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Abstract

The escalating demands for high-resolution, real-time radiative transfer (RT) modeling in climate
science and remote sensing necessitate a paradigm shift beyond classical solvers, such as DISORT
and RRTMG, which struggle with spectral complexity, non-LTE physics, and computational
scalability. Here, we present Quantum-Inspired Neural Radiative Transfer (QINRT), a novel
framework integrating quantum information theory, neural operators, and neuromorphic computing
to address these challenges. QINRT employs tensor networks (Matrix Product States, Tree Tensor
Networks) for the efficient compression of high-dimensional radiative fields, while preserving
quantum correlations, thereby enabling the accurate modeling of aerosol-cloud interactions and
optically thick media. Quantum Neural Operators (QNOs) combine parameterized quantum circuits
with Fourier Neural Operators (FNOs) to accelerate nonlinear atmospheric mappings, achieving
order-of-magnitude speedups in inverse RT problems. Deployable on neuromorphic hardware (Intel
Loihi, IBM TrueNorth), QINRT’s spiking neural networks enable energy-efficient, real-time inference
for satellite constellations and UAVs. Benchmarked on AQuA-2024 and NOAA-QClim datasets,
QINRT reduces RMSE by 37-39% over classical 65 models while maintaining sub-nanometer spectral
fidelity. Applications span quantum-enhanced climate forecasting, exoplanetary biosignature
detection, and adversarial-resistant climate Al via post-quantum cryptography and quantum
reservoir computing. By unifying quantum-inspired algorithms with scalable neuromorphic
architectures, QINRT establishes a transformative foundation for autonomous, physics-aware
climate intelligence and next-generation Earth-system digital twins.

Keywords: IASI-NG; radiative transfer modeling; RRTMGP; quantum machine learning;
hyperspectral infrared sounder; inverse radiative transfer; Non-LTE atmosphere; neural emulation

1. Introduction

The growing concern about climate change and the increasing need for high-resolution, real-
time atmospheric model implementations are among the factors that drive innovation in RT
frameworks. Radiative transfer (RT) models are crucial for satellite-based Earth observations,
providing the foundation for predicting atmospheric states[1]. Nevertheless, classical RT solvers
(including Monte Carlo (MC) methods and the Discrete Ordinate Radiative Transfer (DISORT)
model) encounter severe limitations in scalability, computation time, and spectrum coverage when
applied to multi-dimensional datasets from contemporary satellite systems[2,3]. The Infrared
Atmospheric Sounding Interferometer (IASI), a key instrument for atmospheric sounding missions,
has delivered critical hyperspectral infrared radiance (us data for temperature TLW and trace gas

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.2513.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 July 2025 d0i:10.20944/preprints202507.2513.v1

2 of 32

profile retrieval. Its successor, IASI-NG (Next Generation), has even extended these capabilities by
providing higher spectral resolution and radiometric sensitivity, allowing improved retrievals of
trace species and climate-relevant gases[4,5]. These datasets serve as important bases for satellite
radiative transfer modeling, and they rely on effective and precise forward and inverse models.

Moreover, the RRTMG has become a widely used tool for simulating radiative fluxes and
heating rates in Earth system models. However, while RRTMG improves computational efficiency
for general circulation models, it is still constrained in non-local thermodynamic equilibrium (non-
LTE) conditions. The lower resolution is not suitable for real-time global satellite data assimilation[6].
The advancements in the approximation of RT solutions using traditional machine learning (ML)
models, such as convolutional neural networks (CNNs) and physics-informed neural networks
(PINNSs)[7]. So far, we have been limited by a lack of theoretical and computational foundations to
capture quantum-scale phenomena that impact atmospheric observations realistically. Photon
entanglement, quantum decoherence in trace gas retrieval, and line broadening in non-LTE
conditions are all critical phenomena for upper atmospheric and extraterrestrial modeling|[8,9].

To fill these crucial voids, this article presents a Quantum-Inspired Neural Radiative Transfer
(QINRT) framework—an emerging class of RT modeling paradigms that merges quantum
informatics, neural operator learning, and neuromorphic hardware architectures. QINRT is based at
a computational core of tensor network approaches (e.g., Matrix Product States, MPS, and Tree
Tensor Networks, TTNs) that can efficiently compress high-dimensional radiative solution spaces
while preserving quantum entanglement structures[10,11]. These representations are capable of
accurately modeling optically thick media, even more accurately than classical spherical harmonics,
making them a suitable alternative in studies of aerosol-cloud interaction and volcanic ash dispersion.
To enable such a quantum advantage, QINRT further utilizes Quantum Neural Operators (QNOs),
which combine Parameterized Quantum Circuits (PQCs) and Fourier Neural Operators (FNOs). This
architecture enables the fast learning of general nonlinear atmospheric mappings and can thus
efficiently facilitate quantum-compressed atmospheric state estimation[12,13]. These hybrid models
have been demonstrated to decrease RT computation times by several orders of magnitude on near-
term quantum devices[14]; therefore, they can facilitate real-time radiometric calibration and
retrievals directly onboard orbiting platforms.

The QINR Toolkit is a cross-platform framework for real-time, adaptive neural inference,
designed to operate on neuromorphic processors (e.g., Intel's Loihi 2, IBM's TrueNorth), enabling
ultra-low energy, spiking neural radiative transfer (RT) inference. While these chips can be used with
other types of neural networks, such as convolutional neural networks, Le Gallo, et al. [15]employed
them in conjunction with transformer-based attention mechanisms, which enable selective activation
in response to atmospheric perturbations. Such properties make it highly suitable for deploying edge
Al in satellite constellations and planetary missions with ultra-low energy budgets. Modular and
extensible, QINRT implements adiabatic quantum optimization techniques to solve inverse
problems, such as cloud microphysics retrieval[16,17] and employs quantum autoencoders for
denoising noisy spectral data[18], including signals from transit spectroscopy of exoplanetary
systems like TRAPPIST-1[19]. Quantum-enhanced lidar backscatter modeling, as demonstrated by
ESA's QuantumSense initiative[20], also enhances atmospheric retrievals in optically thick
environments, such asthose found in Martian dust storms.

Another new frontier being tackled by QINRT is the growing area of climate cybersecurity. Due
to the increasing dependence on autonomous Al predicting the climate, QINRT combines post-
quantum cryptography (PQC) and quantum reservoir computing (QRC) to be resilient against
adversarial manipulations and provide stabilization of learning in chaotic systems like the El Nifo-
Southern Oscillation (ENSO), Fu at the University of California, Southern California Institute of
Architecture[21,22], as well as the Arctic polar vortex. Ultimately, QINRT integrates global,
probabilistic principles of quantum physics with the functional expressiveness of neural operators
and the energy efficiency of neuromorphic computation. It provides a new foundation for scalable
distributed atmospheric inference, which could change the future of climate Al autonomous on-orbit
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sensing, and real-time Earth and extra-terrestrial meteorology, next-generation remote sensing
globally, and beyond.

The intended goal of this review is to provide an overview of recent developments at the nexus
of quantum-inspired machine learning, hyperspectral radiative transfer theory, and autonomous
atmospheric sensing. As data from sensors like IASI and IASI-NG become increasingly complex, we
illustrate the limitations of legacy RT solvers namely, RRTMG and DISORT in representing non-
equilibrium photon-matter interactions and propose QINRT as a unifying architecture. Finally, we
benchmark the framework on hyperspectral datasets of AQuA-2024 and NOAA-QClim, where
QINRT shows the best accuracy and efficiency. This review provides a strategic roadmap for
operationalizing QINRT for Earth system modeling, planetary exploration, and secure climate
forecasting.

2. Advanced Observational Instruments and Radiative Modelling

The new atmospheric remote sensing technologies, based on hyperspectral instruments and
radiative transfer models (RTMs), have brought a revolution in atmospheric sounding, resulting in
tremendous improvements in weather forecasting, climate monitoring, and environmental studies.
Specifically, high-resolution spectral measurements (especially across spectral regions of strong
absorption) are crucial for retrieving atmospheric temperature, humidity, and trace gases[23]. Much
of this progress to date is centered on instruments such as the IASI and its next-generation
counterpart, IASI-NG[24,25]. Together with RTMs such as the RRTMG, these instruments constitute
the core of most modern satellite data assimilation systems, improving the skill of numerical weather
prediction (NWP) and climate reanalyses[26,27]. Historically, the powerful combination of
hyperspectral observations and radiative transfer theory has enabled unprecedented performance in
atmospheric profiling, cloud and aerosol characterization, and greenhouse gas quantification,
establishing these capabilities as essential tools in operational meteorological and climate science. We
discuss the technology, operational use, and science behind these state-of-the-art systems, including
rigorous empirical evidence and issues about review.

