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Abstract 

Traffic congestion is a pervasive and escalating global challenge, particularly in dense urban areas, 

leading to significant economic, social, and environmental costs. Traditional mitigation strategies are 

proving  insufficient,  highlighting  the  need  for  a  new  approach.  This  report  focuses  on  extreme 

congestion, which represents a critical breakdown  in network efficiency and demands  innovative 

solutions. The study defines and quantifies extreme congestion, moving beyond simple speed metrics 

to  include  reliability  concepts  like  the  Planning  Time  Index  and  Buffer  Time  Index.  It  explores 

advanced theoretical frameworks, such as Kernerʹs Three‐Phase Traffic Theory, and reviews various 

traffic modeling  approaches,  including macroscopic, microscopic,  and mesoscopic models.  The 

increasing importance of Machine Learning and Deep Learning for real‐world applications and real‐

time operations is emphasized, with mesoscopic models highlighted for their balance of detail and 

computational efficiency. The report also examines the dual potential of autonomous vehicles (AVs). 

While AVs offer promise for alleviating congestion through improved capacity and optimized flow, 

challenges like induced demand and complex human‐AV interactions could exacerbate it. The actual 

impact will depend on factors  like AV penetration rates and human driving behavior. Ultimately, 

managing  extreme  congestion  in  the  AV  era  requires  a  fundamental  shift  towards  proactive, 

predictive, and collaborative traffic management systems. This involves leveraging AV capabilities 

through adaptive traffic signal control, smart rerouting, and platooning, supported by Vehicle‐to‐

Everything (V2X) communication and integrated smart city infrastructure. Policy interventions, such 

as dedicated lanes and congestion pricing, will also be crucial. The report concludes that a holistic 

approach, prioritizing collaborative autonomous systems, addressing human factors, and thoughtful 

urban planning, is essential for creating truly efficient, safe, and sustainable transportation networks. 
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1. Introduction 

1.1. The Pervasive Challenge of Traffic Congestion 

Traffic  congestion  has  emerged  as  a major  and  common  problem  globally,  particularly  in 

developed  cities  characterized  by  high  population  densities.  This  pervasive  issue  significantly 

impacts all modes of transportation, with road networks being the most profoundly affected (Kumar 

et al., 2021). The challenge of traffic congestion has seen a substantial increase since the 1950s, a period 

during which much  of  the  existing  road  infrastructure  began  to  become  obsolete  in  the  face  of 

escalating demand (Wikipedia, 2025). This persistent issue is not merely a transient inconvenience 

but has evolved into a deeply entrenched, escalating systemic problem (Qi, 2025). The observation 

that  existing  road networks have become  ʺobsoleteʺ and  the  characterization of  congestion as an 

ʺopen challengeʺ across metropolitan, medium, and small cities, underscore that  traditional, often 

reactive, mitigation  strategies have  been  insufficient  (Kumar  et  al.,  2021). This  indicates  that  the 

problem is dynamic and worsening, moving beyond simple high traffic volume to a state of systemic 

failure. 
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The negative consequences of congestion are extensive and far‐reaching, imposing significant 

burdens on individuals, economies, and societies. These impacts include considerable wasted time 

and  energy,  increased  air  pollution,  heightened  stress  levels  for  commuters,  reduced  overall 

productivity, and substantial economic and social costs for both individuals and nations (Kumar et 

al., 2021). Congestion directly diminishes the safety, economic well‐being, and overall quality of life 

within metropolitan  areas  (Transportation  Research  Board,  2004).  The  persistent  nature  of  this 

problem,  described  as  an  ʺopen  challengeʺ  across  metropolitan,  medium,  and  small  cities, 

underscores the need for advanced understanding and innovative solutions (Kumar et al., 2021). 

Rationale for Focusing on Extreme Congestion 

While  congestion  is  a  universally  disliked  phenomenon,  its  severity  varies  significantly 

(Mondschein & Taylor,  2017). Understanding and addressing  ʺextremeʺ  conditions  is paramount 

because these severe states represent critical breakdowns in network efficiency. Such conditions can 

lead  to  disproportionately  severe  consequences,  including  systemic  instability  and  a  dramatic 

reduction  in  overall  system  performance  (Sustainability Directory,  2025).  The  focus  on  extreme 

congestion is crucial because it represents the most critical manifestation of this systemic breakdown, 

demanding a more profound understanding of its underlying mechanisms and broader implications. 

Quantifying  traffic  congestion  is  a  fundamental  task  for  effective  transportation  planning  and 

research, necessitating the development and refinement of numerous metrics that focus on changes 

in vehicle speeds, the geographic extent of congestion, and travel time impacts (Seong et al., 2023). 

Overview of the Reportʹs Structure and Key Themes 

Despite billions of dollars spent annually on improving mobility, traditional capacity expansion 

alone has proven unable to eliminate the congestion problem (Transportation Research Board, 2004). 

This observation highlights that a fundamental shift in approach is necessary, moving towards more 

sophisticated analytical tools and novel technological  interventions. This  literature review aims to 

provide a comprehensive exploration of traffic congestion, with a particular emphasis on  its most 

severe  forms  (Qi,  2013b). The  report begins by detailing  academic definitions  and quantification 

methods for extreme traffic congestion. It then proceeds to review various modeling approaches used 

to analyze these conditions. Finally, it concludes with a forward‐looking discussion on the anticipated 

impacts  and  strategic management  of  extreme  congestion  in  the  emerging  era  of  autonomous 

vehicles. This  structured progression  responds directly  to  the  identified need  for  innovative  and 

intelligent solutions that transcend simply adding more lanes, emphasizing the reportʹs relevance in 

addressing a persistent and evolving global challenge. 

2. Defining and Quantifying Extreme Traffic Congestion 

General and Academic Definitions of Traffic Congestion 

From a general perspective, traffic congestion is characterized as a condition on road networks 

that arises when vehicle usage increases to a point where interactions among vehicles slow down the 

traffic  stream,  generating  longer  trip  times  and  increased  vehicular  queuing  (Wikipedia,  2025). 

Fundamentally, it occurs when the demand for road space surpasses its available capacity, leading 

to reduced speeds and extended travel times (Sustainability Directory, 2025). 

Academically, the understanding of traffic congestion transcends simple descriptions of slow‐

moving  vehicles.  It  is  recognized  as  a  complex  system  state  that  emerges  from  the  non‐linear 

interaction  of  traffic  demand,  network  capacity,  and  various  behavioral  factors  (Sustainability 

Directory, 2025). This intricate interplay leads to reduced efficiency and systemic instability within 

the transportation network (Sustainability Directory, 2025). This refined explanation positions traffic 

congestion as an emergent property of transportation networks, intrinsically linked to concepts from 

network theory, behavioral economics, and urban systems dynamics. This progression from merely 

describing what  congestion  looks  like  to  understanding  its  underlying  emergent  properties  and 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 July 2025 doi:10.20944/preprints202507.2579.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.2579.v1
http://creativecommons.org/licenses/by/4.0/


  3  of  21 

 

mechanisms is a critical development. It implies that effective mitigation strategies must address the 

complex interplay of demand, capacity, and human behavior, rather than just superficial symptoms 

(Qi, 2014b). This deeper analytical perspective  is  foundational  for developing more  sophisticated 

modeling and quantification methods capable of tackling extreme congestion. 

