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Abstract 

This study analyzes the semantic dynamics and thematic shifts  in artificial  intelligence  (AI) ethics 

over time, addressing  the scarcity of  longitudinal perspectives  in the  literature. In response to the 

rapid AI  technology  evolution  and  associated  ethical  risks  and  societal  influences,  this  research 

integrates the theory of chance discovery with the KeyGraph algorithm. Guided by the double helix 

model of human–AI interaction, this work constructs a keyword co‐occurrence network via iterative 

semantic exploration. Building on the co‐occurrence structures and original textual data, this work 

employs ChatGPT  for semantic  interpretation, enhancing  the accuracy and comprehensiveness of 

topic detection. The study analyzes AI ethics reports released between 2022 and 2024 by reputable, 

authoritative  institutions,  revealing  that  the  thematic  focus has  expanded  from  technical  risks  to 

broader  issues  of  institutional  governance  and  societal  trust.  Various  keywords,  including  bias, 

privacy, and ethical, have emerged as core nodes across multiple years, indicating a shift in AI ethics 

discourse from technical development to regulatory policy. This evolution highlights the formation 

of  an  integrated  governance  framework,  encompassing  technological  robustness,  institutional 

adaptability,  and  social  consensus.  This  dynamic  semantic  analysis  framework  offers  empirical 

contributions  to  AI  ethics  governance  and  knowledge  development  and  valuable  insight  for 

researchers and interdisciplinary stakeholders. 
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1. Introduction 

The rapid advancement of artificial intelligence (AI) has transformed lifestyles by offering novel 

solutions to real‐world problems and challenges and has introduced revolutionary changes across 

application domains. Although AI systems enhance efficiency and generate value,  the ethical and 

societal issues they raise have become global concerns. For instance, the rapid development of various 

technologies (e.g., autonomous driving, drones, smart health care, and generative language models) 

has led to ethical risks, including algorithmic bias, data privacy infringements, opacity in decision‐

making, and ambiguous accountability.  In response  to  these challenges, multiple  international AI 

ethics guidelines and governance frameworks have been introduced, including the European Union’s 

AI Act and various national white papers on technology ethics, which aim to address the ethical and 

social risks posed by technological advancements through policy and institutional design [1,2]. As AI 

applications penetrate deeper  into decision‐making processes and  social governance, building AI 

systems  with  ethical  sensitivity  and  social  legitimacy  has  become  inevitable  in  technological 

development  and  is  a  cornerstone  for  maintaining  social  trust  and  promoting  sustainable 

development. 

Against  this backdrop,  academic  and public  interest  in AI  ethics has  significantly  increased 

worldwide. Systematic  searches of  scholarly databases  reveal  that  existing  research  encompasses 

diverse topics, including data governance, model fairness, transparency design, and accountability 

ethics, forming an interdisciplinary and multifaceted body of knowledge [3–6]. Nevertheless, most 

prior  studies have  focused on  static  articles or  in‐depth  analyses of  individual  issues, without  a 
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systematic  examination  of  whether  semantic  shifts,  thematic  evolution,  or  value‐focused 

transformations occur in AI ethics discourse over time. Given the continuous and rapid evolution of 

AI technology and its application contexts, discourse on ethical issues may significantly change over 

time and potentially shift  in  thematic  focus due  to event‐driven  factors, policy  interventions, and 

public opinion. 

Motivated by these considerations, this study employs topic detection techniques in text mining 

to conduct an  in‐depth analysis of multiple unstructured articles. This work explores whether the 

themes  addressed  in AI  ethics  reports  demonstrate  stable  and  consistent  focal  points  or  reveal 

dynamic  shifts and contextual changes alongside  technological and  temporal developments. This 

research aims to identify the underlying semantic shifts and trends in AI ethics topics by thoroughly 

examining and comparatively analyzing recent AI ethics articles published by academic institutions, 

media outlets, and nonprofit organizations [7–9]. 

This study  integrates  the KeyGraph  text mining algorithm grounded  in  the  theory of chance 

discovery with the generative AI capabilities of the large language model (LLM)‐based ChatGPT tool 

to  address  the  challenges  of  semantic  analysis  in unstructured  textual datasets. This  integration 

establishes  an  innovative  research  workflow  combining  structured  mining  with  semantic 

interpretation. KeyGraph,  a  graph‐based method,  constructs  keyword  networks  and  knowledge 

graphs by calculating  the  frequency and co‐occurrence strength of keywords. Notably, KeyGraph 

identifies “chance” keywords that, despite their low frequency, possess significant bridging value in 

the network structure,  revealing  latent  topics or emerging concepts  in  the dataset. This approach 

surpasses  traditional  frequency‐based methods  by  uncovering  hidden  associations,  offering  the 

substantial potential for analyzing thematic evolutions and shifts in ethical focus [10]. 

Unlike standard topic modeling techniques, such as latent Dirichlet allocation (LDA), correlated 

topic models, and Pachinko allocation models, which are unsupervised learning methods requiring 

predefined topic numbers and statistical distributions to infer latent topics [11–13], topic detection 

emphasizes  identifying  semantic  associations  and  dynamic  thematic  changes.  Topic  detection  is 

suitable for analyzing rapidly evolving, cross‐temporal, or dynamic problem‐oriented datasets. The 

KeyGraph algorithm is a well‐recognized topic detection tool that captures nonlinear co‐occurrence 

relationships  between  keywords,  making  it  appropriate  for  exploring  complex  ethical  issues 

characterized by competing values and shifting contexts, as in this study [14–16]. 

Furthermore, this study employs ChatGPT as an auxiliary tool for semantic interpretation and 

summary generation to overcome the subjective limitations in conventional topic analysis methods 

that  rely  on  expert  interpretation  for  deep  semantic  understanding  and  domain  knowledge.  By 

applying ChatGPT’s advanced language comprehension and summarization capabilities, researchers 

can achieve more accurate and focused thematic interpretations of each keyword cluster generated 

by  KeyGraph,  enhancing  the  precision  of  topic  detection  and  the  overall  efficiency  and 

interpretability of the analytical process [17]. 

Researchers  have  employed  a  human–AI  interactive mechanism  based  on  the  double  helix 

model to adjust node parameters, reclassify keyword clusters, and evaluate the semantic consistency 

and  logical  coherence  of  generated  summaries dynamically. Through  iterative HCI,  this process 

constructs a logically coherent thematic structure for AI ethics [18]. 

This study analyzes AI ethics‐related articles published between 2022 and 2024 by international 

academic  institutions, news media,  and nonprofit organizations. Rigorous  selection  criteria were 

applied during data collection. Sources were limited to reputable, authoritative organizations, and 

articles  focusing exclusively on single disciplines or  industry‐specific applications were excluded. 

Comprehensive reports reflecting global trends were prioritized to ensure the dataset represented 

diverse perspectives and contentious issues in AI ethics worldwide, establishing a neutral and macro‐

level textual database. Eight representative documents were selected for each year as the basis for the 

KeyGraph algorithm‐based topic detection and chance exploration. 

This  study  conducts  comparative  analyses  of  annual  thematic  clusters  using  a multistage 

processing approach, including text preprocessing, keyword network construction, topic detection, 
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and semantic interpretation. Core themes, logical shifts, and changing focal points were identified, 

and the chance keywords were explored to detect potentially nascent but promising ethical issues. 

In summary, this research combines the structural keyword mining capabilities of KeyGraph 

with the semantic comprehension of ChatGPT to develop a dynamic, extensible, and semantically 

rich method  for  topic detection. The  approach  aims  to provide  empirical  evidence  and  strategic 

insight for trend monitoring, governance planning, and knowledge construction in AI ethics while 

enabling nonspecialist audiences to understand the evolving dynamics of AI ethics themes quickly. 

2. Literature Review 

2.1. AI Ethics Literature Review 

Recently, ethical issues surrounding AI have become a primary focus in academia and the public 

sphere, reflecting  their  increasing  importance  in  the global development of  technology and social 

governance. Systematic  searches of  scholarly databases have  revealed  that  the  existing  literature 

covers diverse  themes, with some studies  focusing on specific  topics  (e.g., data  transparency and 

privacy protection), and others attempting to integrate multiple dimensions of ethical concerns for 

interdisciplinary  comprehensive  analyses  [7,19].  However,  structural  examinations  of  the 

interrelationships between various ethical issues remain limited, especially in the context of rapidly 

evolving  and  emerging  technology,  including  generative  AI  and  autonomous  driving.  Thus, 

capturing  the  contextual  shifts  and  logical  frameworks  of  ethical  controversies  across 

interdisciplinary articles remains a significant research gap [20]. Against this background, AI ethics‐

related  reports  published  by  news  media,  academic  institutions,  and  nonprofit  organizations 

(characterized by  their  timeliness,  readability, and public  engagement) have become  critical data 

sources for observing thematic evolution and tension regarding value. These reports complement the 

limited academic articles in clarifying practical contexts and ethical value conflicts. 

The  ethical  issues  surrounding AI  are  highly  diverse  and  complex,  encompassing multiple 

dimensions,  including  technology,  law,  society,  and  philosophy  [19,20].  In  response  to  these 

characteristics, this study employs the KeyGraph algorithm combined with text mining techniques 

to  construct  keyword  co‐occurrence  networks  based  on  the  frequency  and  co‐occurrence 

relationships of keywords. This work aims to reveal the ethical topics of concern systematically and 

visually across articles  from various sources while assessing  the keyword diffusion structure and 

intrinsic logical associations [21]. 

A core subtopic  in AI ethics  is AI governance,  focusing on ensuring  the  trustworthiness and 

social acceptance of AI systems in public decision‐making and societal applications. The literature 

indicates that trustworthy AI should encompass multiple elements, including accuracy, robustness, 

transparency, accountability,  fairness, explainability,  interpretability,  legality, appeal mechanisms, 

and  human  oversight.  However,  in  practice,  these  value  indicators  often  cannot  be  satisfied 

simultaneously, resulting in significant priority conflicts and a lack of comparability when using a 

single value. For  example,  enhancing  the  accuracy of AI  systems often  relies on highly  complex 

models, sacrificing transparency and explainability. Similarly, conflicts may arise in fairness metrics. 

The statistical impossibility triangle indicates that, under differing group base rates, simultaneously 

balancing false‐positive rates and false‐negative rates is not possible [20,22]. 

Furthermore, the integration of AI technology with the Sustainable Development Goals (SDGs) 

has  become  a  focal  point  in  AI  ethics  research.  Although  AI  plays  is  critical  for  promoting 

technological  applications,  social  innovation,  and  resource  efficiency,  it  must  also  address  the 

challenges posed by responsible governance and sustainable deployment. 

Relevant  studies  have  identified  four  primary  challenges  in  integrating  AI  ethics  with 

sustainability initiatives. First, in the ethical and social dimension, issues of transparency, fairness, 

bias,  and  accountability  have  gained  increasing  attention  as  automated  decision‐making  and 

algorithmic  deployment  become  more  widespread.  Second,  the  sustainability  of  AI  imposes 

environmental pressure, particularly due to the high energy consumption and resource use required 

by large‐scale model computations. Third, existing governance and regulatory frameworks often fail 
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to respond effectively to the challenges and issues introduced by technological evolution, typically 

remaining  at  a  reactive  level.  Fourth,  technical  bottlenecks  persist,  including  insufficient model 

explainability, data governance challenges, and the design of multidimensional performance metrics, 

such as accountability, fairness, and accuracy [9,22]. 

Moreover,  the  large volume of  sensitive data generated by AI applications exacerbates  risks 

related  to data privacy  and  information  security.  In AI‐driven knowledge management  systems, 

ethical  risks  have  emerged  regarding  various  issues  (e.g.,  privacy,  bias,  and  transparency).  A 

systematic review of 102 AI ethics research articles reveals that privacy and algorithmic bias account 

for  27.9%  and  25.6%  of  the  addressed  topics,  respectively,  making  them  the  most  frequently 

addressed concerns. Additionally, transparency, accountability, and fairness remain core concerns 

[23]. 

