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Abstract

This study analyzes the semantic dynamics and thematic shifts in artificial intelligence (Al) ethics
over time, addressing the scarcity of longitudinal perspectives in the literature. In response to the
rapid Al technology evolution and associated ethical risks and societal influences, this research
integrates the theory of chance discovery with the KeyGraph algorithm. Guided by the double helix
model of human-Al interaction, this work constructs a keyword co-occurrence network via iterative
semantic exploration. Building on the co-occurrence structures and original textual data, this work
employs ChatGPT for semantic interpretation, enhancing the accuracy and comprehensiveness of
topic detection. The study analyzes Al ethics reports released between 2022 and 2024 by reputable,
authoritative institutions, revealing that the thematic focus has expanded from technical risks to
broader issues of institutional governance and societal trust. Various keywords, including bias,
privacy, and ethical, have emerged as core nodes across multiple years, indicating a shift in AI ethics
discourse from technical development to regulatory policy. This evolution highlights the formation
of an integrated governance framework, encompassing technological robustness, institutional
adaptability, and social consensus. This dynamic semantic analysis framework offers empirical
contributions to Al ethics governance and knowledge development and valuable insight for
researchers and interdisciplinary stakeholders.

Keywords: Al ethics; topic detection; KeyGraph; keyword network; ChatGPT

1. Introduction

The rapid advancement of artificial intelligence (AI) has transformed lifestyles by offering novel
solutions to real-world problems and challenges and has introduced revolutionary changes across
application domains. Although Al systems enhance efficiency and generate value, the ethical and
societal issues they raise have become global concerns. For instance, the rapid development of various
technologies (e.g., autonomous driving, drones, smart health care, and generative language models)
has led to ethical risks, including algorithmic bias, data privacy infringements, opacity in decision-
making, and ambiguous accountability. In response to these challenges, multiple international Al
ethics guidelines and governance frameworks have been introduced, including the European Union’s
Al Act and various national white papers on technology ethics, which aim to address the ethical and
social risks posed by technological advancements through policy and institutional design [1,2]. As Al
applications penetrate deeper into decision-making processes and social governance, building Al
systems with ethical sensitivity and social legitimacy has become inevitable in technological
development and is a cornerstone for maintaining social trust and promoting sustainable
development.

Against this backdrop, academic and public interest in Al ethics has significantly increased
worldwide. Systematic searches of scholarly databases reveal that existing research encompasses
diverse topics, including data governance, model fairness, transparency design, and accountability
ethics, forming an interdisciplinary and multifaceted body of knowledge [3-6]. Nevertheless, most
prior studies have focused on static articles or in-depth analyses of individual issues, without a

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2599.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2025 d0i:10.20944/preprints202507.2599.v1

2 of 32

systematic examination of whether semantic shifts, thematic evolution, or value-focused
transformations occur in Al ethics discourse over time. Given the continuous and rapid evolution of
Al technology and its application contexts, discourse on ethical issues may significantly change over
time and potentially shift in thematic focus due to event-driven factors, policy interventions, and
public opinion.

Motivated by these considerations, this study employs topic detection techniques in text mining
to conduct an in-depth analysis of multiple unstructured articles. This work explores whether the
themes addressed in Al ethics reports demonstrate stable and consistent focal points or reveal
dynamic shifts and contextual changes alongside technological and temporal developments. This
research aims to identify the underlying semantic shifts and trends in Al ethics topics by thoroughly
examining and comparatively analyzing recent Al ethics articles published by academic institutions,
media outlets, and nonprofit organizations [7-9].

This study integrates the KeyGraph text mining algorithm grounded in the theory of chance
discovery with the generative Al capabilities of the large language model (LLM)-based ChatGPT tool
to address the challenges of semantic analysis in unstructured textual datasets. This integration
establishes an innovative research workflow combining structured mining with semantic
interpretation. KeyGraph, a graph-based method, constructs keyword networks and knowledge
graphs by calculating the frequency and co-occurrence strength of keywords. Notably, KeyGraph
identifies “chance” keywords that, despite their low frequency, possess significant bridging value in
the network structure, revealing latent topics or emerging concepts in the dataset. This approach
surpasses traditional frequency-based methods by uncovering hidden associations, offering the
substantial potential for analyzing thematic evolutions and shifts in ethical focus [10].

Unlike standard topic modeling techniques, such as latent Dirichlet allocation (LDA), correlated
topic models, and Pachinko allocation models, which are unsupervised learning methods requiring
predefined topic numbers and statistical distributions to infer latent topics [11-13], topic detection
emphasizes identifying semantic associations and dynamic thematic changes. Topic detection is
suitable for analyzing rapidly evolving, cross-temporal, or dynamic problem-oriented datasets. The
KeyGraph algorithm is a well-recognized topic detection tool that captures nonlinear co-occurrence
relationships between keywords, making it appropriate for exploring complex ethical issues
characterized by competing values and shifting contexts, as in this study [14-16].

Furthermore, this study employs ChatGPT as an auxiliary tool for semantic interpretation and
summary generation to overcome the subjective limitations in conventional topic analysis methods
that rely on expert interpretation for deep semantic understanding and domain knowledge. By
applying ChatGPT’s advanced language comprehension and summarization capabilities, researchers
can achieve more accurate and focused thematic interpretations of each keyword cluster generated
by KeyGraph, enhancing the precision of topic detection and the overall efficiency and
interpretability of the analytical process [17].

Researchers have employed a human-Al interactive mechanism based on the double helix
model to adjust node parameters, reclassify keyword clusters, and evaluate the semantic consistency
and logical coherence of generated summaries dynamically. Through iterative HCI, this process
constructs a logically coherent thematic structure for Al ethics [18].

This study analyzes Al ethics-related articles published between 2022 and 2024 by international
academic institutions, news media, and nonprofit organizations. Rigorous selection criteria were
applied during data collection. Sources were limited to reputable, authoritative organizations, and
articles focusing exclusively on single disciplines or industry-specific applications were excluded.
Comprehensive reports reflecting global trends were prioritized to ensure the dataset represented
diverse perspectives and contentious issues in Al ethics worldwide, establishing a neutral and macro-
level textual database. Eight representative documents were selected for each year as the basis for the
KeyGraph algorithm-based topic detection and chance exploration.

This study conducts comparative analyses of annual thematic clusters using a multistage
processing approach, including text preprocessing, keyword network construction, topic detection,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2599.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2025 d0i:10.20944/preprints202507.2599.v1

3 of 32

and semantic interpretation. Core themes, logical shifts, and changing focal points were identified,
and the chance keywords were explored to detect potentially nascent but promising ethical issues.
In summary, this research combines the structural keyword mining capabilities of KeyGraph
with the semantic comprehension of ChatGPT to develop a dynamic, extensible, and semantically
rich method for topic detection. The approach aims to provide empirical evidence and strategic
insight for trend monitoring, governance planning, and knowledge construction in Al ethics while
enabling nonspecialist audiences to understand the evolving dynamics of Al ethics themes quickly.

2. Literature Review
2.1. Al Ethics Literature Review

Recently, ethical issues surrounding Al have become a primary focus in academia and the public
sphere, reflecting their increasing importance in the global development of technology and social
governance. Systematic searches of scholarly databases have revealed that the existing literature
covers diverse themes, with some studies focusing on specific topics (e.g., data transparency and
privacy protection), and others attempting to integrate multiple dimensions of ethical concerns for
interdisciplinary comprehensive analyses [7,19]. However, structural examinations of the
interrelationships between various ethical issues remain limited, especially in the context of rapidly
evolving and emerging technology, including generative Al and autonomous driving. Thus,
capturing the contextual shifts and logical frameworks of ethical controversies across
interdisciplinary articles remains a significant research gap [20]. Against this background, Al ethics-
related reports published by news media, academic institutions, and nonprofit organizations
(characterized by their timeliness, readability, and public engagement) have become critical data
sources for observing thematic evolution and tension regarding value. These reports complement the
limited academic articles in clarifying practical contexts and ethical value conflicts.

The ethical issues surrounding Al are highly diverse and complex, encompassing multiple
dimensions, including technology, law, society, and philosophy [19,20]. In response to these
characteristics, this study employs the KeyGraph algorithm combined with text mining techniques
to construct keyword co-occurrence networks based on the frequency and co-occurrence
relationships of keywords. This work aims to reveal the ethical topics of concern systematically and
visually across articles from various sources while assessing the keyword diffusion structure and
intrinsic logical associations [21].

A core subtopic in Al ethics is Al governance, focusing on ensuring the trustworthiness and
social acceptance of Al systems in public decision-making and societal applications. The literature
indicates that trustworthy AI should encompass multiple elements, including accuracy, robustness,
transparency, accountability, fairness, explainability, interpretability, legality, appeal mechanisms,
and human oversight. However, in practice, these value indicators often cannot be satisfied
simultaneously, resulting in significant priority conflicts and a lack of comparability when using a
single value. For example, enhancing the accuracy of Al systems often relies on highly complex
models, sacrificing transparency and explainability. Similarly, conflicts may arise in fairness metrics.
The statistical impossibility triangle indicates that, under differing group base rates, simultaneously
balancing false-positive rates and false-negative rates is not possible [20,22].

Furthermore, the integration of Al technology with the Sustainable Development Goals (SDGs)
has become a focal point in Al ethics research. Although Al plays is critical for promoting
technological applications, social innovation, and resource efficiency, it must also address the
challenges posed by responsible governance and sustainable deployment.

Relevant studies have identified four primary challenges in integrating Al ethics with
sustainability initiatives. First, in the ethical and social dimension, issues of transparency, fairness,
bias, and accountability have gained increasing attention as automated decision-making and
algorithmic deployment become more widespread. Second, the sustainability of Al imposes
environmental pressure, particularly due to the high energy consumption and resource use required
by large-scale model computations. Third, existing governance and regulatory frameworks often fail
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to respond effectively to the challenges and issues introduced by technological evolution, typically
remaining at a reactive level. Fourth, technical bottlenecks persist, including insufficient model
explainability, data governance challenges, and the design of multidimensional performance metrics,
such as accountability, fairness, and accuracy [9,22].

Moreover, the large volume of sensitive data generated by Al applications exacerbates risks
related to data privacy and information security. In Al-driven knowledge management systems,
ethical risks have emerged regarding various issues (e.g., privacy, bias, and transparency). A
systematic review of 102 Al ethics research articles reveals that privacy and algorithmic bias account
for 27.9% and 25.6% of the addressed topics, respectively, making them the most frequently
addressed concerns. Additionally, transparency, accountability, and fairness remain core concerns
[23].