It is important to note that there is no single, universally unique definition of congestion (Kumar 

et  al.,  2021).  Instead, definitions  are  often  tailored  based  on  specific  traffic  parameters—such  as 

volume, capacity (or density), travel time (or delay), and speed—and their applicability depends on 

the type of data collected (Kumar et al., 2021). 

Key Attributes and Indicators of Congestion Severity 

Observable  indicators  that  signal  the  onset  and  severity  of  congestion  include  a  significant 

decrease in the average speed of vehicles, such as a typical 60 mph cruise devolving into a frustrating 

20 mph crawl.  Journeys  take considerably  longer during congested periods, with a commute  that 

usually  takes 30 minutes potentially  extending  to an hour or more. The presence of  stop‐and‐go 

traffic, characterized by frequent braking and acceleration, is a clear indicator of unstable traffic flow. 

Visible  long queues and backups stretching  from  intersections, highway entrances, or bottlenecks 

also signal congestion buildup (Wikipedia, 2025). 

Comprehensive characterizations of traffic congestion (TC) often involve four key components: 

intensity, which reflects the severity of congestion typically expressed as a rate; extent, which refers 

to the geographic span of congestion; duration, indicating how long the congested conditions persist; 

and reliability, which measures the predictability of travel times (Seong et al., 2023). 

Established Classification Systems: Level of Service (LOS A‐F) and Advanced Theoretical Perspectives 

A widely adopted qualitative classification system for traffic flow is the six‐letter A–F Level of 

Service  (LOS)  scale,  as defined  in  the US Highway Capacity Manual  and utilized  globally. This 

system primarily uses delay as  the basis  for  its measurements, with specific methods varying by 

facility  type  (Wikipedia, 2025). LOS A signifies  free  flow conditions, B represents  reasonably  free 

flow, C indicates stable flow, D denotes approaching unstable flow, E describes unstable flow, and F 

characterizes forced or breakdown flow (Isarsoft, 2025). LOS F, in particular, directly corresponds to 

extreme  congestion, marked  by  highly  unstable  traffic,  stop‐and‐go movements,  and  substantial 

delays (Qi, 2016b). 

Practical systems, such as  the Google Traffic Layer  (GTL) API, visually  represent congestion 

severity using a color‐coded system: Green for free flow, Orange for light congestion, Red for medium 

congestion, and Dark Red  for heavy  traffic  congestion  (Seong et al., 2023). Dark Red aligns with 

conditions indicative of extreme congestion. 

Beyond classical two‐phase traffic flow theories (free flow and congested traffic), Kernerʹs Three‐

Phase Traffic Theory offers a more nuanced understanding of congestion (Wikipedia, 2024). Kerner 

divides congested traffic into two distinct phases: Synchronized Flow (S) and Wide Moving Jam (J), 

resulting in three overall phases: Free flow (F), Synchronized flow (S), and Wide Moving Jam (J). This 

theoretical  framework  provides  a more  granular  and  physically  grounded  explanation  for  the 

breakdown conditions often labeled as LOS F. 

● Synchronized  Flow  (S):  In  this  phase,  vehicle  speeds  are  lower  than  in  free  flow,  and  the 

relationship between flow and density becomes weaker and more complex. Congestion patterns 

within  synchronized  flow  can  manifest  as  Localized  Synchronized  Flow  Patterns  (LSP), 

Widening Synchronized Flow Patterns (WSP), or Moving Synchronized Flow Patterns (MSP). 

● Wide Moving  Jam  (J):  This  represents  a  highly  severe  form  of  congestion  that  propagates 

upstream  through  highway  bottlenecks while maintaining  a  consistent mean  velocity  of  its 

downstream front.. Within a wide moving jam, vehicle speeds are significantly reduced, and the 

flow  rate  is  sharply  diminished.  These  jams  do  not  spontaneously  appear  in  free  flow  but 
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typically emerge within regions of synchronized flow through an S → J phase transition.15 They 

are considered stable structures that travel unchanged with a constant velocity along the road 

(Flynn et al., 2009). A key distinction is that synchronized flow can be ʺcaughtʺ at a bottleneck, 

whereas wide moving jams will continue to propagate upstream. Kernerʹs theory moves beyond 

a  simple  ʺcongestedʺ  label  to  distinct, measurable  physical  phenomena,  providing  a  robust 

foundation for modeling and predicting the onset, propagation, and dissipation of truly extreme 

congestion events. It highlights that extreme congestion is not a monolithic state but possesses 

unique dynamic properties that require specific analytical approaches. 

Table 2.1. Classification of Traffic Congestion Severity. 

Classification System  Level/Code  General  Operating 

Conditions / Characteristics 

Level  of  Service  (LOS) 

(Isarsoft, 2025) 
A  Free flow 

 
B  Reasonably free flow 

 
C  Stable flow 

 
D  Approaching unstable flow 

 
E  Unstable flow 

 
F  Forced  or  breakdown  flow 

(Extreme Congestion) 

Google Traffic Layer  (GTL) 

(Seong et al., 2023) 
Green  Free flow (no traffic delays) 

 
Orange  Light  congestion  /  Medium 

amount of traffic 

 
Red  Traffic  delays  (Medium 

congestion) 
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Dark Red  Heavy traffic congestion 

Kernerʹs  Three‐Phase 

Traffic  Theory  (Wikipedia, 

2024) 

Free Flow (F)  Vehicles  travel  at  free‐flow 

speeds; stable. 

 
Synchronized Flow (S)  Vehicle  speeds  lower  than 

free  flow;  complex  flow‐

density  relationship;  can  be 

localized,  widening,  or 

moving. Can  be  ʺcaughtʺ  at 

bottlenecks. 

 
Wide Moving Jam (J)  Highly  severe,  propagates 

upstream  through 

bottlenecks with maintained 

downstream  front  velocity; 

significantly  reduced  speeds 

and  flow  rates.  Stable 

structures  that  travel 

unchanged. 

Metrics and Novel Approaches for Quantifying Congestion Intensity, Extent, Duration, and Reliability 

Numerous metrics  have  been  developed  to  quantify  traffic  congestion,  providing  tools  for 

determining  the  degree  of  congestion  and  roadway  performance. Commonly  employed metrics 

include the Travel Time Index (TTI), Vehicle Miles Traveled (VMT), Vehicle Hours Traveled (VHT), 

Volume/Capacity (V/C) ratio, and Peak Traffic Period Duration (PTPD).1 

● The  Travel  Time  Index  (TTI)  compares  peak  period  travel  time  to  free‐flow  travel  time, 

expressed as a ratio. For example, a TTI of 1.20 indicates that a trip taking 20 minutes in off‐peak 

conditions will take 24 minutes in the peak period, signifying a 20 percent  longer travel time 

(Central Transportation Planning Staff, 2014). 

● Vehicle Miles Traveled (VMT) and Vehicle Hours Traveled (VHT) are used to evaluate the 

geographic  extent  and  temporal  duration  of  congestion  by measuring  congested miles  and 

hours, respectively (Seong et al., 2023). 