This  finding  closely  aligns  with  the  ethical  value  frameworks  identified  in  other  studies, 

illustrating that the current AI ethics risks have gradually shifted from abstract principles to practical 

operational  challenges,  requiring  interdisciplinary  integration  and  technological  governance  for 

effective  resolution  [20,23,24].  To  address  these  challenges,  some  studies  have  recommended 

adopting  decentralized  data  governance  models  (e.g.,  federated  learning  and  distributed  data 

architectures)  to  balance  data  utility  and  privacy  protection. Moreover, AI  system  performance 

evaluation should move beyond traditional single accuracy metrics to multidimensional frameworks 

encompassing  environmental  effects,  social  implications,  and  ethical  compliance  to  reflect 

sustainability  performance  comprehensively.  Furthermore,  promoting  inclusive  development 

processes and human‐centered design principles by incorporating diverse stakeholder perspectives 

can help avoid systemic biases and strengthen the legitimacy of ethical governance. 

Although existing AI ethics research and policy documents have proposed core principles, such 

as  transparency,  accountability,  fairness,  and  privacy,  implementing  these  principles  at  the 

organizational  level  remains  a  considerable  challenge. A  notable  gap  exists  between  normative 

formulation and organizational practice in AI ethics, and relying solely on external guidelines and 

compliance requirements is insufficient to address the ethical controversies and issues encountered 

in practice. This gap underscores the importance of organizational AI ethics. Organizations should 

proactively establish internal governance mechanisms that integrate AI ethics principles throughout 

the technology life cycle, deliberation processes, and risk assessment frameworks to enhance ethical 

sensitivity and adaptive capacity [9,19,20,23]. 

In  summary,  AI  ethics  has  progressed  from  the  initial  stages  of  principle  declaration  and 

conceptual  proposals  to  practice‐oriented  institutional  construction  and  governance  innovation. 

Future research should further develop integrated analytical frameworks and multilevel governance 

models encompassing design principles, regulatory mechanisms, ethical conflict identification, and 

social participation, to ensure that AI development promotes technological innovation and upholds 

ethical values, social order, and the core objectives of sustainable development [9,19,20]. 

2.2. Chance Discovery Theory 

The chance discovery theory is an interdisciplinary data mining framework designed to identify 

rare yet highly valuable “chances” in data via HCI and structural data analysis, which may critically 

influence future decision‐making or system development. In this theory, chance is broadly defined as 

important  information  that  can  guide  decision‐makers  or  automated  decision  systems  to make 

significant  responses.  These  chances  may  indicate  emerging  opportunities  not  yet  explicitly 

recognized or indicate potential undiscovered risks and crises [10,25–28]. 

Unlike the discovery of random events, chance discovery stresses conscious awareness rather 

than random detection  [26]. Chance discovery analyzes  the  frequency of  information or keyword 

occurrences  and  places  greater  importance  on  their  associations with  other  critical  information. 

Keywords and their connections in articles can be visualized via structured keyword analyses and 

visualization tools (e.g., the Polaris visualization tool implementing the KeyGraph algorithm) [25], 

identifying bridging words that are highly associated with multiple keyword clusters. These bridging 
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words may indicate potential chances. This theory has significant application potential in innovation 

early warning,  risk governance,  and  strategic planning, while providing  theoretical  support  and 

practical foundations for structured semantic analyses and topic detection methods [10,29,30]. 

Compared to traditional data analysis methods that assume a stable data structure and known 

variables,  chance  discovery  focuses  on  information  nodes  with  low  frequency  but  potentially 

profound semantic or systemic implications. This process is a gradual unfolding of understanding 

rather than an immediately identifiable event. The theory of chance discovery underscores that the 

most critical insight is often hidden in unstructured information, and this theory stresses the need for 

decision‐makers to engage in the dynamic evolution of information. This theory combines the human 

sensitivity  to  context  and  situational  awareness  with  the  computational  capabilities  in  data 

processing  and  visualization  to  effectively  detect  chance  information  and  strategic  responses 

[10,29,30]. 

Professor Ohsawa proposed the following three criteria for judging chance [10,29,30]: 

 Establishing and uncovering innovative models and variables: Rather than relying on existing 

data models and variables,  this approach  incorporates contextual  factors  into  the analysis  to 

identify  noteworthy  variables  emerging  in  specific  situations,  preventing  the  results  from 

diverging from practical needs and enhancing the accuracy of chance detection. 

 Identifying tail events: Tail events are rare events with a low frequency but profound influence 

on the system or domain. Undiscovered chances or phenomena can be identified by observing 

and analyzing such tail events. 

 Relying  on  human–AI  interaction  for  interpretation  and  judgment: Whether  a  tail  event 

represents  a  genuine  chance  can  be  discerned  by  applying  extensive  human  background 

knowledge  and  contextual  sensitivity.  This  approach  is  necessary  because  the  rarity  and 

ambiguity of tail events make it challenging for fully automated data mining methods to assess 

their true value and significance accurately. 

Therefore, the chance discovery theory emphasizes HCI, asserting that the effective awareness, 

understanding, and realization of chances can be facilitated only by combining computational data 

processing and visualization capabilities with  the rich background knowledge of domain experts, 

enhancing the accuracy and practical utility of chance identification. 

In  this  exploratory  process,  information  is  generated  and  interpreted  in  a  nonlinear  and 

intertwined manner, giving rise to the double helical model as a cognitive framework for exploring 

latent meaning  via HCI. Computers  continuously mine  data  from  the  environment  and  human 

expression, providing visualized feedback to assist human understanding and  judgment. Humans 

iteratively adjust  their comprehension and  focus,  inspiring new exploration directions. By  further 

integrating  the  subsumption  architecture  cognitive  model,  this  approach  presents  a  nonlinear, 

concurrently  operating  interactive  feedback  loop  comprising  computer mining,  feedback  results, 

human  understanding,  and  decision‐making  processes,  requiring  continuous  and  iterative 

exploration that more closely aligns with human cognitive patterns [10,26,31]. 

The  theory of chance discovery has been widely applied across multiple domains,  including 

health  care, business  innovation, marketing, disaster prediction,  risk management,  and decision‐

making, underscoring  its generative rather  than merely analytical power. This  theory  facilitates a 

deeper understanding of existing data and helps identify rare events and latent information that are 

difficult to detect via conventional analyses, yet have a significant influence on future decisions. This 

theory provides a data analysis method and integrated knowledge creation framework that combines 

human–computer  interaction (HCI), semantic construction, and abductive reasoning, fostering the 

formation of new hypotheses and value creation [10,25,26]. 
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2.3. Double Helix Model: Human–Machine Collaborative Framework for Chance Discovery 

This study adopts the theory of chance discovery as its theoretical foundation and applies its 

core framework (the double helix model) to conduct semantic network analyses and topic detection 

via an HCI process. The model comprises two interwoven components: the computer‐ and human‐

driven processes, forming a spiral cognitive feedback mechanism akin to the structure of DNA. This 

approach  represents  the  dynamic  interplay  between  data‐driven  analyses  and  knowledge 

interpretation in HCI. The process is designed to assist researchers in identifying low‐frequency yet 

semantically significant nodes (chances) in the keyword network [21,25,26,31–33]. 

Based  on  this  integrative  explanation,  this  study  applies  a  dual‐dimensional  interactive 

structure, advancing  through a  spiral  formation  that  illustrates  the  iterative nature of human–AI 

collaboration. As depicted in Figure 1, researchers can follow the spiral pathway to track the feedback 

and adjustment mechanisms dynamically across each stage. According to this double helix model, 

the HCI  loop  is divided  into  four  primary  stages,  each  embodying  iterative  cycles  between  the 

human‐ and computer‐driven processes. This ongoing dynamic feedback mechanism facilitates the 

progressive refinement and optimization of the semantic structure and topic detection [21,25,26,31–

33]. 

The specific phases of the human–AI interaction cycle are as follows [10,21,33–35]: 

 Human‐driven  process:  New  setting  for  analysis  (inputting  article  data  and  initializing 

parameters). The researcher conducts this phase, which marks the starting point of the overall 

HCI cycle. Based on the research objectives, the researcher provides the original article dataset 

and  employs  the  Polaris  visualization  tool  to  set  the  initial  parameters  for  the  KeyGraph 

algorithm, such as the number of default bridging nodes (represented as red nodes) and high‐

frequency  black  keyword  nodes,  establishing  the  foundation  for  an  automated  computer 

analysis (see Phase 1 in Figure 1). 

 Computer‐driven process: Data mining  (data mining and keyword network  construction). 

After the initial parameter setting, the process transitions to a computer‐driven process, entering 

the  phases  of data mining  and  keyword  network  construction. At  this  stage,  the  computer 

autonomously  executes  the  KeyGraph  algorithm  to  conduct  in‐depth mining  of  the  article 

dataset. The system constructs a co‐occurrence network graph by calculating the co‐occurrence 

frequency and  structural  relationships between keywords. This phase applies  the KeyGraph 

algorithm to extract latent knowledge structures and keywords automatically from large‐scale 

articles, providing a foundation for semantic interpretation (see Phase 2 in Figure 1). 

 Computer‐driven process: Visual results (network graph visualization). After data mining is 

completed,  the  computer  transforms  the  keyword  network  generated  by  the  KeyGraph 

algorithm  into  a  visualized  graph  illustrating  the  connections  (i.e.,  the  co‐occurrence 

relationships) between keywords, including the red nodes. This visual representation serves as 

a bridge between the computer and human user, converting abstract keyword associations into 

intuitive, interpretable images that facilitate information integration and semantic judgment. At 

this  stage,  the  computer  completes  its  intermediate  task  and  awaits human  intervention  for 

further examination (see Phase 3 in Figure 1). 

 Human‐driven process: Understanding and  re‐evaluation  (interpretation and  review). This 

phase  represents  the  core  of  human  knowledge  interpretation  in  the  double  helix model, 

highlighting the iterative nature of HCI. In this process, researchers do not directly engage in 

topic detection; instead, based on their domain expertise and semantic comprehension abilities, 

they systematically evaluate the topic detection and semantic interpretation results generated 

by  ChatGPT  from  the  keyword  network  visualizations  constructed  using  the  KeyGraph 

algorithm.  Researchers  examine  the  thematic  and  keyword  relationships  in  the  visualized 

graphs and assess whether ChatGPT’s initial interpretations are logically coherent, substantively 

meaningful, and effectively reveal the latent semantics in the articles. For instance, if ChatGPT 

produces an illogical output (e.g., “I beer”), researchers employ the Polaris visualization tool to 

adjust the node parameters of the KeyGraph algorithm (e.g., the number of high‐frequency black 
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keywords or red chance nodes) until the output becomes coherent and logically consistent (e.g., 

“I  love  to drink beer”). This ongoing process of understanding  the output and continuously 

tuning parameters, which triggers new data mining and visual output, is the critical objective of 

the  iterative  cycles  in  the  double  helix  model.  Thus,  this  approach  forms  a  continuously 

optimized spiral iteration process (see Phase 4 in Figure 1). 

The  mentioned  HCI  process  is  not  a  one‐time  analysis  but  integrates  efficient  computer 

processing capabilities with human critical thinking and domain expertise. The iterative refinement 

of keyword  structures and  thematic  interpretations  forms a continuous and  spiraling process via 

repeated  interactive cycles. This iterative cycle is the core driving force of the double helix model, 

ensuring the analysis process maintains high flexibility and adaptability [21]. Guided by their deep 

understanding  of  the  data,  researchers  continually  refine  the model,  progressively  transforming 

implicit  keyword  structures  into  explicit  knowledge,  providing  a  solid  foundation  for  informed 

decision making. Researchers can  interpret and understand the emerging or evolving themes and 

issues via this process, enabling more informed and progressive decisions. This example illustrates 

the advantages of HCI in addressing complex problem‐solving [10,32,34,35]. 

 

Figure 1. Schematic diagram of the double helix model. 