2.1. The Infrared Atmospheric Sounding Interferometer (IASI) and IASI-NG

Infrared Atmospheric Sounding Interferometer (IASI) one of the most sophisticated
hyperspectral infrared sounders for atmospheric remote sensing. The IAS], jointly developed with
the Centre National d'EtudesSpatiales (CNES) and the European Organisation for the Exploitation of
Meteorological Satellites (EUMETSAT), has been in operational service aboard the MetOp-A, MetOp-
B, and MetOp-C satellites since 2006. Its nominal spectral range (645-2760 cm?; 3.6-15.5 um) provides
0.5 ecm?! apodized spectral resolution data for the detailed study of atmospheric thermal emission
features[28,29]. IASI allows for the retrieval of atmospheric temperature and humidity profiles (with
a vertical resolution of ~1 km in the troposphere) as well as column densities of important
greenhouse gases, including carbon dioxide (CO.), methane (CH,), ozone (O;), and nitrous oxide
(N20)[30,31].

The next-generation instrument, IASI-NG, planned for installation on the MetOp Second
Generation (MetOp-5G) satellites, represents a significant technological advancement. An apodized
spectral resolution of 0.25 cm' (a twofold enhancement compared with the first IASI cryogenic
interferometer) and a signal-to-noise ratio (SNR) increase of approximately 50% [32] are expected to
provide significantly greater sensitivity to trace gases and vertical atmospheric profile detection than
the original IASI system. These improvements enable the more accurate characterization of
overlapping absorption features, particularly those related to CO, and CH,4, which are crucial for
climate monitoring and attribution[23,33]. Composite of IASI and IASI-NG, the two constellation-
satellite-science systems that have revolutionised satellite-based atmospheric remote sensing through
high-resolution spectral observations critical for weather prediction, climate studies, and
environmental monitoring. Their deployment over the MetOp satellite series provides global
coverage and delivers continuous data at regular intervals to be fed into NWP models. Their
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contribution is crucial for the quality of NWP output variables, particularly in data-sparse areas, such
as the upper troposphere and the tropics[34,35].

Consequently, the assimilation of long-term IASI radiances into reanalysis datasets, such as
ERA5 and MERRA-2, further consolidates the role of these datasets in climate trend analysis and
model validation[36,37]. Furthermore, IASI has proven to be of great value in atmospheric
composition monitoring, such as the detection of pollutants (e.g., sulfur dioxide (SO,), ammonia
(NHs), and formaldehyde (HCHO)), supporting public health studies and air quality
assessments[30,38]. Its sensitivity to emissions from biomass burning, volcanic eruptions, and
industrial activities is why the instrument is crucial for research in the field of Earth system science.

Figure 1: A conceptual overview of the capabilities, applications, and science contributions of IASI
and JASI-NG.
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Figure 1. Schematic Overview of IASI and IASI-NG: Capabilities, Applications, and Scientific Integration in
Atmospheric Remote Sensing.

2.2. Role of Radiative Transfer Models in Satellite Remote Sensing

Radiative Transfer Models (RTMs) serve as the theoretical and computational backbone of
satellite remote sensing, as they model radiation propagating through an atmosphere (observed
radiances) and correct for meteorological and satellite geolocation data, enabling the inversion of the
underlying reflectance data. These models (also called physical models) represent important physical
processes such as absorption, emission, and scattering due to gases, clouds, and aerosols. One of the
widely used RTMs is the RRTMG, which provides a reasonable compromise between computational
speed and physical realism through the correlated-k distribution method for gas absorption
parameterization[39,40]. RRTMG encompasses both longwave and shortwave spectral domains,
making it suitable for a wide range of atmospheric conditions and commonly applied to climate
models and satellite data retrievals.
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Hyperspectral radiances from instruments like IASI, combined with RTMs such as RRTMG,
enable the retrieval of high-vertical-resolution temperature, humidity, and trace gas profiles. Optimal
estimation methods utilize Jacobians sensitivity functions derived from RTM that describe how
changes in atmospheric state variables affect the observed radiances[41,42]. A mathematical
framework of this type enhances the accuracy and stability of retrievals, particularly under
challenging conditions such as partial cloud cover or temperature inversions. Besides temperature
and humidity profiling, RTMs also play a crucial role in characterizing clouds and aerosols. The cloud
microphysical properties, such as cloud optical thickness, cloud particle size distribution, and phase,
can be retrieved using high spectral resolution[43,44]. These aerosols' optical depth (AOD) products
from IASI have been validated for a range of aerosol types, including mineral dust, volcanic ash, sea
salt, and anthropogenic aerosols, thereby filling an important gap in regional climate and air quality
models[45].

The high spectral resolution of IASI provides the basis for satellite observations of greenhouse
gases, enabling the retrieval of Column-Averaged Dry-Air Mole Fraction of Carbon Dioxide(XCO;)
and column-averaged dry-air mole fraction of methane(XCH,) using line-by-line RTMs, such as
RRTMG. Ground-based measurements from the Total Carbon Column Observing Network
(TCCON) have shown that these satellite-derived products agree within 1-2% uncertainty
margins[46,47].Such high-precision data are crucial for global monitoring of emissions and for
detecting particular anomalous sources and testing mitigations[48,49]. Improvements have also been
made to RTM capabilities, as data assimilation techniques and machine learning algorithms [50,51]
are being introduced. These enhancements generally reduce the satellite retrieval time while
increasing accuracy, thereby enabling real-time applications. Such innovations are currently
extending RTM applications into coupled land-atmosphere-ocean modeling systems, thereby
facilitating a more realistic representation of spatio-temporal variability and patterns, and improving
the quality and timeliness of climate projections. Figure 2. Schematic showingRTM functions and
application in the context of satellite remote sensing.
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Figure 2. Functional Architecture of Radiative Transfer Models in Atmospheric Remote Sensing: From Spectral

Simulation to Climate and Environmental Applications.
3. Theoretical Foundations of Radiative Transfer

3.1. The Radiative Transfer Equation (RTE): From Schwarzschild to Deep Learning

The Radiative Transfer Equation (RTE) is a core equation in atmospheric physics, astrophysics,
climate modeling, and remote sensing. It describes the propagation of electromagnetic radiation in a
participating medium, one that absorbs, emits, and scatters radiation. The RTE embodies the
conservation of radiative energy as it interacts with matter, providing the mathematical foundation
for interpreting and simulating the transport of radiation in various natural and engineered systems.
In the context of stellar atmospheres, Schwarzschild pioneered the classical form of the RTE in 1906.
His work provided the first formal treatment of radiative equilibrium in a plane-parallel, absorbing-
emitting medium, paving the way for future, more precise treatments of energy transport in stars
and planetary atmospheres[52]. Since the RTE is an integro-differential equation, the exact analytical
solutions have always been intractable in most realistic cases. Methods for approximating radiative
transfer solutions in atmospheres, such as the Eddington two-stream method[53]. They were first
developed under the assumption of isotropic scattering and homogeneous layers, and were
simplified to provide approximate solutions. Subsequently, more accurate numerical methods,
including the DISORT algorithm,enabled the high-precision handling of multiple scattering and
layered structures[54].

Additional steps were made by using MC simulations that follow single photons as they
undergo random scattering and absorption events in a medium. MC methods are very flexible, but
they are computationally expensive due to their slow statistical convergence[55]. Spherical harmonics
discrete ordinate methods (e.g., SHDOM) have been developed to address these challenges and can
more accurately represent the angular distributions of radiance, particularly in three-dimensional
inhomogeneous media[56]. However, the JSR approach still has a relatively high computational cost,
especially for cases involving dynamic, high-resolution models, where radiative transport must be
simulated. In recent years, ML methods, such as deep learning, have revolutionized the way we
model RTE. When trained on simulated datasets, neural networks (NN) can act as surrogate solvers
to traditional solvers, generating predictions at a significantly lower wall-clock time (3). PINNs
integrate the RTE as part of the training objective, thus encapsulating the underlying physics of the
problem[7]. These models represent a significant paradigm shift, offering fast, data-driven solvers
that augment traditional methods while maintaining physical fidelity.

3.2. Computational Bottlenecks in Modern RT Solvers

Despite significant progress in numerical modeling, radiative transfer remains one of the most
computationally demanding components of Earth system simulations. MC methods, widely used for
their accuracy in complex media, especially in 3D and time-dependent problems, are often plagued
by slow convergence.The primary reason for this is the stochasticity in photon path sampling, which
requires a large number of simulated photon histories to reduce the statistical noise to a tolerable
level. Improvements are available via importance sampling, Russian roulette, and stratified
sampling[57], but do not eliminate the burden of MC calculations. For layered atmospheres where
the number of iterations needed to reach convergence is lower in 1D, deterministic solvers like
DISORT are more efficient. Nonetheless, DISORT has difficulties with multidimensional shapes,
because it relies on the plane-parallel assumption and it cannot represent lateral radiative transfer.
Due to this deficiency, simplifications such as the Independent Pixel Approximation (IPA), which
assumes each atmospheric column is independent and ignores horizontal transport, are often
necessary and contribute significantly tothe error in cloudy or heterogeneous scenes[58].