● The Volume/Capacity (V/C) ratio is calculated by dividing the traffic volume on a roadway by 

its designed capacity. 

● Peak  Traffic  Period Duration  (PTPD)  assesses  the  number  of  hours  daily  that  experience 

congested conditions. 

Novel metrics, particularly those utilizing Hägerstrandʹs space‐time cube, have been proposed 

to synthesize congestion intensity, extent, and duration (Seong et al., 2023): 
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● distanceTime (τ): Proposed as a base metric, typically in units like mileHours, it is the product 

of the total distance of congested roads in a temporal snapshot and the duration of the congestion 

(Seong et al., 2023). 

● Weighted Congestion Distance (d_weighted): This metric incorporates varying intensity levels 

of congestion by assigning weighting values to the congested distance (Seong et al., 2023). For 

instance, empirical weights (e.g., 0.25 for light, 0.5 for medium, 1.0 for heavy congestion) can be 

applied based on visual  indicators  like GTL colors  (Seong et al., 2023). The Speed Reduction 

Index (SRI) is also suggested as a continuous weighting value. 

● Normalized  Congestion Metrics  (τ_normalized):  These  metrics  normalize  the  congestion 

amount by the maximum possible congestion in the network, enabling meaningful comparisons 

across multiple places with significantly different road network distances. 

Other important performance measures that quantify congestion severity and reliability include 

(Kumar et al., 2021): 

● Congested Time: The average number of minutes drivers experience speeds below a predefined 

threshold (e.g., 35 mph) during peak periods (Central Transportation Planning Staff, 2014). 

● Lane‐miles  congested:  Expressed  as  a  percentage  of  total  lane‐miles,  this  measures  the 

geographic extent of congestion. 

● Congested Travel: Quantifies vehicle‐miles traveled under congested conditions. 

● Average‐to‐Posted‐Speed Ratio (Speed Index): A ratio of average travel speed to the posted 

speed limit; a ratio of 0.70 or less typically indicates congestion. 

● Bottleneck Factor: A composite measure calculated as Minutes of Congestion per Peak‐Period 

Hour  divided  by  Congested  Speed,  useful  for  ranking  bottleneck  severity  (Central 

Transportation Planning Staff, 2014). 

● Delay per Mile: Quantifies the extra time required to traverse a given segment or corridor per 

mile. 

● Planning Time  Index  (PTI): A  reliability measure defined as  the  ratio of  the 95th percentile 

travel time (near‐worst‐case) to free‐flow travel time. 

● Buffer Time Index (BTI): Expresses the additional buffer time needed to ensure on‐time arrival 

for 95 percent of trips. 

● Congestion  Score:  A  comprehensive  measure  derived  by  integrating  results  from  several 

performance metrics (extent, duration, reliability, intensity) using weighted factors. 

● Speed Reduction Index (SRI): Measures the rate of vehicle speed reduction due to congestion. 

● Very‐low‐speed Index (VLSI): The ratio between the time spent traveling at a very slow speed 

and the total travel time. 

While the core components of congestion—intensity, extent, and duration—are well‐established, 

the explicit inclusion and emphasis on ̋ reliabilityʺ through metrics like the Planning Time Index (PTI) 

and  Buffer  Time  Index  (BTI)  reveal  a  crucial  aspect  of  defining  extreme  congestion.  Extreme 

congestion is not just about slow speeds; it is fundamentally about the 

unpredictability and variability of travel times. The fact that extreme congestion can lead to missed 

appointments and  increased stress underscores the  importance of reliability from both a user and 

economic perspective (Isarsoft, 2025). This suggests that for extreme conditions, the focus shifts from 

average delay to the certainty of arrival, highlighting that the most severe forms of congestion are 

those  that  are  highly  unpredictable  and  disruptive  to  planning  (Qi,  2016a).  This  deeper 

understanding of reliability is vital for comprehensive assessment and for designing interventions 

that improve user experience under severe conditions. 
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Table 2.2. Key Metrics for Quantifying Traffic Congestion. 

Metric Name  Category  Definition/Formula/Interpretation 

Travel Time Index (TTI)   
Travel time‐based  Ratio of peak‐period travel time to 

free‐flow  travel  time  (Average 

Travel  Time  /  Free‐Flow  Travel 

Time). A TTI of 1.20 means a trip 

takes 20% longer in peak periods. 

Vehicle  Miles  Traveled 

(VMT)   
Extent‐based  Evaluates the extent of congestion 

by measuring  congested miles  in 

peak hours. 

Vehicle  Hours  Traveled 

(VHT) (Seong et al., 2023) 
Duration‐based  Measures the total hours vehicles 

spend  traveling under  congested 

conditions. 

Volume/Capacity  (V/C) 

Ratio (Seong et al., 2023) 
LOS‐based  Calculated  by  dividing  the 

volume of traffic on a roadway by 

its capacity. 

Peak  Traffic  Period 

Duration  (PTPD)  (Seong 

et al., 2023) 

Duration‐based  Assesses  how many  hours  daily 

are congested during peak times. 

distanceTime (τ) (Seong et 

al., 2023) 
Novel/Composite  Base  metric:  Product  of  total 

distance  of  congested  roads  and 

duration of congestion (d × t), e.g., 

mileHours. 

Weighted  Congestion 

Distance  (d_weighted) 

(Seong et al., 2023) 

Novel/Composite  Accounts  for  intensity  by 

assigning  weights  to  congested 

distance  (Σ(w_i  *  d_i)). Weights 

can  be  based  on  GTL  colors  or 

Speed Reduction Index (SRI). 
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Normalized  Congestion 

Metrics  (τ_normalized) 

(Seong et al., 2023) 

Novel/Composite  Normalizes congestion amount by 

maximum possible congestion for 

inter‐city comparison (τ / τ_max) × 

100%. 

Congested  Time  (Central 

Transportation  Planning 

Staff, 2014) 

Duration‐based  Average  minutes  drivers 

experience  speeds  below  a 

threshold  (e.g.,  35  mph)  during 

peak periods. 

Lane‐miles congested   
Extent‐based  Percentage  of  total  lane‐miles 

experiencing  congestion  (e.g., 

average speed < 35 mph). 

Congested Travel   
Extent‐based  Quantifies  vehicle‐miles  traveled 

under  congested  conditions  (e.g., 

< 35 mph). 

Average‐to‐Posted‐Speed 

Ratio (Speed Index)   
Speed‐based  Average  travel  speed divided by 

posted speed limit. Ratio of 0.70 or 

less indicates congestion. 

Bottleneck Factor   
Composite  Minutes of Congestion per Peak‐

Period Hour  / Congested  Speed. 

Used to rank bottleneck severity. 

Delay per Mile   
Travel time‐based  Extra  time  needed  to  traverse  a 

segment per mile ( (ATT ‐ FFTT) / 

Segment Length ). 

Planning  Time  Index 

(PTI)   
Reliability‐based  Ratio of 95th percentile travel time 

to  free‐flow  travel  time.  Includes 

typical and unexpected delay. 
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Buffer Time Index (BTI)   
Reliability‐based  Additional  percentage  of  time 

needed  to be on  time  for  95% of 

trips ( (95%TT ‐ ATT) / ATT ). 