2.4. KeyGraph Algorithm Overview 

The KeyGraph algorithm  is a core tool for  implementing chance discovery. This graph‐based 

text mining technique aims to uncover critical contexts and latent events with significant influence 

that are hidden in texts via a keyword network model, which  is compared to traditional keyword 

frequency‐dependent algorithms  (e.g.,  term  frequency‐inverse document  frequency or LDA). The 

KeyGraph  algorithm  is widely  applied  in  topic  detection  research.  The  operational mechanism 

extracts  high‐frequency  keywords  from  the  text  as  nodes  and  analyzes  the  co‐occurrence 

relationships between these keywords to construct a keyword network graph [36–40]. 

Furthermore, the uniqueness of this algorithm lies in its ability to identify “keywords that have 

structural bridging value but  occur with  low  frequency,”  revealing  latent nonexplicit  topics  and 

interdisciplinary conceptual connections  in  the  text. This approach enables  the derivation of core 

issues and underlying value perspectives in articles. This method does not require manual annotation 

or  prior  knowledge  and  can  automatically  extract  representative  keywords  or  topics  from  the 
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collected technical texts or academic literature. This method constructs a keyword network graph to 

present  the associative structure of keywords, enhancing  the  transparency and  interpretability of 

topic detection [36,37,41,42]. 

2.4.1. KeyGraph Keyword Network Structure and Visualization 

The  KeyGraph  algorithm  is  suitable  for  applications,  including  knowledge  structure 

exploration,  thematic  context  evolution  analysis,  and  emerging  topic  detection,  owing  to  its 

advantages in knowledge structure construction and analysis. Ohsawa first proposed this algorithm 

in 1998, initially as an automatic indexing technique based on keyword co‐occurrence graphs in texts, 

and it was later developed into a core analytical tool for chance discovery applications. In Ohsawa’s 

original  conceptualization,  the KeyGraph  algorithm  is  explained using  an  architectural  structure 

analogy. The  literature  is viewed as a building, where  the  foundation represents the fundamental 

concepts  of  the  literature,  constructed  by  analyzing  co‐occurrence  relationships  between  high‐

frequency keywords. The pillars symbolize the associations between the keywords and foundational 

concepts, forming a structured network connecting concepts in the literature. The roof represents the 

core viewpoints in the literature, typically constituted by low‐frequency bridging keywords strongly 

connected to multiple conceptual clusters, reflecting the primary perspectives or innovative points in 

the literature [10,38,41]. 

In terms of technical implementation, the KeyGraph algorithm produces a graph structure by 

analyzing  co‐occurrence  relationships  between  keywords, where  nodes  represent  keywords  and 

edges indicate the strength of these co‐occurrences. As depicted in Figure 2, the concepts of black and 

red nodes are  further  introduced  to describe  this structure precisely. Black nodes  represent high‐

frequency keywords with strong connections to fundamental concepts. These nodes are responsible 

for the interpretability of the knowledge structure, serving as the backbone of the knowledge graph 

and  the  foundational  structure  of KeyGraph.  Typically, multiple  black  nodes  form  clusters  that 

contain latent topics embedded in the articles. Red nodes are keywords with lower frequencies but 

strong co‐occurrence relationships with multiple clusters. They are often metaphorically associated 

with chance discovery, reflecting atypical yet potentially valuable keywords in articles, called chance 

nodes in this work. Black edges represent strong co‐occurrence relationships between black nodes, 

forming  stable  keyword  clusters  via  their  connections. Red  edges  denote  bridging  relationships 

between red nodes and clusters, highlighting the value of rare events [10,37,38]. 

A distinctive feature of the KeyGraph algorithm is its ability to extract key concepts and their 

associations  automatically  from  articles,  revealing  implicit  relationships  between  these  concepts. 

Generating  visualized  knowledge  graphs  uncovers  latent  and  significant  information  in  articles, 

enabling  users  without  a  technical  background  to  comprehend  the  complex  structures  and 

interrelations of keywords intuitively [37,41,43] (Figure 2). 

 

Figure 2. Illustration of the KeyGraph algorithm. 
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2.4.2. KeyGraph Algorithm 

1. Data preprocessing: Data preprocessing serves as the foundation for constructing a keyword 

network in the KeyGraph algorithm. In this study, this phase involves several steps, including 

tokenization, normalization, stop‐word removal, and part‐of‐speech filtering. Tokenization and 

normalization establish a stable keyword base, whereas stop‐word removal and part‐of‐speech 

filtering  reduce  semantic  noise,  enhancing  the  accuracy  of  co‐occurrence  analysis  and  the 

network  structure  quality,  optimizing  the  performance  of  topic  detection  and  chance  node 

identification [38,44,45]. 

2. High‐frequency  keyword  extraction:  Based  on  the  preprocessed  data,  a  new  dataset  𝐷 ,  is 

generated, comprising a series of sentences, each representing a set of keywords. All keywords 

are ranked according to their frequency of occurrence in dataset 𝐷, and the highest‐frequency 
keywords are selected to form a high‐frequency keyword set. These keywords serve as the nodes 

of the network cluster 𝐺 [38,44–46]. 
3. Calculation formula for keyword network co‐occurrence: In the KeyGraph algorithm adopted 

in  this  study,  the  co‐occurrence  relationship  between  keywords  serves  as  the  core  basis  for 

constructing the keyword network. Each keyword  is regarded as a network node. When two 

keywords co‐occur  in  the same semantic unit  (e.g., a sentence or paragraph), a  link  (edge)  is 

formed between the nodes. The KeyGraph algorithm employs a specific measure called the co‐

occurrence  strength  to quantify  the  co‐occurrence  relationship between keywords  [38,47,48], 

calculated in Eq. (1): 

𝑎𝑠𝑠𝑜𝑐ሺ𝑤௜ ,𝑤௝ሻ ൌ෍𝑚𝑖𝑛 ሺ|𝑤௜|௦, |𝑤௝|௦ሻ
௦∈஽

  (1)

where  𝑎𝑠𝑠𝑜𝑐ሺ𝑤௜ ,𝑤௝ሻ   represents  the  co‐occurrence  strength  between  keywords  𝑤௜  and   𝑤௝   in  all 
semantic units  𝑠   in  dataset  𝐷. This measure  is  calculated  by  summing  the minimum  occurrence 

frequencies of the two keywords in the same semantic unit, reflecting their co‐occurrence count. In 

addition,  |𝑤௜|௦ and |𝑤௝|௦  denote the frequencies of keywords 𝑤௜ and  𝑤௝, respectively, in the semantic 

unit  𝑠, where min ሺ|𝑤௜|௦, |𝑤௝|௦ሻ  indicates  the minimum occurrence  frequency between 𝑤 ௜ and 𝑤௝  in 
the semantic unit 𝑠. This metric aggregates the minimal occurrence counts across semantic units to 

capture  the  overall  semantic  linkage  strength  between  the  keyword  pair.  This  approach  helps 

construct a semantic backbone comprising high‐frequency terms and reveals latent nodes that may 

have lower surface frequencies yet critical semantic significance. 

In  addition  to  the  absolute  co‐occurrence  values  described  above,  studies  often  employ 

normalized  indicators  of  co‐occurrence  strength,  such  as  the  Jaccard  similarity  coefficient,  as  a 

relative measure [38], calculated in Eq. (2): 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑൫𝑤௜ ,𝑤௝൯ ൌ  
ி௥௘௤ሺ௪೔ ∩ ௪ೕሻ

ி௥௘௤ሺ௪೔ ∪ ௪ೕሻ
,  (2)

where  𝐹𝑟𝑒𝑞൫𝑤௜  ∩  𝑤௝൯ indicates the number of times the keywords 𝑤௜  and 𝑤௝  co‐occur in the same 

semantic  unit  in  dataset  𝐷 ,  and  𝐹𝑟𝑒𝑞൫𝑤௜  ∪  𝑤௝൯   refers  to  the  total  frequency  of  either  𝑤௜ 

or 𝑤௝ appearing in dataset 𝐷. The value of the Jaccard similarity coefficient ranges from 0 to 1, where 

a  higher  value  represents  a  stronger  similarity  between  keywords,  implying  greater  semantic 

similarity. As a normalized similarity measure, the Jaccard similarity coefficient can be employed to 

adjust the edge weights in the network generated by the KeyGraph algorithm, mitigating the linking 

bias caused by high‐frequency terms and enhancing the performance of the keyword network in topic 

detection and keyword identification. This approach helps reveal the relational paths in the deeper 

semantic structure more effectively. 

4. Co‐occurrence  measurement  between  keywords  and  keyword  clusters:  The  KeyGraph 

algorithm employs the Co‐Occurrence Strength Index called  𝑏𝑎𝑠𝑒𝑑ሺ𝑤,𝑔ሻ, which measures the 

degree  of  their  co‐occurrence within  articles  to  calculate  the  connection  strength  between  a 

keyword 𝑤 and a single keyword cluster 𝑔  [38,47,48], as in Eq. (3): 
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𝑏𝑎𝑠𝑒𝑑ሺ𝑤,𝑔ሻ ൌ ∑ |𝑤|௦௦∈஽ |𝑔 െ 𝑤|௦,,  (3)

where 𝑤 refers to a retained keyword in the preprocessed dataset 𝐷,  𝑔  denotes the cluster to which 

the keyword belongs, and 𝐷  represents the dataset obtained after preprocessing. The co‐occurrence 
strength is calculated based on sentences  𝑠, the fundamental semantic units, and the sentences are 

typically treated as sets of keywords that form the basis for defining co‐occurrence relationships. In 

addition,  |𝑤|௦   indicates  the  frequency of keyword  𝑤  appearing  in  sentence  𝑠, whereas  |𝑔 െ 𝑤|௦ 
represents  the  total number of occurrences of all keywords  in cluster  𝑔, excluding 𝑤  in  the same 

sentence 𝑠. This value is zero if no other keywords from the cluster appear in the sentence. 

This formula processes each sentence in dataset 𝐷 to determine whether the target keyword 𝑤 
appears. If it does, this formula calculates the frequency of keyword 𝑤 and multiplies it by the total 

frequency  of  the  other keywords  in  cluster  𝑔  (excluding 𝑤)  in  the  same  sentence. The  resulting 

products are summed across all sentences  to quantify  the overall co‐occurrence strength between 

keyword 𝑤 and cluster  𝑔. 

5. Calculating the co‐occurrence potential of all keywords in cluster 𝒈: In a keyword network 

analysis, the association between a keyword and the keyword cluster 𝑔  depends on the degree 
of co‐occurrence and the contextual interactions between the cluster and other keywords. The 

KeyGraph  algorithm  provides  a  standardized  metric  for  evaluating  such  associations  by 

defining  a  cluster‐level  semantic  quantification measure  called 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠ሺ𝑔ሻ,  estimating  the 

potential  of  a  specific  keyword  cluster  𝑔 to  interact  semantically  with  other  keywords 

throughout the dataset [38,47,48], calculated in Eq. (4): 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠ሺ𝑔ሻ ൌ  ෍෍ |𝑤|௦|𝑔 െ 𝑤|௦
௪∈ௌ௦∈஽

  (4)

where  𝑠  represents each sentence in dataset 𝐷, which is regarded as a set of co‐occurring keywords 

and is the basis for defining co‐occurrence relationships between keywords. In addition,  𝑆  denotes 
the  set  of  all  keywords,  𝑤 𝜖 𝑆   indicates  any  keyword  in  set  𝑆 ,  |𝑤|௦   refers  to  the  frequency  of 
keyword 𝑤  appearing  in sentence  𝑠, and  |𝑔 െ 𝑤|௦  denotes  the  total  frequency of all keywords  in 

cluster  𝑔  (excluding keyword 𝑤) appearing in the same sentence  𝑠. This value is zero if none of the 
keywords in the cluster appear in the sentence. 

This  formula  traverses  each  sentence  𝑠 in  dataset  𝐷   and,  for  each  keyword  in  the  high‐

frequency  keyword  set  𝑆,  calculates  its  co‐occurrence  strength with  other  keywords  in  cluster 𝑔 
when  𝑤   appears  in  the  sentence.  These  co‐occurrence  values  are  summed,  and  this  equation 

measures the total co‐occurrence strength between keyword cluster  𝑔  and keywords in set 𝑆 across 
dataset D. A higher  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠ሺ𝑔ሻ value indicates that cluster 𝑔 has a stronger connection with high‐

frequency keywords  in  the keyword network, which may suggest  its potential significance  in  the 

semantic structure. 

