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Abstract 

Dimensional tolerances and surface finish are two fundamental elements that must be carefully 
controlled during the manufacturing of industrial parts. The study of signals obtained from the 
machining of parts is useful for the control and monitoring of the process. For this reason, correlating 
these signals and information on the surface quality of the machined part is essential for the early 
detection of breaches in the quality levels of the parts. Therefore, the objective of this work is to 
develop an intelligent strategy capable of estimating the artificial geometric error induced in the part 
during machining. In order train these strategies, the experimental signals of the process and the 
three-dimensional scanned geometry of the machined part are used as starting data. This 
development aims to reduce both defects and production time, increasing the efficiency, productive 
capacity and environmental sustainability of the industrial process. 

Keywords: artificial intelligence; milling; 3D geometry; scanning 

1. Introduction

Industrial processes are constantly adapting to the needs imposed by the market. Currently,
competition in the sector and the seek for sustainability in production processes have motivated the 
study and application of new methods that allow not only an increase in the profitability of the 
processes, but also a reduction in environmental impact. In machining processes, this translates into 
the need to exhaustively control the results obtained during the process. [1].  

The main challenge in efficiently controlling machining processes lies in the variety of situations 
that arise, as well as in obtaining parameters and machine signals that provide valuable information 
on the quality of the operation. 

The technological improvements developed in recent years, and the transition to industry 4.0, 
have allowed the deployment of increasingly precise sensors and with increasingly high sampling 
frequencies. This makes efficient data collection possible during production processes. The data 
obtained from these processes is extremely valuable since, if handled correctly, it can allow the 
identification of process anomalies or quality breaches during the process. 

On the other hand, different software solutions have been developed that considerably ease the 
analysis and communication of information [2]. This has increased the exploration and deployment 
of data analysis and monitoring schemes. One of the most recently used tools are the different 
artificial intelligence (AI) algorithms. These techniques allow the analysis of complex data structures 
and the detection of patterns that are useful for industrial processes’ monitorization.  
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The main applications of AI strategies in machining processes can be classified into three groups 
according to their functionality:  

Monitoring and predictive maintenance of machinery and tools: During chip removal processes, 
tools are subjected to varying wear conditions. Excessive tool wear or breakage directly impacts 
process performance. The analysis of data from historical operations facilitates the identification of 
failure patterns, thus allowing compliance with a predictive maintenance plan. For example, 
Achyuth, et al. (2018) [3] developed a strategy to monitor the tools’ condition by analyzing acoustic 
emissions captured during the process. 

Optimization of cutting parameters: The optimization of cutting parameters during machining 
processes is critical to increase productivity and efficiency. Modeling the effect of these parameters 
is, therefore, of special interest for the industrial sector [4].  

Analysis of defects (quality control): Lastly, one of the most common applications of data 
analysis, modeling and artificial intelligence in machining processes is based on the prediction of 
geometric errors that occur during the machining of parts. The deployment of this type of models 
allows real-time (in-process) quality control of the manufactured part, allowing the timely stop of the 
machine or the correction of the error. [5]. 

Defect analysis methods (quality control) are mostly based on training machine learning 
strategies. These are usually oriented to the generation of normality models of specific operations. 
For example, Eser, et al. (2021) [6], developed a predictive model of the roughness obtained after a 
milling process of an aluminum alloy. The roughness prediction is given by the analysis of 
parameters such as cutting speed, feed per tooth and depth of cut. In this way it is possible to predict 
the finish of the part based on the parameters selected for the operation. 

Machining processes are high-precision operations. Therefore, it is essential to control the 
quality of the parts being produced in real time. In this way, the operation can be stopped in case the 
error exceeds the tolerable limit, thus increasing the productivity of the process. These geometric 
errors are the product of several reasons, such as errors in the clamping of the pieces, high operating 
temperatures, bending of slender tools or thin-walled pieces, vibrations, etc [7].  