This finding closely aligns with the ethical value frameworks identified in other studies,
illustrating that the current Al ethics risks have gradually shifted from abstract principles to practical
operational challenges, requiring interdisciplinary integration and technological governance for
effective resolution [20,23,24]. To address these challenges, some studies have recommended
adopting decentralized data governance models (e.g., federated learning and distributed data
architectures) to balance data utility and privacy protection. Moreover, Al system performance
evaluation should move beyond traditional single accuracy metrics to multidimensional frameworks
encompassing environmental effects, social implications, and ethical compliance to reflect
sustainability performance comprehensively. Furthermore, promoting inclusive development
processes and human-centered design principles by incorporating diverse stakeholder perspectives
can help avoid systemic biases and strengthen the legitimacy of ethical governance.

Although existing Al ethics research and policy documents have proposed core principles, such
as transparency, accountability, fairness, and privacy, implementing these principles at the
organizational level remains a considerable challenge. A notable gap exists between normative
formulation and organizational practice in Al ethics, and relying solely on external guidelines and
compliance requirements is insufficient to address the ethical controversies and issues encountered
in practice. This gap underscores the importance of organizational Al ethics. Organizations should
proactively establish internal governance mechanisms that integrate Al ethics principles throughout
the technology life cycle, deliberation processes, and risk assessment frameworks to enhance ethical
sensitivity and adaptive capacity [9,19,20,23].

In summary, Al ethics has progressed from the initial stages of principle declaration and
conceptual proposals to practice-oriented institutional construction and governance innovation.
Future research should further develop integrated analytical frameworks and multilevel governance
models encompassing design principles, regulatory mechanisms, ethical conflict identification, and
social participation, to ensure that Al development promotes technological innovation and upholds
ethical values, social order, and the core objectives of sustainable development [9,19,20].

2.2. Chance Discovery Theory

The chance discovery theory is an interdisciplinary data mining framework designed to identify
rare yet highly valuable “chances” in data via HCI and structural data analysis, which may critically
influence future decision-making or system development. In this theory, chance is broadly defined as
important information that can guide decision-makers or automated decision systems to make
significant responses. These chances may indicate emerging opportunities not yet explicitly
recognized or indicate potential undiscovered risks and crises [10,25-28].

Unlike the discovery of random events, chance discovery stresses conscious awareness rather
than random detection [26]. Chance discovery analyzes the frequency of information or keyword
occurrences and places greater importance on their associations with other critical information.
Keywords and their connections in articles can be visualized via structured keyword analyses and
visualization tools (e.g., the Polaris visualization tool implementing the KeyGraph algorithm) [25],
identifying bridging words that are highly associated with multiple keyword clusters. These bridging
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words may indicate potential chances. This theory has significant application potential in innovation
early warning, risk governance, and strategic planning, while providing theoretical support and
practical foundations for structured semantic analyses and topic detection methods [10,29,30].

Compared to traditional data analysis methods that assume a stable data structure and known
variables, chance discovery focuses on information nodes with low frequency but potentially
profound semantic or systemic implications. This process is a gradual unfolding of understanding
rather than an immediately identifiable event. The theory of chance discovery underscores that the
most critical insight is often hidden in unstructured information, and this theory stresses the need for
decision-makers to engage in the dynamic evolution of information. This theory combines the human
sensitivity to context and situational awareness with the computational capabilities in data
processing and visualization to effectively detect chance information and strategic responses
[10,29,30].

Professor Ohsawa proposed the following three criteria for judging chance [10,29,30]:

e  Establishing and uncovering innovative models and variables: Rather than relying on existing
data models and variables, this approach incorporates contextual factors into the analysis to
identify noteworthy variables emerging in specific situations, preventing the results from
diverging from practical needs and enhancing the accuracy of chance detection.

o  Identifying tail events: Tail events are rare events with a low frequency but profound influence
on the system or domain. Undiscovered chances or phenomena can be identified by observing
and analyzing such tail events.

e Relying on human-AlI interaction for interpretation and judgment: Whether a tail event
represents a genuine chance can be discerned by applying extensive human background
knowledge and contextual sensitivity. This approach is necessary because the rarity and
ambiguity of tail events make it challenging for fully automated data mining methods to assess
their true value and significance accurately.

Therefore, the chance discovery theory emphasizes HCI, asserting that the effective awareness,
understanding, and realization of chances can be facilitated only by combining computational data
processing and visualization capabilities with the rich background knowledge of domain experts,
enhancing the accuracy and practical utility of chance identification.

In this exploratory process, information is generated and interpreted in a nonlinear and
intertwined manner, giving rise to the double helical model as a cognitive framework for exploring
latent meaning via HCI. Computers continuously mine data from the environment and human
expression, providing visualized feedback to assist human understanding and judgment. Humans
iteratively adjust their comprehension and focus, inspiring new exploration directions. By further
integrating the subsumption architecture cognitive model, this approach presents a nonlinear,
concurrently operating interactive feedback loop comprising computer mining, feedback results,
human understanding, and decision-making processes, requiring continuous and iterative
exploration that more closely aligns with human cognitive patterns [10,26,31].

The theory of chance discovery has been widely applied across multiple domains, including
health care, business innovation, marketing, disaster prediction, risk management, and decision-
making, underscoring its generative rather than merely analytical power. This theory facilitates a
deeper understanding of existing data and helps identify rare events and latent information that are
difficult to detect via conventional analyses, yet have a significant influence on future decisions. This
theory provides a data analysis method and integrated knowledge creation framework that combines
human-computer interaction (HCI), semantic construction, and abductive reasoning, fostering the
formation of new hypotheses and value creation [10,25,26].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2599.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2025 d0i:10.20944/preprints202507.2599.v1

6 of 32

2.3. Double Helix Model: Human—Machine Collaborative Framework for Chance Discovery

This study adopts the theory of chance discovery as its theoretical foundation and applies its
core framework (the double helix model) to conduct semantic network analyses and topic detection
via an HCI process. The model comprises two interwoven components: the computer- and human-
driven processes, forming a spiral cognitive feedback mechanism akin to the structure of DNA. This
approach represents the dynamic interplay between data-driven analyses and knowledge
interpretation in HCI. The process is designed to assist researchers in identifying low-frequency yet
semantically significant nodes (chances) in the keyword network [21,25,26,31-33].

Based on this integrative explanation, this study applies a dual-dimensional interactive
structure, advancing through a spiral formation that illustrates the iterative nature of human-Al
collaboration. As depicted in Figure 1, researchers can follow the spiral pathway to track the feedback
and adjustment mechanisms dynamically across each stage. According to this double helix model,
the HCI loop is divided into four primary stages, each embodying iterative cycles between the
human- and computer-driven processes. This ongoing dynamic feedback mechanism facilitates the
progressive refinement and optimization of the semantic structure and topic detection [21,25,26,31-
33].

The specific phases of the human—Al interaction cycle are as follows [10,21,33-35]:

e  Human-driven process: New setting for analysis (inputting article data and initializing
parameters). The researcher conducts this phase, which marks the starting point of the overall
HCI cycle. Based on the research objectives, the researcher provides the original article dataset
and employs the Polaris visualization tool to set the initial parameters for the KeyGraph
algorithm, such as the number of default bridging nodes (represented as red nodes) and high-
frequency black keyword nodes, establishing the foundation for an automated computer
analysis (see Phase 1 in Figure 1).

e  Computer-driven process: Data mining (data mining and keyword network construction).
After the initial parameter setting, the process transitions to a computer-driven process, entering
the phases of data mining and keyword network construction. At this stage, the computer
autonomously executes the KeyGraph algorithm to conduct in-depth mining of the article
dataset. The system constructs a co-occurrence network graph by calculating the co-occurrence
frequency and structural relationships between keywords. This phase applies the KeyGraph
algorithm to extract latent knowledge structures and keywords automatically from large-scale
articles, providing a foundation for semantic interpretation (see Phase 2 in Figure 1).

e  Computer-driven process: Visual results (network graph visualization). After data mining is
completed, the computer transforms the keyword network generated by the KeyGraph
algorithm into a visualized graph illustrating the connections (i.e., the co-occurrence
relationships) between keywords, including the red nodes. This visual representation serves as
a bridge between the computer and human user, converting abstract keyword associations into
intuitive, interpretable images that facilitate information integration and semantic judgment. At
this stage, the computer completes its intermediate task and awaits human intervention for
further examination (see Phase 3 in Figure 1).

e  Human-driven process: Understanding and re-evaluation (interpretation and review). This
phase represents the core of human knowledge interpretation in the double helix model,
highlighting the iterative nature of HCI. In this process, researchers do not directly engage in
topic detection; instead, based on their domain expertise and semantic comprehension abilities,
they systematically evaluate the topic detection and semantic interpretation results generated
by ChatGPT from the keyword network visualizations constructed using the KeyGraph
algorithm. Researchers examine the thematic and keyword relationships in the visualized
graphs and assess whether ChatGPT’s initial interpretations are logically coherent, substantively
meaningful, and effectively reveal the latent semantics in the articles. For instance, if ChatGPT
produces an illogical output (e.g., “I beer”), researchers employ the Polaris visualization tool to
adjust the node parameters of the KeyGraph algorithm (e.g., the number of high-frequency black
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keywords or red chance nodes) until the output becomes coherent and logically consistent (e.g.,
“I love to drink beer”). This ongoing process of understanding the output and continuously
tuning parameters, which triggers new data mining and visual output, is the critical objective of
the iterative cycles in the double helix model. Thus, this approach forms a continuously
optimized spiral iteration process (see Phase 4 in Figure 1).

The mentioned HCI process is not a one-time analysis but integrates efficient computer
processing capabilities with human critical thinking and domain expertise. The iterative refinement
of keyword structures and thematic interpretations forms a continuous and spiraling process via
repeated interactive cycles. This iterative cycle is the core driving force of the double helix model,
ensuring the analysis process maintains high flexibility and adaptability [21]. Guided by their deep
understanding of the data, researchers continually refine the model, progressively transforming
implicit keyword structures into explicit knowledge, providing a solid foundation for informed
decision making. Researchers can interpret and understand the emerging or evolving themes and
issues via this process, enabling more informed and progressive decisions. This example illustrates
the advantages of HCI in addressing complex problem-solving [10,32,34,35].