6. Evaluation of the importance of the potential of keywords across clusters: This study adopts 

the keyness calculation formula proposed in the KeyGraph algorithm to evaluate the connective 

role  played  by  keyword  𝑤 in  the  overall  keyword  network  graph  to  determine whether  a 

specific keyword possesses the semantic potential to bridge clusters [38,47,48], as computed in 

Eq. (5): 

𝑘𝑒𝑦ሺ𝑤ሻ ൌ 1 െ∏ ቂ1 െ  ௕௔௦௘ௗሺ௪,௚ሻ

௡௘௜௚௛௕௢௥௦ሺ௚ሻ
ቃ௚⊂ீ ,          (5) 

where  𝑘𝑒𝑦ሺ𝑤ሻ  represents  the  importance  score  of  keyword w,  ranging  between  0  and  1,  and  𝐺 
denotes the set of all keyword clusters  in  the keyword network graph, where each  𝑔  refers to an 
individual keyword cluster. The expression  𝑔 ⊂ 𝐺  indicates that every cluster in set  𝐺  is evaluated 
individually  to  compute  the  semantic  relevance  of  keyword  𝑤 to  each  cluster.  Moreover, 

𝑏𝑎𝑠𝑒𝑑ሺ𝑤,𝑔ሻ   refers  to  the  co‐occurrence  strength  between  keyword  𝑤 and  cluster  𝑔 ,  whereas 

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠ሺ𝑔ሻ  represents the total co‐occurrence strength of cluster 𝑔. 
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This formula represents the product of the co‐occurrence complement of keyword 𝑤 with each 

keyword  cluster  𝑔 ⊂ 𝐺 ,  indicating  the  overall  probability  that  keyword  𝑤 has  no  co‐occurrence 
association with various keyword clusters. The  final score  𝑘𝑒𝑦ሺ𝑤ሻ  is obtained by subtracting  this 
product from 1, reflecting the importance of keyword 𝑤 in bridging multiple clusters in the keyword 

network. 

When  keyword  𝑤 exhibits  significant  co‐occurrence  relationships  with  multiple  keyword 

clusters, its 𝑘𝑒𝑦ሺ𝑤ሻ  score approaches 1, indicating that keyword w  is highly associated with multiple 

keyword clusters and may represent a potential chance node. Conversely, when  𝑘𝑒𝑦ሺ𝑤ሻ  approaches 
0,  keyword  w  may  have  little  to  no  co‐occurrence  with  keyword  clusters,  reflecting  a  lower 

importance in the keyword network structure. 

3. Materials and Methods 

The research process is divided into the five stages at the beginning of Figure 3. 

 

Figure 3. Research process flowchart. 

3.1. Data Collection 

The data collection method in this study primarily employs the search terms AI ethics, ethical AI, 

and  responsible AI,  focusing  on  the  overall  concepts  and  frameworks  related  to AI  ethics,  cross‐

industry universal guidelines, and globally influential and controversial problems, while avoiding 

biases toward specific industry applications. Moreover, AI ethics emphasizes moral principles at the 

technical level, addressing ethical issues in the design and operation of AI systems [49]. Ethical AI 

concerns  the  implementation  of  ethical  principles  in  the  development  and  application  of  AI 

technology,  ensuring  compliance  with  moral  standards  [50].  Responsible  AI  highlights  the 

responsibilities  and  regulations  of  developers  and  users  regarding  the  social  influence  of  AI 

technology, promoting accountability and governance [51]. These three concepts are complementary 

and  synergistic,  facilitating  an  in‐depth  exploration  of  the  ethical  challenges  faced  by  AI  and 
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advancing discourse on its practical applications and social responsibilities toward greater depth and 

breadth. 

This  study  prioritizes  the  selection  of  reports  and  articles  related  to AI  ethics  published  in 

English between 2022 and 2024 via online searches to emphasize data timeliness and capture recent 

developments in the field. The aim is to clarify the perspectives and latest trends in AI ethics discourse 

systematically against the background of rapid AI technological evolution during this period  (see 

Tables 1–3). 

Table 1. Data sources for international reports and articles in 2022. 

  Original Title  Data Sources 
Publication 

Date 

1 
The 2022 AI  Index:  Industrialization of AI and Mounting

Ethical Concerns 
Stanford HAI  2022/03 

2 
AI Ethics And AI Law Grappling With Overlapping And

Conflicting Ethical Factors Within AI 
Forbes  2022/11 

3  The 2022 AI Index: AI’s Ethical Growing Pains  Stanford HAI  2022/03 

4  Prioritising AI & Ethics: A perspective on change  Deloitte  2022/03 

5  Top Nine Ethical Issues In Artificial Intelligence  Forbes  2022/10 

6 
AI Ethics And AI Law Are Moving Toward Standards That

Explicitly Identify And Manage AI Biases 
Forbes  2022/10 

7  Evaluating Ethical Challenges in AI and ML  ISACA Journal  2022/07 

8 
We’re failing at the ethics of AI. Here’s how we make real

impact 

World Economic 

Forum, WEF 
2022/01 

Table 2. Data sources for international reports and articles in 2023. 

  Original Title  Data Sources 
Publication 

Date 

1 
The  Ethics  Of  AI:  Navigating  Bias,  Manipulation  And

Beyond 
Forbes  2023/06 

2  The Ethics Of AI: Balancing Innovation And  Forbes  2023/12 

3  Responsibility  Forbes  2023/07 

4 
AI Ethics In The Age Of ChatGPT—What Businesses Need

To Know 
Forbes  2023/05 

5 
96% Of People Consider Ethical And Responsible AI To Be

Important 
Forbes  2023/03 

6 
How  Businesses  Can  Ethically  Embrace  Artificial

Intelligence 
CNN  2023/12 

7 
Experts  call  for more diversity  to  combat  bias  inartificial

intelligence 
Georgia Tech  2023/08 

8  5 AI Ethics Concerns the Experts Are Debating  Bloomberg  2023/06 
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Table 3. Data sources for international reports and articles in 2024. 

  Original Title  Data Sources 
Publication 

Date 

1 
AI’s Trust Problem  Harvard Business 

Review 
2024/05 

2 
‘Uncovered, unknown, and uncertain’: Guiding ethics in the

age of AI 
Yale News  2024/02 

3 
AI Regulation Is Evolving Globally and Businesses Need to

Keep Up 
Bloomberg Law  2024/12 

4  AI is not ready for primetime  CNN Business  2024/03 

5 
With AI warning, Nobel winner  joins  ranks  of  laureates

who’ve cautioned about the risks of their own work 
CNN  2024/12 

6 
Navigating The  Ethics Of AI:  Is  It  Fair And Responsible

Enough To Use? 
Forbes  2024/11 

7 
AI  And  Ethics:  A  Collective  Responsibility  For  A  Safer

Future 
Forbes  2024/10 

8 
AI Started as a Dream  to Save Humanity. Then, Big Tech

Took Over. 
Bloomberg  2024/09 

A  rigorous  screening process was  conducted during  the data  collection phase  to  ensure  the 

comprehensiveness and authority of the research data. Data sources were limited to internationally 

recognized and credible academic research  institutions, news media, and nonprofit organizations. 

Articles  focusing  solely  on  a  single  domain  or  industry  application were  excluded,  prioritizing 

comprehensive reports reflecting international trends. This approach aimed to ensure that the data 

adequately  represent  diverse  global  perspectives  and  contentious  issues  regarding  AI  ethics, 

constructing a neutral and macro‐level article dataset. Eight highly comprehensive and interpretative 

articles were selected for each year as the analytical corpus for the KeyGraph‐based topic detection 

and chance exploration. 

3.2. Data Preprocessing 

This  study  employs  the  KeyGraph  algorithm  to  extract  topics  from  articles,  based  on  co‐

occurrence relationships between keywords, and constructs a structured visual graph. However, the 

original articles often contain numerous stop words, irrelevant information, and punctuation marks. 

If the articles are analyzed directly using the KeyGraph algorithm without preprocessing, extracting 

the  associations  between  keywords  becomes  difficult,  resulting  in  overly  cluttered  or  off‐focus 

keyword networks. This  study  segments  sentences,  tokenizes words, and  filters out meaningless 

words and stop words prior to analysis to enhance the accuracy of keyword identification and reduce 

graph noise, ensuring the accuracy and visualization quality of the keyword co‐occurrence network 

graph. 

This study employs Python combined with  the Natural Language Toolkit  (NLTK)  for article 

preprocessing during the data processing phase to achieve the objectives. First, each collected article 

was segmented into independent sentences based on periods, and each sentence was converted to 

lowercase and  tokenized  into  individual words while  removing punctuation marks but  retaining 

contractions containing apostrophes (e.g., in the work don’t). The stopword functionality for NLTK 

was used to filter out semantically insignificant words (e.g., the, is, and and) to reduce data noise and 

highlight keywords related to AI ethics. The filtered word list was written line by line into output 

files with the words separated by spaces. A manual review and filtering process was also conducted 
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to remove any remaining irrelevant words and tokenization errors to enhance the thematic relevance 

of  the  data.  This  process  effectively  streamlines  the  data,  improves  keyword  prominence,  and 

establishes  a  structured  data  foundation  for  the  keyword  network  of  the  KeyGraph  algorithm, 

ensuring the accuracy and visualization quality of the analyses. 

3.3. Construction of the Keyword Co‐Occurence Network 

3.3.1. Chance Discovery in AI Ethics Using KeyGraph 

This study employs the graph‐based KeyGraph text mining technique as the core tool for topic 

detection and chance discovery  in AI ethics articles  to overcome  the  limitations of traditional  text 

mining methods in analyzing topic evolution and identifying latent issues. As described in Section 2, 

KeyGraph  is a keyword network analysis method  that  integrates  lexical  co‐occurrence  structures 

with chance  identification. By constructing a co‐occurrence graph of keywords, KeyGraph reveals 

the intrinsic topic structures and semantic linkages in articles, making it suitable for exploring cross‐

topic or dynamic contexts and emerging keywords. A distinctive feature of KeyGraph is its ability to 

identify  low‐frequency  but  highly  connected  chance  nodes  linked  to  multiple  topic  clusters, 

uncovering latent issues that traditional high‐frequency analyses often fail to capture. The KeyGraph 

analytical process can be divided into the following five core strategies, serving as the foundation for 

semantic mining and topic detection in AI ethics articles: 

 Keyword frequency and co‐occurrence calculation: First, the occurrence frequency of all words 

in the articles is calculated and sorted. The top consecutive high‐frequency words are selected 

as keywords, representing the core foundational concepts of the articles. Using paragraphs or 

sentences  as  the  calculation units,  the  co‐occurrence  relationships between all keywords  are 

computed and applied to establish connections. 

 Node  role  classification  and  keyword  clustering:  Based  on  the  frequency  of  keyword 

occurrences and their structural positions in the co‐occurrence network, nodes are classified into 

three categories, which lays the foundation for chance discovery. 

o High‐frequency  keywords:  Keywords  with  high  occurrence  frequency  that  are 

concentrated in specific topic clusters represent the primary concepts of the topics. In this 

study, these are consistently represented by high‐frequency black nodes. 

o Chance keywords: These keywords  (known as bridging words) have  lower occurrence 

frequencies  but  are  associated  with  multiple  topic  clusters.  They  typically  indicate 

emerging  concepts  or  interdisciplinary  issues  and  are  valuable  for  discovering  latent 

topics. In this study, they are represented by red nodes. 

o General  terms:  Keywords  lacking  structural  significance  are  excluded  from  the 

visualization network. 

 Keyword co‐occurrence network construction and thematic cluster identification: A keyword 

association graph  is  constructed with keywords  as nodes  and  the  co‐occurrence  strength  as 

weighted edges. This method aggregates high‐frequency terms and forms thematic clusters. 

 Keyword network visualization: The nodes and links are visualized using tools (e.g., Polaris), 

which  map  co‐occurrence  relationships  between  keywords  to  construct  their  association 

network graphs. By adjusting parameters  (e.g.,  frequency  thresholds, co‐occurrence strength, 

and the number of nodes), different levels of keyword structures are explored to enhance the 

understanding of potential keyword clusters and association pathways. 