Congestion Score   
Composite  Integrates  several  performance 

measures  with  weight  factors, 

higher  scores  indicate  increased 

intensity. 

Speed  Reduction  Index 

(SRI)   
Speed‐based  Rate  of  vehicle  speed  reduction 

due to congestion ( (Vf ‐ Va) / Vf ). 

Very‐low‐speed  Index 

(VLSI)   
Speed‐based  Ratio  of  time  traveling  at  very 

slow speed to total travel time. 

Common Causes Leading to Extreme Congestion 

Extreme  traffic congestion arises  from a complex  interplay of  factors  that either  reduce  road 

capacity  or  increase  traffic demand. The most  straightforward  cause  is High Traffic Volume or 

Saturation, occurring when the number of vehicles attempting to use a road network simultaneously 

exceeds its designed capacity, particularly during peak hours. 

Bottlenecks, which are reductions in road capacity such as lane closures, merges, or physical 

constrictions, significantly impede traffic flow and account for a substantial 40% of congestion.3 

Traffic  Incidents,  including  accidents,  breakdowns,  or  other  unexpected  disruptions,  are 

consistent sources of congestion, contributing to 25% of traffic jams (Zadobrischi et al., 2020). 

Work  Zones,  involving  construction  activities,  frequently  cause  congestion  through  lane 

closures, detours, and reduced speed limits, accounting for 10% of congestion. 

Bad Weather  conditions,  such  as  heavy  rain,  snow,  flooding,  or debris  from  strong winds, 

reduce road capacity and operating speeds, leading to increased congestion and productivity loss; 

weather causes 15% of congestion. 

Poor  Traffic  Management  and  inefficient  signal  timing,  inadequate  real‐time  traffic 

information, and poor road signage can exacerbate congestion, accounting for 5% of the problem. 

Beyond these common external triggers, Phantom Traffic Jams occur in dense traffic without 

an obvious external cause, initiated when a vehicle slows down slightly, causing a chain reaction of 

braking and stopping among following cars. These are a result of linear instabilities in traffic flow at 

sufficiently high densities, where small perturbations can grow into waves of high vehicle density 

(Flynn et al., 2009). 

Distracted Driving is a significant factor in over 8% of accidents, which in turn leads to traffic 

congestion (Meyer, 2023). Underlying systemic causes also include 

Inadequate or Unplanned Transport Infrastructure, often driven by rapid population growth 

and urbanization,  and Poor Public Transport Systems, which  contribute  to a higher  reliance on 

personal vehicles and thus increase road demand. More broadly, 

Random Fluctuations, Temporary Barrier Control, and Network Blockages encompass various 

events that disrupt smooth traffic flow. 
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The concept of ʺcongestion‐adaptedʺ places, where high levels of activity and trip‐making occur 

despite significant congestion, often in central urban areas, introduces a crucial nuance (Mondschein 

& Taylor, 2017). This challenges the simplistic notion that all congestion is inherently negative and 

must be eliminated. Instead, it suggests that some  level of traffic density might be a byproduct of 

vibrant, highly accessible urban centers. This understanding implies that policymakers and planners 

might need  to  shift  their  focus  from merely  reducing  absolute  congestion  levels  to managing  its 

impacts  and  fostering  adaptability  within  urban  systems.  For  ʺextreme  congestion,ʺ  this  means 

distinguishing between  a  functional,  albeit dense, urban  environment  and  a  truly dysfunctional, 

unstable system. This critical nuance is essential for developing targeted and effective strategies that 

improve overall urban mobility and quality of life without inadvertently stifling economic and social 

vitality. 

3. Models for Extreme Congestion 

Modeling  traffic  congestion  is  essential  for  understanding  its  dynamics,  predicting  its 

occurrence,  and  evaluating  mitigation  strategies.  The  evolution  of  traffic  modeling  reflects  a 

profound shift in understanding, from early analogies to fluid dynamics to contemporary approaches 

integrating complex systems theory and artificial intelligence. 

3.1. Fundamental Traffic Flow Theory and Analytical Models 

Classical Traffic Flow Theory and Its Limitations in Extreme Conditions 

Traditional traffic flow theory often employs analogies to fluid dynamics, describing traffic as a 

continuum in terms of aggregated variables like flow, concentration (density), and speed (Kuhne & 

Michalopoulos, 2023). Core assumptions typically include the conservation of traffic flow and a one‐

to‐one fundamental relationship between speed and density (Qi, 2013a). However, the assumption 

of a unique speed‐density  relationship  is  frequently challenged by empirical observations, where 

multiple speed values can be measured for the same density. This relationship often holds true only 

at equilibrium states. 

One‐dimensional  aggregate models, while useful  for  general  flow,  can prove  inadequate  in 

specific, complex traffic situations, such as localized off‐ramp blockages where some lanes become 

severely congested while adjacent lanes remain relatively fluid (Kuhne & Michalopoulos, 2023). This 

highlights a significant limitation in accurately modeling the spatial heterogeneity characteristic of 

extreme congestion. A critical distinction  from  fluid  flow  is  that  traffic congestion  is not  solely a 

physical phenomenon (Qi, 2017); it is profoundly influenced by human trip‐making decisions and 

real‐time driving behaviors (Lindsey & Verhoef, 2000) 

Analytical Models for Understanding Congestion Phenomena (e.g., Phantom Traffic Jams, Jamitons) 

Analytical models often simplify road networks (e.g., single‐lane, straight, uniform roads) and 

assume deterministic driver behavior to isolate and study specific congestion phenomena (Flynn et 

al.,  2009).  These  models  have  been  instrumental  in  explaining  complex  traffic  behaviors  that 

contribute to extreme congestion. 

Phantom Traffic Jams are  intriguing phenomena that occur  in seemingly free‐flowing, dense 

traffic without any obvious external cause like obstacles or bottlenecks. They are explained by the 

linear  instability  of  two‐equation  traffic  models  at  sufficiently  high  densities,  where  small 

perturbations can grow into waves of high vehicle density. This dynamic arises from a competition 

between  stabilizing  effects,  such  as preventive driving,  and destabilizing  effects,  such  as drivers 

slowing down in response to higher density with a built‐in delay in adjustment (Qi, 2014a). 

Jamitons  are  predicted  by  inviscid  Payne‐Whitham  type  traffic models  as  stable,  traveling 

detonation waves. A jamiton is characterized by a sharp, sudden jump in vehicle density (a shock) 

on one side, followed by a smooth decay in density on the other, propagating unchanged at a constant 
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velocity. A  key  property  is  that  jamitons  always  travel  slower  than  individual  vehicles,  forcing 

drivers to brake suddenly upon encountering the  jamʹs front. A growing  jamiton may trigger new 

instabilities  downstream,  leading  to  the  formation  of  a  sequence  of  additional  traveling waves, 

termed Jamitinos. 

The  ʺbottleneck model,ʺ notably developed by Vickrey  in  1969  and  extended by Arnott, De 

Palma,  and  Lindsey,  stands  as  a  prominent  dynamic  analytical  model  for  traffic  congestion. 

