, guiding 
the Branch and Bound tree and reducing total CPU time. Additionally, relaxation-based techniques 
such as Lagrangian relaxation or cutting planes may be applied to tighten bounds before the main 
optimization. This approach is consistent with Bixby (2012) and Ferrer et al. (2009), who highlight the 
efficiency gains of warm-start strategies in large-scale MIP problems. 

The model is solved using the Lingo optimization system. For mixed-integer models, Lingo 
applies the Branch and Bound algorithm. An analysis was conducted using the commercial 
optimization software LINGO (Table 2). Integer variables other than binary ones were relaxed as 
continuous due to the order sizes, which does not significantly affect the results for practical 
instances. In this regard, the magnitude of the instances addressed here qualifies them as practical 
instances of the problem. 

5. Results 

To validate the applicability of the proposed model, it is tested in the context of a retailer 
specializing in automotive accessories. The retailer operates two warehouses located in the same city, 
where products are sold individually and supplied by multiple vendors. Both warehouses are 
equipped to store stock, and no lateral transshipments occur between them. While more than 150 
products are sold across both warehouses, 122 of them are identified as relevant. All 122 products are 
sold in Warehouse 1, whereas 99 of them are sold in Warehouse 2. It is estimated that these 122 
products account for approximately 85% of total sales across both locations. 

Within this context, the objective is to test the model and determine the optimal replenishment 
decisions for managing stock in this retail organization. To achieve this, a discrete parametric analysis 
of the model is conducted. A discrete parametric analysis involves systematically varying one or 
more model parameters in discrete increments and observing how these variations impact the 
model’s outcomes. 

In the analysis, two parameters are varied: the service level and the number of periods in the 
planning horizon. First, the model is tested across service levels ranging from 50% to 95%, in 
increments of 5%. Second, the model is tested for three different planning horizon configurations: 3, 
4, and 6 periods. 
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Changing the number of planning periods implies a change in the number of days covered by 
each period. For each service level tested, the number of planning periods is also varied. Thus, a total 
of 30 model runs are conducted. 

Varying the service level systematically affects the mean and standard deviation of the product 
demand probability distribution at each warehouse, requiring an adjustment of the percentile K 
corresponding to the specified service level. Given that the full planning horizon spans 72 days, we 
consider: 

• 3 periods of 24 days, 
• 4 periods of 18 days, and 
• 6 periods of 12 days. 

Accordingly, the planning horizon is defined as the date range from April 1, 2024 to June 22, 
2024. 

The following figure presents the results of each parameter variation, showing their effect on the 
total cost obtained: 

Table 3. Model results. 

Service Level (1-α)% Number of periods Total Cost (US $) 
50% 3 periods – 24 days $ 49.499,707 
50% 4 periods – 18 days $ 54.324,624 
50% 6 periods – 12 days $ 65.634,467 
55% 3 periods – 24 days $ 49.569,257 
55% 4 periods – 18 days $ 55.134,084 
55% 6 periods – 12 days $ 66.397,170 
60% 3 periods – 24 days $ 50.624,794 
60% 4 periods – 18 days $ 55.406,273 
60% 6 periods – 12 days $ 67.208,.829 
65% 3 periods – 24 days $ 50.890,444 
65% 4 periods – 18 days $ 55.919,235 
65% 6 periods – 12 days $ 67.367,879 
70% 3 periods – 24 days $ 50.977,873 
70% 4 periods – 18 days $ 56.396,323 
70% 6 periods – 12 days $ 67.420,373 
75% 3 periods – 24 days $ 51.601,026 
75% 4 periods – 18 days $ 57.229,167 
75% 6 periods – 12 days $ 67.536,379 
80% 3 periods – 24 days $ 51.703,056 
80% 4 periods – 18 days $ 57.536,379 
80% 6 periods – 12 days $ 68.467,314 
85% 3 periods – 24 days $ 52.790,101 
85% 4 periods – 18 days $ 58.138,932 
85% 6 periods – 12 days $ 68.658,372 
90% 3 periods – 24 days $ 53.862,352 
90% 4 periods – 18 days $ 58.278,685 
90% 6 periods – 12 days $ 69.497,909 
95% 3 periods – 24 days $ 55.028,351 
95% 4 periods – 18 days $ 59.791,369 
95% 6 periods – 12 days $ 71.360,139 

Source: The authors. 