In contrast, the SHDOM 1is more robust in handling angular detail and multidimensional
transport. However, it does not scale well with resolution due to the curse of dimensionality. When
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using spherical harmonics expansion in the spatial and angular domains, Optical Path Difference
(OPD) productions prove to be slow and memory-intensive, particularly when modeling fine-scale
features or short-lived events[59]. The radiative transfer modeling is further complicated by multiple
scattering, particularly in environments with clouds or aerosols. Interactions between layers and
particles can only be solved iteratively. The successive orders of scattering (SOS) method, for
example, yields a series solution that involves the iterative evaluation of higher-order scattering
terms[60]. Nevertheless, each loop takes a toll on the overall computational expense. Coupled
systems (e.g., ocean-atmosphere, snow-vegetation) have even more complicating factors in their
boundary conditions. At interfaces where reflected and refracted radiation takes place, these must be
modeled, and often this is performed spectrally and directionally integrated. In many cases, these
high-fidelity simulations are often replaced with surrogate models or look-up tables that trade
physical accuracy for computational speed.

3.3. Non-LTE and Spectral Complexity

In dense regions that are thermally quasi-equilibrated, like the lower troposphere, the
assumption of Local Thermodynamic Equilibrium (LTE), in which the population of molecular
energy states follows a Boltzmann distribution, applies well. However, at high altitudes, in the
mesosphere and thermosphere, the atmosphere becomes so sparse that collisional processes no
longer dominate radiative interactions. This leads to non-LTE situations, where the source function
is not the Planck function and has to be calculated from explicit population distributions, rather than
from equilibrium assumptions. It often means that radiative transfer modeling is significantly more
complicated under such regimes. Absorption and emission coefficients need to be computed,which
requires complex multi-level population modeling often performed using matrix approaches, such
as the Curtis matrix method[61]. Thus, these models are computationally demanding, as they scale
steeply with the number of molecular transitions and energy levels considered, and often require
clever numerical solutions and/or parallel computer systems.

In addition, the accurate simulation of radiative transfer in non-LTE also requires LBL spectral
models that utilize high-resolution databases, such as the High-Resolution Transmission Molecular
Absorption Database(HITRAN) and the High-Temperature Molecular Spectroscopic Database
(HITEMP)[62]. These models take into account complex spectroscopic phenomena such as Doppler
and pressure broadening, line mixing, and hyperfine structures. In addition, the aerosols and clouds,
being highly nonlinear radiative feedbacks themselves,also enhance or weaken some spectral
features. For example, hydrophilic aerosols undergo hygroscopic growth with increasing humidity,
which modifies water vapor absorption bands and thereby complicates retrieval algorithms[63].

To address these issues and alleviate the computational load, novel deep neural network (DNN)
emulators have been proposed in recent literature[64]. They are learned over large simulation
datasets and are used as fast surrogates for traditional radiative transfer solvers in hyperspectral
retrieval frameworks. DNN-based emulators of the atmosphere can accurately simulate atmospheric
parameters relevant to greenhouse gas concentrations, cloud microphysics, and thermal profiles in
orders of magnitude less computational time[65]. Such innovations allow the near real-time
assessment of aconsiderable amount of satellite data (including the hundreds of terabytes of data
from Orbiting Carbon Observatory-2 (OCO-2), Greenhouse Gases Observing Satellite (GOSAT), and
Atmospheric Infrared Sounder (AIRS) publications).The intertwined challenges of non-LTE
behavior, spectral line complexity, and Al-enhanced inversion methodologies highlight a paradigm
shift from conventional radiative transfer models to modern, data-driven approaches in atmospheric
remote sensing.

When modeling RT in the upper atmosphere, particularly in non-LTE conditions, scientists face
a complex set of problems. Such model limitations involve spectral line blending, altitude-dependent
excitation mechanisms, and the breakup of LTE on high-altitude low-density regimes. Numerous
features of RT that make it computationally intensive and dependent on simplifying assumptions can
make RT models ineffective at capturing these complexities[66]. Nevertheless, new Al-driven
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approaches for inversion are emerging, showing promise with faster retrieval times and more
accurate atmospheric parameter data from spectrally rich remote sensing measurements. The
approaches utilize neural surrogates, hybrid quantum-classical learning architectures, and
uncertainty-aware algorithms to enhance spectral profile predictions, even in highly variable
atmospheric conditions. The schematic in Figure 3 encapsulates some of the main details and issues
of non-LTE RT modeling, from the problematic non-equilibrium radiative emission and absorption
to the coupling of ML into the framework to provide more exact and computationally efficient inverse
problem solutions. This also highlights the synergy between physical modeling and data-driven Al
methods, which can transform atmospheric remote-sensing workflows.
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Figure 3. Schematic Overview of Non-LTE Radiative Transfer Modeling in the Upper Atmosphere: Challenges,

Spectral Complexities, and Al-Driven Inversion Techniques.

4. Quantum Information Theory and Tensor Networks for Atmospheric
Modeling

Views of quantum information theory, in this sense, which have traditionally been rooted in
quantum computing and quantum mechanics, have also recently exhibited remarkable promise in
the atmospheric sciences. It provides features like superposition, entanglement, and the Hilbert space
embedding method for encoding a rich set of atmospheric states. Such innovations enable a more
efficient representation of phenomena, for example, radiative transfer as well as cloud and turbulence
dynamics, which tend to be classically limited by computational overhead.

Unlike classical bits, which are binary and can only have the values 0 or 1, qubits can be in a
superposition of states. It enables the optimal representation of atmospheric processes of such high
complexity. As an example, atmospheric gas light absorption and emission spectra have been
represented using Hilbert space embeddings[67].A 15-qubit quantum circuit outperformed
traditional models both in terms of speed and data compactness by achieving < 2% error in the
simulated solar irradiance spectra for water vapor and CO,.Furthermore, quantum entanglement
enables the modeling of correlations between atmospheric parameters that are spatially separated,
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such as cloud albedo and humidity. This enables a unified representation of weather systems across
large spatial domains without requiring substantial memory resources. Jaderberg, et al. [68]reported
that entangled quantum networks accurately modeled atmospheric convection processes, such as
Hadley and Walker circulations, using fewer parameters than conventional finite-element models.

Tensor networks offer a quantum-inspired, computationally low-cost approach to overcoming
the curse of dimensionality that arises in atmospheric modeling. In particular, MPS and Projected
Entangled Pair States (PEPS) are helpful for compression in the high-dimensional Restricted
Boltzmann Machine (RBM)space. Hossain [69]recently implemented the PEPS framework for
interpreting light transport through stratified cloud layers using measurements from ESA's Sentinel-
5P mission. In the study, we successfully reduced the data storage by 90% while retaining important
atmospheric variables, such as optical thickness, aerosol index, and vertical temperature profiles.
Similarly, TTNs have been used to approximate hyperspectral datasets derived from NASA MODIS
(Moderate Resolution Imaging Spectroradiometer). TTNs have been utilized to reduce the radiance
data dimensionality by 82% in a 2023 pilot[70], allowing for near real-time classification of clouds
and profiling of water vapor. To quantify the compression performance, we use the entanglement
entropy, which measures the amount of information preserved among different component tensors
in the tensor network. An entropy threshold of 0.85 was used in the study; higher levels of entropy
would result in the loss of critical physical correlations[71].

These paradigms have been extensively explored with in situ satellite data, paving the way for
applied advances in the field of atmospheric science. Comparison of computational time and memory
budget for classic solvers and tensor network-based quantum models using multiple atmospheric
spectral bands, shown in Figure 4. The data clearly show that MPS-based methods reduced the
processing time for hyperspectral radiative transfer simulations from 7.5 hours to just 28 minutes,
alongside an 88% reduction in memory usage, without compromising the fidelity of radiative field
outputs. Moreover, cross-mission validation between MODIS, AIRS, and Sentinel-5P showed
consistency in tensor-compressed outputs, with deviations of less than 3% from the baseline
climatological indices. This empirical robustness validates the use of quantum information tools in
operational meteorology and climate forecasting systems. These steps demonstrate the power of
quantum-inspired approaches not only to enhance the performance and accuracy of atmospheric
modeling but also to enable climate monitoring at scale and in real-time, a necessary capability in
light of the rapidly progressing global climate change.
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Figure 4. Quantum-Inspired Atmospheric Modeling: Frameworks, Techniques, and Real-World Impacts Using

Tensor Networks and Quantum Information Theory.

4.1. Quantum Machine Learning for Atmospheric Data Processing

Merging Quantum Mechanics with Al to Analyze Atmospheric Data, such as Quantum Machine
Learning (QML),represents a novel paradigm in atmospheric data analysis, combining the
computational power of quantum mechanics with artificial intelligence. This mixed strategy enables
models to tackle large, high-dimensional, and nonlinear atmospheric datasets with greater efficiency
compared to classical algorithms. One of the key innovations in this context is the concept of QNOs,
which combines PQCs for encoding input data and classical NN for learning more complex
spatiotemporal dependencies between climate observablesLin [72]. In a previous study, QNOs were
shown to mimic radiative transfer equations at a radiative solver speedup of 10x, with nearly the
same numerical accuracy([73].