Decision Making

Understand and Reevaluate

Understand and Reevaluate

Visual Result

— New setting for Analysis

Data Mining \

@ Visual Result __—> Understand and Reevaluate @

Data Mining @

@ New setting for Analysis

[ Computer-driven process ] [ Human-driven process ]

1. Execution of KeyGraph Algorithm 1. Provision of the dataset and Parameter settings
2. Text Mining and Knowledge Extraction 2. Interpretation and Judgment
3. Generation of visualized results

Figure 1. Schematic diagram of the double helix model.

2.4. KeyGraph Algorithm Overview

The KeyGraph algorithm is a core tool for implementing chance discovery. This graph-based
text mining technique aims to uncover critical contexts and latent events with significant influence
that are hidden in texts via a keyword network model, which is compared to traditional keyword
frequency-dependent algorithms (e.g., term frequency-inverse document frequency or LDA). The
KeyGraph algorithm is widely applied in topic detection research. The operational mechanism
extracts high-frequency keywords from the text as nodes and analyzes the co-occurrence
relationships between these keywords to construct a keyword network graph [36—40].

Furthermore, the uniqueness of this algorithm lies in its ability to identify “keywords that have
structural bridging value but occur with low frequency,” revealing latent nonexplicit topics and
interdisciplinary conceptual connections in the text. This approach enables the derivation of core
issues and underlying value perspectives in articles. This method does not require manual annotation
or prior knowledge and can automatically extract representative keywords or topics from the
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collected technical texts or academic literature. This method constructs a keyword network graph to
present the associative structure of keywords, enhancing the transparency and interpretability of
topic detection [36,37,41,42].

2.4.1. KeyGraph Keyword Network Structure and Visualization

The KeyGraph algorithm is suitable for applications, including knowledge structure
exploration, thematic context evolution analysis, and emerging topic detection, owing to its
advantages in knowledge structure construction and analysis. Ohsawa first proposed this algorithm
in 1998, initially as an automatic indexing technique based on keyword co-occurrence graphs in texts,
and it was later developed into a core analytical tool for chance discovery applications. In Ohsawa'’s
original conceptualization, the KeyGraph algorithm is explained using an architectural structure
analogy. The literature is viewed as a building, where the foundation represents the fundamental
concepts of the literature, constructed by analyzing co-occurrence relationships between high-
frequency keywords. The pillars symbolize the associations between the keywords and foundational
concepts, forming a structured network connecting concepts in the literature. The roof represents the
core viewpoints in the literature, typically constituted by low-frequency bridging keywords strongly
connected to multiple conceptual clusters, reflecting the primary perspectives or innovative points in
the literature [10,38,41].

In terms of technical implementation, the KeyGraph algorithm produces a graph structure by
analyzing co-occurrence relationships between keywords, where nodes represent keywords and
edges indicate the strength of these co-occurrences. As depicted in Figure 2, the concepts of black and
red nodes are further introduced to describe this structure precisely. Black nodes represent high-
frequency keywords with strong connections to fundamental concepts. These nodes are responsible
for the interpretability of the knowledge structure, serving as the backbone of the knowledge graph
and the foundational structure of KeyGraph. Typically, multiple black nodes form clusters that
contain latent topics embedded in the articles. Red nodes are keywords with lower frequencies but
strong co-occurrence relationships with multiple clusters. They are often metaphorically associated
with chance discovery, reflecting atypical yet potentially valuable keywords in articles, called chance
nodes in this work. Black edges represent strong co-occurrence relationships between black nodes,
forming stable keyword clusters via their connections. Red edges denote bridging relationships
between red nodes and clusters, highlighting the value of rare events [10,37,38].

A distinctive feature of the KeyGraph algorithm is its ability to extract key concepts and their
associations automatically from articles, revealing implicit relationships between these concepts.
Generating visualized knowledge graphs uncovers latent and significant information in articles,
enabling users without a technical background to comprehend the complex structures and
interrelations of keywords intuitively [37,41,43] (Figure 2).

Cluster 2

Cluster 1

n T4

T3

Figure 2. Illustration of the KeyGraph algorithm.
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2.4.2. KeyGraph Algorithm

1. Data preprocessing: Data preprocessing serves as the foundation for constructing a keyword
network in the KeyGraph algorithm. In this study, this phase involves several steps, including
tokenization, normalization, stop-word removal, and part-of-speech filtering. Tokenization and
normalization establish a stable keyword base, whereas stop-word removal and part-of-speech
filtering reduce semantic noise, enhancing the accuracy of co-occurrence analysis and the
network structure quality, optimizing the performance of topic detection and chance node
identification [38,44,45].

2. High-frequency keyword extraction: Based on the preprocessed data, a new dataset D, is
generated, comprising a series of sentences, each representing a set of keywords. All keywords
are ranked according to their frequency of occurrence in dataset D, and the highest-frequency
keywords are selected to form a high-frequency keyword set. These keywords serve as the nodes
of the network cluster G [38,44-46].

3. Calculation formula for keyword network co-occurrence: In the KeyGraph algorithm adopted
in this study, the co-occurrence relationship between keywords serves as the core basis for
constructing the keyword network. Each keyword is regarded as a network node. When two
keywords co-occur in the same semantic unit (e.g., a sentence or paragraph), a link (edge) is
formed between the nodes. The KeyGraph algorithm employs a specific measure called the co-
occurrence strength to quantify the co-occurrence relationship between keywords [38,47,48],
calculated in Eq. (1):

assoc(wi,wy) = ) min (Iwils, w15 )
seb

where assoc(w;,w;) represents the co-occurrence strength between keywords w; and w; in all
semantic units s in dataset D. This measure is calculated by summing the minimum occurrence
frequencies of the two keywords in the same semantic unit, reflecting their co-occurrence count. In
addition, |w;|s and |w;|; denote the frequencies of keywords w; and wj, respectively, in the semantic
unit s, where min (Jw;|s, [wj|s) indicates the minimum occurrence frequency betweenw ; and w; in
the semantic unit s. This metric aggregates the minimal occurrence counts across semantic units to
capture the overall semantic linkage strength between the keyword pair. This approach helps
construct a semantic backbone comprising high-frequency terms and reveals latent nodes that may
have lower surface frequencies yet critical semantic significance.

In addition to the absolute co-occurrence values described above, studies often employ
normalized indicators of co-occurrence strength, such as the Jaccard similarity coefficient, as a
relative measure [38], calculated in Eq. (2):

Freq(w;nwj)

Jaccard(w;, w;) = FreaGuiow)) @)

where Freq(w; n wj) indicates the number of times the keywords w; and w; co-occur in the same
semantic unit in dataset D, and Freq (W,- U Wj) refers to the total frequency of either w;
or w; appearing in dataset D. The value of the Jaccard similarity coefficient ranges from 0 to 1, where
a higher value represents a stronger similarity between keywords, implying greater semantic
similarity. As a normalized similarity measure, the Jaccard similarity coefficient can be employed to
adjust the edge weights in the network generated by the KeyGraph algorithm, mitigating the linking
bias caused by high-frequency terms and enhancing the performance of the keyword network in topic
detection and keyword identification. This approach helps reveal the relational paths in the deeper
semantic structure more effectively.

4. Co-occurrence measurement between keywords and keyword clusters: The KeyGraph
algorithm employs the Co-Occurrence Strength Index called based(w, g), which measures the
degree of their co-occurrence within articles to calculate the connection strength between a
keyword w and a single keyword cluster g [38,47,48], as in Eq. (3):
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based(w, g) = Ysep IWls|g — Wls,, 3)

where w refers to a retained keyword in the preprocessed dataset D, g denotes the cluster to which
the keyword belongs, and D represents the dataset obtained after preprocessing. The co-occurrence
strength is calculated based on sentences s, the fundamental semantic units, and the sentences are
typically treated as sets of keywords that form the basis for defining co-occurrence relationships. In
addition, |w|s indicates the frequency of keyword w appearing in sentence s, whereas |g — w/|;
represents the total number of occurrences of all keywords in cluster g, excluding w in the same
sentence s. This value is zero if no other keywords from the cluster appear in the sentence.

This formula processes each sentence in dataset D to determine whether the target keyword w
appears. If it does, this formula calculates the frequency of keyword w and multiplies it by the total
frequency of the other keywords in cluster g (excluding w) in the same sentence. The resulting
products are summed across all sentences to quantify the overall co-occurrence strength between
keyword w and cluster g.

5. Calculating the co-occurrence potential of all keywords in cluster g: In a keyword network
analysis, the association between a keyword and the keyword cluster g depends on the degree
of co-occurrence and the contextual interactions between the cluster and other keywords. The
KeyGraph algorithm provides a standardized metric for evaluating such associations by
defining a cluster-level semantic quantification measure called neighbors(g), estimating the
potential of a specific keyword cluster g to interact semantically with other keywords
throughout the dataset [38,47,48], calculated in Eq. (4):

neighbors(g) = > " |wlslg - wl; @

SED WES

where s represents each sentence in dataset D, which is regarded as a set of co-occurring keywords
and is the basis for defining co-occurrence relationships between keywords. In addition, S denotes
the set of all keywords, w e S indicates any keyword in set S, |w|s; refers to the frequency of
keyword w appearing in sentence s, and |g — w|s; denotes the total frequency of all keywords in
cluster g (excluding keyword w) appearing in the same sentence s. This value is zero if none of the
keywords in the cluster appear in the sentence.

This formula traverses each sentence s in dataset D and, for each keyword in the high-
frequency keyword set S, calculates its co-occurrence strength with other keywords in cluster g
when w appears in the sentence. These co-occurrence values are summed, and this equation
measures the total co-occurrence strength between keyword cluster g and keywords in set S across
dataset D. A higher neighbors(g) value indicates that cluster g has a stronger connection with high-
frequency keywords in the keyword network, which may suggest its potential significance in the
semantic structure.