In  the  practical  implementation,  this  study  preprocesses  the  articles,  including  word 

segmentation and stopword removal, and segments them according to the time series from 2022 to 

2024 to observe changes and shifts in potential topics or issues over time. The Polaris visualization 

tool was employed in combination with statistical methods (e.g., word frequency and co‐occurrence 

analysis) and data mining techniques to execute the KeyGraph algorithm [52], which automatically 

calculates the keyword co‐occurrence frequency and co‐occurrence strength. This tool constructs a 

keyword  network  graph  to  explore  keyword  structures  at  various  levels,  promoting  semantic 
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interpretation and chance discovery. In the network, high‐frequency black nodes represent keywords 

with a high frequency and stable semantic cores, whereas red nodes represent potential keywords 

with lower frequency but strong connections to multiple topic clusters. Black edges between nodes 

reflect the co‐occurrence strength between keywords. 

This  study  applies  the  parameter  adjustment  functions  provided  by  Polaris  to  identify  an 

appropriate keyword network structure and dynamically set conditions  (e.g., keyword  frequency 

thresholds, co‐occurrence link strength, and maximum number of nodes), controlling the hierarchical 

levels and cluster partitioning of the keyword network graph. This approach enhances the structural 

clarity of  the visualization,  facilitating a  comparative  analysis and  interpretation of  the keyword 

networks across years and enabling further observation of the formation, expansion, and evolution 

of topic clusters. 

This method reveals the explicit topic structures in AI ethics articles and can uncover potential 

low‐frequency  keywords  and  emerging  issues  that  traditional  techniques  often  fail  to  capture, 

providing  a  solid  foundation  for  topic  detection  and  chance  discovery. Overall,  by  integrating 

keyword co‐occurrence structures, latent chance nodes, and visualization tools, KeyGraph effectively 

extracts explicit and implicit issues in articles, enhancing the exploratory and strategic aspects of topic 

detection. 

However,  the  interpretive precision  of  the  keyword  network  graph  and  the  clarity  of  topic 

detection often depend on the number of high‐frequency black nodes and the ratio between high‐

frequency black nodes and red chance nodes. An excessive or insufficient number of these nodes may 

affect the semantic clarity and accuracy of topic detection, influencing the reliability of the analytical 

results.  The  following  section  analyzes  the  relationship  between  semantic  node  density  and  the 

effectiveness of topic detection, investigating the effect of node density on the keyword structure and 

topic differentiation. 

3.3.2. Analysis of Keyword Network Node Density and Topic Detection Accuracy 

When  conducting  a KeyGraph keyword network  analysis,  setting  too many high‐frequency 

black nodes (e.g., designating 100 out of 1,000 (10%) distinct terms as black nodes) may lead to an 

overly complex network structure, adversely affecting the accuracy and focus of topic detection. In 

KeyGraph, high‐frequency black nodes represent the core terms in the keyword network, outlining 

the principal thematic structure of the articles. However, when the number of high‐frequency black 

nodes  is  too  large,  the  co‐occurrence density of high‐frequency keywords  increases  significantly, 

resulting  in  an  overly  dense  network.  This  density  can  blur  thematic  boundaries,  intensify  the 

semantic overlap between nodes, and hinder the convergence of co‐occurrence paths, weakening the 

ability to detect latent topics and contextual structures [53–56]. 

Second, an excessive number of high‐frequency terms may include morphologically varied but 

semantically  similar words  (e.g., make, makes, and made). Although  these high‐frequency  terms 

frequently co‐occur, they may lack clear thematic referentiality, disrupting the focus of the keyword 

network.  This  disruption  often  leads  to  topic  analysis  results  that  are  biased  toward  overly 

generalized dominant  themes or may even  trigger  semantic hallucinations,  limiting  the ability  to 

identify subtle, overlapping, or emerging topics [53–56]. 

From an operational perspective, setting too many high‐frequency black nodes can lead to an 

overly complex graph structure, reducing the feasibility of cluster partitioning and cross‐validation 

and  increasing  the difficulty of  topic analysis. This outcome may result  in  the omission of critical 

information  during  topic  summarization  or  affect  the  interpretability  of  the  detection  process, 

weakening  the depth and novelty of  the conclusions. Conversely, setting  too  few high‐frequency 

black nodes may cause essential topic‐related keywords to be inadequately captured. In particular, 

some secondary terms (although not highly frequent) may carry significant semantic meaning but be 

excluded from the analysis, leading to an unbalanced topic distribution. This outcome compromises 

the  formation  of  structured  keyword  clusters,  dilutes  the  network  core,  and  undermines  the 

coherence of the keyword network and the overall inference of topic evolution. 
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In summary, determining the optimal number of key nodes requires iterative parameter tuning 

and visual inspection to control node density appropriately and identify the most suitable keyword 

network. This approach helps maintain the structural stability of the keyword network, reducing the 

risk  of  overlap  and  semantic  hallucination  in  the  topic  analysis  and  enhancing  the  overall 

interpretability and exploratory depth of the analysis. 

3.4. Selection of High‐Frequency Keyword Clusters 

After  constructing  the  keyword  network,  this  study  conducts  manual  classification  and 

clustering based on  the network  structure  formed by  the high‐frequency black nodes. The  initial 

clustering process employs the chance nodes (i.e., red nodes), identified by the KeyGraph algorithm, 

as the starting points for keyword diffusion. These red nodes are considered anchors for potential 

emerging or latent themes due to their role in bridging high‐frequency keywords despite having a 

relatively low frequency themselves. From each red node, the diffusion extends outward to directly 

connected  high‐frequency  black  nodes, with  the  number  of  connected  black  nodes  limited  to  a 

maximum of  six  to  seven per  red node. This  setting helps  control  the  cluster  size  and prevents 

excessive expansion that may blur or overgeneralize the results of the topic analysis. 

After completing the initial clustering, each cluster was input into ChatGPT for topic detection 

and semantic interpretation. ChatGPT analyzes the complex relationships between the keywords in 

each  cluster and  infers  the potential ethical  issues or discourse associated with  the  cluster.  If  the 

interpretations  generated  by  ChatGPT  lack  logical  coherence  or  sufficient  semantic  clarity, 

researchers can adjust the relevant parameters of the KeyGraph algorithm (e.g., the number of high‐

frequency black nodes, connection strength, or red nodes) to reconstruct a new keyword structure 

and cluster distribution. This dynamic human–AI collaborative adjustment mechanism is iteratively 

repeated until the resulting cluster division demonstrates semantic clarity and structural coherence. 

Overall,  this  procedure  embodies  a  human–AI  collaborative  mechanism  for  semantic 

construction. The KeyGraph algorithm segments clusters based on the proximity of red nodes and 

high‐frequency  black  nodes,  considering  their  co‐occurrence.  In  contrast,  ChatGPT  provides 

complementary support for semantic interpretation, and researchers can manually adjust parameters 

to ensure coherence. This approach reflects the core aim of HCI in the double helix model, forming a 

dynamic and  iterative process of  topic analysis  that enhances  the semantic  focus and ensures  the 

structural integrity of the keyword network. 

3.5. Employing ChatGPT for Topic Detection 

This section elaborates on how the KeyGraph algorithm is employed to conduct topic detection 

and chance discovery  in AI ethics articles while examining  the  limitations of  traditional keyword 

network  analysis  methods.  This  work  employs  ChatGPT  as  an  auxiliary  tool  for  semantic 

interpretation to overcome these constraints during the potential topic detection phase of keyword 

clusters. The technical advantages and application strategies of this integration are detailed below. 

3.5.1. Limitations of Previous Methods 

Before  the  widespread  adoption  of  LLMs,  such  as  ChatGPT,  article  mining  for  keyword 

networks and  topic detection primarily  relied on  interpreting  the semantic  relationships between 

node clusters and bridging chance nodes in the keyword network graph. Researchers subjectively 

assigned  thematic meanings  to  the  keyword  structures  and  topics  based  on  these  relationships. 

Researchers needed to trace the data back to the original article and examine the contextual usage for 

semantic interpretation to clarify the semantic association of a bridging node (e.g., accountability) 

with multiple clusters [57–60]. In this analytical framework, topic detection and semantic clarification 

were achieved primarily through the following approaches. 

1. Topic  cluster  identification  and  core  concept  summarization:  KeyGraph  identifies  high‐

frequency keywords in articles and designates them as high‐frequency nodes (i.e., black nodes) 
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in  the  keyword  network  structure.  Based  on  the  co‐occurrence  relationships  between  these 

keywords,  tightly  connected  clusters  naturally  form,  reflecting  the  primary  themes  or 

subdomains in articles. Researchers can summarize representative thematic labels based on the 

characteristics  and  co‐occurrence  patterns  of  keywords  in  each  cluster,  producing  an  initial 

thematic summary and classification of the core article content. 

2. Chance keyword identification and pairwise semantic relationship mining: The uniqueness 

of KeyGraph  lies  in  its ability  to  identify chance keywords  that, despite  their  low  frequency, 

connect multiple thematic clusters. Although these keywords appear infrequently, they serve as 

bridging nodes linking thematic clusters in the keyword network. Researchers conduct in‐depth 

analyses of these chance keywords by tracing their contextual usage back to the original articles, 

manually  interpreting  their  semantic  roles  and  how  they  connect  with  multiple  thematic 

clusters. This process facilitates identifying emerging topics, interdisciplinary integration points, 

or potential trends. 

However, although KeyGraph can provide structural information and identify potential chance 

keywords, without LLM assistance, theme summarization and semantic clarification still heavily rely 

on manual interpretation and domain‐expert knowledge. Researchers must manually integrate the 

keyword network graph, centrality metrics, and the contextual usage of terms in the original articles 

to  trace and  interpret  the  semantic  roles of potential keywords and  their connections  to multiple 

thematic clusters. This process is time‐consuming, and the results are often limited by the researchers’ 

professional judgment, reducing the efficiency and scalability of semantic mining. These traditional 

methods commonly face several significant limitations [59,60]. 

1. Topic summarization heavily relies on manual interpretation, resulting in subjectivity and 

inconsistency:  Although  traditional  keyword  network  graphs  can  visually  present  co‐

occurrence relationships between high‐frequency keywords,  their semantic connections often 

lack  systematic  explanatory  mechanisms,  typically  relying  on  researchers’  expertise  and 

experience  for  semantic  interpretation  and  topic  detection.  This  process  is  time‐consuming, 

labor‐intensive,  and  prone  to  inconsistencies  due  to  variations  in  interpreters’  knowledge, 

affecting  the objectivity  of  topic  summarization. These problems  become pronounced when 

analyzing multiple articles or conducting comparative analyses over time. 

2. Limited  ability  to  identify  low‐frequency,  high‐value  keywords,  making  latent  topic 

detection difficult: Traditional text mining methods using statistical frequency focus on topic 

clusters formed by high‐frequency keywords, often overlooking low‐frequency keywords and 

chance  nodes  that  play  bridging  or  transitional  roles  in  the  keyword  structure.  These  low‐

frequency keywords often represent emerging concepts, topic intersections, or contextual shifts, 

holding significant value for uncovering latent research topics and policy chance information. 

However,  traditional  methods  struggle  to  identify  and  interpret  their  semantic  roles 

systematically, limiting the efficiency and usefulness of topic exploration. 

3. Difficulty  tracking dynamic  contexts hinders automating  topic‐evolution pattern analysis: 

When managing cross‐temporal texts, such as AI ethics articles from 2022 to 2024, traditional 

keyword network analysis often requires a manual comparison of keyword structural changes 

at  various  time  points  and  cannot  effectively  or  automatically  track  how  topic  keywords 

undergo semantic shifts or experience topic merging and splitting as the context evolves. This 

limitation hinders  researchers’ understanding  and  forecasting of  topic  evolution  trajectories, 

resulting in analyses without the capacity to present temporal and dynamic characteristics. 

4. Visualization maps are challenging  to convert  into structured data for  inference: Although 

keyword network graphs offer a high degree of visual intuitiveness and help reveal thematic 

contexts and lexical and relational structures in texts, their results are often presented as images. 