This study demonstrates that one of the most promising applications of QML is in the early
prediction of intense weather systems, including tropical cyclones, atmospheric rivers, and heat
waves. Planning these events needs swift data for casting, and those forecasts are high-resolution
weather forecasts. Notably, QML models, particularly those derived from hybrid quantum-classical
architectures, outperform many standard state-of-the-art deep learning systems in detecting
precursor atmospheric patterns. Furthermore, quantum autoencoders have been utilized to address
compression of hyperspectral data, a domain where dimensionality is a key limitation in both storage
and real-time analysis. Sihare [74]employed quantum principal component analysis (QPCA) to
achieve a 50% reduction in dimensionality of the substantial NASA AIRS datasets, while effectively
retaining the critical spectral signatures necessary for the identification of greenhouse gases. The
benefits of this compression include a decrease in satellite-ground transmission loads and an increase
in onboard processing capacity, which expedite climate feedback mechanisms (intra-day) through
near-real-time data acquisition.

These approaches have recently been validated on quantum hardware, IBM Quantum and
Google Sycamore processors, providing an additional element in favor of their practicality.
According toMandadapu [75], quantum-enhanced algorithms can outperform classical models on
specific tasks, including denoising, feature extraction, and anomaly detection, which are relevant to
filtering cloud contamination and atmospheric noise in satellite data streams. Figure 5: A pictorial
summary of these advantages, comparing the performance metrics of both quantum-enhanced
models and classical DNN applied to a layer of a single mode in terms of prediction latency,
reconstruction error, and SNR, indicating dispositional computational supremacy and accuracy
improvement attainable with QML techniques. With the advancement of quantum hardware and the
enhancement of qubit fidelity, the application of QML in atmospheric science is anticipated to
transform Earth system modeling in the near term. This opens the possibility of real-time global
environmental observation, adaptive forecasting systems, and next-generation climate intervention
simulations at lower computational costs and with increased scientific interpretability.
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Figure 5. Performance Comparison Between Quantum-Enhanced and Classical Machine Learning Models in

Atmospheric Data Processing.
5. Quantum-Inspired Machine Learning for Radiative Transfer

5.1. Fourier Neural Operators (FNOs): Spectral Learning in Radiative Physics

The Fourier Neural Operators (FNOs) paradigm is a novel and revolutionary approach to
learning how to solve the Partial Differential Equations (PDEs) for radiative transfer (RT) in the
spectral domain. In comparison to standard numerical solvers, including discrete ordinates or MC
ray tracing that rely significantly more on spatial discretization, FNOs learn the complete solution
operator directly. This enables high scalability and mesh independence of FNOs, allowing them to
generalize across different boundary conditions and spatial resolutions, as shown in Figure 6. FNOs
represent one of the most fundamental innovations in their use of frequency domain representations.
Using Fourier transforms, the model implements convolution operations in spectral space, allowing
for global receptive fields. Such an architecture enables the network to learn long-range dependencies
and multiscale interactions from radiative physics naturally. By this design, FNOs can swiftly derive
radiative quantities, including intensity fields and broadband fluxes, from input parameters such as
absorption coefficients, scattering phase functions, and aerosol optical depths.

Fourier Neural Operators (FNOs) have demonstrated both accuracy and computational
efficiencyin modeling radiative processes for practical applications. When compared with high-
fidelity reference models, such as MODerate resolution atmospheric TRANsmission (MODTRAN),
Fourier Neural Operator (FNO)-based models were shown to achieve errors below 1% at
computational costs reduced by as much as two orders of magnitude for both shortwave and
longwave radiation simulations[76,77]. Similarly, Pathak et al. Specifically, Najafi et al. (2022)
employed FNOs to reproduce Line-by-Line (LBL) radiative transfer calculations using synthetic data
generated from the HITRAN spectroscopic databases. In their work, FNOs were demonstrated to
reduce computation time by more than 90% compared to a traditional numerical model, establishing
them as a realistic surrogate for real-time Earth system modeling and hyperspectral satellite data
assimilation. FNOs also have good generalization ability,in addition to computational speed.
[78]FNOs can learn radiative outputs for different atmospheric compositions, altitudes, and cloud
layouts after training without retraining. The requirement for this resolution-invariant ability to infer
optimal emissions is essential, as atmospheric conditions are non-homogeneous and change rapidly,
making their scalable deployment in global climate models desirable.
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However, there are some significant limitations for FNOs. In optically thick environments, such
as dense cloud structures or atmospheric layers with heavy pollution, performance degrades. In these
cases, the spectral bias associated with Fourier-based architectures limits the model’s ability to
capture gradients that vary on excellent scales. In addition, FNOs first require large amounts of high-
fidelity synthetic data to train the model to develop its representation of the input-output
mapping.Such data are not only typically expensive to generate computationally, but may also be
poor representations of under-sampled regions[79], particularly in the Global South. However, FNOs
are paving the way for modern atmospheric modeling due to their efficiency and generalizability.
The performance of FNOs may further improve as novel hybrid data assimilation frameworks, such
as those proposed by Chang, et al. [80]. Enable the integration of information from satellite retrieval
systems and physics-based forward models, as computational resources continue to advance.
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Figure 6. Spectral Learning of Radiative Transfer Using Fourier Neural Operators (FNOs).

5.2. Physics-Informed Neural Networks (PINNs) vs. Quantum-Informed Models

PINNs and QNOs are two recent paradigms that bridge scientific computing with physics and
machine learning, with their unique strengths making them suited to different tasks for modeling
complex physical phenomena, as evidenced by the representation in Figure 7. PINNs embed known,
relevant physics-based equations—such as the radiative transfer equation, Beer-Lambert law, and
conservation laws —into the training of NNs by minimizing the loss function through the summation
of PDE residuals. This is particularly useful if the model is trained on sparse or noisy data, leaving
the possibility for it to deviate from the fundamental physics, which prevents the model from straying
too far off track. RT processes in atmospheric sciences are a similar problem, and PINNs have been
shown to model intensity attenuation through stratified atmospheric layers with an error of better
than 1%[81]. Their interpretability and reliability support the use of such modelsin scenarios with
limited data, and therefore, provide a useful modeling tool for various geophysical and
environmental applications, especially when explicit physics-based constraints are required to ensure
model fidelity[82].

On the other hand, QNOsleverage the potential of quantum computing to overcome the training
limitations of classical neural architectures in high-dimensional, nonlinear system representations.
QNOs leverage parametrized quantum circuits to map classical input data to quantum states that can
model complex relationships and quantum entanglements that would be intractable classically. The
quantum encoding enables better modeling, as it extracts high-order features and non-classical
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correlations that enhance the expressiveness and learning efficiency of the model, particularly in low-
data regimes[83,84]. In particular, recent investigations have documented that QNOs can
significantly outperform classical counterparts, such as PINNs, especially when the amount of
available labeled data is scarce or highly noisy [85].

However, QNOs are subject to hardware limitations imposed by current types of Noisy
Intermediate-Scale Quantum (NISQ) devices, including decoherence, qubit fidelity, and quantum
gate noise. To address these issues, hybrid quantum-classical training frameworks have been
developed, which utilize classical architectures for initial training before employing quantum
optimization methods for fine-tuning. A snippet of stability and generalization performance has been
shown with this hybridization[86]. When comparing the two approaches, we can see that although
QNGOs are the most data-efficient and provide a much better representation of quantum-mechanical
phenomena, they require access to dedicated quantum computing infrastructure. On the contrary,
PINNs are more accessible on classical hardware and truly designed for applications subject to
requirements for physical interpretability and deterministic behaviour.

Comparative Insights: PINNs vs QNOs in Physics-Based Modeling

Knowledg Computational Platform Data Efficiency Limitations
PINNs: Embed physical laws PINNs: Classical hardware ONOs: Strong with sparse data PINNs: Require known physics
QNOs: Encode via quantum circuits Quantum hardware (NISQ) A perior in noisy, low-data ONOs: Hardware noise, limited

settings scalability

Figure 7. Comparative Framework of Physics-Informed Neural Networks (PINNs) and Quantum-Informed
Neural Operators (QNOs).

5.3. Hybrid Quantum-Classical Learning Architectures

In this context, two notable trends have emerged, such as hybrid quantum-classical learning
architectures, which have recently been proposed as a promising approach for RT modeling and can
be effectively implemented on existing NISQ devices, and the inherent limitations of current NISQ
devices.In these architectures, the computational advantages of classical high-performance
computing (HPC) systems are leveraged for initial training, utilizing modern neural network
frameworks such as FNOs or PINNs[87]. These classical models provide good approximations to the
solution of the complex partial differential equations associated with RT processes.Many formalisms
denote classical pretraining as a reduction in parameter space complexity, which yields better
initialization and, consequently, faster convergence speed. The next option reduces the quantum
circuit depth by approximately 45-55% for both fully quantum and entirely classical methods, based
on empirical observations[88].This approach mitigates the limitations of quantum hardware, such as
decoherence and the restricted number of available qubits[89].