6. Evaluation of the importance of the potential of keywords across clusters: This study adopts
the keyness calculation formula proposed in the KeyGraph algorithm to evaluate the connective
role played by keyword w in the overall keyword network graph to determine whether a
specific keyword possesses the semantic potential to bridge clusters [38,47,48], as computed in
Eq. (5):

L _ based(wg)_
ke)’(W) =1 HQCG [1 neighbors(g)]' (5)

where key(w) represents the importance score of keyword w, ranging between 0 and 1, and G
denotes the set of all keyword clusters in the keyword network graph, where each g refers to an
individual keyword cluster. The expression g € G indicates that every cluster in set G is evaluated
individually to compute the semantic relevance of keyword w to each cluster. Moreover,
based(w, g) refers to the co-occurrence strength between keyword w and cluster g, whereas
neighbors(g) represents the total co-occurrence strength of cluster g.
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This formula represents the product of the co-occurrence complement of keyword w with each
keyword cluster g c G, indicating the overall probability that keyword w has no co-occurrence
association with various keyword clusters. The final score key(w) is obtained by subtracting this
product from 1, reflecting the importance of keyword w in bridging multiple clusters in the keyword
network.

When keyword w exhibits significant co-occurrence relationships with multiple keyword
clusters, its key(w) score approaches 1, indicating that keyword w is highly associated with multiple
keyword clusters and may represent a potential chance node. Conversely, when key(w) approaches
0, keyword w may have little to no co-occurrence with keyword clusters, reflecting a lower
importance in the keyword network structure.

3. Materials and Methods

The research process is divided into the five stages at the beginning of Figure 3.

Data Collection

l

Data
Preprocessing

l

Construction of the Keyword
Co-occurrence Network

l Dynamic

Selection of High-Frequency Analysis
Keyword Clusters of

l Semantic

Structures

Employing ChatGPT for
Topic Detection

Evaluation of
Topic Detection
Results

Accept

Conclusion and
Application

Figure 3. Research process flowchart.

3.1. Data Collection

The data collection method in this study primarily employs the search terms Al ethics, ethical Al
and responsible Al, focusing on the overall concepts and frameworks related to Al ethics, cross-
industry universal guidelines, and globally influential and controversial problems, while avoiding
biases toward specific industry applications. Moreover, Al ethics emphasizes moral principles at the
technical level, addressing ethical issues in the design and operation of Al systems [49]. Ethical Al
concerns the implementation of ethical principles in the development and application of Al
technology, ensuring compliance with moral standards [50]. Responsible Al highlights the
responsibilities and regulations of developers and users regarding the social influence of Al
technology, promoting accountability and governance [51]. These three concepts are complementary
and synergistic, facilitating an in-depth exploration of the ethical challenges faced by Al and
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advancing discourse on its practical applications and social responsibilities toward greater depth and
breadth.

This study prioritizes the selection of reports and articles related to Al ethics published in
English between 2022 and 2024 via online searches to emphasize data timeliness and capture recent
developments in the field. The aim is to clarify the perspectives and latest trends in Al ethics discourse
systematically against the background of rapid Al technological evolution during this period (see
Tables 1-3).

Table 1. Data sources for international reports and articles in 2022.

Publication

Original Titl Data S
riginal Title ata Sources Date

The 2022 AI Index: Industrialization of Al and Mounting
1 Stanford HAI 2022/03
Ethical Concerns

Al Ethics And Al Law Grappling With Overlapping And

2 Forbes 2022/11
Contflicting Ethical Factors Within Al

3 The 2022 Al Index: AI's Ethical Growing Pains Stanford HAI 2022/03

4 Prioritising Al & Ethics: A perspective on change Deloitte 2022/03

5 Top Nine Ethical Issues In Artificial Intelligence Forbes 2022/10
Al Ethics And Al Law Are Moving Toward Standards That

6 Forbes 2022/10
Explicitly Identify And Manage Al Biases

7 Evaluating Ethical Challenges in AI and ML ISACA Journal 2022/07
We're failing at the ethics of Al Here’s how we make real World Economic

8 2022/01

impact Forum, WEF

Table 2. Data sources for international reports and articles in 2023.

Original Title Data Sources Publication
Date

The Ethics Of AI: Navigating Bias, Manipulation And

1 Forbes 2023/06
Beyond

2 The Ethics Of Al: Balancing Innovation And Forbes 2023/12

3 Responsibility Forbes 2023/07
Al Ethics In The Age Of ChatGPT —What Businesses Need

4 Forbes 2023/05
To Know
96% Of People Consider Ethical And Responsible Al To Be

5 Forbes 2023/03
Important
How Businesses Can Ethically Embrace Artificial

6 CNN 2023/12
Intelligence
Experts call for more diversity to combat bias inartificial

7 Georgia Tech 2023/08
intelligence

8 5 Al Ethics Concerns the Experts Are Debating Bloomberg 2023/06
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Table 3. Data sources for international reports and articles in 2024.
Publicati
Original Title Data Sources ublication
Date
Al’s Trust Problem Harvard Business
1 ) 2024/05
Review
‘Uncovered, unknown, and uncertain”: Guiding ethics in the
2 Yale News 2024/02
age of Al
Al Regulation Is Evolving Globally and Businesses Need to
3 Bloomberg Law 2024/12
Keep Up
4 Alisnot ready for primetime CNN Business 2024/03

With AI warning, Nobel winner joins ranks of laureates
5 CNN 2024/12
who’ve cautioned about the risks of their own work

Navigating The Ethics Of Al: Is It Fair And Responsible

6 Forbes 2024/11
Enough To Use?
Al And Ethics: A Collective Responsibility For A Safer

7 Forbes 2024/10
Future
Al Started as a Dream to Save Humanity. Then, Big Tech

8 Bloomberg 2024/09

Took Over.

A rigorous screening process was conducted during the data collection phase to ensure the
comprehensiveness and authority of the research data. Data sources were limited to internationally
recognized and credible academic research institutions, news media, and nonprofit organizations.
Articles focusing solely on a single domain or industry application were excluded, prioritizing
comprehensive reports reflecting international trends. This approach aimed to ensure that the data
adequately represent diverse global perspectives and contentious issues regarding Al ethics,
constructing a neutral and macro-level article dataset. Eight highly comprehensive and interpretative
articles were selected for each year as the analytical corpus for the KeyGraph-based topic detection
and chance exploration.

3.2. Data Preprocessing

This study employs the KeyGraph algorithm to extract topics from articles, based on co-
occurrence relationships between keywords, and constructs a structured visual graph. However, the
original articles often contain numerous stop words, irrelevant information, and punctuation marks.
If the articles are analyzed directly using the KeyGraph algorithm without preprocessing, extracting
the associations between keywords becomes difficult, resulting in overly cluttered or off-focus
keyword networks. This study segments sentences, tokenizes words, and filters out meaningless
words and stop words prior to analysis to enhance the accuracy of keyword identification and reduce
graph noise, ensuring the accuracy and visualization quality of the keyword co-occurrence network
graph.

This study employs Python combined with the Natural Language Toolkit (NLTK) for article
preprocessing during the data processing phase to achieve the objectives. First, each collected article
was segmented into independent sentences based on periods, and each sentence was converted to
lowercase and tokenized into individual words while removing punctuation marks but retaining
contractions containing apostrophes (e.g., in the work don’t). The stopword functionality for NLTK
was used to filter out semantically insignificant words (e.g., the, is, and and) to reduce data noise and
highlight keywords related to Al ethics. The filtered word list was written line by line into output
files with the words separated by spaces. A manual review and filtering process was also conducted
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to remove any remaining irrelevant words and tokenization errors to enhance the thematic relevance
of the data. This process effectively streamlines the data, improves keyword prominence, and
establishes a structured data foundation for the keyword network of the KeyGraph algorithm,
ensuring the accuracy and visualization quality of the analyses.

3.3. Construction of the Keyword Co-Occurence Network
3.3.1. Chance Discovery in Al Ethics Using KeyGraph

This study employs the graph-based KeyGraph text mining technique as the core tool for topic
detection and chance discovery in Al ethics articles to overcome the limitations of traditional text
mining methods in analyzing topic evolution and identifying latent issues. As described in Section 2,
KeyGraph is a keyword network analysis method that integrates lexical co-occurrence structures
with chance identification. By constructing a co-occurrence graph of keywords, KeyGraph reveals
the intrinsic topic structures and semantic linkages in articles, making it suitable for exploring cross-
topic or dynamic contexts and emerging keywords. A distinctive feature of KeyGraph is its ability to
identify low-frequency but highly connected chance nodes linked to multiple topic clusters,
uncovering latent issues that traditional high-frequency analyses often fail to capture. The KeyGraph
analytical process can be divided into the following five core strategies, serving as the foundation for
semantic mining and topic detection in Al ethics articles:

¢ Keyword frequency and co-occurrence calculation: First, the occurrence frequency of all words
in the articles is calculated and sorted. The top consecutive high-frequency words are selected
as keywords, representing the core foundational concepts of the articles. Using paragraphs or
sentences as the calculation units, the co-occurrence relationships between all keywords are
computed and applied to establish connections.

e Node role classification and keyword clustering: Based on the frequency of keyword
occurrences and their structural positions in the co-occurrence network, nodes are classified into
three categories, which lays the foundation for chance discovery.

o  High-frequency keywords: Keywords with high occurrence frequency that are
concentrated in specific topic clusters represent the primary concepts of the topics. In this
study, these are consistently represented by high-frequency black nodes.

o  Chance keywords: These keywords (known as bridging words) have lower occurrence
frequencies but are associated with multiple topic clusters. They typically indicate
emerging concepts or interdisciplinary issues and are valuable for discovering latent
topics. In this study, they are represented by red nodes.

o  General terms: Keywords lacking structural significance are excluded from the
visualization network.

e  Keyword co-occurrence network construction and thematic cluster identification: A keyword
association graph is constructed with keywords as nodes and the co-occurrence strength as
weighted edges. This method aggregates high-frequency terms and forms thematic clusters.

e  Keyword network visualization: The nodes and links are visualized using tools (e.g., Polaris),
which map co-occurrence relationships between keywords to construct their association
network graphs. By adjusting parameters (e.g., frequency thresholds, co-occurrence strength,
and the number of nodes), different levels of keyword structures are explored to enhance the
understanding of potential keyword clusters and association pathways.