It can be observed that increasing the number of planning periods leads to higher total costs. 
However, the increase in cost is not proportional to the number of periods. This is due to the nonlinear 
nature of the expression on the right-hand side of the deterministic demand fulfillment constraint. 
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For a 95% service level, the difference in total cost between using 6 and 4 periods is $11,552,466, 
and between 3 and 4 periods is $4,752,222. This suggests that using shorter time intervals, which 
increases the number of periods within a fixed planning horizon, results in higher costs than using 
longer periods, which reduces the number of planning intervals for the same horizon. 

For instance, using 6-day periods instead of 24-day periods triples the number of planning 
periods, which in turn increases the inventory requirements and, proportionally, the associated costs, 
assuming those units are procured. 

Additional considerations and findings are summarized as follows: 

• Varying the number of periods in the planning horizon significantly affects total cost, 
particularly the purchase cost (C1). Using shorter periods tends to increase total cost, primarily 
due to the need to purchase larger quantities of stock, place more orders, and hold more 
inventory to meet future demand. The nonlinear behavior of the standard deviation in the 
product demand distribution necessitates more inventory to satisfy demand in shorter periods 
compared to longer ones. Additionally, since the average daily demand per product is below 
one unit, it is expected that demand volumes for shorter periods remain relatively low. 

• As the service level (1–α) increases, the total cost also increases. While the increase is not 
proportional, the relative increase in cost due to higher service levels is generally less impactful 
than the cost increase caused by varying the number of planning periods. 

• For the retail case analyzed in this study, the optimal solution in terms of total cost occurs when 
the planning horizon is divided into 3 periods of 24 days. In this scenario, the total cost ranges 
from approximately 49 million (at a 50% service level) to approximately 55 million (at a 95% 
service level). A sound decision involves selecting a configuration that balances cost and service 
level. For this, a 75% service level (associated cost: $51,445,821) or an 80% service level 
(associated cost: $51,547,821) may represent good trade-offs. 

Furthermore, to assess the computational efficiency of the model, it was tested across several 
instances involving different sizes of the model’s sets. These are summarized in the following table. 

Table 4. Instances of computational tests. 

Supply chain characterization Instances 
Sets  1 2 3 4 5 6 7 

Products 𝑝 84 122 183 244 488 732 976 
Warehouses 𝑤 2 2 3 4 5 6 7 

Suppliers 𝑠 5 6 9 12 24 36 48 
Periods 𝑡 5 7 10 10 10 10 10 
Periods 𝑗 4 6 9 9 9 9 9 

Products associated with 
warehouses 𝑃(𝑤) 

149 221 519 844 2.256 3.978 6.280 

Suppliers - products 𝑆(𝑝) 84 122 293 488 1.952 4.392 7.808 
Source: The authors. 

The results of the computational experiments for these instances are presented in the following 
table. The model performed well in the instances presented above, as can be seen in the figures. The 
objective of the computational tests is not to verify the quality of the solutions; rather, it is to 
determine the model's efficiency in solving problems of different sizes. 

The computational analysis based on Table 5 confirms the scalability and robustness of the 
proposed model. As the number of products, warehouses, and suppliers increases across the 
instances, the model maintains tractable solution times even for large-scale cases. For instance, in 
instance 7, characterized by 976 products, 7 warehouses, 48 suppliers, and 574,504 variables, the 
solution time remains under 2.5 hours (8,782 seconds), which is considered efficient given the 
problem's combinatorial complexity. Additionally, the consistent growth in solution time and 
memory use across instances shows a predictable and stable computational pattern. This behavior 
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demonstrates that the model and solution procedure can be applied in progressively larger retail 
environments without exponential degradation in performance. The use of a linear SPILP 
formulation, along with the relaxation of non-binary integer variables, proves to be effective for 
handling real-world inventory planning problems at scale.

Table 5. Results of instances of the computational tests.

Model characterization Instances
Indicators 1 2 3 4 5 6 7

Integer Variables 1.937 4.199 17.376 43.460 124.080 290.394 571.480
Binary Variables 40 72 243 432 1.080 1.944 3.024
Total Variables 1.977 4.271 17.619 43.892 125.160 292.338 574.504

Total Restrictions 1.881 4.141 14.536 24.778 63.127 111.358 175.681
CPU time (s) 4 22 47 126 560 2.546 8.782

Warm start - CPU Time 
Reduction (%)* 0% 15% 25% 32% 38% 44% 49%

Generator Memory Used (kB) 663 1.400 5.388 9.918 37.109 74.338 168.629
*Note: The percentages indicate typical CPU time reductions achieved using warm-start heuristics and 
preprocessing strategies. Source: The authors.