The objective of this article is to develop a geometric error prediction model for a milling 
operation based on both dynamometric signals and geometric data of the part obtained during the 
milling process and subsequent 3D scanning, respectively. In the document, first, the 
experimentation scheme is described, then the data processing methodology is analyzed and, finally, 
the obtained results are discussed. 

2. Materials and Methods 

2.1. Experimental Setup and Data Adquisition 

In order to collect the necessary data to generate an error prediction model, the following 
processes have been carried out: (1) Raw flange scanning, (2) roughing operation, (3) Intermediate 
scanning, (4) Finishing operation and (5) Final scan of the piece. In Figure 1 Images of both the 
machining process and the scanner setup are shown. 

In Figure 2, Scans of the part made at different stages of machining are shown using the assembly 
presented in Figure 1B). The part is a flange for the oil & gas industry. 

This project focuses specifically on the milling finishing process of the frustoconical region of 
the flange. Specifically, it is a 5-axis milling. The tool used is a 25 mm diameter ball end mill with 2 
cutting edges. The spindle rotation speed and feed rate are 3,200 rpm and 1,834 mm/min, respectively. 

In order to obtain information on correctly and incorrectly machined areas, an artificial offset of 
0.5 mm in the XY plane has been induced in the clamping of the part for the finishing operation. This 
eccentricity causes the generated forces to vary depending on the machined region. Therefore, 
expecting the AI strategy to be able to predict this geometric error that has been artificially induced 
in machining. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2025 doi:10.20944/preprints202508.0035.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0035.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 10 

 

 

Figure 1. Roughing process & 3D scanning. 

 

Figure 2. 3D scanning sequence. 

The data to be acquired for the training and application of an automatic learning strategy is 
divided into 2 groups: (a) Process / machine signals and (b) information on the geometric quality of 
the part. 

The data acquisition of the process has been carried out using the SPIKE capture system from 
Promicron. From this system, different signals about the machining operation are obtained over a 
time domain, such as bending moments in the X and Y directions, axial force and torque.  

In order to develop a process monitoring strategy, information on the geometric quality of the 
part is required. For this, a 3D scan of the piece after the finishing operation has been captured (Figure 
2 C). From this scan, a cloud of points corresponding to the real part is recorded. The scanner has 
been mounted on a Fanuc robot and 8 capture positions have been set. The information obtained 
from the different captures of the piece has been unified through an automatic measurement 
program. 

2.2. Data Processing Methodology 

This project presents a methodology for data management in order to generate a model capable 
of detecting geometric errors during the milling process of the part in question. 

The methodology of implementing artificial intelligence strategies and data analysis to 
industrial processes follows a structure divided into 5 main groups: (1) Pre-processing of the acquired 
data, (2) Study of variables, (3) Study of applicable AI models, (4) implementation of the models and 
validation, and (5) analysis and comparison of results (Figure 3). 
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Figure 3. Data processing methodology. 

2.2.1. Pre-Processing 

At this stage of the project, the aim is to condition and standardize the captured data. Therefore, 
it is subdivided into conditioning and homogenization. The work carried out in each of these stages 
is detailed below. 

The aim of data conditioning is to extract relevant information from the signals and filter the 
data obtained. The torque is recorded from the Spike capture system and the aim is to estimate the 
tangential force experienced by the tool. This force is calculated through the torque of the tool’s 
rotation axis. On the other hand, this signal is in time domain. To obtain the force in the spatial 
domain, the SPIKE and CAM signals have been synchronized. 

Once the part is scanned after the milling operation, the point cloud obtained is adjusted to the 
theoretical geometry through the CAD. Subsequently, the geometric error committed at each point is 
calculated. This is calculated as the minimum distance between each point of the 3D scan and the 
closest point belonging to the CAD surface. 

Thus, the tangential force and geometric error datasets are identical in structure. The first three 
columns are the X, Y, Z coordinates, respectively. The fourth column is the tangential force and the 
geometric error, respectively. 