In the practical implementation, this study preprocesses the articles, including word
segmentation and stopword removal, and segments them according to the time series from 2022 to
2024 to observe changes and shifts in potential topics or issues over time. The Polaris visualization
tool was employed in combination with statistical methods (e.g., word frequency and co-occurrence
analysis) and data mining techniques to execute the KeyGraph algorithm [52], which automatically
calculates the keyword co-occurrence frequency and co-occurrence strength. This tool constructs a
keyword network graph to explore keyword structures at various levels, promoting semantic
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interpretation and chance discovery. In the network, high-frequency black nodes represent keywords
with a high frequency and stable semantic cores, whereas red nodes represent potential keywords
with lower frequency but strong connections to multiple topic clusters. Black edges between nodes
reflect the co-occurrence strength between keywords.

This study applies the parameter adjustment functions provided by Polaris to identify an
appropriate keyword network structure and dynamically set conditions (e.g., keyword frequency
thresholds, co-occurrence link strength, and maximum number of nodes), controlling the hierarchical
levels and cluster partitioning of the keyword network graph. This approach enhances the structural
clarity of the visualization, facilitating a comparative analysis and interpretation of the keyword
networks across years and enabling further observation of the formation, expansion, and evolution
of topic clusters.

This method reveals the explicit topic structures in Al ethics articles and can uncover potential
low-frequency keywords and emerging issues that traditional techniques often fail to capture,
providing a solid foundation for topic detection and chance discovery. Overall, by integrating
keyword co-occurrence structures, latent chance nodes, and visualization tools, KeyGraph effectively
extracts explicit and implicit issues in articles, enhancing the exploratory and strategic aspects of topic
detection.

However, the interpretive precision of the keyword network graph and the clarity of topic
detection often depend on the number of high-frequency black nodes and the ratio between high-
frequency black nodes and red chance nodes. An excessive or insufficient number of these nodes may
affect the semantic clarity and accuracy of topic detection, influencing the reliability of the analytical
results. The following section analyzes the relationship between semantic node density and the
effectiveness of topic detection, investigating the effect of node density on the keyword structure and
topic differentiation.

3.3.2. Analysis of Keyword Network Node Density and Topic Detection Accuracy

When conducting a KeyGraph keyword network analysis, setting too many high-frequency
black nodes (e.g., designating 100 out of 1,000 (10%) distinct terms as black nodes) may lead to an
overly complex network structure, adversely affecting the accuracy and focus of topic detection. In
KeyGraph, high-frequency black nodes represent the core terms in the keyword network, outlining
the principal thematic structure of the articles. However, when the number of high-frequency black
nodes is too large, the co-occurrence density of high-frequency keywords increases significantly,
resulting in an overly dense network. This density can blur thematic boundaries, intensify the
semantic overlap between nodes, and hinder the convergence of co-occurrence paths, weakening the
ability to detect latent topics and contextual structures [53-56].

Second, an excessive number of high-frequency terms may include morphologically varied but
semantically similar words (e.g., make, makes, and made). Although these high-frequency terms
frequently co-occur, they may lack clear thematic referentiality, disrupting the focus of the keyword
network. This disruption often leads to topic analysis results that are biased toward overly
generalized dominant themes or may even trigger semantic hallucinations, limiting the ability to
identify subtle, overlapping, or emerging topics [53-56].

From an operational perspective, setting too many high-frequency black nodes can lead to an
overly complex graph structure, reducing the feasibility of cluster partitioning and cross-validation
and increasing the difficulty of topic analysis. This outcome may result in the omission of critical
information during topic summarization or affect the interpretability of the detection process,
weakening the depth and novelty of the conclusions. Conversely, setting too few high-frequency
black nodes may cause essential topic-related keywords to be inadequately captured. In particular,
some secondary terms (although not highly frequent) may carry significant semantic meaning but be
excluded from the analysis, leading to an unbalanced topic distribution. This outcome compromises
the formation of structured keyword clusters, dilutes the network core, and undermines the
coherence of the keyword network and the overall inference of topic evolution.
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In summary, determining the optimal number of key nodes requires iterative parameter tuning
and visual inspection to control node density appropriately and identify the most suitable keyword
network. This approach helps maintain the structural stability of the keyword network, reducing the
risk of overlap and semantic hallucination in the topic analysis and enhancing the overall
interpretability and exploratory depth of the analysis.

3.4. Selection of High-Frequency Keyword Clusters

After constructing the keyword network, this study conducts manual classification and
clustering based on the network structure formed by the high-frequency black nodes. The initial
clustering process employs the chance nodes (i.e., red nodes), identified by the KeyGraph algorithm,
as the starting points for keyword diffusion. These red nodes are considered anchors for potential
emerging or latent themes due to their role in bridging high-frequency keywords despite having a
relatively low frequency themselves. From each red node, the diffusion extends outward to directly
connected high-frequency black nodes, with the number of connected black nodes limited to a
maximum of six to seven per red node. This setting helps control the cluster size and prevents
excessive expansion that may blur or overgeneralize the results of the topic analysis.

After completing the initial clustering, each cluster was input into ChatGPT for topic detection
and semantic interpretation. ChatGPT analyzes the complex relationships between the keywords in
each cluster and infers the potential ethical issues or discourse associated with the cluster. If the
interpretations generated by ChatGPT lack logical coherence or sufficient semantic clarity,
researchers can adjust the relevant parameters of the KeyGraph algorithm (e.g., the number of high-
frequency black nodes, connection strength, or red nodes) to reconstruct a new keyword structure
and cluster distribution. This dynamic human-AlI collaborative adjustment mechanism is iteratively
repeated until the resulting cluster division demonstrates semantic clarity and structural coherence.

Overall, this procedure embodies a human-Al collaborative mechanism for semantic
construction. The KeyGraph algorithm segments clusters based on the proximity of red nodes and
high-frequency black nodes, considering their co-occurrence. In contrast, ChatGPT provides
complementary support for semantic interpretation, and researchers can manually adjust parameters
to ensure coherence. This approach reflects the core aim of HCI in the double helix model, forming a
dynamic and iterative process of topic analysis that enhances the semantic focus and ensures the
structural integrity of the keyword network.

3.5. Employing ChatGPT for Topic Detection

This section elaborates on how the KeyGraph algorithm is employed to conduct topic detection
and chance discovery in Al ethics articles while examining the limitations of traditional keyword
network analysis methods. This work employs ChatGPT as an auxiliary tool for semantic
interpretation to overcome these constraints during the potential topic detection phase of keyword
clusters. The technical advantages and application strategies of this integration are detailed below.

3.5.1. Limitations of Previous Methods

Before the widespread adoption of LLMs, such as ChatGPT, article mining for keyword
networks and topic detection primarily relied on interpreting the semantic relationships between
node clusters and bridging chance nodes in the keyword network graph. Researchers subjectively
assigned thematic meanings to the keyword structures and topics based on these relationships.
Researchers needed to trace the data back to the original article and examine the contextual usage for
semantic interpretation to clarify the semantic association of a bridging node (e.g., accountability)
with multiple clusters [57-60]. In this analytical framework, topic detection and semantic clarification
were achieved primarily through the following approaches.

1. Topic cluster identification and core concept summarization: KeyGraph identifies high-
frequency keywords in articles and designates them as high-frequency nodes (i.e., black nodes)
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in the keyword network structure. Based on the co-occurrence relationships between these
keywords, tightly connected clusters naturally form, reflecting the primary themes or
subdomains in articles. Researchers can summarize representative thematic labels based on the
characteristics and co-occurrence patterns of keywords in each cluster, producing an initial
thematic summary and classification of the core article content.

2. Chance keyword identification and pairwise semantic relationship mining: The uniqueness
of KeyGraph lies in its ability to identify chance keywords that, despite their low frequency,
connect multiple thematic clusters. Although these keywords appear infrequently, they serve as
bridging nodes linking thematic clusters in the keyword network. Researchers conduct in-depth
analyses of these chance keywords by tracing their contextual usage back to the original articles,
manually interpreting their semantic roles and how they connect with multiple thematic
clusters. This process facilitates identifying emerging topics, interdisciplinary integration points,
or potential trends.

However, although KeyGraph can provide structural information and identify potential chance
keywords, without LLM assistance, theme summarization and semantic clarification still heavily rely
on manual interpretation and domain-expert knowledge. Researchers must manually integrate the
keyword network graph, centrality metrics, and the contextual usage of terms in the original articles
to trace and interpret the semantic roles of potential keywords and their connections to multiple
thematic clusters. This process is time-consuming, and the results are often limited by the researchers’
professional judgment, reducing the efficiency and scalability of semantic mining. These traditional
methods commonly face several significant limitations [59,60].

1. Topic summarization heavily relies on manual interpretation, resulting in subjectivity and
inconsistency: Although traditional keyword network graphs can visually present co-
occurrence relationships between high-frequency keywords, their semantic connections often
lack systematic explanatory mechanisms, typically relying on researchers’ expertise and
experience for semantic interpretation and topic detection. This process is time-consuming,
labor-intensive, and prone to inconsistencies due to variations in interpreters’ knowledge,
affecting the objectivity of topic summarization. These problems become pronounced when
analyzing multiple articles or conducting comparative analyses over time.

2. Limited ability to identify low-frequency, high-value keywords, making latent topic
detection difficult: Traditional text mining methods using statistical frequency focus on topic
clusters formed by high-frequency keywords, often overlooking low-frequency keywords and
chance nodes that play bridging or transitional roles in the keyword structure. These low-
frequency keywords often represent emerging concepts, topic intersections, or contextual shifts,
holding significant value for uncovering latent research topics and policy chance information.
However, traditional methods struggle to identify and interpret their semantic roles
systematically, limiting the efficiency and usefulness of topic exploration.

3. Difficulty tracking dynamic contexts hinders automating topic-evolution pattern analysis:
When managing cross-temporal texts, such as Al ethics articles from 2022 to 2024, traditional
keyword network analysis often requires a manual comparison of keyword structural changes
at various time points and cannot effectively or automatically track how topic keywords
undergo semantic shifts or experience topic merging and splitting as the context evolves. This
limitation hinders researchers’ understanding and forecasting of topic evolution trajectories,
resulting in analyses without the capacity to present temporal and dynamic characteristics.