Behavioral models,  which  assume  drivers  optimize  their  speeds  by  trading  off  time,  expected 

accident,  and  fuel  costs,  can  endogenously  generate  traffic  congestion  as  a  result  of  individual 

optimizing behavior (Verhoef & Rouwendal, 2004). The concept of metastable states is also relevant, 

where at certain high densities, traffic can exist in a smooth‐flowing state that is inherently unstable 

and  can  suddenly  collapse  into  congestion  due  to minor  disturbances  like  a  car  braking.  This 

represents a  temporary  stable state  that  transitions  to a genuinely  stable, congested  state  (KOZO 

KEIKAKU ENGINEERING Inc., 2025). 

The  trajectory  of  traffic modeling,  as  evidenced  by  these developments,  reveals  a profound 

evolution (Qi, 2023b). It began with classical fluid dynamics analogies, which, while foundational, 

proved  limited  in  capturing  real‐world  complexity.19  This  led  to  more  nuanced  theoretical 

frameworks like Kernerʹs three‐phase theory, which better describe the physical states of congestion 

breakdown (Wikipedia, 2024). The development of analytical models for phenomena like ʺphantom 

jamsʺ and  ʺjamitonsʺ  further refined  the understanding of  traffic as a complex, non‐linear system 

(Flynn et al., 2009). This progression underscores that extreme congestion is a multifaceted problem 

requiring  a  diverse  toolkit  of  modeling  approaches,  each  contributing  to  a  more  complete 

understanding and more effective management. 

3.2. Macroscopic, Microscopic, and Mesoscopic Traffic Flow Models 

Traffic  flow  is  broadly  characterized  using  three  main  types  of  models:  microscopic, 

macroscopic, and mesoscopic, each offering distinct levels of detail and applicability (Ali et al., 2022). 

Macroscopic  Models  describe  traffic  flow  at  an  aggregate  level,  focusing  on  overall 

characteristics  such  as  traffic volume,  speed,  and density,  rather  than  individual vehicles. These 

models  are  particularly  useful  for  analyzing  large‐scale  traffic  networks  and  understanding  the 

general behavior of traffic flow over wide areas.23 Macroscopic models are typically less detailed but 

offer  faster  and more  computationally  efficient  simulations, making  them  suitable  for  strategic 

planning and policy analysis (Lee, 2025). Examples include the Lighthill‐Whitham‐Richards (LWR) 

model  and  the  Payne‐Whitham  model,  which  incorporates  a  momentum  equation  for  greater 

accuracy (Lee, 2025). However, limitations arise in capturing localized, complex extreme congestion 

phenomena, where one‐dimensional descriptions may fail to represent the spatial heterogeneity of 

traffic (Kuhne & Michalopoulos, 2023). 

Microscopic Models provide a detailed description of traffic flow by focusing on the behavior 

of individual vehicles and their interactions with other vehicles and the infrastructure. They consider 

parameters  such  as  vehicle  position,  velocity,  distance,  and  time  headway,  often  incorporating 

elements of driver physical and psychological responses. While more detailed, microscopic models 

are  typically slower and more computationally  intensive  to run  (Qi, 2022). Examples  include car‐

following models  (describing  vehicle  acceleration/braking  in  relation  to  a  lead  vehicle),  cellular 

automata models (discretizing the road into cells with movement rules), and psycho‐physical models 

(based on driver perception‐reaction time and fatigue). They can also be extended to include random 

accidents and associated losses (Kim et al., 2024). For extreme congestion, microscopic models are 

strong because  they  can  replicate  complex  traffic phenomena by  accurately modeling  individual 

driving  behavior,  facilitating  operational  analysis within mixed  traffic  flows  and  understanding 

shockwave propagation (Peng et al., 2025). 

Mesoscopic  Models  bridge  the  gap  between  microscopic  and  macroscopic  approaches, 

capturing traffic flow dynamics at an intermediate level of detail. They are based on individual agents 

(vehicles), but their behavior is derived from aggregated traffic flow attributes like density or average 
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speed (PTV Group, 2025). Direct interactions between agents typically occur only at specific nodes, 

such as intersections. These models are particularly well‐suited for analyzing and optimizing traffic 

signal control strategies and  for mitigating congestion. They enable  real‐time estimation of  traffic 

state variables (e.g., volume, speed, density), adaptive traffic signal control that responds to changing 

conditions, and  improved prediction of congestion and  incidents  (Number Analytics, 2025). Case 

studies have shown their effectiveness, such as a study in Singapore that used a mesoscopic model 

to optimize traffic signal timing, resulting in a 10% reduction in travel time and a 15% reduction in 

congestion. The ability of mesoscopic models to capture dynamics at an intermediate level of detail 

makes them uniquely positioned for active, real‐time management of extreme congestion. They offer 

an optimal balance between  computational  efficiency and  the necessary  level of detail, and  their 

capacity to integrate real‐time data and facilitate adaptive responses to rapidly changing conditions 

is particularly valuable in dynamic, extreme congestion scenarios where immediate intervention is 

often required. 

3.3. Simulation and Data‐Driven Approaches 

The Role of Traffic Simulation in Analyzing and Predicting Extreme Congestion 

Traffic  simulation  modeling  involves  creating  virtual  representations  of  transportation 

networks, allowing researchers and engineers to test various scenarios, predict traffic patterns, and 

identify potential bottlenecks without real‐world disruption. These models provide a safe and cost‐

effective method  to  evaluate different  transportation  scenarios,  reducing  the  need  for  expensive 

physical  prototypes  and minimizing  the  risk  of  costly mistakes  in  infrastructure  planning. Key 

benefits include providing a realistic and detailed overview of the entire traffic network, detecting 

conflict hotspots, anticipating the effects of planned traffic measures, and optimizing projects before 

implementation. Simulation is particularly crucial given the current scarcity of real‐world observed 

traffic data for emerging technologies like autonomous vehicles, making it an indispensable tool for 

research and development (Al‐Turki et al., 2021). 

Application of Machine Learning and Deep Learning Techniques for Congestion Prediction and 

Real‐Time Management 

The increasing volume of traffic‐related data generated by Intelligent Transportation Systems 

(ITS) and Internet of Things (IoT) infrastructure has enabled the widespread application of Machine 

Learning (ML) and Deep Learning (DL) for traffic flow predictions (Mystakidis et al., 2025). ML and 

DL approaches are particularly well‐suited for handling complex and dynamically changing traffic 

conditions, often outperforming traditional statistical models in these scenarios. Traffic Congestion 

Prediction  (TCP)  leverages  these  cutting‐edge  approaches  to  forecast  future  traffic  patterns, 

providing  critical  information  for decision‐makers  in various  sectors,  including Smart Cities  (Qi, 

2023a). 