The points that correspond to the approach zone of the tool have been deleted from the dataset. 
This region does not provide relevant information, so its removal reduces the computational cost of 
training strategies without compromising their effectiveness. 

In addition, the scan points that do not correspond to the region in which the machining forces 
are found have been filtered. This has been done by determining the spatial domain of the cutting 
data and removing all points from the scan that fall outside the mentioned domain in the Z 
coordinate. 

To sum up, after this stage (data conditioning) two matrices are obtained that contain only 
relevant information on the machining process.  

The objective of data homogenization is to homogenize the information to a single data 
structure. It is essential that the study parameters are calculated at the same points in order to 
estimate patterns and relationships between variables.  

The information processed is not synchronized at this stage. That is to say, the points in which 
the geometric errors have been obtained do not coincide with the points in which the tangential force 
has been obtained. Therefore, it has been decided to work with the points of the CAM as a basis to be 
able to carry out this homogenization. For this, an algorithm based on KD trees has been developed, 
this structure allows to optimally solve the "nearest neighbor" problem [8]. 

Once the KD tree has been obtained with the 3D scan point cloud, the value of the geometric 
error has been approximated at each point of the dataset of tangential forces. This has been achieved 
by means of a weighted average of the geometric error computed with the three closest points. In 
addition, two conditions have been defined to mitigate information distortion. First, a search radius 
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has been defined, and second, a minimum of three points has been established within said search 
region. For the geometric error approximation to be considered valid, both conditions must be met. 
If at least one is not met, then the information at that point is not "homogenized".  

2.2.2. Study of Variables 

The effectiveness of the different AI strategies lies fundamentally in the quality of the variables 
with which the model is fed. Therefore, the preprocessing stage is usually the most delicate in the 
process of implementing machine learning strategies. Usually, in this stage, not only is the 
information structured, but also the signal noise is filtered out. Such noise or spikes in the signals can 
significantly impair the performance of the strategies. 

As previously mentioned, the data structure available up to this point has the following 
attributes 

X coordinate 
Y coordinate 
Z coordinate 
Tangential force 
Geometric error 
It may seem reasonable to feed the strategy with all the available parameters in order to obtain 

the best results. However, this stage has the objective of determining which parameters positively 
contribute to the model and discarding those that worsen the performance or application. 

It is determined that it is essential not only that the strategy is precise and exact but also that it 
is applicable to a real case. The data with which the strategies are trained correspond to a particular 
scenario in which an eccentricity has been induced when clamping the piece in a specific direction of 
the XY plane and of a specific magnitude (0.5 mm). However, the strategy is expected to detect errors 
correctly in all directions and magnitudes. 

2.2.3. Study of AI Models 

There are numerous applications of AI strategies applied to similar problems in the literature. 
In order to select the most appropriate strategy, the objective of the model to be applied must first be 
correctly defined. In this case, the aim is to predict the geometric error committed based on the 
previously mentioned parameters. 

The strategies that best adapt to the objective of the project are the regression algorithms. These 
allow to predict a continuous numeric variable based on the attributes (parameters) provided. 

It is expected that the relationship between the geometric error and the selected parameters is 
not necessarily linear. For this reason, the algorithms to be applied must be able to work with non-
linear or defined relationships. The SVR algorithm is commonly used for problems of this style. [9]. 
Therefore, it has been selected as a potential model for this project. 

The results of the AI strategy will depend not only on the variables that have been used for the 
model but also on the hyperparameters of the algorithms. Hyperparameters are elements that can be 
modified in strategies and are not automatically optimized in the training stage. The main 
hyperparameter of the SVR model is the kernel. 

SVR algorithms work by generating a hyperplane that fits the values of the dataset with which 
it has been trained. To obtain said hyperplane, the strategy uses a kernel. Consequently, the shape 
and quality of the hyperplane will depend substantially on said hyperparameter. 