4. Visualization maps are challenging to convert into structured data for inference: Although
keyword network graphs offer a high degree of visual intuitiveness and help reveal thematic
contexts and lexical and relational structures in texts, their results are often presented as images.
When the number of keyword nodes in topic clusters is high, the clarity and readability of these
visuals significantly decrease, leading to blurred outcomes or difficulty in interpretation during
advanced analyses (e.g., topic classification, semantic comparison, or cross-validation).
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3.5.2. Technical Background: Semantic Comprehension and Topic Extraction in ChatGPT

The ChatGPT LLM is based on the deep learning transformer architecture that Vaswani et al.
proposed in 2017. Unlike the widely used LDA, this model undergoes unsupervised pretraining on
large-scale textual data to generate high-dimensional semantic embeddings, capturing the syntactic
structures and semantic relationships in sentences. Its core self-attention mechanism captures
semantic associations and contextual features in the text, transforming textual data into semantic
vector representations to infer deep linguistic patterns and latent word relationships. In practical
applications, ChatGPT demonstrates capabilities in processing long texts, generating summaries, and
performing topic detection.

The experimental results from existing studies indicate that ChatGPT achieves highly accurate
content detection and classification tasks, significantly surpassing the current benchmark methods.
Notably, ChatGPT displays outstanding performance in zero-shot learning scenarios. The literature
has suggested that ChatGPT can directly understand and execute most tasks without any additional
training or fine-tuning, with performance typically exceeding that of other mainstream LLMs,
demonstrating exceptional generalizability. Moreover, studies have found that, in specific tasks, the
performance of ChatGPT surpasses even that of fine-tuned models. This finding highlights the
potential of ChatGPT as a foundation model, achieving or exceeding the performance of task-specific
trained models without special optimization, highlighting stronger adaptability and broader
application prospects [61-64].

This study integrates ChatGPT into the topic detection and summary generation tasks of the
keyword networks produced by KeyGraph to apply the semantic analysis potential of KeyGraph
fully and overcome the limitations of traditional manual interpretation. When the structure of the
keyword network, particularly starting from the red nodes, is expanded layer by layer based on the
connection strength and semantic distance with high-frequency black nodes, the corresponding
original texts are input into ChatGPT individually. This LLM employs the following steps to conduct
semantic interpretation and topic detection processes [64—66]:

1. Comprehension of keyword network structures and semantic interpretation: ChatGPT
tokenizes the input text, including the original AI ethics articles and translated descriptions of
the KeyGraph keyword network structure, and processes it via its multilayer transformer model
for deep syntactic and semantic analyses. The built-in attention mechanism in ChatGPT
accurately captures complex relationships between tokens and their contextual meaning,
constructing a comprehensive, detailed semantic representation. This approach enables the
model to understand the meaning of individual tokens and their positions and roles in the
keyword network.

2. Topic identification: The model identifies frequently recurring keywords and their semantic
relationships in the text, grouping them into coherent thematic clusters. Notably, ChatGPT
applies its strong contextual reasoning to generate semantically complete and representative
thematic descriptions, facilitating the discovery of core concepts in the network structure.

3. Semantic interpretation and text summarization: ChatGPT extracts critical insight from text
based on semantic logic and generates contextually coherent and concise summaries.
Researchers can control the content and length of these summaries using precise prompt
engineering (e.g., restricting the summary to the imported text) to meet specific analytical
requirements. This control considerably enhances the efficiency of extracting insight from
complex network graphs [66,67].

Through these steps, this study expands the keyword network structure constructed by
KeyGraph layer by layer, starting from the red nodes and analyzing their associations with the high-
frequency black nodes. Then, this study employs ChatGPT to interpret the natural language and
summarize the themes of the topic clusters and bridging nodes of the original Al ethics articles. This
integrated process significantly enhances the analytical efficiency and accuracy of thematic induction,
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realizing the HCI and semantic reciprocal interpretation emphasized by the chance discovery theory
and providing a more systematic and operable framework for dynamic topic detection.

3.5.3. Method: Integrating KeyGraph and ChatGPT for Topic Detection

The KeyGraph application emphasizes that mining, understanding, and topic detection should
be conducted and interpreted by domain experts to ensure the contextual relevance of the keyword
network interpretation. However, given the limited availability of domain experts, this study
integrates the KeyGraph keyword network analysis with ChatGPT to enhance the semantic
interpretability of detected topics and the ability to determine potential chances by constructing
keyword association structures and exploring the topics. The analysis process begins with the
KeyGraph algorithm generating a keyword network graph based on the co-occurrence frequency and
distance between keywords, identifying potential cross-topic connective chance nodes (red nodes),
which serve as the starting points for semantic expansion and topic detection.

Using the red nodes as the starting points for semantic diffusion aligns with the core aim of the
chance discovery theory. Although these nodes have a relatively low frequency, they form
connections with multiple clusters, displaying cross-topic bridging characteristics and capturing
hidden information more effectively. Furthermore, although these nodes may not represent the focus
of the texts, they can reveal potential topics at the boundaries of the keyword network, offering high
informational value and strategic significance.

For example, starting from the red node R1, a strong co-occurrence relationship exists between
R1 and the high-frequency black node T4, which connects to other high-frequency black nodes (e.g.,
T1 and T3), with T3 linking to T2. Notably, T2 forms a closed-loop connection with both T1 and T4.
This hierarchical node expansion enables the construction of a structured semantic diffusion path,
delineating the internal relationships and boundaries of a topic (Figure 4).

Cluster 1
! T4

... M
@

Chance

i Node

Figure 4. Co-occurrence relationship mapping in the association graph.

This study integrates the ChatGPT model with an HCI mechanism to apply the semantic
diffusion structure to semantic inference and topic interpretation tasks, enhancing the semantic
accuracy and interpretative consistency of topic understanding. The keyword clusters identified by
KeyGraph are reconstructed into logically coherent semantic diffusion paths, with red nodes serving
as the starting points for interpretation. These paths are input into ChatGPT, which is guided to
perform semantic judgment and topic mining based on the provided semantic diffusion path. Figure
4 presents an input example, the R1 semantic diffusion path, where the red node is R1 and the high-
frequency black nodes in Cluster 1 include T1, T2, T3, and T4.

3.6. R1 Semantic Diffusion Path

The co-occurrence structure in Cluster 1 consists of the following edges: {(R1, T4), (T4, T1), (T4,
T2), (T4, T3), (T1, T2), (T2, T3)}. Although this method integrates the KeyGraph algorithm with
ChatGPT for topic detection and semantic interpretation, practical implementation still faces
challenges. As an LLM, ChatGPT’s outputs may exhibit risks, including semantic hallucination, topic
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ambiguity, or semantic overextension. This study adopts a dual-layer control strategy to mitigate
these biases effectively [68].

The first layer employs a refined prompt engineering mechanism to guide ChatGPT to focus on
topic inference in a specific context, ensuring that the generated semantics rely solely on the semantic
diffusion path and imported textual data. In this process, researchers initially use role-playing
prompt strategies to assign ChatGPT a particular identity or perspective. This initial setting helps to
converge the model’s understanding of the specific domain or context before topic inference, aligning
its behavior more closely with expectations and enhancing the efficiency and accuracy of tasks. Clear
task assignments are given to direct ChatGPT to perform various functions, including topic
classification, semantic interpretation, or summary generation. Throughout the process, researchers
control the scope of contextual input, restricting the topic summary content to the imported textual
data, compensating for ChatGPT’s potential limitations in domain-specific knowledge and reducing
the influence of semantic hallucinations on the interpretative results.

The second layer involves a repetitive manual review. The topic interpretation results generated
by ChatGPT are subject to manual examination and validation by researchers. The aim is not to
perform a word-for-word comparison of the semantic interpretations but to assess and revise the
logical coherence and consistency of the topic summaries to ensure semantic logic and interpretative
consistency. Researchers can adjust the algorithm parameters based on the review outcomes to
conduct the next iteration of analyses, progressively refining and optimizing the semantic structure
and topic detection results.

This risk management mechanism balances generative capability with interpretative reliability,
illustrating the dynamic optimization loop of data-driven insight combined with knowledge
reasoning, as described in the double helix model, facilitating incremental knowledge construction.
By integrating keyword diffusion structures with HCI workflows, this study deepens the
understanding and identification of latent topics. This approach enhances the sensitivity of topic
detection and the accuracy of interpretation, improving the overall explainability of semantic analysis
and its capacity to support decision-making.

This study conducts topic detection using keyword network graphs and keyword clusters
generated by KeyGraph, supplemented by ChatGPT for topic interpretation and summary
generation. Researchers interpret the results and make logical judgments, adjusting the model
parameters to guide analysis iterations. This iterative process establishes an HCI mechanism for
exploring topics and constructing knowledge.

Although the combined use of KeyGraph and generative Al demonstrates strong potential for
topic detection and semantic interpretation, its practical implementation still faces challenges. As an
LLM, ChatGPT’s outputs may involve risks, including semantic hallucination, topic ambiguity, or
excessive semantic expansion. This study adopts a dual-layer control strategy to mitigate these biases.
First, the generated semantics are constrained via refined prompt engineering to rely solely on the
semantic diffusion paths and imported textual data. Second, a repeated manual review is conducted
to enhance semantic consistency and logical thematic accuracy. This risk management mechanism
balances generative capability with interpretative reliability, improving the overall explainability of
the semantic analysis and decision support.

4. Result Analysis

This section presents a systematic analysis employing the Polaris visualization tool combined
with the KeyGraph algorithm to analyze English-language articles related to Al ethics. The dataset
comprises representative articles published between 2022 and 2024 by reputable academic
institutions, news media, and nonprofit organizations providing comprehensive discourse. Eight
representative articles for each year were selected for analysis to deepen the understanding of the
evolving context of Al ethics issues and construct a structured keyword network supporting topic
detection and interpretation.
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Due to the numerous high-frequency black nodes in the initially generated keyword network,
the analysis focused on those high-frequency black nodes with explicit connections (i.e., co-
occurrence relationships represented by solid black edges). Isolated high-frequency black nodes
without connections to other nodes were excluded from the keyword network. This approach
improves the readability and relational strength of the keyword network and helps identify potential
emerging chance trends.

Next, a structural analysis was conducted on the keyword network formed by these high-
frequency black nodes, and keyword clusters were manually delineated. Clustering originated from
chance nodes (red nodes) and expanded outward, with the number of linked high-frequency
keywords limited to about six to seven per cluster. This process was supported by a keyword review
and thematic convergence procedures to ensure semantic coherence and appropriateness within
clusters. Following the preliminary clustering, the semantic diffusion paths for each keyword cluster
were individually input into ChatGPT for in-depth topic detection and semantic interpretation,
revealing the core topics embedded in each cluster.