To complement the interpretation of Table 5, a graphical analysis is conducted to assess the 
model´s computational scalability. This is achieved by plotting CPU time against the total number of 
decision variables across seven test instances of increasing size and complexity. Figure 1 illustrates 
the computational scalability of the proposed inventory model across seven instances of increasing 
complexity. Both original CPU times and those achieved using warm-start heuristics are presented 
for comparison.

Figure 1. Computational scalability of the proposed inventory model. Source: The authors, based on 
computational results in Table 5.

The figure shows the relationship between the total number of decision variables and the CPU 
time (in seconds) required to solve each instance. As the size of the problem increases, CPU time 
grows in a nonlinear but predictable manner, confirming the model’s capacity to scale efficiently 
while maintaining computational feasibility for practical retail applications. The figure confirms that 
incorporating warm-start strategies significantly reduces computational time, particularly in large-
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scale instances. Time savings increase consistently with problem size, validating the effectiveness of 
the preprocessing techniques. 

6. Discussion 

The incorporation of warm-start heuristics further reinforces the model´s suitability for large-
scale practical applications. CPU time reductions ranging from 15% to nearly 50% were observed 
across tested instances, validating the computational advantages of this strategy. The warm start 
integration aligns with findings in Ferrer et al. (2009) and Gupta & Maranas (2003), where heuristics 
and relaxations significantly improved runtime in high-dimensional supply chain models. 

The trend illustrated in Figure 1 reinforces the suitability of the proposed SPILP model for large-
scale inventory problems. Despite the exponential growth in problem size, the model maintains a 
consistent and acceptable performance profile. This robustness is particularly valuable for decision-
making in retail organizations that manage extensive product portfolios and multi-echelon 
warehouse networks. From a computational standpoint, the model's performance remains robust 
even as the problem scales significantly in terms of products, suppliers, and warehouses. This is a 
noteworthy achievement, particularly given the pure integer formulation and the stochastic nature 
of the demand constraint. The use of SPILP with a chance-constrained transformation proves not only 
theoretically sound but also practically efficient. This modeling strategy allows the integration of 
multiple realistic constraints, including supplier credit, budget, and storage capacity, without 
compromising solvability. 

The results obtained from both the parametric and computational analyses highlight the 
practical applicability and operational scalability of the proposed model. The discrete parametric 
evaluation across varying service levels and planning horizons confirms expected economic 
behaviors in inventory systems: higher service levels and shorter planning intervals incur higher total 
costs. Notably, the cost differentials observed are not linear, reflecting the influence of demand 
variability and the compound effect of setup and holding costs. 

Importantly, the structure of the model makes it adaptable to a variety of retail contexts. It 
supports decisions on consolidation strategies, investment allocation, and inventory positioning. 
These findings suggest that the model can serve as a strategic tool for medium-sized retailers aiming 
to optimize inventory policies in environments with uncertainty and resource limitations. The 
model's tractability and flexibility open opportunities for implementation within decision support 
systems, ERP platforms, or as part of tactical planning routines, even without further experimental 
elaboration. 

Beyond the specific context of retail inventory planning, the proposed model holds promise for 
broader applications in other sectors facing multi-product and multi-site planning under uncertainty, 
such as manufacturing, pharmaceuticals, agribusiness, and humanitarian logistics. Its mathematical 
structure and reliance on standard solvers make it amenable to integration into enterprise resource 
planning (ERP) systems and decision support platforms. By embedding the model within digital 
tools, organizations can automate and optimize inventory decisions in real-time, aligning operational 
performance with strategic service-level goals and financial constraints. This scalability and 
transferability further elevate the model's relevance and practical value. 