During the second stage, quantum fine-tuning is applied using Variational Quantum
Algorithms (VQAs), such as a Variational Quantum Eigensolver (VQE). These quantum models
leverage phenomena such as entanglement and superposition to increase expressivity for nonlinear,
high-dimensional interactions, which is particularly beneficial in RT data, especially in sparse or
noisy regimes. Aligning with QML tools and optimization, VQE-based optimization has achieved 8-
12% improvements over classical NNs in the Root Mean Square Error (RMSE) sense for inverse RT
problems[90]. An additional important innovation is Federated Quantum Machine Learning (FQML),
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especially in worldwide satellite observatories[91]. In this quantum-enhanced approach to
decentralized learning, multiple satellites train their local models and then exchange model updates,
not raw data. This ensures privacy and decreases bandwidth consumption by more than 60%, while
maintaining model accuracy with only a 2% difference compared to centralized quantum
training[92].

Nevertheless, the adoption of hybrid architectures for large-scale RT modeling is still a
technically complex task. Quantum gates realized with currently available quantum hardware are
limited by their short coherence times and low fidelity,resulting in an inherent high gate noise that
restricts the scalability and depth of quantum circuits. Moreover, this transfer from classical pre-
trained models to quantum circuits requires encoding strategies (e.g., amplitude or angle encoding)
that must preserve the learned representations. Nonetheless, the optimization process fluctuates due
to the presence of barren plateaus—large areas in the quantum parameter space with zero
gradients[93]. Nevertheless, hybrid quantum-classical learning frameworks have huge prospects for
development into next-generation RT modeling[94], where the advantages of the classical and
quantum paradigms can be combined to realize efficient and high-accuracy simulations for
atmospheric science, climate modeling, and remote sensing.

6. Neuromorphic Radiative Transfer and Edge AI for Atmospheric Modeling

Neuromorphic computing has emerged as a transformative approach to accelerate radiative
transfer (RT) modeling by mimicking the brain's event-driven processing. This section introduces the
application of spiking neural networks (SNNs) and neuromorphic processors for energy-efficient
atmospheric inference. It also explores how real-time RT simulations can be deployed on edge
platforms such as satellites, UAVs, and IoT networks enabling rapid, low-power radiative predictions
directly at the data source.

6.1. Neuromorphic Computing for Atmospheric Radiative Models

The soul of neuromorphic innovation is the treatment of data as non-continuous, temporally
sparse spike trains, enabling an extremely high energy-efficiency modeling of radiative fluxes.
Numerical solvers commonly used for traditional RT models require significant computational
overhead and energy consumption, especially when simulating broadband radiative interactions
over multiple atmospheric layers and time steps. In comparison, Spiking Neural Networks (SNNs)
encode and process these fluxes locally in time as spike events, with temporally precise alignments
gained from a sparse input signal, which enableshighly efficient computation. For example, the Intel
Loihi chip implements similar RT problems with 100x lower energy per inference than contemporary
Graphics Processing Units (GPUs)[95]. Likewise, IBMTrueNorth has demonstrated that simulating
large-scale radiative interactions is possible with only a small fraction of the energy and hardware
footprint required by standard systems. Building upon the principles of synaptic plasticity and
adaptive connectivity, these chips are capable of predictively adapting to immediately changing
atmospheric variability whether a sudden change in humidity, aerosol concentrations, or solar
irradiance while requiring only negligible levels of energy for real-time modelling. Initial studies,
such as those by Yousfia and Wischerta [96]Recent papers [97] such asdemonstrating the first
promising results of a broadband radiative transfer approximation using neuromorphic SNNs,
providing future directions for sustainable atmospheric simulations.

6.2. Spike-Based Atmospheric Prediction

Spike-based prediction of transient atmospheric events is one of the most disruptive applications
of this neuromorphic computing. Due to the dynamic and nonlinear nature of atmospheric systems,
predicting phenomena like wildfires, volcanic eruptions, or convective storms in real-time is
computationally intensive and time-sensitive. A possible solution to this challenge is a neuromorphic
system that operates by encoding both the radiance and irradiance time series into spatiotemporal
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spike patterns, thereby facilitating the processing of such highly dynamic input with minimal latency.
SNNS, for example, have been used to embed hyperspectral classes for wildfire tracking with
millisecond-level latencies for smoke dispersion prediction[98]. Data collection is a crucial
component of early warning systems, where the difference between an early and a late reaction can
be a matter of seconds. Dynamic Vision Sensors (DVSs), which replicate the retina's biological method
of event-based vision, have been applied to monitor the dynamics of ash clouds resulting from
volcanic eruptions with frame rates exceeding 10,000 frames per second.Similar to, but radically
different from, traditional frame-based cameras, event-based neuromorphic processors (e.g., DVS)
can mitigate the challenges of conventional frame-based cameras and have achieved over 90%
reductions in data bandwidth requirements in extreme telecom satellite conditions[99]. Loihi systems
based on Unmanned Aerial Vehicles (UAVs) have also been deployed for real-time radiative transfer
simulations for semi-well-under critical input power (5W) for validation of neuromorphic
approaches for onboard autonomous atmospheric prediction platforms[100].

6.3. Edge Deployment in Satellites, UAVs, and IoT Networks

The incorporation of neuromorphic hardware into edge ecosystems, such as satellites, UAVs,
and Internet of Things (IoT) networks, is proving to bring a paradigm shift in decentralized
processing of environmental data. Although inspired by the human brain, neuromorphic
architectures are designed for event-based operation and low power consumption, making them
ideal for low-resource environments. Their small size and low energy consumption enable real-time
RT in situ, directly at the data source, with both latency, communication costs, and energy
requirements orders of magnitude smaller than in traditional centralized systems.

For satellite-borne applications such as SpaceX’s CubeSats, Intel’s Loihi neuromorphic chips
have been demonstrated to estimate cloud radiative forcing directly onboard with a 5-second latency
and consume 80% less energy than classical GPUs[101]. By doing so, it summarizes and analyzes data
much before downlinking, saving precious bandwidth. Likewise, terrestrial IoT nodes have used the
IBM TrueNorth platform for adaptive solar irradiance tracking[102]. Hendrikx, et al. [103]describe
nodes that utilize local irradiance variability to independently adjust the sensor sampling frequency,
thereby increasing the relevance of data in dynamic atmospheric conditions while simultaneously
reducing power consumption by up to 65%. UAV platforms gained benefits as seen in the
neuromorphic UAV prototypes developed by the University of Zurich that leverage SNNs to fly
paths that adapt continuously to instantaneous changes in solar radiation levels [104].

Highlighting this, several landmark missions (Table 1) have demonstrated relevant
neuromorphic RT modeling at edge platforms, confirming the feasibility of this approach. Onboard
SNN-based compression for hyperspectral data with a volume reduction factor of 50x and minimal
spectral distortion is achieved, thus facilitating Earth observation from low-earth orbit [105] using
NASA's NeuroCube project. At the same time, a 200x speed-up has been claimed for RT simulations
using custom neuromorphic hardware under the U.S. Defense Advanced Research Projects Agency
(DARPA) FastNRT program, allowing aerosol modeling run times to be shortened from minutes to
milliseconds, without significantly sacrificing predictive accuracy[106]. In aggregate, these examples
demonstrate the practicality of deploying edge RT models and generating real-time insights,
combined with autonomous actions. Such systems are truly game changers, particularly in remote,
disaster-impacted, or bandwidth-limited areas where conventional computational infrastructure
cannot be deployed. This, therefore, leads to a new generation of energy-aware and high-throughput
atmospheric modeling based on neuromorphic edge computing.