When the number of keyword nodes in topic clusters is high, the clarity and readability of these 

visuals significantly decrease, leading to blurred outcomes or difficulty in interpretation during 

advanced analyses (e.g., topic classification, semantic comparison, or cross‐validation). 
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3.5.2. Technical Background: Semantic Comprehension and Topic Extraction in ChatGPT 

The ChatGPT LLM is based on the deep learning transformer architecture that Vaswani et al. 

proposed in 2017. Unlike the widely used LDA, this model undergoes unsupervised pretraining on 

large‐scale textual data to generate high‐dimensional semantic embeddings, capturing the syntactic 

structures  and  semantic  relationships  in  sentences.  Its  core  self‐attention  mechanism  captures 

semantic associations and contextual  features  in  the  text,  transforming  textual data  into semantic 

vector  representations  to  infer deep  linguistic patterns and  latent word  relationships.  In practical 

applications, ChatGPT demonstrates capabilities in processing long texts, generating summaries, and 

performing topic detection. 

The experimental results from existing studies indicate that ChatGPT achieves highly accurate 

content detection and classification tasks, significantly surpassing the current benchmark methods. 

Notably, ChatGPT displays outstanding performance in zero‐shot learning scenarios. The literature 

has suggested that ChatGPT can directly understand and execute most tasks without any additional 

training  or  fine‐tuning,  with  performance  typically  exceeding  that  of  other mainstream  LLMs, 

demonstrating exceptional generalizability. Moreover, studies have found that, in specific tasks, the 

performance  of ChatGPT  surpasses  even  that  of  fine‐tuned models.  This  finding  highlights  the 

potential of ChatGPT as a foundation model, achieving or exceeding the performance of task‐specific 

trained  models  without  special  optimization,  highlighting  stronger  adaptability  and  broader 

application prospects [61–64]. 

This study  integrates ChatGPT  into  the  topic detection and summary generation  tasks of  the 

keyword networks produced by KeyGraph  to apply  the semantic analysis potential of KeyGraph 

fully and overcome the  limitations of traditional manual  interpretation. When the structure of the 

keyword network, particularly starting from the red nodes, is expanded layer by layer based on the 

connection  strength  and  semantic  distance with  high‐frequency  black  nodes,  the  corresponding 

original texts are input into ChatGPT individually. This LLM employs the following steps to conduct 

semantic interpretation and topic detection processes [64–66]: 

1. Comprehension  of  keyword  network  structures  and  semantic  interpretation:  ChatGPT 

tokenizes the input text, including the original AI ethics articles and translated descriptions of 

the KeyGraph keyword network structure, and processes it via its multilayer transformer model 

for  deep  syntactic  and  semantic  analyses.  The  built‐in  attention  mechanism  in  ChatGPT 

accurately  captures  complex  relationships  between  tokens  and  their  contextual  meaning, 

constructing  a  comprehensive,  detailed  semantic  representation.  This  approach  enables  the 

model  to understand  the meaning of  individual  tokens  and  their positions  and  roles  in  the 

keyword network. 

2. Topic  identification: The model  identifies  frequently recurring keywords and  their semantic 

relationships  in  the  text,  grouping  them  into  coherent  thematic  clusters. Notably, ChatGPT 

applies  its strong contextual  reasoning  to generate semantically complete and  representative 

thematic descriptions, facilitating the discovery of core concepts in the network structure. 

3. Semantic  interpretation and  text summarization: ChatGPT extracts critical  insight  from  text 

based  on  semantic  logic  and  generates  contextually  coherent  and  concise  summaries. 

Researchers  can  control  the  content  and  length  of  these  summaries  using  precise  prompt 

engineering  (e.g.,  restricting  the  summary  to  the  imported  text)  to meet  specific  analytical 

requirements.  This  control  considerably  enhances  the  efficiency  of  extracting  insight  from 

complex network graphs [66,67]. 

Through  these  steps,  this  study  expands  the  keyword  network  structure  constructed  by 

KeyGraph layer by layer, starting from the red nodes and analyzing their associations with the high‐

frequency black nodes. Then,  this  study employs ChatGPT  to  interpret  the natural  language and 

summarize the themes of the topic clusters and bridging nodes of the original AI ethics articles. This 

integrated process significantly enhances the analytical efficiency and accuracy of thematic induction, 
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realizing the HCI and semantic reciprocal interpretation emphasized by the chance discovery theory 

and providing a more systematic and operable framework for dynamic topic detection. 

3.5.3. Method: Integrating KeyGraph and ChatGPT for Topic Detection 

The KeyGraph application emphasizes that mining, understanding, and topic detection should 

be conducted and interpreted by domain experts to ensure the contextual relevance of the keyword 

network  interpretation.  However,  given  the  limited  availability  of  domain  experts,  this  study 

integrates  the  KeyGraph  keyword  network  analysis  with  ChatGPT  to  enhance  the  semantic 

interpretability  of detected  topics  and  the  ability  to determine potential  chances by  constructing 

keyword  association  structures  and  exploring  the  topics.  The  analysis  process  begins with  the 

KeyGraph algorithm generating a keyword network graph based on the co‐occurrence frequency and 

distance between keywords, identifying potential cross‐topic connective chance nodes (red nodes), 

which serve as the starting points for semantic expansion and topic detection. 

Using the red nodes as the starting points for semantic diffusion aligns with the core aim of the 

chance  discovery  theory.  Although  these  nodes  have  a  relatively  low  frequency,  they  form 

connections with multiple  clusters,  displaying  cross‐topic  bridging  characteristics  and  capturing 

hidden information more effectively. Furthermore, although these nodes may not represent the focus 

of the texts, they can reveal potential topics at the boundaries of the keyword network, offering high 

informational value and strategic significance. 

For example, starting from the red node R1, a strong co‐occurrence relationship exists between 

R1 and the high‐frequency black node T4, which connects to other high‐frequency black nodes (e.g., 

T1 and T3), with T3 linking to T2. Notably, T2 forms a closed‐loop connection with both T1 and T4. 

This hierarchical node expansion enables the construction of a structured semantic diffusion path, 

delineating the internal relationships and boundaries of a topic (Figure 4). 

 

Figure 4. Co‐occurrence relationship mapping in the association graph. 

This  study  integrates  the  ChatGPT model with  an HCI mechanism  to  apply  the  semantic 

diffusion  structure  to  semantic  inference  and  topic  interpretation  tasks,  enhancing  the  semantic 

accuracy and interpretative consistency of topic understanding. The keyword clusters identified by 

KeyGraph are reconstructed into logically coherent semantic diffusion paths, with red nodes serving 

as  the  starting points  for  interpretation. These paths are  input  into ChatGPT, which  is guided  to 

perform semantic judgment and topic mining based on the provided semantic diffusion path. Figure 

4 presents an input example, the R1 semantic diffusion path, where the red node is R1 and the high‐

frequency black nodes in Cluster 1 include T1, T2, T3, and T4. 

3.6. R1 Semantic Diffusion Path 

The co‐occurrence structure in Cluster 1 consists of the following edges: {(R1, T4), (T4, T1), (T4, 

T2),  (T4, T3),  (T1, T2),  (T2, T3)}. Although  this method  integrates  the KeyGraph  algorithm with 

ChatGPT  for  topic  detection  and  semantic  interpretation,  practical  implementation  still  faces 

challenges. As an LLM, ChatGPT’s outputs may exhibit risks, including semantic hallucination, topic 
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ambiguity, or semantic overextension. This study adopts a dual‐layer control strategy  to mitigate 

these biases effectively [68]. 

The first layer employs a refined prompt engineering mechanism to guide ChatGPT to focus on 

topic inference in a specific context, ensuring that the generated semantics rely solely on the semantic 

diffusion  path  and  imported  textual  data.  In  this  process,  researchers  initially  use  role‐playing 

prompt strategies to assign ChatGPT a particular identity or perspective. This initial setting helps to 

converge the model’s understanding of the specific domain or context before topic inference, aligning 

its behavior more closely with expectations and enhancing the efficiency and accuracy of tasks. Clear 

task  assignments  are  given  to  direct  ChatGPT  to  perform  various  functions,  including  topic 

classification, semantic interpretation, or summary generation. Throughout the process, researchers 

control the scope of contextual input, restricting the topic summary content to the imported textual 

data, compensating for ChatGPT’s potential limitations in domain‐specific knowledge and reducing 

the influence of semantic hallucinations on the interpretative results. 

The second layer involves a repetitive manual review. The topic interpretation results generated 

by ChatGPT are  subject  to manual  examination and validation by  researchers. The aim  is not  to 

perform a word‐for‐word comparison of  the semantic  interpretations but  to assess and revise  the 

logical coherence and consistency of the topic summaries to ensure semantic logic and interpretative 

consistency. Researchers  can  adjust  the  algorithm  parameters  based  on  the  review  outcomes  to 

conduct the next iteration of analyses, progressively refining and optimizing the semantic structure 

and topic detection results. 

This risk management mechanism balances generative capability with interpretative reliability, 

illustrating  the  dynamic  optimization  loop  of  data‐driven  insight  combined  with  knowledge 

reasoning, as described in the double helix model, facilitating incremental knowledge construction. 

By  integrating  keyword  diffusion  structures  with  HCI  workflows,  this  study  deepens  the 

understanding and  identification of  latent  topics. This approach enhances  the  sensitivity of  topic 

detection and the accuracy of interpretation, improving the overall explainability of semantic analysis 

and its capacity to support decision‐making. 

This  study  conducts  topic  detection  using  keyword  network  graphs  and  keyword  clusters 

generated  by  KeyGraph,  supplemented  by  ChatGPT  for  topic  interpretation  and  summary 

generation.  Researchers  interpret  the  results  and make  logical  judgments,  adjusting  the model 

parameters  to guide  analysis  iterations. This  iterative process  establishes  an HCI mechanism  for 

exploring topics and constructing knowledge. 

Although the combined use of KeyGraph and generative AI demonstrates strong potential for 

topic detection and semantic interpretation, its practical implementation still faces challenges. As an 

LLM, ChatGPT’s outputs may  involve risks, including semantic hallucination, topic ambiguity, or 

excessive semantic expansion. This study adopts a dual‐layer control strategy to mitigate these biases. 

First, the generated semantics are constrained via refined prompt engineering to rely solely on the 

semantic diffusion paths and imported textual data. Second, a repeated manual review is conducted 

to enhance semantic consistency and logical thematic accuracy. This risk management mechanism 

balances generative capability with interpretative reliability, improving the overall explainability of 

the semantic analysis and decision support. 

4. Result Analysis 

This section presents a systematic analysis employing the Polaris visualization tool combined 

with the KeyGraph algorithm to analyze English‐language articles related to AI ethics. The dataset 

comprises  representative  articles  published  between  2022  and  2024  by  reputable  academic 

institutions, news media,  and nonprofit organizations providing  comprehensive discourse. Eight 

representative articles for each year were selected for analysis to deepen the understanding of the 

evolving context of AI ethics issues and construct a structured keyword network supporting topic 

detection and interpretation. 
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Due to the numerous high‐frequency black nodes in the initially generated keyword network, 

the  analysis  focused  on  those  high‐frequency  black  nodes  with  explicit  connections  (i.e.,  co‐

occurrence  relationships  represented  by  solid  black  edges).  Isolated  high‐frequency  black  nodes 

without  connections  to  other  nodes were  excluded  from  the  keyword  network.  This  approach 

improves the readability and relational strength of the keyword network and helps identify potential 

emerging chance trends. 

Next,  a  structural  analysis was  conducted  on  the  keyword  network  formed  by  these  high‐

frequency black nodes, and keyword clusters were manually delineated. Clustering originated from 

chance  nodes  (red  nodes)  and  expanded  outward,  with  the  number  of  linked  high‐frequency 

keywords limited to about six to seven per cluster. This process was supported by a keyword review 

and  thematic  convergence procedures  to  ensure  semantic  coherence  and  appropriateness within 

clusters. Following the preliminary clustering, the semantic diffusion paths for each keyword cluster 

were  individually  input  into ChatGPT  for  in‐depth  topic  detection  and  semantic  interpretation, 

revealing the core topics embedded in each cluster. 