Cross-cluster thematic integration analyses were conducted to explore latent common topics and
interwoven keyword structures of strongly related clusters. All outputs underwent manual
inspection to ensure the readability, reliability and logical consistency of the results. This process
illustrates the HCI interpretative loop in the double helix model, where dynamic cycles of semantic
network visualization, topic clustering, and generative Al-assisted interpretation collectively
enhance the depth and explanatory power of topic detection.

4.1. Yearly Analysis of Topic Evolution and Keyword Structures (2022-2024)

The eight articles from 2022 contained 2,595 distinct terms; hence, this study set a parameter of
75 high-frequency keywords as black nodes, connected by 135 solid black edges depicting the co-
occurrence network of these keywords to present the core associative structure of Al ethics topics.
Additionally, four red nodes were designated as the potential chance discovery nodes. Under these
conditions, a keyword network was generated using automaker, dignity, behavior, and statistical as the
red nodes, highlighting the key themes in the 2022 Al ethics articles (Figure 5). The following bullet
points summarize the thematic content.

¢  Cluster A-1: The semantic cluster around the red node automaker focuses on the
implementation of autonomous driving technology and the ethical challenges faced by Al in
automotive applications. This red node extends through its connection to self to include the
keywords based, car, driver, vehicles, and autonomous, outlining application scenarios involving
HCI. The keywords driver, task, and autonomous intertwine, reflecting issues of responsibility
allocation and control authority. In situations where automated and manual control are
combined, the attribution of responsibility for accidents (whether borne by the driver or system)
requires further clarification via regulatory frameworks and technical design. Furthermore, task
transparency and the interface design are also critical. For example, whether drivers can quickly
grasp the operational status and decision rationale of the system directly affects their safety
judgments and behavioral responses. Establishing trust and risk perception cannot be
overlooked. An insufficient HCI design and information transmission may cause driver
overtrust or erroneous reliance, increasing safety risks. Overall, the keyword structure
emphasizes several topics, including the behavior prediction of autonomous technologies,
system safety, and user responsibility attribution.

e Cluster A-2: The red node behavior forms a keyword network related to Al risk prediction,
system deployment, and ethical practices. Through its connections to consequences, the network
gradually expands to include the keywords risk, privacy, discrimination, design, and capabilities,
reflecting the multifaceted and uncertain outcomes of Al system behavior. Notably,
discrimination is intertwined with risk, indicating that failure to address data sources and
algorithmic bias properly in real-world applications may reinforce existing societal inequalities
and trigger ethical crises of systemic discrimination. The association between design and
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foundational highlights the need to judiciously consider fundamental principles and ethical
values during the initial stages of Al development. Overall, this cluster maps the potential
externalities that may arise during Al deployment, emphasizing that developers must assume
the corresponding responsibility for the potential social and ethical consequences of system
behavior.

e  Cluster A-3: The keyword network extended from the red node statistical focuses on the
computational logic and algorithmic architecture of Al systems. The strong co-occurrence
relationships, with the keywords computational, learning, machine, critical, and implementation,
reveals core problems including statistical biases, risk governance, and explainability in current
Al technology. The direct and indirect connections between the keywords issues, concerns, ethical,
implementation, and critical reflect that Al ethics is not merely a conceptual discussion but is
involved in the development, design, and deployment stages of Al systems. Furthermore, the
connections emphasize that the realization of Al ethics must integrate value judgments and
ethical norms as essential foundations for technical practice. This cluster demonstrates the role
of ethical issues in institutional frameworks, industrial applications, and technical design,
indicating that ethical practice has become a critical factor that cannot be overlooked in the
development of responsible technology.

¢ Cluster A-4: The keyword network constructed around the red node dignity focuses on human
rights protection and ethical principles. This red node displays high co-occurrence frequencies
with the keyword responsibility, trust, justice, transparency, principles, and ethics, reflecting that
current Al technology developers should assume the corresponding moral responsibilities to
avoid problems (e.g., bias, discrimination, and structural inequality). Ensuring the transparency
of algorithms and data processing allows users to understand the decision-making logic and
behavioral patterns of Al systems, safeguarding human dignity and fundamental rights. The
connections between justice, guidelines, and harm highlight the necessity of designing Al ethical
frameworks and indicate that the lack of appropriate ethical judgment and operational guidance
may harm individuals or society, causing discrimination or unfairness. Overall, this cluster
focuses on protecting human rights and strengthening ethical norms and institutional justice as
core principles, constructing an Al governance mechanism characterized by social legitimacy
and long-term trust.

e  Combined cluster of A-2 and A-3: The keyword network reveals a significant intersection and
complementary structure, highlighting the dual technological and societal dimensions of Al
ethics issues. Through red chance nodes, including bias, risk, understand, issues, and
implementation, cross-cluster bridging nodes emerge, uncovering a risk propagation chain that
spans from statistical logic to behavioral consequences. Bias often originates from flaws in
algorithm design and training data, and further permeates the societal domain after system
deployment, leading to concrete and potentially escalating ethical consequences. This analysis
indicates that Al ethics challenges must be examined from an integrated, multilayered
perspective spanning technical construction and societal influence. Accordingly, ethical practice
in Al should focus on identifying and mitigating potential ethical risks during the early stages
of technological development (e.g., data preprocessing and model training). A comprehensive
ethics governance framework encompassing bias detection, transparency enhancement, and
regulatory mechanisms must be promoted to ensure responsible and sustainable Al
applications.

¢  Combined cluster of A-2 and A-4: The analysis reveals that Al behavior must be guided and
constrained by ethical principles to prevent harm to human dignity and privacy, enabling the
deployment of trustworthy and responsible Al The behavioral logic of Al systems should be
grounded in human rights protection and ethical values, with corresponding regulations (e.g.,
bias detection and privacy protection standards) introduced during the early design stages to
ensure legitimacy and credibility during deployment. The consequences of Al behavior (e.g.,
bias and privacy infringement) must be directed by ethical principles and implemented through
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technical practice. This interactive relationship emphasizes that ethics should not be treated as
an external constraint to technology but as an internal structure embedded throughout the life
cycle of Al design, development, and application, advancing responsible and human-centered
Al development. This perspective aligns with the discourse in the 2022 Al ethics articles,
including The 2022 Al Index: Al’s Ethical Growing Pains and Al Ethics and Al Law: Grappling with
Overlapping and Conflicting Ethical Factors Within Al, and identifies the integration of bias
management and privacy protection into a unified ethical framework as an emerging research
chance.

e  Combined cluster of A-2, A-3, and A-4: The semantic co-construction of these three clusters
reveals that Al ethics challenges cannot be viewed as problems confined to a single level. The
behavioral risks of Al systems (e.g., technical bias, discriminatory outcomes, and privacy
infringement) are closely linked to their underlying statistical construction logic, indicating that
once deployed, Al may produce irreversible and substantive ethical consequences. If such
consequences are not addressed through institutionalized ethical safeguards that ensure
prevention and accountability, Al technology risks losing social trust and legitimacy. Moreover,
ethical Al practice must adopt a cross-level integration approach to address these challenges,
spanning from model training and system deployment to institutional regulation, constructing
a full-process ethical governance framework based on the triad of technology, behavior, and
values. This structure is critical for preserving human dignity and developing trustworthy and
responsible AL
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Figure 5. KeyGraph co-occurrence network of Al ethics articles in 2022.
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The eight articles from 2023 contain 1,606 distinct terms. Based on customized parameters, 65
high-frequency keywords were selected as black nodes and were connected by 85 solid black lines to
construct the co-occurrence keyword network. Two red nodes were designated as potential chance
discovery nodes. Under these conditions, a keyword network was generated with machine and misuse
as the red nodes, revealing the structural configuration of keywords related to Al ethics and
highlighting the emerging chances (Figure 6). In this network, the red node machine forms a keyword
structure divided into two subsemantic clusters, connected via the terms trained and develop. The
thematic clusters are summarized as follows:

¢ Cluster B-1: With trained as the primary node, the network extends to the keyword data and
further expands to the keywords models, privacy, and customer, reflecting early-stage concerns in
Al development regarding the legitimacy of data sources and the protection of user information.
The node models branches out to include intelligence, ChatGPT, generative, and bias, indicating
attention to the algorithmic biases embedded in generative Al models (e.g., ChatGPT). The
bidirectional links between privacy, customer, and system highlight ethical considerations
regarding user privacy and data security in Al application contexts. The connections between
system and the keywords customer, create, and generative reveal the interplay between system
design and generative technology in practice, raising concerns about technological transparency
and ethical accountability. The keyword artificial is linked to intelligence, lead, and ChatGPT,
forming a semantic structure centered on Al model generation and leadership in application.
This cluster reveals deep ethical concerns related to the legitimacy of data usage, model bias,
privacy protection, and user participation during the training and deployment phases of Al
systems.

e  Cluster B-2: The primary node develop connects with systems and human, revealing the
bidirectional relationship of HCI in technological construction. Systems further expands to make
and decisions, reflecting the role Al systems play in decision-making processes. Decisions links to
making, humans, and believe, forming a cluster centered on how Al decision-making influences
human beliefs. Technology co-occurs with the terms ethics and concerns, indicating heightened
attention to ethical regulations and institutional policies during Al development. Through the
node concerns, the keyword ethics connects to potential, business, and responsibility, outlining the
importance businesses place on ethical risks and responsibilities when applying Al technology.
Overall, this semantic group illustrates the institutional and ethical challenges faced during Al
development, emphasizing the importance of bias governance, technical regulation, and
establishing user trust.

e Cluster B-3: With misuse as the red node, the initial connection to government further extends to
industry and society, forming a semantic cluster focusing on institutional roles. The node industry
links to insurance, which connects to using, policy, and responsible, highlighting an ethical
discourse focused on risk transfer mechanisms and institutional responsibility. The keyword
policy is a central node connecting responsible, insurance, and using, indicating that policy should
address Al misuse risks via clear responsibility allocation, technical application guidelines, and
industry-level risk management, especially concerning privacy protection and social impact. The
keywords ethical, ensure, responsible, and using are closely interlinked, underscoring that ethical
principles must be embedded in technical usage and institutional regulation. These principles,
when supported by accountability structures and protective measures, can mitigate risks of
misuse, particularly in areas related to data privacy and societal consequences. The connection
between impact and society further indicates the potential and far-reaching effects of
technological misuse on social structures. Overall, this semantic cluster illustrates that Al ethical
principles should be integrated into institutional design and technological application processes
and that clear accountability and regulatory mechanisms are critical for reducing the potential
negative influences of Al misuse on societal systems.

e  Combined cluster of B-1 and B-2: These two clusters, centered on the red node machine, focus
on model training and system development, respectively, revealing, through the lens of practical
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application, the crucial ethical challenges spanning the Al life cycle, from data training and
system development to deployment. Both clusters emphasize data ethics (e.g., privacy and bias)
and the governance of potential negative influences of Al systems on society and humanity,
including decision-making influence and responsibility attribution. Together, these semantic
clusters reveal that the core of Al ethics lies in the technology itself and, more critically, in the
processes of interaction between AI, humans, and society, particularly regarding risk
management and the realization of accountability. The clusters collectively emphasize that
achieving a vision of Al development that balances innovation and responsibility requires the
parallel construction of responsible governance mechanisms throughout the innovation process.

e Combined cluster of B-2 and B-3: In the KeyGraph keyword network, Clusters 2 and 3 are
centered on the keywords develop and misuse, respectively, illustrating an ethical link from Al
technology development to its potential misuse. The keyword structures revealed by these two
clusters reflect that Al ethics challenges originate from individual acts of technical development
and extend across broader societal institutions and governance dimensions. The ethical risks
posed by Al technology can be effectively addressed only by constructing an integrated
accountability framework encompassing development, deployment, and misuse prevention,
ensuring that advancement contributes to positive and sustainable social value.