Artificial  Intelligence  (AI) can significantly enhance Autonomous Smart Traffic Management 

(ASTM) systems, leading to substantial reductions in traffic congestion rates (Goenawan, 2024). For 

example, a simulated ASTM system utilizing a YOLO V5 Convolutional Neural Network for vehicle 

detection and a Recurrent Neural Network with Long Short‐Term Memory (RNN‐LSTM) for vehicle 

number prediction demonstrated a 50% higher traffic flow rate and a 70% lower vehicle pass delay 

(Goenawan, 2024). These data‐driven approaches  facilitate real‐time data analytics and predictive 

analytics, which are used to optimize traffic signal timing and anticipate traffic incidents proactively 

(Lee,  2025). Despite  their  advantages,  challenges  remain,  including  the  risk  of  overfitting,  high 

computational  demands,  the  inherent  complexity  of  real‐world  traffic  flow,  limitations  in  data 

availability, and the pervasive uncertainty and variability in traffic patterns (Qi, 2024c). 

Analytical models, such as  those explaining  ʺjamitonsʺ or  ʺmetastable states,ʺ provide crucial 

theoretical understandings into the fundamental physics and behavioral underpinnings of extreme 

congestion,  explaining  why  certain  phenomena  occur.  However,  these  models  often  rely  on 
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simplified, deterministic assumptions that may not fully capture real‐world complexities. In contrast, 

simulation  and  AI/ML models  are  designed  to  handle  real‐world  variability,  provide  practical 

predictions, and enable real‐time management. Yet, their effectiveness  is highly dependent on the 

quality and availability of data and the robustness of their algorithms. The challenge for addressing 

extreme congestion lies in effectively bridging this gap: leveraging the fundamental understanding 

from analytical models to inform the design and interpretation of more complex simulation and data‐

driven models, which can then be applied to dynamic, heterogeneous environments. The limitations 

of one‐dimensional models further emphasize the need for models that can capture the spatial and 

behavioral intricacies of extreme congestion, moving beyond simplistic representations. 

Table 3.1. Comparative Analysis of Traffic Flow Modeling Approaches for Extreme Congestion. 

Model Type  Core 

Principle/Level  of 

Detail 

Strengths  for 

Analyzing  Extreme 

Congestion 

Limitations/Challenges  Example 

Models/Software 

Macroscopic   
Aggregate  traffic 

flow  (volume, 

speed,  density); 

treats  traffic  as  a 

continuum. 

Efficient  for  large‐

scale  networks; 

understanding 

overall  behavior; 

strategic  planning & 

policy analysis. 

Fails  to  capture 

localized,  complex 

extreme  congestion 

phenomena;  one‐

dimensional 

descriptions  may  be 

inadequate. 

LWR  model, 

Payne‐Whitham 

model,  PTV 

Visum, Emme   

Microscopic   
Individual 

vehicles and  their 

interactions 

(position, 

velocity, 

headway); 

incorporates 

driver behavior. 

Replicates  complex 

traffic  phenomena 

(e.g.,  shockwaves); 

operational  analysis 

within mixed  traffic; 

detailed 

understanding  of 

congestion 

formation. 

Computationally 

intensive  and  slower 

for  large  networks; 

requires detailed data. 

Car‐following 

models,  Cellular 

automata models, 

Psycho‐physical 

models,  PTV 

Vissim,  Aimsun, 

Paramics   

Mesoscopic   
Intermediate 

detail;  individual 

agents  whose 

behavior  is 

derived  from 

aggregated 

Bridges gap between 

macro/micro; 

suitable  for  traffic 

signal  control 

optimization; 

improved  prediction 

Requires  more  detail 

than macroscopic,  less 

than  microscopic; 

direct  agent‐to‐agent 

reactions  typically 

limited to nodes. 

PTV  Vissim 

(hybrid 

simulation)   
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attributes; 

interactions  at 

nodes. 

of 

congestion/incidents; 

real‐time  estimation 

of state variables. 

Analytical   
Mathematical 

equations  to 

describe 

fundamental 

traffic 

phenomena; often 

deterministic  and 

simplified. 

Provides  theoretical 

understanding  of 

congestion 

phenomena  (e.g., 

phantom  jams, 

jamitons,  metastable 

states);  explains 

underlying 

mechanisms. 

Often  relies  on 

simplified 

assumptions;  may  not 

capture  real‐world 

complexities  and 

human  behavior  fully; 

limited  applicability 

for  real‐time 

management. 

Bottleneck model, 

Payne‐Whitham 

type models   

Simulation   
Virtual 

representation  of 

networks  to  test 

scenarios  and 

predict patterns. 

Safe  and  cost‐

effective  for 

evaluating  different 

scenarios;  identifies 

bottlenecks; 

anticipates  effects  of 

planned  measures; 

crucial  given  data 

scarcity for AVs. 

Requires  significant 

input  data;  model 

calibration  can  be 

complex; results are as 

good as the underlying 

model. 

PTV  Visum,  PTV 

Vissim,  Aimsun, 

Paramics   

AI/ML/DL   
Data‐driven 

algorithms  to 

forecast  traffic 

patterns  and 

optimize 

management. 

Handles  complex, 

changing  conditions; 

improves  prediction 

reliability;  enables 

real‐time  adaptive 

control  (e.g.,  signal 

timing, rerouting). 

Risk  of  overfitting; 

high  computational 

demands;  dependent 

on  data  quality  and 

availability; 

complexity  of  real‐

world traffic. 

RNN,  LSTM, 

YOLO V5   

4. Extreme Congestion in the Incoming Autonomous Vehicles Era 

The advent of autonomous vehicles (AVs) and connected and autonomous vehicles (CAVs) is 

poised  to  fundamentally  transform  transportation  systems. Their  integration  into  existing  traffic 

flows presents both significant opportunities for congestion mitigation and complex challenges that 

require careful consideration and strategic planning. 
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4.1. Anticipated Impacts of Autonomous Vehicles (AVs) on Traffic Flow 

Potential Benefits 

Autonomous Vehicles (AVs) and Connected and Autonomous Vehicles (CAVs) possess superior 

capabilities compared to human‐driven vehicles (HDVs), offering several potential benefits for traffic 

flow  and  congestion.  Their  inherent  advantages  include  faster  reaction  times  and  the  ability  to 

maintain  significantly  shorter  headways,  allowing  for  a  notable  increase  in  road  capacity  and 

enhanced  throughput  (Qi,  2023c). Even  a  small percentage  of AVs  on  the  road  can  significantly 

improve overall traffic efficiency (Łach & Svyetlichnyy, 2024).   

Operationally, AVs are generally designed for smoother acceleration and deceleration, and they can 

execute  smarter  lane‐changing maneuvers.  These  characteristics  lead  to  fewer  disturbances  and 

reduced heterogeneity in the traffic stream, which in turn mitigates traffic oscillations and diminishes 

the propagation of shockwaves. With advanced intelligent control, AVs have the potential to interact 

intelligently with traffic infrastructure, such as traffic lights, to minimize full stops at intersections 

and maximize throughput across the network. The increased efficiency and smoother flow facilitated 

by  AVs  can  also  lead  to  a  reduction  in  fuel  consumption  and  lower  air  pollutant  emissions, 

contributing  to  environmental  benefits  (Fujiu  et  al.,  2024).  Furthermore, AVs  are  equipped with 

sophisticated sensors and algorithms that enable them to detect and respond to potential hazards 

more  rapidly  and  consistently  than  human  drivers,  thereby  significantly  reducing  the  risk  of 

accidents. 