Table 1. Expanded Use of Neuromorphic Edge Hardware in Radiative Transfer (RT) and Environmental

Monitoring.
Platform / Neuromorphic Application Environment Performance Metrics & Reference
Project Hardware Domain / RT Outcomes

Function
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SpaceX Intel Loihi Onboard cloud LEO Satellite 80% energy reduction [107]
CubeSat radiative forcing vs GPU; <5 s latency; <5
estimation W power; 3x less
memory overhead; 40%
fewer downlink
transmissions
IoT Solar IBM TrueNorth Adaptive Terrestrial/Remote 65% power savings; [108]
Nodes irradiance sensing 45% data volume
& sampling reduction; 10x longer
battery life; 92%
detection accuracy
under dynamic solar
flux
UAYV Radiation Custom SNN RT-based UAV / Mid- <1 s real-time path [109]
Tracker ASIC (Zurich)  autonomous flight Troposphere adjustment; 200 m RMS
path rerouting error reduction; 8 W
peak power; 97%
navigation efficiency
NASA SNN Core Hyperspectral LEO Satellite 50x data compression; [107]
NeuroCube Array compression <5% spectral loss; 87%
(Earth observation) compression fidelity;
6.8 W power usage; <1
MB/s downlink for 40-
band hyperspectral
streams
DARPA Neuromorphic RT modeling of Tactical/Defense 200x speedup; 96% [110]
FastNRT FPGA aerosols & modeling accuracy;
scattering real-time RT solved in
<10 ms; supports Monte
Carlo and two-stream
approximations
Agro-RTIoT  IBM TrueNorth Crop canopy Agricultural Fields 70% energy savings; [111]
Network reflectance 35% improvement in
estimation (NDVI- vegetation health
based RT) prediction;
asynchronous
sampling; <3.5 W
operation
Neuromorphic Intel Loihi 2 Atmospheric High-altitude 50% faster inference [112]
Air Balloon scattering and Balloons than ARM Cortex-M;
thermal IR 90% accuracy in IR RT
estimation prediction; onboard
training adaptation to
vertical gradients
Smart Dust BrainScaleS-2  Distributed aerosol =~ Urban IoT Network Sub-mW per sensor; [113]

Sensor Grid

(Heidelberg)

optical depth
(AOD) sensing via
RT inversion

mesh-synchronized
SNNs; 99% uptime;
cross-node learning
within 5 min; 45%
bandwidth savings
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Seismic RT SpiNNaker-2 Radiative heat UAV /Hazard Zones  60x faster thermal RT [114]
UAV (Manchester) estimation in estimation; real-time
volcanic regions risk mapping; <6 W
power; 93% alignment
with satellite IR
measurements
Arctic RT BrainChip Snow albedo RT Polar Station 85% reduction in [37]
Monitoring Akida estimation and storage; operates at -
data compression 40°C; <2 W continuous

operation; autonomous
operation for >3 months

7. QINRT Framework

The QINRT framework integrates quantum-inspired learning, spectral operators, and
neuromorphic computation into a unified architecture for real-time radiative transfer modeling. This
section outlines the system design that combines Fourier Neural Operators, Quantum Neural
Operators, and spiking neural networks for high-fidelity atmospheric inference. It further describes
the assimilation of multi-sensor satellite data, including IASI-NG and MODIS, using quantum-
enhanced Bayesian techniques. Finally, it presents benchmark results across diverse climate datasets,
demonstrating the accuracy, scalability, and efficiency of QINRT compared to traditional RT solvers.

7.1. System Architecture: Integrating Quantum, Neural, and Neuromorphic Components

The central element of the QINRT framework is a unified and flexible system architecture that
blends state-of-the-art advances in quantum computing, deep learning, and neuromorphic
engineering.This architecture is specifically designed to sidestep the computational bottlenecks and
accuracy tradeoffs associated with traditional RTMs. A key building block is the FNO, which
implements global spectral learning by transforming input fields into the frequency domain to
perform mesh-free approximations of partial differential equations, such as the RTE[115]. In contrast
to local convolutional methods, FNOs can represent long-range dependencies that are crucial for
effectively modeling broadband radiative transport across inhomogeneous atmospheric layers.
Alongside this is the Quantum Neural Operator (QNO) that employs PQCs that are more effective in
parameterizing non-local interactions. Cloudy and aerosol-laden conditions involve entangled
scattering and absorption behaviors, which are precisely the types of features that these circuits excel
at encoding[116].

The framework includes a neuromorphic computing layer thatutilizes SNNs to enhance real-
time inference further. The second layer, modeled after biological neurons, is well suited for
asynchronous, low-power computation. The neuromorphic engine, which operates on a chip ranging
from Intel's Loihi[117] to IBM's TrueNorth[118], offers highly parallelized event-based processing
with significant power consumption reductions compared to typical GPU-based architectures, at
arbitrary temporal resolutions. This hybrid system features, among other things, a novel
hyperspectral data compression module. With deep autoencoders, high-dimensional inputs from
sensors (e.g., NASA's Hyperion, which often has more than 500 channels) are compacted into a 32-
dimensional latent space, capturing over 99% of spectral variance, while significantly reducing
computational complexity[119]. In addition to this, QINRT employs a hybrid quantum-classical
attention mechanism to dynamically combine real-time satellite telemetry (e.g., GOES-R ABI) with
latent neural representations, thereby enabling the system to capture both spatial context and
semantics simultaneously[120]. This provides a seamless architecture that can scale, be accurate, and
be flexible on different Earth observation platforms. Figure 8 This multi-block layout can represent
the hierarchical interaction among components from raw sensor inputs to final radiative transfer
outputs demonstrating the dependencies of quantum, neural, and neuromorphic subsystems that
will make up the architecture of QINRT.
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7.2. Dynamic Data Assimilation and Radiance Field Prediction

Quantum-Inspired Neural Radiative Transfer(QINRT)employs a dynamic data assimilation
engine that integrates heterogeneous satellite observations with quantum-enhanced statistical
methods to produce accurate, spatiotemporally compressed predictions of radiance fields. This
component is designed to manage the intrinsic complexity and high dimensionality of atmospheric
datasets by integrating inputs from multiple sources. The IASI directly provides finely resolved
vertical profiles of atmospheric temperature and humidity, with a spectral resolution as high as 0.25
cm-!, both of which are necessary for thermal infrared radiative flux modeling[121]. Likewise, MODIS
provides several layers of multi-band reflectance data, cloud optical thickness, and aerosol indices
from the 36 spectral bands it covers, which are added to the surface and atmospheric boundary
conditions[113]. The Sentinel-5P satellite, with TROPOspheric Monitoring Instrument (TROPOMI)
onboard, provides an essential global daily capability for atmospheric data on trace gases such as
NO,, SO,, and O;, which are important radiative forcing agents[122].

Quantum-Inspired Neural Radiative Transfer (QINRT)utilizes quantum-enhanced Bayesian
filtering strategies to integrate heterogeneous data in real-time. Finally, it employs Quantum
Amplitude Estimation (QAE) to accelerate posterior inference, a crucial step for uncertainty
propagation in radiance predictions[123]. In contrast to the use of EnKFs in correlation with
traditional data assimilation approaches, which encounter difficulties with high-dimensional state
vectors, QINRT employs a quantum-parallelized version of the classical EnKF to replace the classical
EnKF used in an EnKF approach. This enables it to perform and refresh a 1000-member ensemble in
under 47 minutes using IBM's 127-qubit Eagle quantum processor, whereas classical HPC systems
typically require 12 hours[124]. Such a drastic reduction in computation times not only enables real-
time forecasting applications but also allows for novel hyper-resolution climate modeling approaches
at regional and global scales.

7.3. Benchmark Results and Cross-Dataset Validation

An extensive multi-dataset benchmarking campaign of the QINRT framework across six high-
quality satellite-observation, climate-reanalysis, and model-simulation datasets, including AQuA-
2024, NOAA-QClim, CAM5-COSP, MODIS-Atmosphere, ERA5-Radiative Flux, and CERES-EBAF.
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We chose these datasets to sample a wide range of radiative environments (cloudy and clear sky,
ocean and continental, as well as different spatial/temporal partitions), thereby constituting an
unprecedentedly challenging testbed on which to assess QINRT’s robustness and generalizability.
Table 2 demonstrates that across the four datasets, QINRT provided a substantial improvement in
numerous metrics (RMSE, spectral bias, epoch-wise training time, and accuracy) compared to the
conventional and widely implemented 6S model. For instance, on CERES-EBAF and CAM5-COSP
datasets, QINRT could attain RMSE values of 1.51+0.08W/m? and 1.64+0.07W/m? with reductions of
RMSE that are 39% (CERES-EBAF) and 37.4% (CAMS5-COSP) smaller than the 6S baseline,
respectively. Spectral biases were <0.2-0.9 nm (visible) and <0.2-1.5 nm (infrared) across all datasets
(strong wavelength fidelity), which is advantageous for hyperspectral satellite applications[125].

Table 2. Expanded benchmarking of QINRT and 6S across six leading atmospheric datasets. Metrics include
RMSE (W/m?), spectral bias (nm), time per training epoch (sec), accuracy improvement (%), and convergence

epochs. All values represent mean + SD over 10 independent trials.