¢  Combined cluster of B-1, B-2, and B-3: These three semantic clusters correspond to three stages
of Al ethical risk, model training, system development, and actual misuse along with social
impact, respectively, forming a progressive chain from ethical considerations to governance
responses. The keyword structures reveal a trajectory that begins with micro-level concerns,
including data bias and generative misinformation, and extends to challenges of decision-
making and ethical design during the development process. The structures indicate misuse risks
and governance responsibility at the societal level. This progression reflects that Al ethics issues
are not isolated incidents but constitute a foreseeable and preventable chain of ethical risks. An
integrated ethical framework must be established that encompasses data governance, technical
design, and misuse prevention, enabling the realization of an Al development vision guided by
social values to address multilevel challenges (e.g., bias, manipulation, and misuse).
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Figure 6. KeyGraph co-occurrence network of Al ethics articles in 2023.

The eight articles from 2024 encompass 2,612 distinct terms. Based on the customized
parameters, 60 high-frequency keywords were selected as black nodes and were connected by 95
solid black lines to construct the co-occurrence network of keywords. Two red nodes were designated
as potential chance discovery nodes. Under these conditions, keyword networks were generated
using media and security as the red nodes, revealing the relationships between content production,
technological transparency, and institutional responsibility in Al ethics issues (Figure 7). The bullet
points below summarize the thematic clusters.

e Cluster C-1: With media as the red node, the network connects to social, which links to content,
genAl and used, revealing that generative Al technology has been widely integrated into social
platforms and public communication spaces. The connection between social and ethical, further
extending to risks and then deployment, challenges, technology, and responsible, indicates that
societal concerns have shifted beyond technical applications to the ethical risks and
responsibility attribution involved in deployment processes, especially regarding
misinformation, information manipulation, and bias problems arising in social media
environments. The keywords digital, technology, innovation, industry, and development converge at
the nodes essential, become, and important, demonstrating that generative Al has become a core
driving force behind contemporary digital innovation and industrial transformation, with its
ethical challenges escalating into systemic problems. Overall, this semantic cluster highlights
that Al ethics attention has moved toward ethical challenges triggered by the application of
generative Al in social and media contexts, emphasizing the importance of responsible
technological deployment in these settings.

e Cluster C-2: The red node security co-occurs with technologies and extends to data, models, and
training, forming a semantic cluster. The keyword biases forms a triangular co-occurrence
structure with these three terms, indicating that data sources and processing methods underpin
Al system security, and that biases hidden within training data influence model behavior,
representing the intersection of ethics and security. Transparency and privacy connect through
technologies and further co-occur with regulatory, reflecting that Al ethics discourse has reached
institutional dimensions and emphasizing the reliance on and necessity of regulatory
mechanisms for system transparency and privacy protection. Via ensure and tools, the keyword
decision links to generative and ChatGPT and is associated with businesses and trust, revealing the
critical role of explainability and trust mechanisms in generative Al decision-making processes
in corporate and societal applications. Overall, this keyword network reveals the
interdisciplinary interconnection of Al ethics issues in 2024, providing a structured analytical
perspective for technology development, policy regulation, and industry practice.

e Combined cluster of C-1 and C-2: The integration of these two clusters highlights the
increasingly multilayered and interdisciplinary complexity of Al ethics issues in 2024. The Al
ethical themes are no longer confined to a single domain but require addressing systemic
governance challenges while promoting Al development, especially generative Al in the fields
of digital content and media. These challenges include core concerns, including data privacy,
algorithmic bias, social trust, lack of transparency, and regulatory compliance. The importance
of achieving trustworthy and responsible Al governance via the collaborative operation of social
and technical dimensions is emphasized, with collective responsibility shared by developers,
businesses, policymakers, and civil society. The current Al ethical frameworks must be
established under risk contexts characterized by uncertainty and the undiscovered and
unknown, guiding AI development toward a more legitimate and sustainable future.
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Figure 7. KeyGraph co-occurrence network of Al ethics articles in 2024.

4.2. Integrative Analysis and Trend Summary

The keyword network analysis results from 2022 to 2024 reveal that Al ethics issues exhibit an
evolving trend that progressively expands from technical implementation to institutional regulation
and social responsibility. Moreover, the keyword structures demonstrate increasingly complex and
interdisciplinary governance concerns each year.

The 2022 AI ethics discourse emphasized the inseparable relationship between technical
implementation, statistical construction logic, and the resulting social consequences. Without
institutionalized ethical safeguards for prevention and accountability, Al technologies risk losing
social trust and legitimacy. Therefore, the governance framework, spanning from technology
development to institutional regulation, must incorporate ethical practices, addressing core problems
(e.g., bias, transparency, and human rights protection) to promote the sustainable and equitable
application of Al, achieving trustworthy and responsible Al development.

The 2023 Al ethics keyword structure displays a characteristic chain of ethical risk semantics
linking training data, technical design, and governance policies. This structure indicates that Al ethics
challenges are not isolated, discrete incidents but span from micro-level issues (e.g., data bias and
generative misinformation) to decision-making effects and ethical design in the technical
development process, culminating in systemic challenges of misuse risk and governance
responsibility at the societal level. This keyword structure reflects the core perspective in 2023,
emphasizing the establishment of an integrated ethical framework encompassing data governance,
technical design, and misuse prevention. This framework ensures that responsible governance
mechanisms are constructed while developing and innovating AI technology, achieving a
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development vision guided by social values and ensuring that Al deployment serves human well-
being and social value.

The 2024 Al ethics issues present a multilayered and interdisciplinary complexity. The scope of
Al ethics has expanded from single technical applications to an integrated framework encompassing
technology deployment, data sources, institutional regulation, and social trust. Although the rapid
development of generative Al has promoted digital innovation and industrial upgrading, it has also
introduced unprecedented ethical risks and governance pressures. As a result of systemic challenges
(e.g., algorithmic bias, privacy infringement, lack of system transparency, and regulatory lag), future
Al governance must be based on the collaborative operation of technological and social dimensions,
emphasizing the collective responsibility of developers, businesses, policymakers, and civil society.
Moreover, under the uncertain and rapidly evolving risks posed by generative Al, establishing a
forward-looking ethical framework addressing uncertainty and potential risks is a critical direction
indicated by the 2024 keyword network, guiding Al development toward a more legitimate and
sustainable future.

5. Conclusions

This study adopts the KeyGraph algorithm as its core analytical method to examine the evolving
semantic structures in Al ethics discourse. By constructing keyword co-occurrence networks, this
work offers an in-depth understanding of the multilayered thematic architecture and conceptual
transitions in this domain. The systematic semantic analysis of representative articles from 2022 to
2024 revealed that the KeyGraph algorithm identifies core nodes and semantic linkages over time.
The clustering of keywords and identification of chance nodes facilitated the mapping of the
developmental trajectory and internal logic of Al ethics over time.

This analysis of time-specific keyword networks demonstrates that the evolution of Al ethics
discourse is not static. Instead, the evolution dynamically shifts in response to the interplay between
technological advancement, regulatory change, and societal interaction, prompting continuous
semantic reconstruction and thematic reorientation. The findings reveal latent interconnections
between technology, law, and society, offering a novel perspective for understanding the complexity
of Al ethics. These results validate the effectiveness of KeyGraph in processing large-scale
unstructured textual data, extracting critical information, and constructing meaningful keyword
networks for semantic exploration.

KeyGraph's text-mining results were integrated with the generative AI ChatGPT-based text
summarization technique to enhance the analytical rigor and accuracy of the study. This integration
allows for guided semantic interpretation and topic detection in co-occurrence-driven keyword
clusters. The combined approach strengthens the depth, accuracy, and interpretive consistency of
latent topic detection from complex articles. The cross-validation between the keyword co-occurrence
network analysis and generative language models improves the scientific robustness and credibility
of our understanding of Al ethics discourse and its semantic evolution.

The proposed method has broad potential for cross-domain applications. Beyond the Al ethics
domain, integrating the KeyGraph algorithm with temporal analysis strategies can be extended to
issue exploration and trend tracking in various fields (e.g., social media, e-commerce, and news
media). The dynamic analysis of keyword node structures and co-occurrence intensities over time
can reveal shifts in public attention and capture the evolving focus of technology and topics with
greater precision. This approach enables the early identification of emerging concepts that may pose
potential risks or offer innovative value (e.g., market reactions to new products, the progression of
societal hotspots, or changes in user sentiment).

Such dynamic tracking capabilities offer valuable insight for corporate decision-making, public
policy formulation, and academic research, supporting more accurate forecasting and timely
responses to evolving challenges. Overall, this study demonstrates the applicability of the keyword
co-occurrence network analysis in Al ethics and proposes a transferable framework that can be
extended to other interdisciplinary issues. With the continued refinement of the KeyGraph algorithm
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and the integration of advanced LLMs for summarization, this approach is promising for advancing
a deeper understanding and anticipatory reflection of the ethical implications of Al technology.
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