Kernels are functions that contain a series of operations that are executed in order to obtain the 
relationship between the variable to be predicted and the rest of the parameters. For example, when 
using a linear kernel, the strategy is conditioned to "force" a relationship between the variables that 
has the following form (Equation 1), 𝑦௜ = 𝛽଴ + 𝛽ଵ𝑥௜ଵ + 𝛽ଶ𝑥௜ଶ + ⋯+ 𝛽௡𝑥௜௡, (1)

The most used kernels in SVR algorithms are: 
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Linear: (linear hyperplane, Equation 1).  
Polynomials: conditions the shape of the hyperplane generated to polynomial equations of the 

degree that is specified  
Radial basis function (RBF). Used to search for non-linear relationships. 
In this project the following kernels will be evaluated: linear, polynomial (grade 2), polynomial 

(grade 3) and RBF. 

3. Results and Discussion 

For data management and implementation of the strategy, various modules of the Scikit-learn 
Python library have been used. In this library, not only the SVR algorithm is implemented, but also 
data management methods that have been useful for this project. 

The results obtained both in the stage of the study of variables and in the implementation of the 
AI strategy are detailed below. 

3.1. Variable Selection 

As mentioned above it sounds reasonable to train the strategies directly with all the available 
parameters. However, as demonstrated below, this can be detrimental to the model. 

It has been thought that by feeding the strategy with all the available variables, objectivity would 
be lost. Meaning by objectivity the ability of the algorithm to correctly operate with data with which 
it has not been trained. 

Specifically, the proposed hypothesis is the following: The coordinates x, y, z condition the 
strategy directionally. Therefore, if the hypothesis is correct, it is expected that the generated model 
will not be able to correctly predict the error made when rotating the dataset. To test this, an algorithm 
has been trained with all the variables (x, y, z, Forces) and subsequently the validation dataset has 
been rotated 180º. For training, the SVR algorithm has been used with the 'rbf' kernel. Note that at 
this stage of the project the goal is not to judge the kernel but the variables. 

Figure 4 A) shows the actual geometric error after rotating the data. It should be noted that all 
the dataset variables have been rotated together. Thus, the strategy should be able to correctly predict 
geometric errors. 

 
Figure 4. Real and predicted errors after 180º rotation. 

Note that the strategy has been trained with the original dataset (not rotated). 
As shown in Figure 4 B), the trained algorithm is not capable of correctly detecting the geometric 

error distribution in cases other than the training one. For this reason, it is concluded that the 
hypothesis is correct. By training the strategy with the x, y, z coordinates, a link is generated between 
the spatial and the geometric error. Preventing the error from being correctly predicted with a rotated 
dataset. 

Consequently, it has been decided to carry out a transformation from Cartesian coordinates to 
cylindrical coordinates. Thus, the radius and theta angle are obtained as new attributes. The 
information provided by the radius does not condition the strategy as the Cartesian coordinates did. 
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The same procedure has been carried out (rotate the dataset) and it has been confirmed that the 
strategy behaves correctly. However, it has been seen that when using the theta variable in the 
training stage, the result obtained is similar to that presented in the Figure 4 B).  

Up to this point, the theta variable has been ruled out for the implementation of the algorithms. 
The remaining variables are the radius, the z coordinates and the forces. As shown in Figure 5, the 
radius and the z coordinates are closely related, it has been decided to eliminate the z coordinate 
since, like the x and y coordinates, it prevents the strategy from working correctly when displacing 
the dataset in the z axis. 

 

Figure 5. Correlation matrix. 