7. Conclusions 

The goal of any inventory optimization approach is to support decision-making processes 
related to replenishment operations. Inventory management is a complex process because it requires 
the consideration of multiple factors to suggest optimal solutions. The importance of decision-making 
increases as the risk associated with purchasing and sales dynamics grows. This risk is particularly 
high for organizations such as retailers, who are especially vulnerable to demand fluctuations and 
often lack tools to efficiently plan their operations, especially small and medium-sized enterprises 
(SMEs). 
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The model developed in this research addresses the inventory problem by integrating key 
aspects of inventory management that are rarely considered jointly in academic and applied studies. 
This is achieved through a methodology that proves both efficient and practical for settings typical 
of small and medium-sized retail organizations. Moreover, the model serves as a valuable tool for 
addressing real-world inventory problems, as demonstrated in the model validation phase.The 
model has shown to be a valuable tool for the company under study, achieving cost reductions of up 
to 17%, with an average savings of 15%, as a result of its implementation. 

The pure integer stochastic optimization model and its deterministic equivalent effectively 
capture demand uncertainty, enabling the inventory problem to be solved through total cost 
minimization while satisfying the specified constraints and ensuring a target service level. 

The model allows for order consolidation from the same supplier and supports the management 
of multiple warehouses, considering constraints such as storage capacity, replenishment lead times, 
and trade credit conditions. This provides flexibility in procurement and stock allocation decisions. 
The model's validation in a real commercial environment confirms its practical applicability. 

It is also important to understand the characteristics of the model parameters to determine the 
appropriate conditions for its execution. As shown in the model validation, using short periods 
significantly increases total cost, which may be unnecessary when product demand rates are low 
within those short periods. 

Finally, due to its formulation, the model is flexible to changes in constraints, optimization 
criteria, the inclusion of new sets, indices, or variables, making it adaptable to contexts different from 
the one considered in this particular inventory problem. 

8. Recommendations and Research Perspectives 

Practical Deployment and Sensitivity Testing 
It is recommended to apply the proposed optimization model in other retail organizations with 

varying structural parameters, such as differentiated service levels across periods or modified 
operational constraints, to test its robustness and adaptability. Discrete parametric analyses should 
also be extended to include additional parameters — such as purchasing costs, budget ceilings, or 
demand variability — to gain deeper insights into the operational leverage offered by the model. 

Handling Stochastic Parameters 
In real-world applications, many parameters treated as deterministic in this study are subject to 

uncertainty. Future research could explore models where multiple parameters (e.g., demand, costs, 
or lead times) are modeled stochastically. This would enhance the realism of the model and improve 
its decision-making power in uncertain environments. 

Model Extensions and Advanced Constraints 
Future versions of the model may benefit from incorporating additional real-world features such 

as explicit backordering costs, perishability, deterioration, economies of scale, or lateral 
transshipments. These aspects are particularly relevant in sectors such as agribusiness or 
pharmaceuticals, where inventory dynamics are complex. 

Perspectives for Algorithmic Enhancement and Computational Research 
While the model has shown good computational performance using commercial solvers and 

deterministic transformation techniques (e.g., chance-constrained programming), further research is 
encouraged in the following directions: 

Acceleration Methods: Techniques such as Benders decomposition, as used by Thorsen & Yao 
(2017), may be incorporated to decompose the problem into more tractable subproblems, especially 
under multi-echelon structures or multi-objective settings. 

Hybrid Approaches: Combining mathematical programming with heuristics or simulation-
based methods can improve scalability in larger instances. For instance, Taleizadeh et al. (2011) use a 
hybrid harmony search under fuzzy environments, and Saracoglu et al. (2014) employ genetic 
algorithms tailored for multi-product constraints. 
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Metaheuristics: These are particularly useful in solving large-scale or non-convex formulations. 
Metaheuristic strategies such as the Genetic Region Reduction Algorithm (Maiti & Maiti, 2007), 
Variable Neighborhood Search (Đorđević et al., 2017), or Rain Optimization Algorithm (Kumar & 
Mahapatra, 2021) have proven effective in multi-warehouse, multi-product inventory settings similar 
to this work. These approaches can serve as benchmark methods or provide starting solutions for 
exact methods. 

Integration into Intelligent Systems 
The model can be extended and embedded into Enterprise Resource Planning (ERP) platforms 

or intelligent decision support systems for real-time inventory optimization. This would allow 
practitioners to dynamically adjust inventory decisions based on evolving data, using digital twins 
or AI-assisted planning. 

Benchmarking and Comparative Studies 
Future research may involve benchmarking the proposed model against other established 

approaches — including robust optimization, simulation-optimization, and multi-objective 
formulations — under standardized datasets to evaluate trade-offs between solution quality, 
computation time, and model interpretability. 
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