Cross‐cluster thematic integration analyses were conducted to explore latent common topics and 

interwoven  keyword  structures  of  strongly  related  clusters.  All  outputs  underwent  manual 

inspection  to ensure  the  readability, reliability and  logical consistency of  the  results. This process 

illustrates the HCI interpretative loop in the double helix model, where dynamic cycles of semantic 

network  visualization,  topic  clustering,  and  generative  AI‐assisted  interpretation  collectively 

enhance the depth and explanatory power of topic detection. 

4.1. Yearly Analysis of Topic Evolution and Keyword Structures (2022–2024) 

The eight articles from 2022 contained 2,595 distinct terms; hence, this study set a parameter of 

75 high‐frequency keywords as black nodes, connected by 135 solid black edges depicting the co‐

occurrence network of these keywords to present the core associative structure of AI ethics topics. 

Additionally, four red nodes were designated as the potential chance discovery nodes. Under these 

conditions, a keyword network was generated using automaker, dignity, behavior, and statistical as the 

red nodes, highlighting the key themes in the 2022 AI ethics articles (Figure 5). The following bullet 

points summarize the thematic content. 

 Cluster  A‐1:  The  semantic  cluster  around  the  red  node  automaker  focuses  on  the 

implementation of autonomous driving  technology and  the ethical challenges  faced by AI  in 

automotive applications. This  red node  extends  through  its  connection  to  self  to  include  the 

keywords based, car, driver, vehicles, and autonomous, outlining application scenarios involving 

HCI. The keywords driver,  task, and autonomous  intertwine,  reflecting  issues of  responsibility 

allocation  and  control  authority.  In  situations  where  automated  and  manual  control  are 

combined, the attribution of responsibility for accidents (whether borne by the driver or system) 

requires further clarification via regulatory frameworks and technical design. Furthermore, task 

transparency and the interface design are also critical. For example, whether drivers can quickly 

grasp  the operational  status and decision  rationale of  the  system directly affects  their  safety 

judgments  and  behavioral  responses.  Establishing  trust  and  risk  perception  cannot  be 

overlooked.  An  insufficient  HCI  design  and  information  transmission  may  cause  driver 

overtrust  or  erroneous  reliance,  increasing  safety  risks.  Overall,  the  keyword  structure 

emphasizes  several  topics,  including  the  behavior  prediction  of  autonomous  technologies, 

system safety, and user responsibility attribution. 

 Cluster A‐2: The  red node  behavior  forms  a keyword network  related  to AI  risk prediction, 

system deployment, and ethical practices. Through its connections to consequences, the network 

gradually expands to include the keywords risk, privacy, discrimination, design, and capabilities, 

reflecting  the  multifaceted  and  uncertain  outcomes  of  AI  system  behavior.  Notably, 

discrimination  is  intertwined  with  risk,  indicating  that  failure  to  address  data  sources  and 

algorithmic bias properly in real‐world applications may reinforce existing societal inequalities 

and  trigger  ethical  crises  of  systemic  discrimination.  The  association  between  design  and 
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foundational  highlights  the  need  to  judiciously  consider  fundamental  principles  and  ethical 

values during  the  initial  stages  of AI development. Overall,  this  cluster maps  the potential 

externalities that may arise during AI deployment, emphasizing that developers must assume 

the  corresponding  responsibility  for  the potential  social  and  ethical  consequences of  system 

behavior. 

 Cluster  A‐3:  The  keyword  network  extended  from  the  red  node  statistical  focuses  on  the 

computational  logic  and  algorithmic  architecture  of  AI  systems.  The  strong  co‐occurrence 

relationships, with  the keywords  computational,  learning, machine,  critical,  and  implementation, 

reveals core problems including statistical biases, risk governance, and explainability in current 

AI technology. The direct and indirect connections between the keywords issues, concerns, ethical, 

implementation, and  critical  reflect  that AI ethics  is not merely a  conceptual discussion but  is 

involved in the development, design, and deployment stages of AI systems. Furthermore, the 

connections  emphasize  that  the  realization of AI  ethics must  integrate value  judgments and 

ethical norms as essential foundations for technical practice. This cluster demonstrates the role 

of  ethical  issues  in  institutional  frameworks,  industrial  applications,  and  technical  design, 

indicating  that  ethical practice has become a  critical  factor  that  cannot be overlooked  in  the 

development of responsible technology. 

 Cluster A‐4: The keyword network constructed around the red node dignity focuses on human 

rights protection and ethical principles. This red node displays high co‐occurrence frequencies 

with  the keyword responsibility,  trust,  justice,  transparency, principles, and ethics, reflecting  that 

current AI  technology developers should assume  the corresponding moral responsibilities  to 

avoid problems (e.g., bias, discrimination, and structural inequality). Ensuring the transparency 

of algorithms and data processing allows users  to understand  the decision‐making  logic and 

behavioral patterns of AI systems, safeguarding human dignity and  fundamental rights. The 

connections between justice, guidelines, and harm highlight the necessity of designing AI ethical 

frameworks and indicate that the lack of appropriate ethical judgment and operational guidance 

may  harm  individuals  or  society,  causing discrimination  or unfairness. Overall,  this  cluster 

focuses on protecting human rights and strengthening ethical norms and institutional justice as 

core principles, constructing an AI governance mechanism characterized by social  legitimacy 

and long‐term trust. 

 Combined cluster of A‐2 and A‐3: The keyword network reveals a significant intersection and 

complementary  structure, highlighting  the dual  technological  and  societal dimensions of AI 

ethics  issues.  Through  red  chance  nodes,  including  bias,  risk,  understand,  issues,  and 

implementation, cross‐cluster bridging nodes emerge, uncovering a risk propagation chain that 

spans  from  statistical  logic  to  behavioral  consequences.  Bias  often  originates  from  flaws  in 

algorithm design  and  training data,  and  further permeates  the  societal domain  after  system 

deployment, leading to concrete and potentially escalating ethical consequences. This analysis 

indicates  that  AI  ethics  challenges  must  be  examined  from  an  integrated,  multilayered 

perspective spanning technical construction and societal influence. Accordingly, ethical practice 

in AI should focus on identifying and mitigating potential ethical risks during the early stages 

of technological development (e.g., data preprocessing and model training). A comprehensive 

ethics  governance  framework  encompassing  bias detection,  transparency  enhancement,  and 

regulatory  mechanisms  must  be  promoted  to  ensure  responsible  and  sustainable  AI 

applications. 

 Combined cluster of A‐2 and A‐4: The analysis reveals that AI behavior must be guided and 

constrained by ethical principles to prevent harm to human dignity and privacy, enabling the 

deployment of trustworthy and responsible AI. The behavioral logic of AI systems should be 

grounded in human rights protection and ethical values, with corresponding regulations (e.g., 

bias detection and privacy protection standards) introduced during the early design stages to 

ensure  legitimacy and credibility during deployment. The consequences of AI behavior  (e.g., 

bias and privacy infringement) must be directed by ethical principles and implemented through 
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technical practice. This interactive relationship emphasizes that ethics should not be treated as 

an external constraint to technology but as an internal structure embedded throughout the life 

cycle of AI design, development, and application, advancing responsible and human‐centered 

AI  development.  This  perspective  aligns with  the  discourse  in  the  2022  AI  ethics  articles, 

including The 2022 AI Index: AI’s Ethical Growing Pains and AI Ethics and AI Law: Grappling with 

Overlapping  and  Conflicting  Ethical  Factors Within  AI,  and  identifies  the  integration  of  bias 

management and privacy protection into a unified ethical framework as an emerging research 

chance. 

 Combined cluster of A‐2, A‐3, and A‐4: The semantic co‐construction of  these  three clusters 

reveals that AI ethics challenges cannot be viewed as problems confined to a single level. The 

behavioral  risks  of  AI  systems  (e.g.,  technical  bias,  discriminatory  outcomes,  and  privacy 

infringement) are closely linked to their underlying statistical construction logic, indicating that 

once  deployed, AI may  produce  irreversible  and  substantive  ethical  consequences.  If  such 

consequences  are  not  addressed  through  institutionalized  ethical  safeguards  that  ensure 

prevention and accountability, AI technology risks losing social trust and legitimacy. Moreover, 

ethical AI practice must adopt a cross‐level  integration approach to address these challenges, 

spanning from model training and system deployment to institutional regulation, constructing 

a  full‐process ethical governance  framework based on  the  triad of  technology, behavior, and 

values. This structure is critical for preserving human dignity and developing trustworthy and 

responsible AI. 

 

Figure 5. KeyGraph co‐occurrence network of AI ethics articles in 2022. 
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The eight articles from 2023 contain 1,606 distinct terms. Based on customized parameters, 65 

high‐frequency keywords were selected as black nodes and were connected by 85 solid black lines to 

construct the co‐occurrence keyword network. Two red nodes were designated as potential chance 

discovery nodes. Under these conditions, a keyword network was generated with machine and misuse 

as  the  red  nodes,  revealing  the  structural  configuration  of  keywords  related  to  AI  ethics  and 

highlighting the emerging chances (Figure 6). In this network, the red node machine forms a keyword 

structure divided  into  two subsemantic clusters, connected via  the  terms  trained and develop. The 

thematic clusters are summarized as follows: 

 Cluster B‐1: With  trained as  the primary node,  the network extends  to  the keyword data and 

further expands to the keywords models, privacy, and customer, reflecting early‐stage concerns in 

AI development regarding the legitimacy of data sources and the protection of user information. 

The node models branches out  to  include  intelligence, ChatGPT, generative, and bias,  indicating 

attention  to  the  algorithmic  biases  embedded  in generative AI models  (e.g., ChatGPT). The 

bidirectional  links  between  privacy,  customer,  and  system  highlight  ethical  considerations 

regarding user privacy and data security in AI application contexts. The connections between 

system and  the keywords  customer,  create, and generative  reveal  the  interplay between system 

design and generative technology in practice, raising concerns about technological transparency 

and  ethical  accountability. The keyword  artificial  is  linked  to  intelligence,  lead,  and ChatGPT, 

forming a semantic structure centered on AI model generation and leadership  in application. 

This cluster reveals deep ethical concerns related to the legitimacy of data usage, model bias, 

privacy protection, and user participation during  the  training and deployment phases of AI 

systems. 

 Cluster  B‐2:  The  primary  node  develop  connects  with  systems  and  human,  revealing  the 

bidirectional relationship of HCI in technological construction. Systems further expands to make 

and decisions, reflecting the role AI systems play in decision‐making processes. Decisions links to 

making, humans, and believe, forming a cluster centered on how AI decision‐making influences 

human beliefs. Technology co‐occurs with  the  terms ethics and concerns,  indicating heightened 

attention to ethical regulations and institutional policies during AI development. Through the 

node concerns, the keyword ethics connects to potential, business, and responsibility, outlining the 

importance businesses place on ethical risks and responsibilities when applying AI technology. 

Overall, this semantic group illustrates the institutional and ethical challenges faced during AI 

development,  emphasizing  the  importance  of  bias  governance,  technical  regulation,  and 

establishing user trust. 

 Cluster B‐3: With misuse as the red node, the initial connection to government further extends to 

industry and society, forming a semantic cluster focusing on institutional roles. The node industry 

links  to  insurance,  which  connects  to  using,  policy,  and  responsible,  highlighting  an  ethical 

discourse  focused on  risk  transfer mechanisms and  institutional  responsibility. The keyword 

policy is a central node connecting responsible, insurance, and using, indicating that policy should 

address AI misuse risks via clear responsibility allocation, technical application guidelines, and 

industry‐level risk management, especially concerning privacy protection and social impact. The 

keywords ethical, ensure, responsible, and using are closely interlinked, underscoring that ethical 

principles must be embedded in technical usage and institutional regulation. These principles, 

when  supported by  accountability  structures  and protective measures,  can mitigate  risks of 

misuse, particularly in areas related to data privacy and societal consequences. The connection 

between  impact  and  society  further  indicates  the  potential  and  far‐reaching  effects  of 

technological misuse on social structures. Overall, this semantic cluster illustrates that AI ethical 

principles should be integrated into institutional design and technological application processes 

and that clear accountability and regulatory mechanisms are critical for reducing the potential 

negative influences of AI misuse on societal systems. 