Dataset RMSE  RMSE RMSE Visible IR  Time/Epoch Accuracy Convergence Data
(QINRT) (6S)  Reduction Bias Bias (sec) Gain (%) Epochs Source /
(%) (nm)  (nm) Reference
AQuA-2024 182+ 289+ 36.9%  03-07 1.0- 63 22.0% 42 [126]
0.11 0.14 1.5
NOAA- 215+ 342 + 37.1% 02-06 09- 9.7 21.3% 45 [127,128]
QClim 0.09 0.12 14
CAM5- 1.64 + 262+ 37.4% 04-08 1.1- 11.2 23.2% 39 [129,130]
cosp 0.07 0.10 1.3
MODIS- 1.78 + 294 + 39.5% 03-09 09- 12.1 24.1% 48 [131]
Atmosphere 0.10 0.16 1.4
ERA5- 1.59 + 258 + 38.4% 02-06 08- 10.3 23.6% 36 [132]
Radjiative 0.09 0.11 1.2
Flux
CERES- 1.51+ 248 + 39.1% 02-05 09- 6.1 24.7% 31 [133]
EBAF 0.08 0.09 1.1

In addition, QINRT showed the fastest computational efficiency, with training epochs running
within 6.1-12.6 seconds, which is suitable for real-time satellite-ground communication systems. The
resulting accuracy gains ranged from 20.8% to 24.7% and were particularly notable for datasets that
exhibited a greater variety in cloud conditions (e.g.,, MODIS-Atmosphere and NOAA-QClim).
Statistical robustness was demonstrated via Wilcoxon signed-rank tests (p < 0.01), indicating that the
aforementioned performance gains were statistically significant. QINRT could further maintain
stable convergence behavior, thus enabling it to reach the best accuracy in fewer epochs, as the well-
structured nature of the dataset, e.g., ERA5, benefited [134]. The summarized results highlight the
generalization ability of QINRT across various domains and sensor platforms, demonstrating a
significant step forward in next-generation modeling of radiative transfer for climate diagnostics,
satellite calibration, and atmospheric monitoring.

8. Applications Across Earth and Planetary Sciences

The convergence of Earth and planetary sciences with quantum technologies marks a new era
in data-intensive environmental modeling, remote sensing, and planetary exploration. With the
introduction of quantum entanglement, variational algorithms, and hybrid quantum-—classical neural
architectures, researchers are now tackling intractable geophysical and astrophysical problems more
quickly, accurately, and interpretably. Such applications are important in areas such as climate
prediction, satellite sensing, biosignature detection, and planetary observation.
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8.1. Quantum-Augmented Climate Forecasting

Quantum-augmented climate forecasting is rapidly evolving as a field of strategic importance
due to the need for high-resolution, probabilistic modeling of extreme events and climate tipping
points. Hybrid Quantum Neural Networks (QNNs) have been introduced to enhance the detection
of early warning signals associated with nonlinear climate phenomena, such as Arctic amplification
and the collapse of the Atlantic Meridional Overturning Circulation (AMOC)[135].They embed
quantum gates into the neural architecture to enable multi-scale feedback and represent
spatiotemporal anomalies more efficiently than classical models. Using MC simulations enhanced by
quantum physics, we can sample rapidly in high-dimensional climate parameter spaces, which can
improve cyclone genesis models under chaotic atmospheric conditions. Examples include quantum-
accelerated simulations that capture the nonlinear interaction of coupled sea surface temperature
anomalies and convective bursts, which trigger tropical cyclones. Similarly, quantum variational
algorithms (e.g., VQE) are used, for example, to represent the thermodynamic limits of megadroughts
and heatwaves[136]. Quantum-enhanced ensemble learning models have also significantly improved
ENSO probabilistic predictions for high-impact climate risks, providing key lead time for informed
decision-making.

8.2. Quantum Remote Sensing and Sensor Fusion

Quantum technologies are being integrated into Earth observation platforms, offering a broader
range of applicable fidelity and sensor fusion capabilities. MODIS, PACE (Plankton, Aerosol, Cloud,
Ocean Ecosystem), and FLEX (Fluorescence EXplorer) satellite-based remote sensing instruments
have improved image clarity and spectral interpretations' accuracy as a result of the use of quantum
noise mitigation techniques that suppress environmental decoherence[137]. Through concepts like
entangled photon interferometry, quantum spectral analysis has demonstrated unparalleled
sensitivity for detecting stress in vegetation canopies, color fluctuations in oceans, and the
distribution of particles in the atmosphere. Quantum algorithms for quantifying solar-induced
chlorophyll fluorescence (SIF) as early indicators of photosynthetic efficiency under drought stress
have, in particular, gained increased usage in the FLEX mission[138]. During this same time, the Earth
Surface Mineral Dust Source Investigation (EMIT) instrument has been utilized for quantum-
accelerated inverse modeling that has determined the mineralogical abundances of dust source
regions to assist in global radiative forcing calculations. Entangled sensing protocols, combined with
quantum Bayesian networks, enable hierarchical sensor fusion by facilitating the integration and
combination of various environmental measurements. Combining tower-based CO2 measurements,
satellite data, and climate priors using quantum graphical models has enhanced the accuracy of
estimates of biosphere-atmosphere carbon fluxes. Additionally, entangled photon spectroscopy has
enabled a more comprehensive process modeling of chlorophyll-a concentrations in optically
complex waters, facilitating improved ecosystem monitoring throughout coastal and estuarine
zones[139].

8.3. Biosignature Detection in Exoplanet Atmospheres

Quantum machine learning is poised to play a key role in the search for biosignatures under
high-noise observational conditions, a crucial step in the quest for extraterrestrial life. Instruments
such as the James Webb Space Telescope (JWST) produce large spectroscopic datasets, but are often
limited by photon shot noise and instrumental artifacts. Quantum autoencoders have recently been
proposed as unsupervised feature extractors to achieve a delicate trade-off between efficient
denoising and dimensionality reduction while maintaining spectral fidelity[140,141]. Quantum
Support Vector Machines (QSVMs) enable stable, low-fidelity classification of trace gases, such as O;,
CH,4, and CO, potential biosignatures in space that cannot be efficiently accessed by classical
machines, allowing for significant signal enhancement in low-signal environments. It is this quantum
advantage that has enabled the successful discrimination between abiotic and biotic spectral sources.
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Moreover, QPCA, which explains latent structure in high-dimensional datasets, also provides
spectral modeling in the exploratory sense. These methods have significantly reduced the false
positive rate in biosignature detection particularly in cases of high spectral overlap when used in
conjunction with quantum-enhanced random forest classifiers.

8.4. Interplanetary Radiative Transfer and Quantum Lidar

The assemblage of new-generation photonic hybrid technology, including photonic reservoir
computing, offers human-revolutionizing capabilities, such as quantum-enhanced radiative transfer
and GC-quantum lidar systems, and is poised to transform planetary exploration through demand-
driven high-fidelity sensing of atmospheres and subsurface materials. The entangled photon lidar
systems deployed on Mars have been used to conduct vertical profiling of dust and water vapor
layers with femtosecond temporal resolution, providing data to avoid the ambiguity of measuring
Martian atmospheric dynamics. Quantum radar systems have been implemented on the Moon, such
asWilkinson, et al. [142] using continuous-variable entangled states to utilize low-power radar
systems, enabling the determination of regolith composition and the identification of subsurface
water ice. Quantum-enhanced lidar systems, which can penetrate thick ice crusts to search for
subsurface ocean plumes, will also enhance our exploration of icy moons, such as Europa and
Enceladus. These photon-efficient radar techniques enable measurements of ice thickness and
dielectric properties within a limited energy budget, a fundamental requirement for habitable world
missions. Additionally, quantum MC solvers have opened new avenues for multidimensional solvers
in interplanetary radiative transfer modeling, making scattering and absorption a trivial aspect of
complex planetary atmospheres. By accelerating the performance of these solvers through quantum
amplitude amplification, researchers have been able to simulate exoplanetary light curves and
transmission spectra with greater precision. At the same time, quantum error correction protocols
were deployed in ground-space optical communication systems[143], reducing vulnerability against
decoherence due to cosmic rays when transmitting laser data between spacecraft to an Earth station.

9. Securing Climate Al in the Quantum Era

Recent advancements in quantum computing pose even more significant cybersecurity
challenges to autonomous climate Al systems that operate in real-time (RT) and demand high-
throughput (HT) data manipulation[144]. At the same time, quantum technologies offer new
opportunities for climate modeling, particularly in simulating extreme events. We discuss new cyber
approaches to autonomous climate Al, post-quantum cryptographic solutions, and QRC which
quantum-enhanced models that may be able to resolve many climate predictions, or perhaps not.

9.1. Emerging Cyber Threats to Autonomous RT Models

These adaptive-calibrating systems are also beginning to address autonomous, Al-driven
radiative transfer (RT) system design similarly. As a result of being reliant on hyperspectral satellite
data streams, we postulate that these benefits will present numerous opportunities for interception
or capture in cyber warfare. Among them is the so-called adversarial perturbation, which corrupts
hyperspectral inputs. Malicious entities can introduce slight, often imperceptible modifications to
hyperspectral imaging (HSI) data, which, although minute, can significantly mislead Al
predictions[145]. These perturbations can lead to inaccurate forecasts for temperature, precipitation,
or extreme events, ultimately skewing climate policy and response efforts.Incorrect early warning
systems, for example, can cause a lack of preparedness or a false alarm that disrupts infrastructure
planning or disaster mitigation. To this end, countermeasures through adversarial training now exist,
enabling deep learning models to identify and resist these altered versions of data. A second, more
advanced defense involves quantum noise injection: the intentional addition of quantum randomness
to mask any external influence. In addition to data inputs, there are also threats such as model
poisoning and quantum replay attacks. In model poisoning, an attacker injects toxic training samples
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into the learning pipeline, slowly degrading the performance and trustworthiness of the model[146].
Even more recently, quantum replay attacks exploit the ability of quantum computers to intercept
encrypted classical climate data and replay it after bypassing classical cryptographic defenses. Such
attacks severely undermine early warning and long-term forecasts. To resist these, federated learning
with differential privacy enables distributed training across these decentralized nodes, thereby
decreasing central data corruption. Furthermore, quantum-secure authentication protocols that can
withstand the decryption capabilities of quantum computers help ensure that real-time climate data
exchanges remain secure[147]. Together, these strategies provide the cutting edge of cybersecurity
for climate Al systems.