Potential Challenges 

Despite the promising benefits, the integration of AVs introduces several complex challenges 

that  could,  paradoxically,  exacerbate  congestion.  The  convenience  offered  by  AVs,  particularly 

individually‐owned ones, could lead to an increase in the total number of trips taken and encourage 

longer commutes. This phenomenon, known as  induced demand, has  the potential  to exacerbate 

urban sprawl and, consequently, increase overall congestion and energy consumption. 

Autonomous  Mobility‐on‐Demand  (AMoD)  systems,  while  promoting  vehicle  sharing, 

inherently  involve  ʺempty  vehicle  tripsʺ  for  rebalancing  purposes—moving  vehicles  to  areas  of 

anticipated demand (Rossi et al., 2018). This process can increase the total number of vehicles on the 

road. However, some research suggests that if these rebalancing vehicles are properly coordinated, 

they may not necessarily lead to an increase in congestion. 

A significant challenge arises from the prolonged period during which CAVs will coexist with 

human‐driven vehicles (HDVs). Differences in trust levels and inherent driving behaviors between 

human drivers and AVs can significantly impact highway traffic flow. For instance, human drivers 

might  exploit  the  larger  safety  gaps maintained  by AVs  by  cutting  in  front  of  them, which  can 

inadvertently  trigger  new  stop‐and‐go waves  (The University  of Western Australia,  2021).  This 

suggests  that AVs are not a guaranteed  solution but  rather a  technology whose  impact  is highly 

contingent on how they are deployed, owned (shared vs. individual), and managed (coordinated vs. 

uncoordinated). This implies that technological advancement alone is insufficient; careful planning 

and policy interventions are paramount to steer the outcome towards congestion reduction. 

Realizing  the  full  congestion‐busting  potential  of AVs  necessitates  substantial  upgrades  to 

existing  communication  technologies  and  transportation  infrastructure  (Susilawati,  2023).  AVs 

require an uninterrupted, continuous stream of complex traffic data and information to make critical, 

real‐time decisions  in uncertain situations (Mushtaq et al., 2021). Counterintuitively, some studies 

suggest  that  the  introduction  of  certain  types  of  driverless  vehicles,  especially when  present  in 

multiple numbers or  in scenarios  involving  lane changes, could potentially create unstable  traffic 

flow and even worsen congestion. 
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The Significance of AV Penetration Rates on Overall Traffic Efficiency and Congestion Levels 

The actual impact of AVs on traffic flow and congestion is highly dependent on several factors, 

including their market penetration rate (MPR), the specific characteristics and operational settings of 

the AVs, the prevailing traffic volume levels, and the adaptive behavior of human drivers in a mixed 

environment. Studies indicate a notable increase in road capacity as the market penetration rate of 

CAVs rises, with significant improvements observed particularly when MPRs reach moderate to high 

levels (e.g., above 40%). Simulation results suggest a complex relationship between AV mixing rates 

and traffic delay: delays may initially increase as the AV mixing rate rises (from 10% to 45%), but 

then decrease notably (from 45% to 50%), remaining constant thereafter (from 50% to 100%). This 

implies the existence of a critical threshold or optimal range for AV penetration to achieve beneficial 

impacts on congestion. 

4.2. Strategies for Managing Extreme Congestion with AVs 

Effective management of extreme congestion in the autonomous vehicle era will require a multi‐

faceted  approach  that  leverages  AV  capabilities,  integrates  with  smart  infrastructure,  and  is 

supported by thoughtful policy and planning. 

Advanced Traffic Management Systems Leveraging AV Capabilities 

The  capabilities of AVs  enable  the development of highly  sophisticated  traffic management 

systems. Adaptive Traffic Signal Control can be employed, where Deep Reinforcement Learning 

(DRL)  dynamically  optimizes  traffic  light  timings  at  intersections  during  periods  of  congestion, 

significantly improving traffic flow. AI‐powered traffic management systems can predict impending 

traffic jams and automatically adjust signal phases to mitigate their formation. 

Smart  Rerouting  is  another  crucial  technique,  involving  load‐balancing  traffic  by  guiding 

vehicles  to alternate paths  to avoid congested  intersections. Advanced algorithms  for congestion‐

aware  routing  and  rebalancing of Autonomous Mobility‐on‐Demand  (AMoD)  systems  are being 

developed to minimize overall network congestion. 

Platooning,  the  formation  of  groups  of  vehicles  traveling  in  close  proximity with minimal 

headways, is a key strategy for enhancing both traffic capacity and stability. Research suggests that 

an optimal platoon size (e.g., four to eight vehicles) can effectively balance capacity enhancement 

with the maintenance of traffic stability. 

Furthermore, leveraging the continuous stream of data from connected vehicles, Real‐time Data 

Analytics and Predictive Analytics are used to optimize traffic signal timing and to anticipate and 

respond proactively to traffic incidents. 

Infrastructure Integration and V2X Communication for Optimized Traffic Flow 

The full potential of AVs in managing congestion is realized through their seamless integration 

with smart city infrastructure. Connected and Automated Vehicles (CAVs) integrate both Connected 

Vehicle  (CV)  and Automated Vehicle  (AV)  technologies,  enabling  extensive  communication  via 

Vehicle‐to‐Vehicle (V2V), Vehicle‐to‐Infrastructure (V2I), Vehicle‐to‐Pedestrian (V2P), and Vehicle‐

to‐Everything  (V2N  to  V2E)  protocols  (Caltrans,  2025).  This  extensive  communication  network 

facilitates the continuous sharing of information, enabling intelligent decision‐making and fostering 

a self‐organizing traffic system. 

The development of smart city infrastructure, including connected roadways, intelligent traffic 

signals, and data‐driven management platforms, is crucial to fully support the operational needs of 

AVs (Dennis et al., 2025). Such  integration allows traffic signals  to adapt  in real‐time  to changing 

conditions and enables rapid detection of accidents or other incidents, leading to quicker response 

times  (FRONTIER,  2023).  This  represents  a  fundamental  paradigm  shift  from  reactive  traffic 

management, which historically responds to congestion after it has formed, to proactive, predictive, 

and collaborative systems. The capabilities afforded by AVs and V2X communication allow for the 

prediction of congestion before  it occurs, proactive rerouting of vehicles to avoid bottlenecks, and 
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collaborative management of entire fleets, moving beyond simply ʺavoiding congestionʺ to a more 

ambitious goal of ʺimproving traffic flowʺ and achieving system‐optimal solutions. This represents a 

profound transformation in the philosophy of traffic management, driven by the unprecedented data 

availability and connectivity afforded by AVs. 

Policy and Planning Interventions 

Beyond  technological  advancements,  policy  and  planning  interventions  are  vital.  The 

implementation of Connected and Autonomous Vehicle Lanes (CAVLs) is a proposed strategy to 

alleviate congestion by allowing CAVs to operate with reduced headways, thereby increasing road 

capacity. However,  studies  indicate  that  dedicated  lanes  alone may  not  always  be  universally 

successful, especially if AVs contribute to bottlenecks by stopping at curbsides for passenger drop‐

offs or by circulating on low‐capacity links (Qi, 2024b). 