 Combined cluster of B‐1 and B‐2: These two clusters, centered on the red node machine, focus 

on model training and system development, respectively, revealing, through the lens of practical 
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application,  the  crucial  ethical  challenges  spanning  the AI  life  cycle,  from data  training and 

system development to deployment. Both clusters emphasize data ethics (e.g., privacy and bias) 

and  the governance of potential negative  influences of AI systems on society and humanity, 

including decision‐making  influence  and  responsibility  attribution. Together,  these  semantic 

clusters reveal that the core of AI ethics lies in the technology itself and, more critically, in the 

processes  of  interaction  between  AI,  humans,  and  society,  particularly  regarding  risk 

management  and  the  realization  of  accountability.  The  clusters  collectively  emphasize  that 

achieving a vision of AI development that balances innovation and responsibility requires the 

parallel construction of responsible governance mechanisms throughout the innovation process. 

 Combined  cluster of B‐2 and B‐3:  In  the KeyGraph keyword network, Clusters 2 and 3 are 

centered on the keywords develop and misuse, respectively, illustrating an ethical link from AI 

technology development to its potential misuse. The keyword structures revealed by these two 

clusters reflect that AI ethics challenges originate from individual acts of technical development 

and extend across broader societal  institutions and governance dimensions. The ethical risks 

posed  by  AI  technology  can  be  effectively  addressed  only  by  constructing  an  integrated 

accountability  framework  encompassing  development,  deployment,  and misuse  prevention, 

ensuring that advancement contributes to positive and sustainable social value. 

 Combined cluster of B‐1, B‐2, and B‐3: These three semantic clusters correspond to three stages 

of AI ethical  risk, model  training,  system development, and actual misuse along with  social 

impact,  respectively,  forming  a progressive  chain  from  ethical  considerations  to governance 

responses. The keyword  structures  reveal a  trajectory  that begins with micro‐level concerns, 

including  data  bias  and  generative misinformation,  and  extends  to  challenges  of  decision‐

making and ethical design during the development process. The structures indicate misuse risks 

and governance responsibility at the societal level. This progression reflects that AI ethics issues 

are not isolated incidents but constitute a foreseeable and preventable chain of ethical risks. An 

integrated ethical framework must be established that encompasses data governance, technical 

design, and misuse prevention, enabling the realization of an AI development vision guided by 

social values to address multilevel challenges (e.g., bias, manipulation, and misuse). 
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Figure 6. KeyGraph co‐occurrence network of AI ethics articles in 2023. 

The  eight  articles  from  2024  encompass  2,612  distinct  terms.  Based  on  the  customized 

parameters, 60 high‐frequency keywords were selected as black nodes and were connected by 95 

solid black lines to construct the co‐occurrence network of keywords. Two red nodes were designated 

as potential  chance discovery nodes. Under  these  conditions, keyword networks were generated 

using media and security as the red nodes, revealing the relationships between content production, 

technological transparency, and institutional responsibility in AI ethics issues (Figure 7). The bullet 

points below summarize the thematic clusters. 

 Cluster C‐1: With media as the red node, the network connects to social, which links to content, 

genAI, and used, revealing that generative AI technology has been widely integrated into social 

platforms and public communication spaces. The connection between social and ethical, further 

extending  to  risks  and  then  deployment,  challenges,  technology,  and  responsible,  indicates  that 

societal  concerns  have  shifted  beyond  technical  applications  to  the  ethical  risks  and 

responsibility  attribution  involved  in  deployment  processes,  especially  regarding 

misinformation,  information  manipulation,  and  bias  problems  arising  in  social  media 

environments. The keywords digital, technology, innovation, industry, and development converge at 

the nodes essential, become, and important, demonstrating that generative AI has become a core 

driving  force behind contemporary digital  innovation and  industrial  transformation, with  its 

ethical challenges escalating  into systemic problems. Overall,  this semantic cluster highlights 

that AI ethics attention has moved  toward ethical challenges  triggered by  the application of 

generative  AI  in  social  and  media  contexts,  emphasizing  the  importance  of  responsible 

technological deployment in these settings. 

 Cluster C‐2: The red node security co‐occurs with technologies and extends to data, models, and 

training,  forming  a  semantic  cluster.  The  keyword  biases  forms  a  triangular  co‐occurrence 

structure with these three terms, indicating that data sources and processing methods underpin 

AI  system  security,  and  that  biases  hidden within  training  data  influence model  behavior, 

representing the  intersection of ethics and security. Transparency and privacy connect through 

technologies and further co‐occur with regulatory, reflecting that AI ethics discourse has reached 

institutional  dimensions  and  emphasizing  the  reliance  on  and  necessity  of  regulatory 

mechanisms for system transparency and privacy protection. Via ensure and tools, the keyword 

decision links to generative and ChatGPT and is associated with businesses and trust, revealing the 

critical role of explainability and trust mechanisms in generative AI decision‐making processes 

in  corporate  and  societal  applications.  Overall,  this  keyword  network  reveals  the 

interdisciplinary  interconnection of AI ethics issues in 2024, providing a structured analytical 

perspective for technology development, policy regulation, and industry practice. 

 Combined  cluster  of  C‐1  and  C‐2:  The  integration  of  these  two  clusters  highlights  the 

increasingly multilayered and interdisciplinary complexity of AI ethics issues in 2024. The AI 

ethical  themes  are  no  longer  confined  to  a  single  domain  but  require  addressing  systemic 

governance challenges while promoting AI development, especially generative AI, in the fields 

of digital content and media. These challenges include core concerns, including data privacy, 

algorithmic bias, social trust, lack of transparency, and regulatory compliance. The importance 

of achieving trustworthy and responsible AI governance via the collaborative operation of social 

and  technical dimensions  is emphasized, with collective responsibility shared by developers, 

businesses,  policymakers,  and  civil  society.  The  current  AI  ethical  frameworks  must  be 

established  under  risk  contexts  characterized  by  uncertainty  and  the  undiscovered  and 

unknown, guiding AI development toward a more legitimate and sustainable future. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2025 doi:10.20944/preprints202507.2599.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2599.v1
http://creativecommons.org/licenses/by/4.0/


  27  of  32 

 

 

Figure 7. KeyGraph co‐occurrence network of AI ethics articles in 2024. 

4.2. Integrative Analysis and Trend Summary 

The keyword network analysis results from 2022 to 2024 reveal that AI ethics issues exhibit an 

evolving trend that progressively expands from technical implementation to institutional regulation 

and social responsibility. Moreover, the keyword structures demonstrate increasingly complex and 

interdisciplinary governance concerns each year. 

The  2022  AI  ethics  discourse  emphasized  the  inseparable  relationship  between  technical 

implementation,  statistical  construction  logic,  and  the  resulting  social  consequences.  Without 

institutionalized  ethical  safeguards  for prevention and accountability, AI  technologies  risk  losing 

social  trust  and  legitimacy.  Therefore,  the  governance  framework,  spanning  from  technology 

development to institutional regulation, must incorporate ethical practices, addressing core problems 

(e.g., bias,  transparency,  and human  rights protection)  to promote  the  sustainable  and  equitable 

application of AI, achieving trustworthy and responsible AI development. 

The 2023 AI ethics keyword structure displays a characteristic chain of ethical risk semantics 

linking training data, technical design, and governance policies. This structure indicates that AI ethics 

challenges are not  isolated, discrete incidents but span from micro‐level issues (e.g., data bias and 

generative  misinformation)  to  decision‐making  effects  and  ethical  design  in  the  technical 

development  process,  culminating  in  systemic  challenges  of  misuse  risk  and  governance 

responsibility  at  the  societal  level.  This  keyword  structure  reflects  the  core  perspective  in  2023, 

emphasizing the establishment of an integrated ethical framework encompassing data governance, 

technical  design,  and misuse  prevention.  This  framework  ensures  that  responsible  governance 

mechanisms  are  constructed  while  developing  and  innovating  AI  technology,  achieving  a 
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development vision guided by social values and ensuring that AI deployment serves human well‐

being and social value. 

The 2024 AI ethics issues present a multilayered and interdisciplinary complexity. The scope of 

AI ethics has expanded from single technical applications to an integrated framework encompassing 

technology deployment, data sources, institutional regulation, and social trust. Although the rapid 

development of generative AI has promoted digital innovation and industrial upgrading, it has also 

introduced unprecedented ethical risks and governance pressures. As a result of systemic challenges 

(e.g., algorithmic bias, privacy infringement, lack of system transparency, and regulatory lag), future 

AI governance must be based on the collaborative operation of technological and social dimensions, 

emphasizing the collective responsibility of developers, businesses, policymakers, and civil society. 

Moreover, under  the uncertain and  rapidly evolving  risks posed by generative AI, establishing a 

forward‐looking ethical framework addressing uncertainty and potential risks is a critical direction 

indicated by  the 2024 keyword network, guiding AI development  toward a more  legitimate and 

sustainable future. 

5. Conclusions 

This study adopts the KeyGraph algorithm as its core analytical method to examine the evolving 

semantic structures  in AI ethics discourse. By constructing keyword co‐occurrence networks,  this 

work offers  an  in‐depth understanding of  the multilayered  thematic  architecture  and  conceptual 

transitions in this domain. The systematic semantic analysis of representative articles from 2022 to 

2024 revealed that the KeyGraph algorithm identifies core nodes and semantic linkages over time. 

The  clustering  of  keywords  and  identification  of  chance  nodes  facilitated  the  mapping  of  the 

developmental trajectory and internal logic of AI ethics over time. 

This analysis of  time‐specific keyword networks demonstrates that the evolution of AI ethics 

discourse is not static. Instead, the evolution dynamically shifts in response to the interplay between 

technological  advancement,  regulatory  change,  and  societal  interaction,  prompting  continuous 

semantic  reconstruction  and  thematic  reorientation.  The  findings  reveal  latent  interconnections 

between technology, law, and society, offering a novel perspective for understanding the complexity 

of  AI  ethics.  These  results  validate  the  effectiveness  of  KeyGraph  in  processing  large‐scale 

unstructured  textual  data,  extracting  critical  information,  and  constructing meaningful  keyword 

networks for semantic exploration. 

KeyGraph’s  text‐mining  results were  integrated with  the generative AI ChatGPT‐based  text 

summarization technique to enhance the analytical rigor and accuracy of the study. This integration 

allows  for  guided  semantic  interpretation  and  topic  detection  in  co‐occurrence‐driven  keyword 

clusters. The combined approach strengthens  the depth, accuracy, and  interpretive consistency of 

latent topic detection from complex articles. The cross‐validation between the keyword co‐occurrence 

network analysis and generative language models improves the scientific robustness and credibility 

of our understanding of AI ethics discourse and its semantic evolution. 

The proposed method has broad potential for cross‐domain applications. Beyond the AI ethics 

domain, integrating the KeyGraph algorithm with temporal analysis strategies can be extended to 

issue  exploration  and  trend  tracking  in various  fields  (e.g.,  social media,  e‐commerce,  and news 

media). The dynamic analysis of keyword node structures and co‐occurrence intensities over time 

can reveal shifts  in public attention and capture the evolving focus of technology and topics with 

greater precision. This approach enables the early identification of emerging concepts that may pose 

potential risks or offer innovative value (e.g., market reactions to new products, the progression of 

societal hotspots, or changes in user sentiment). 

Such dynamic tracking capabilities offer valuable insight for corporate decision‐making, public 

policy  formulation,  and  academic  research,  supporting  more  accurate  forecasting  and  timely 

responses to evolving challenges. Overall, this study demonstrates the applicability of the keyword 

co‐occurrence  network  analysis  in AI  ethics  and  proposes  a  transferable  framework  that  can  be 

extended to other interdisciplinary issues. With the continued refinement of the KeyGraph algorithm 
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and the integration of advanced LLMs for summarization, this approach is promising for advancing 

a deeper understanding and anticipatory reflection of the ethical implications of AI technology. 
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