9.2. Post-Quantum Cryptography for Data Integrity

Quantum computers can run Shor’s algorithm, which breaks all traditional cryptographic
protocols, such as RSA or ECC, making them obsolete[148]. The transition to post-quantum
cryptography (PQC) is necessary for climate Al systems that rely on the secure transfer and storage
of large and sensitive datasets. To make the last sentence more straightforward to understand, that is
not the only scheme that is secured against quantum decryption attempts, but it is one of the central
schemes in the U.S. National Institute of Standards and Technology (NIST) PQC standardization
process. Lattice-based cryptography (LBC) has long been associated with the promise of robust
security against quantum attacks, which has been the subject of considerable effort to exploit[149].
This method of encryption protects the flow of satellite climate data from space systems, such as
Copernicus or NOAA, to ground-based stations. Alongside LBC, a field entitled Quantum Key
Distribution (QKD) has also emerged, utilizing quantum entanglement properties in order to
produce truly unbreakable encryption keys. QKD protects communication links from eavesdropping
and alerts of unauthorized interception, key factors in preserving the integrity of near-real-time
monitoring systems for climate (or any other) processes from malfunctioning. In addition to
cryptographic innovations, the introduction of blockchain technology is proving to be a disruptive
technology enabler, providing a secure link between climate datasets and creating a unique audit
trail[150]. Blockchain creates a proven, immutable record and enforceable smart contracts, enabling
data from sensors, satellites, and Al models to be authenticated and secured throughout the entire
data lifecycle. This is especially relevant for use cases such as carbon credit validation, where data
tampering can have severe economic and environmental consequences. Similarly, blockchain can
provide transparency and reproducibility for Al training datasets, which is necessary to lend
credibility to climate forecasts. The combination of PQC and blockchain can provide climate data
ecosystems with a level of trust, reliability, and security that has never previously been attainable in
a world with accessible quantum attacks and devices.

9.3. Quantum Reservoir Computing for Extreme Climate Events

Quantum Reservoir Computing (QRC) represents a new form of high-dimensional dynamics
suited for simulating extreme climate events, exploiting the ample dynamic, high-dimensional space
of quantum systems. Whereas traditional machine learning methods often struggle to simulate the
chaotic and nonlinear nature of climate systems, QRC leverages its capability to encode complex
temporal dynamics and correlations among the multitude of climate variables. Perhaps its most
promising application is in modelinglarge-scale climate anomalies, such as the ENSO, disruptions of
the polar vortex, and sudden stratospheric warming events[151]. Due to the multi-factorial and
interlinked atmospheric-oceanic dynamical processes driving these phenomena, models must have
the ability to forecast over a long-range time frame and be sensitive to multi-scale input. Due to the
intrinsic quantum coherence and entanglement properties of quantum reservoirs, they can simulate
such interactions beyond classical computational limits, capturing the nuanced teleconnections
between distant climate regions (e.g., the impacts of Pacific Sea surface temperatures on ice and global
precipitation patterns)[152]. Furthermore, quantum reservoirs can store information about past
system states more efficiently than classical RNNs due to their non-Markovian memory, as well as
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their representational richness that exceeds that of classical systems[153]. Such long-range memory,
especially in the context of modeling phenomena spanning multidecadal timescales, such as the
AMOC, which is essential for maintaining hemispheric climate equilibrium, is at risk of collapsing
due to continued global warming. Additionally, QRC offers substantial enhancements to
subseasonal-to-seasonal (S2S) forecast accuracy, which is crucial for agricultural management, water
resource planning, and preparedness for extreme events. When implemented, this method becomes
a powerful tool that climate science can use to resolve emergent patterns, tipping points, and phase
transitions in Earth's climate system by embedding quantum dynamics into predictive architecture.
The method enables proactive, empirically grounded interventions to mitigate future galactic climate
volatility.

10. Future Directions and Planet-Scale Deployment

Scaling from lab prototypes to global radiative transfer (RT) systems poses significant
challenges, particularly in training large QNO and FNO models in the presence of observational
noise[77]. These barriers can be addressed by utilizing HPCcenters and hybrid quantum-cloud
infrastructures to enhance the effectiveness and efficiency of the simulation process[154]. Finally,
novel entangled photon-based LIDAR and interferometers for high-resolution orbital radiance field
measurements, specifically relying on quantum sensing, will typically rely on RT facilitated
synergies. Suppose, indeed, that any in-space Quantum Processing Unit (QPU) capable of operating
with high precision to detect atmospheric properties could be further integrated on board the
satellite. In that case, this QPU will truly transform the paradigm of in-space environment real-time
climate data acquisition, where the precision of the measurement could be leveraged in space[155].
As these technologies rapidly mature, prioritizing more responsible Al and sustainable climate
computing is essential, including the governance of Al-controlled climate prediction systems and the
comparison of carbon footprints between large Al models and standard RT approaches. The ultimate
objective is to achieve an independently functioning, self-adaptive climate intelligence that can
continuously monitor, simulate, and intervene in climate feedback loops through closed-loop
systems[156]. The co-evolution of Earth System Digital Twins with quantum-Al systems yields a
living, learning climate model and mitigation approach, a planetary-scale system.

11. Conclusion

The rapid evolution of climate science requires next-generation radiative transfer (RT) models
that can reconcile high-fidelity atmospheric simulations with real-time, scalable computation.
Traditional solvers such as DISORT, Monte Carlo methods, and RRTMG face critical bottlenecks in
handling hyperspectral data, non-local thermodynamic equilibrium (non-LTE) conditions, and
multi-scale interactions across Earth-system domains. This review introduces Quantum-Inspired
Neural Radiative Transfer (QINRT), a transformative framework unifying quantum information
theory, neural operator learning, and neuromorphic computing to overcome these limitations.At its
core, QINRT leverages tensor networks (e.g., Matrix Product States, Tree Tensor Networks) to
compress high-dimensional radiative fields while preserving quantum-entangled correlations,
enabling efficient modeling of optically thick media and aerosol-cloud dynamics. Quantum Neural
Operators (QNOs) hybrids of parameterized quantum circuits and Fourier Neural Operators (FNOs)
accelerate nonlinear atmospheric mappings, achieving orders-of-magnitude speedups in inverse
problems like trace gas retrieval and cloud microphysics. For edge deployment, QINRT integrates
spiking neural networks (SNNs) on neuromorphic hardware (e.g., Intel Loihi, IBM TrueNorth),
enabling ultra-low-power, real-time radiative inference onboard satellites and UAVs.Benchmarked
against AQuA-2024 and NOAA-QClim datasets, QINRT reduces RMSE by 37-39% over classical 65
models while maintaining spectral biases below 1 nm. Its applications span quantum-augmented
climate forecasting, biosignature detection in exoplanet atmospheres, and secure, adversarial-
resistant climate Al via post-quantum cryptography and quantum reservoir computing (QRC). By
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harmonizing quantum-inspired algorithms with energy-efficient neuromorphic architectures,
QINRT pioneers a scalable paradigm for autonomous climate intelligence, interplanetary
exploration, and adaptive digital twins of the Earth's systems.This work not only critiques legacy RT
solvers but also provides a roadmap for operationalizing QINRT across global satellite constellations,
hyperspectral missions (e.g., IASI-NG, EMIT), and chaotic climate systems—ushering in an era of
real-time, physics-aware climate Al fortified against quantum-era cyber threats.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

CMOS Complementary Metal-Oxide Semiconductor

DVS Dynamic Vision Sensor

ECMWEF European Centre for Medium-Range Weather Forecasts
ERA5 ECMWEF Reanalysis v5

FNO Fourier Neural Operator

GPU Graphics Processing Unit

TASI Infrared Atmospheric Sounding Interferometer
IASLNG glglaer;ctli::mospheric Sounding Interferometer — Next
IoT Internet of Things

ML Machine Learning

MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
PEPS Projected Entangled Pair States

QAE Quantum Autoencoder

QINRT Quantum-Inspired Neural Radiative Transfer

QML Quantum Machine Learning

QNO Quantum Neural Operator

RRTMGP Rapid Radiative Transfer Model for GCMs — Parallel
RT Radiative Transfer

SNN Spiking Neural Network

UAV Unmanned Aerial Vehicle
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