Congestion Pricing or tolling, which involves charging higher rates during peak or congested 

periods,  can  effectively  reduce  traffic  demand  on  specific  roadways  by  providing  economic 

disincentives. 

Shared Autonomous Mobility‐on‐Demand (AMoD) Systems promote vehicle sharing, which 

can significantly reduce the total number of cars on the road, decrease demand for urban parking 

infrastructure, and lower pollution levels. These systems also have the potential to complement or 

even replace conventional fixed‐schedule public transit systems. 

Broader Traffic Demand Management  (TDM)  strategies,  such as Commute Trip Reduction 

programs, Flextime arrangements, Transit Improvements, High‐Occupancy Vehicle (HOV) Priority 

lanes, and Access Management, will likely be integrated into comprehensive AV‐era transportation 

planning (Victoria Transport Policy Institute, 2017). 

Proactive Planning is emphasized, with municipalities advised to closely monitor the evolving 

traffic  landscape and proactively  incorporate  the  impacts of Shared Autonomous Vehicles (SAVs) 

and Transport Network Companies (TNCs) into all new infrastructural projects.50 Early adaptation 

and  intervention  are  deemed  crucial  for  shaping  how  AVs  affect  urban  traffic  and  mobility 

(Overtoom et al., 2020). 

4.3. Future Outlook and Research Challenges 

Uncertainties, Data Limitations, and Ongoing Research Needs 

The precise manner in which cities and their traffic systems will transform with the widespread 

adoption of AVs remains highly uncertain. A significant challenge  is the current  lack of extensive 

real‐world observed traffic data for AVs, compelling most studies to rely heavily on modeling and 

simulation.  Technical  hurdles  persist,  including  the  complexity  and  high  cost  associated  with 

developing  and maintaining  sophisticated AV  sensors,  software,  and  hardware.  The  regulatory 

framework for AVs is still in its nascent stages and varies significantly across different jurisdictions, 

creating legal and operational uncertainties. Public skepticism regarding AV safety and reliability, 

coupled  with  the  substantial  infrastructure  investments  required,  pose  serious  obstacles  to 

widespread  deployment. A  fundamental  research  conflict  exists: while  investigating  robotics  in 

mixed autonomy settings requires large‐scale in‐situ testing, there is currently no holistic replacement 

for the real physical traffic environment for such investigations (Nice et al., 2023). 

Need for Holistic Approaches 

To fully realize the benefits of autonomous vehicles, a concerted effort is required to transition 

from an  ʹeach‐to‐their‐ownʹ autonomy model to one of ʹCollaborative Autonomous Carsʹ (HERE & 

SBD,  2016). This necessitates  sharing  rich vehicle  sensor data among  cars,  enabling  collaborative 

management of autonomous fleets, and breaking down data silos by connecting vehicle data with 

road network and  infrastructure data (e.g.,  traffic  light  information). This highlights that  the  long 

coexistence  of AVs  and HDVs  (Qi,  2024a),  and  the  unpredictable  human  behavior  (e.g.,  human 
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drivers cutting in front of AVs), poses a significant challenge. Solutions must therefore account for 

complex human‐machine interaction, not just technical AV capabilities. 

Balancing Benefits and Risks 

While  AVs  promise  significant  improvements  in  safety  and  efficiency,  it  is  crucial  to 

acknowledge and mitigate potential risks. For instance, some studies indicate a potential increase in 

collision risk at higher AV market penetration rates under certain control  frameworks. Therefore, 

thoughtful and strategic integration is essential to avoid unintended consequences, such as widening 

existing inequalities or increasing overall vehicle usage. 

5. Conclusion 

Traffic congestion represents a complex, escalating systemic problem that has rendered much of 

the existing road infrastructure obsolete and imposes significant economic, social, and environmental 

costs globally. Addressing this challenge, particularly its extreme manifestations, necessitates a shift 

from  traditional  capacity  expansion  to  more  sophisticated  analytical  tools  and  innovative 

technological interventions. 

The understanding of traffic congestion has evolved from descriptive observations to analytical 

definitions that recognize its emergence from non‐linear interactions within transportation networks. 

Quantifying  extreme  congestion  now  extends  beyond  simple  speed  and  travel  time metrics  to 

embrace concepts of reliability, such as the Planning Time Index and Buffer Time Index, which are 

crucial  for  assessing  the  predictability  and  user  experience  under  severe  conditions. Advanced 

theoretical  frameworks,  like  Kernerʹs  Three‐Phase  Traffic  Theory,  provide  a  more  granular 

understanding of congestion breakdown, distinguishing between synchronized flow and persistent 

wide moving jams, thereby offering a robust foundation for modeling these complex phenomena. 

Traffic modeling has similarly progressed from simplified fluid dynamics analogies to a diverse 

toolkit  encompassing  macroscopic,  microscopic,  and  mesoscopic  approaches.  While  analytical 

models offer fundamental insights into congestion formation (e.g., phantom traffic jams, jamitons), 

simulation  and  data‐driven methods,  particularly  those  leveraging Machine  Learning  and Deep 

Learning, are increasingly vital for handling real‐world variability, predicting future patterns, and 

enabling  real‐time management. Mesoscopic models,  in  particular,  emerge  as  a  critical  bridge, 

offering an optimal balance of detail and computational efficiency for dynamic traffic management. 

The  effective  application  of  these  models  relies  on  a  critical  interplay  between  theoretical 

understanding and practical implementation, using fundamental principles to inform robust, data‐

driven solutions. 

The  advent  of  autonomous  vehicles  (AVs)  introduces  a  paradoxical  potential  for  traffic 

congestion. On one hand, AVs offer significant promise for alleviating congestion through increased 

road capacity, smoother traffic flow, and optimized network management, driven by their superior 

reaction  times,  shorter  headways,  and  intelligent  operational  capabilities.  On  the  other  hand, 

challenges  such  as  induced  demand,  the  complexities  of  empty  vehicle  rebalancing,  and 

unpredictable human‐AV  interactions  in mixed  traffic  environments  could potentially  exacerbate 

congestion. The actual  impact  is highly  contingent on  the AV penetration  rate and  the nature of 

human driving behavior in a mixed autonomy environment. 

Moving  forward,  managing  extreme  congestion  in  the  AV  era  demands  a  fundamental 

paradigm shift from reactive to proactive, predictive, and collaborative traffic management systems. 

This involves leveraging AV capabilities through adaptive traffic signal control, smart rerouting, and 

platooning,  supported  by  extensive  Vehicle‐to‐Everything  (V2X)  communication  and  integrated 

smart city infrastructure. Policy and planning interventions, including dedicated lanes, congestion 

pricing, and shared autonomous mobility services, will be crucial in shaping the positive impacts of 

AVs. However, significant uncertainties remain, particularly regarding real‐world data availability, 

regulatory frameworks, and public acceptance. Realizing the full benefits of AVs while mitigating 

potential  risks will  require a holistic approach  that prioritizes collaborative autonomous systems, 
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addresses human factors in mixed traffic, and ensures thoughtful integration into urban planning to 

create truly efficient, safe, and sustainable transportation networks. 
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