Once this study has been carried out, it is decided that the variables to be used for training the 
model are the following: 

Radius 
Force 
Geometric error (Predicted variable) 

3.2. SVR Implementation 

In order to evaluate the performance of the algorithms, a prediction error vector has been 
defined as follows: 𝑉௘௥௥௢௥ = 𝐸𝐺௣௥௘ௗ௜௖௧௘ௗ − 𝐸𝐺௥௘௔௟ (2) 

So that  𝑉௘௥௥௢௥ is a vector that contains the prediction error committed in each of the validation 
points. The mean prediction error and its standard deviation are obtained from this vector. These two 
metrics allow quantifying the performance of each algorithm. 

As previously mentioned, in the case of the SVR algorithm, the main hyperparameter to tune is 
the kernel. In Figure 6 the results of the validation of the strategy with the most relevant kernels are 
presented. 

As can be seen, the best result has been obtained with the RBF kernel. The mean of the error 
committed by the prediction is 6.877 µm and the standard deviation 249.4 µm. The result is 
reasonably good considering that the deviation in the XY plane is 0.5 mm. 

Regarding the accuracy, the means of the errors obtained were 5.36 µm, 31.2 µm, 28.1 µm and 
6.87 µm for the linear kernel, polynomial of degree 2 and polynomial of degree 3, respectively. As 
seen, the RBF kernel is the second most accurate. 

On the other hand, taking the RBF kernel as a reference, the standard deviations increase by 
36.43 %, 41.23 % and 40.42 % for the linear, degree 2 polynomial and degree 3 polynomial kernel, 
respectively. In other words, the RBF kernel is undoubtedly the most accurate of the alternatives 
studied. 
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Figure 6. Kernel comparison. 

It has been observed that the RBF kernel is reliable throughout the different regions of the part. 
However, the prediction quality of the other kernels decreases as “higher” sections of the part are 
taken (higher z-coordinates).. 

Figure 7 illustrates the quality of the predictions to observe the correlation visually. In this region 
it can be clearly seen how the RBF behaves better than the rest of the kernels. Obtaining mean square 
errors (MSE) of: 0.131, 0.151, 0.147 and 0.015 for the kernels: linear, polynomial (degree 2), polynomial 
(degree 3) and RBF respectively. Therefore, the predictions of this region agree with the general 
results presented in Figure 6. 

 

Figure 7. Prediction comparisons. 

When analyzing the complete domain of the signal, it is detected that the linear and polynomial 
kernels behave worse as the Z coordinate increases. This is due to the fact that the relationship 
between the variables analyzed is neither linear nor polynomial. 

Finally, as previously commented, Figure 7 corroborates the results presented in Figure 6 and 
show that the rbf kernel is the most suitable for predicting the geometric error during the milling 
process. 

This section may be divided by subheadings. It should provide a concise and precise description 
of the experimental results, their interpretation, as well as the experimental conclusions that can be 
drawn. 

4. Conclusions 

In this research, a prediction model has been developed that allows monitoring the geometric 
error of the part during the milling process. For this, machine sensors and 3D scans have been used. 
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It has been shown that the stages prior to the development of the AI strategy are essential to 
improve the objectivity of the data and guarantee an effective operation of the AI algorithm. In this 
sense, the Cartesian coordinates have been transformed to cylindrical and theta and z variables have 
been discarded. 

The SVR algorithm based on the RBF kernel is the most accurate, reliable and precise strategy of 
those studied. On the one hand, other kernels (linear and polynomial 2 and 3) of the SVR algorithm 
have been studied. However, these increase the average dispersion by 40% over the RBF. On the other 
hand, the MSE of the predictions using the SVR algorithm with RBF in two chosen zones has values 
of 0.034 and 0.015, respectively, proving that the RBF prediction is consistent. Finally, in terms of 
accuracy, the mean error of the strategy is extremely low (6.877 µm). In summary, the SVR strategy 
with the RBF kernel has proven to be vastly superior in terms of accuracy and precision compared to 
the other strategies studied. 

Finally, the feasibility of scanning as a technique for the supervision of industrial parts is 
demonstrated. In addition, this work demonstrates the potential of sensorization and artificial 
intelligence strategies in the control of machining processes. 
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